xref: /linux/drivers/mmc/host/cqhci-core.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15 
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22 
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25 
26 struct cqhci_slot {
27 	struct mmc_request *mrq;
28 	unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT	BIT(0)
30 #define CQHCI_COMPLETED		BIT(1)
31 #define CQHCI_HOST_CRC		BIT(2)
32 #define CQHCI_HOST_TIMEOUT	BIT(3)
33 #define CQHCI_HOST_OTHER	BIT(4)
34 };
35 
36 static bool cqhci_halted(struct cqhci_host *cq_host)
37 {
38 	return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
39 }
40 
41 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 	return cq_host->desc_base + (tag * cq_host->slot_sz);
44 }
45 
46 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
47 {
48 	u8 *desc = get_desc(cq_host, tag);
49 
50 	return desc + cq_host->task_desc_len;
51 }
52 
53 static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag)
54 {
55 	return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag;
56 }
57 
58 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
59 {
60 	size_t offset = get_trans_desc_offset(cq_host, tag);
61 
62 	return cq_host->trans_desc_dma_base + offset;
63 }
64 
65 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
66 {
67 	size_t offset = get_trans_desc_offset(cq_host, tag);
68 
69 	return cq_host->trans_desc_base + offset;
70 }
71 
72 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
73 {
74 	u8 *link_temp;
75 	dma_addr_t trans_temp;
76 
77 	link_temp = get_link_desc(cq_host, tag);
78 	trans_temp = get_trans_desc_dma(cq_host, tag);
79 
80 	memset(link_temp, 0, cq_host->link_desc_len);
81 	if (cq_host->link_desc_len > 8)
82 		*(link_temp + 8) = 0;
83 
84 	if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
85 		*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
86 		return;
87 	}
88 
89 	*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
90 
91 	if (cq_host->dma64) {
92 		__le64 *data_addr = (__le64 __force *)(link_temp + 4);
93 
94 		data_addr[0] = cpu_to_le64(trans_temp);
95 	} else {
96 		__le32 *data_addr = (__le32 __force *)(link_temp + 4);
97 
98 		data_addr[0] = cpu_to_le32(trans_temp);
99 	}
100 }
101 
102 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
103 {
104 	cqhci_writel(cq_host, set, CQHCI_ISTE);
105 	cqhci_writel(cq_host, set, CQHCI_ISGE);
106 }
107 
108 #define DRV_NAME "cqhci"
109 
110 #define CQHCI_DUMP(f, x...) \
111 	pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
112 
113 static void cqhci_dumpregs(struct cqhci_host *cq_host)
114 {
115 	struct mmc_host *mmc = cq_host->mmc;
116 
117 	CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
118 
119 	CQHCI_DUMP("Caps:      0x%08x | Version:  0x%08x\n",
120 		   cqhci_readl(cq_host, CQHCI_CAP),
121 		   cqhci_readl(cq_host, CQHCI_VER));
122 	CQHCI_DUMP("Config:    0x%08x | Control:  0x%08x\n",
123 		   cqhci_readl(cq_host, CQHCI_CFG),
124 		   cqhci_readl(cq_host, CQHCI_CTL));
125 	CQHCI_DUMP("Int stat:  0x%08x | Int enab: 0x%08x\n",
126 		   cqhci_readl(cq_host, CQHCI_IS),
127 		   cqhci_readl(cq_host, CQHCI_ISTE));
128 	CQHCI_DUMP("Int sig:   0x%08x | Int Coal: 0x%08x\n",
129 		   cqhci_readl(cq_host, CQHCI_ISGE),
130 		   cqhci_readl(cq_host, CQHCI_IC));
131 	CQHCI_DUMP("TDL base:  0x%08x | TDL up32: 0x%08x\n",
132 		   cqhci_readl(cq_host, CQHCI_TDLBA),
133 		   cqhci_readl(cq_host, CQHCI_TDLBAU));
134 	CQHCI_DUMP("Doorbell:  0x%08x | TCN:      0x%08x\n",
135 		   cqhci_readl(cq_host, CQHCI_TDBR),
136 		   cqhci_readl(cq_host, CQHCI_TCN));
137 	CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
138 		   cqhci_readl(cq_host, CQHCI_DQS),
139 		   cqhci_readl(cq_host, CQHCI_DPT));
140 	CQHCI_DUMP("Task clr:  0x%08x | SSC1:     0x%08x\n",
141 		   cqhci_readl(cq_host, CQHCI_TCLR),
142 		   cqhci_readl(cq_host, CQHCI_SSC1));
143 	CQHCI_DUMP("SSC2:      0x%08x | DCMD rsp: 0x%08x\n",
144 		   cqhci_readl(cq_host, CQHCI_SSC2),
145 		   cqhci_readl(cq_host, CQHCI_CRDCT));
146 	CQHCI_DUMP("RED mask:  0x%08x | TERRI:    0x%08x\n",
147 		   cqhci_readl(cq_host, CQHCI_RMEM),
148 		   cqhci_readl(cq_host, CQHCI_TERRI));
149 	CQHCI_DUMP("Resp idx:  0x%08x | Resp arg: 0x%08x\n",
150 		   cqhci_readl(cq_host, CQHCI_CRI),
151 		   cqhci_readl(cq_host, CQHCI_CRA));
152 
153 	if (cq_host->ops->dumpregs)
154 		cq_host->ops->dumpregs(mmc);
155 	else
156 		CQHCI_DUMP(": ===========================================\n");
157 }
158 
159 /*
160  * The allocated descriptor table for task, link & transfer descriptors
161  * looks like:
162  * |----------|
163  * |task desc |  |->|----------|
164  * |----------|  |  |trans desc|
165  * |link desc-|->|  |----------|
166  * |----------|          .
167  *      .                .
168  *  no. of slots      max-segs
169  *      .           |----------|
170  * |----------|
171  * The idea here is to create the [task+trans] table and mark & point the
172  * link desc to the transfer desc table on a per slot basis.
173  */
174 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
175 {
176 	int i = 0;
177 
178 	/* task descriptor can be 64/128 bit irrespective of arch */
179 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
180 		cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
181 			       CQHCI_TASK_DESC_SZ, CQHCI_CFG);
182 		cq_host->task_desc_len = 16;
183 	} else {
184 		cq_host->task_desc_len = 8;
185 	}
186 
187 	/*
188 	 * 96 bits length of transfer desc instead of 128 bits which means
189 	 * ADMA would expect next valid descriptor at the 96th bit
190 	 * or 128th bit
191 	 */
192 	if (cq_host->dma64) {
193 		if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
194 			cq_host->trans_desc_len = 12;
195 		else
196 			cq_host->trans_desc_len = 16;
197 		cq_host->link_desc_len = 16;
198 	} else {
199 		cq_host->trans_desc_len = 8;
200 		cq_host->link_desc_len = 8;
201 	}
202 
203 	/* total size of a slot: 1 task & 1 transfer (link) */
204 	cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
205 
206 	cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
207 
208 	cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth);
209 
210 	pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
211 		 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
212 		 cq_host->slot_sz);
213 
214 	/*
215 	 * allocate a dma-mapped chunk of memory for the descriptors
216 	 * allocate a dma-mapped chunk of memory for link descriptors
217 	 * setup each link-desc memory offset per slot-number to
218 	 * the descriptor table.
219 	 */
220 	cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
221 						 cq_host->desc_size,
222 						 &cq_host->desc_dma_base,
223 						 GFP_KERNEL);
224 	if (!cq_host->desc_base)
225 		return -ENOMEM;
226 
227 	cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
228 					      cq_host->data_size,
229 					      &cq_host->trans_desc_dma_base,
230 					      GFP_KERNEL);
231 	if (!cq_host->trans_desc_base) {
232 		dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
233 				   cq_host->desc_base,
234 				   cq_host->desc_dma_base);
235 		cq_host->desc_base = NULL;
236 		cq_host->desc_dma_base = 0;
237 		return -ENOMEM;
238 	}
239 
240 	pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
241 		 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
242 		(unsigned long long)cq_host->desc_dma_base,
243 		(unsigned long long)cq_host->trans_desc_dma_base);
244 
245 	for (; i < (cq_host->num_slots); i++)
246 		setup_trans_desc(cq_host, i);
247 
248 	return 0;
249 }
250 
251 static void __cqhci_enable(struct cqhci_host *cq_host)
252 {
253 	struct mmc_host *mmc = cq_host->mmc;
254 	u32 cqcfg;
255 
256 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
257 
258 	/* Configuration must not be changed while enabled */
259 	if (cqcfg & CQHCI_ENABLE) {
260 		cqcfg &= ~CQHCI_ENABLE;
261 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
262 	}
263 
264 	cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
265 
266 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
267 		cqcfg |= CQHCI_DCMD;
268 
269 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
270 		cqcfg |= CQHCI_TASK_DESC_SZ;
271 
272 	if (mmc->caps2 & MMC_CAP2_CRYPTO)
273 		cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
274 
275 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
276 
277 	cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
278 		     CQHCI_TDLBA);
279 	cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
280 		     CQHCI_TDLBAU);
281 
282 	cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
283 
284 	cqhci_set_irqs(cq_host, 0);
285 
286 	cqcfg |= CQHCI_ENABLE;
287 
288 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
289 
290 	if (cqhci_halted(cq_host))
291 		cqhci_writel(cq_host, 0, CQHCI_CTL);
292 
293 	mmc->cqe_on = true;
294 
295 	if (cq_host->ops->enable)
296 		cq_host->ops->enable(mmc);
297 
298 	/* Ensure all writes are done before interrupts are enabled */
299 	wmb();
300 
301 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
302 
303 	cq_host->activated = true;
304 }
305 
306 static void __cqhci_disable(struct cqhci_host *cq_host)
307 {
308 	u32 cqcfg;
309 
310 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
311 	cqcfg &= ~CQHCI_ENABLE;
312 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
313 
314 	cq_host->mmc->cqe_on = false;
315 
316 	cq_host->activated = false;
317 }
318 
319 int cqhci_deactivate(struct mmc_host *mmc)
320 {
321 	struct cqhci_host *cq_host = mmc->cqe_private;
322 
323 	if (cq_host->enabled && cq_host->activated)
324 		__cqhci_disable(cq_host);
325 
326 	return 0;
327 }
328 EXPORT_SYMBOL(cqhci_deactivate);
329 
330 int cqhci_resume(struct mmc_host *mmc)
331 {
332 	/* Re-enable is done upon first request */
333 	return 0;
334 }
335 EXPORT_SYMBOL(cqhci_resume);
336 
337 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
338 {
339 	struct cqhci_host *cq_host = mmc->cqe_private;
340 	int err;
341 
342 	if (!card->ext_csd.cmdq_en)
343 		return -EINVAL;
344 
345 	if (cq_host->enabled)
346 		return 0;
347 
348 	cq_host->rca = card->rca;
349 
350 	err = cqhci_host_alloc_tdl(cq_host);
351 	if (err) {
352 		pr_err("%s: Failed to enable CQE, error %d\n",
353 		       mmc_hostname(mmc), err);
354 		return err;
355 	}
356 
357 	__cqhci_enable(cq_host);
358 
359 	cq_host->enabled = true;
360 
361 #ifdef DEBUG
362 	cqhci_dumpregs(cq_host);
363 #endif
364 	return 0;
365 }
366 
367 /* CQHCI is idle and should halt immediately, so set a small timeout */
368 #define CQHCI_OFF_TIMEOUT 100
369 
370 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
371 {
372 	return cqhci_readl(cq_host, CQHCI_CTL);
373 }
374 
375 static void cqhci_off(struct mmc_host *mmc)
376 {
377 	struct cqhci_host *cq_host = mmc->cqe_private;
378 	u32 reg;
379 	int err;
380 
381 	if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
382 		return;
383 
384 	if (cq_host->ops->disable)
385 		cq_host->ops->disable(mmc, false);
386 
387 	cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
388 
389 	err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
390 				 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
391 	if (err < 0)
392 		pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
393 	else
394 		pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
395 
396 	if (cq_host->ops->post_disable)
397 		cq_host->ops->post_disable(mmc);
398 
399 	mmc->cqe_on = false;
400 }
401 
402 static void cqhci_disable(struct mmc_host *mmc)
403 {
404 	struct cqhci_host *cq_host = mmc->cqe_private;
405 
406 	if (!cq_host->enabled)
407 		return;
408 
409 	cqhci_off(mmc);
410 
411 	__cqhci_disable(cq_host);
412 
413 	dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
414 			   cq_host->trans_desc_base,
415 			   cq_host->trans_desc_dma_base);
416 
417 	dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
418 			   cq_host->desc_base,
419 			   cq_host->desc_dma_base);
420 
421 	cq_host->trans_desc_base = NULL;
422 	cq_host->desc_base = NULL;
423 
424 	cq_host->enabled = false;
425 }
426 
427 static void cqhci_prep_task_desc(struct mmc_request *mrq,
428 				 struct cqhci_host *cq_host, int tag)
429 {
430 	__le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
431 	u32 req_flags = mrq->data->flags;
432 	u64 desc0;
433 
434 	desc0 = CQHCI_VALID(1) |
435 		CQHCI_END(1) |
436 		CQHCI_INT(1) |
437 		CQHCI_ACT(0x5) |
438 		CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
439 		CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
440 		CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
441 		CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
442 		CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
443 		CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
444 		CQHCI_BLK_COUNT(mrq->data->blocks) |
445 		CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
446 
447 	task_desc[0] = cpu_to_le64(desc0);
448 
449 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
450 		u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
451 
452 		task_desc[1] = cpu_to_le64(desc1);
453 
454 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
455 			 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
456 	} else {
457 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
458 			 mmc_hostname(mrq->host), mrq->tag, desc0);
459 	}
460 }
461 
462 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
463 {
464 	int sg_count;
465 	struct mmc_data *data = mrq->data;
466 
467 	if (!data)
468 		return -EINVAL;
469 
470 	sg_count = dma_map_sg(mmc_dev(host), data->sg,
471 			      data->sg_len,
472 			      (data->flags & MMC_DATA_WRITE) ?
473 			      DMA_TO_DEVICE : DMA_FROM_DEVICE);
474 	if (!sg_count) {
475 		pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
476 		return -ENOMEM;
477 	}
478 
479 	return sg_count;
480 }
481 
482 void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
483 			 bool dma64)
484 {
485 	__le32 *attr = (__le32 __force *)desc;
486 
487 	*attr = (CQHCI_VALID(1) |
488 		 CQHCI_END(end ? 1 : 0) |
489 		 CQHCI_INT(0) |
490 		 CQHCI_ACT(0x4) |
491 		 CQHCI_DAT_LENGTH(len));
492 
493 	if (dma64) {
494 		__le64 *dataddr = (__le64 __force *)(desc + 4);
495 
496 		dataddr[0] = cpu_to_le64(addr);
497 	} else {
498 		__le32 *dataddr = (__le32 __force *)(desc + 4);
499 
500 		dataddr[0] = cpu_to_le32(addr);
501 	}
502 }
503 EXPORT_SYMBOL(cqhci_set_tran_desc);
504 
505 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
506 			       struct cqhci_host *cq_host, int tag)
507 {
508 	struct mmc_data *data = mrq->data;
509 	int i, sg_count, len;
510 	bool end = false;
511 	bool dma64 = cq_host->dma64;
512 	dma_addr_t addr;
513 	u8 *desc;
514 	struct scatterlist *sg;
515 
516 	sg_count = cqhci_dma_map(mrq->host, mrq);
517 	if (sg_count < 0) {
518 		pr_err("%s: %s: unable to map sg lists, %d\n",
519 				mmc_hostname(mrq->host), __func__, sg_count);
520 		return sg_count;
521 	}
522 
523 	desc = get_trans_desc(cq_host, tag);
524 
525 	for_each_sg(data->sg, sg, sg_count, i) {
526 		addr = sg_dma_address(sg);
527 		len = sg_dma_len(sg);
528 
529 		if ((i+1) == sg_count)
530 			end = true;
531 		if (cq_host->ops->set_tran_desc)
532 			cq_host->ops->set_tran_desc(cq_host, &desc, addr, len, end, dma64);
533 		else
534 			cqhci_set_tran_desc(desc, addr, len, end, dma64);
535 
536 		desc += cq_host->trans_desc_len;
537 	}
538 
539 	return 0;
540 }
541 
542 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
543 				   struct mmc_request *mrq)
544 {
545 	u64 *task_desc = NULL;
546 	u64 data = 0;
547 	u8 resp_type;
548 	u8 *desc;
549 	__le64 *dataddr;
550 	struct cqhci_host *cq_host = mmc->cqe_private;
551 	u8 timing;
552 
553 	if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
554 		resp_type = 0x0;
555 		timing = 0x1;
556 	} else {
557 		if (mrq->cmd->flags & MMC_RSP_R1B) {
558 			resp_type = 0x3;
559 			timing = 0x0;
560 		} else {
561 			resp_type = 0x2;
562 			timing = 0x1;
563 		}
564 	}
565 
566 	task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
567 	memset(task_desc, 0, cq_host->task_desc_len);
568 	data |= (CQHCI_VALID(1) |
569 		 CQHCI_END(1) |
570 		 CQHCI_INT(1) |
571 		 CQHCI_QBAR(1) |
572 		 CQHCI_ACT(0x5) |
573 		 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
574 		 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
575 	if (cq_host->ops->update_dcmd_desc)
576 		cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
577 	*task_desc |= data;
578 	desc = (u8 *)task_desc;
579 	pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
580 		 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
581 	dataddr = (__le64 __force *)(desc + 4);
582 	dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
583 
584 }
585 
586 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
587 {
588 	struct mmc_data *data = mrq->data;
589 
590 	if (data) {
591 		dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
592 			     (data->flags & MMC_DATA_READ) ?
593 			     DMA_FROM_DEVICE : DMA_TO_DEVICE);
594 	}
595 }
596 
597 static inline int cqhci_tag(struct mmc_request *mrq)
598 {
599 	return mrq->cmd ? DCMD_SLOT : mrq->tag;
600 }
601 
602 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
603 {
604 	int err = 0;
605 	int tag = cqhci_tag(mrq);
606 	struct cqhci_host *cq_host = mmc->cqe_private;
607 	unsigned long flags;
608 
609 	if (!cq_host->enabled) {
610 		pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
611 		return -EINVAL;
612 	}
613 
614 	/* First request after resume has to re-enable */
615 	if (!cq_host->activated)
616 		__cqhci_enable(cq_host);
617 
618 	if (!mmc->cqe_on) {
619 		if (cq_host->ops->pre_enable)
620 			cq_host->ops->pre_enable(mmc);
621 
622 		cqhci_writel(cq_host, 0, CQHCI_CTL);
623 		mmc->cqe_on = true;
624 		pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
625 		if (cqhci_halted(cq_host)) {
626 			pr_err("%s: cqhci: CQE failed to exit halt state\n",
627 			       mmc_hostname(mmc));
628 		}
629 		if (cq_host->ops->enable)
630 			cq_host->ops->enable(mmc);
631 	}
632 
633 	if (mrq->data) {
634 		cqhci_prep_task_desc(mrq, cq_host, tag);
635 
636 		err = cqhci_prep_tran_desc(mrq, cq_host, tag);
637 		if (err) {
638 			pr_err("%s: cqhci: failed to setup tx desc: %d\n",
639 			       mmc_hostname(mmc), err);
640 			return err;
641 		}
642 	} else {
643 		cqhci_prep_dcmd_desc(mmc, mrq);
644 	}
645 
646 	spin_lock_irqsave(&cq_host->lock, flags);
647 
648 	if (cq_host->recovery_halt) {
649 		err = -EBUSY;
650 		goto out_unlock;
651 	}
652 
653 	cq_host->slot[tag].mrq = mrq;
654 	cq_host->slot[tag].flags = 0;
655 
656 	cq_host->qcnt += 1;
657 	/* Make sure descriptors are ready before ringing the doorbell */
658 	wmb();
659 	cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
660 	if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
661 		pr_debug("%s: cqhci: doorbell not set for tag %d\n",
662 			 mmc_hostname(mmc), tag);
663 out_unlock:
664 	spin_unlock_irqrestore(&cq_host->lock, flags);
665 
666 	if (err)
667 		cqhci_post_req(mmc, mrq);
668 
669 	return err;
670 }
671 
672 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
673 				  bool notify)
674 {
675 	struct cqhci_host *cq_host = mmc->cqe_private;
676 
677 	if (!cq_host->recovery_halt) {
678 		cq_host->recovery_halt = true;
679 		pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
680 		wake_up(&cq_host->wait_queue);
681 		if (notify && mrq->recovery_notifier)
682 			mrq->recovery_notifier(mrq);
683 	}
684 }
685 
686 static unsigned int cqhci_error_flags(int error1, int error2)
687 {
688 	int error = error1 ? error1 : error2;
689 
690 	switch (error) {
691 	case -EILSEQ:
692 		return CQHCI_HOST_CRC;
693 	case -ETIMEDOUT:
694 		return CQHCI_HOST_TIMEOUT;
695 	default:
696 		return CQHCI_HOST_OTHER;
697 	}
698 }
699 
700 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
701 			    int data_error)
702 {
703 	struct cqhci_host *cq_host = mmc->cqe_private;
704 	struct cqhci_slot *slot;
705 	u32 terri;
706 	u32 tdpe;
707 	int tag;
708 
709 	spin_lock(&cq_host->lock);
710 
711 	terri = cqhci_readl(cq_host, CQHCI_TERRI);
712 
713 	pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
714 		 mmc_hostname(mmc), status, cmd_error, data_error, terri);
715 
716 	/* Forget about errors when recovery has already been triggered */
717 	if (cq_host->recovery_halt)
718 		goto out_unlock;
719 
720 	if (!cq_host->qcnt) {
721 		WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
722 			  mmc_hostname(mmc), status, cmd_error, data_error,
723 			  terri);
724 		goto out_unlock;
725 	}
726 
727 	if (CQHCI_TERRI_C_VALID(terri)) {
728 		tag = CQHCI_TERRI_C_TASK(terri);
729 		slot = &cq_host->slot[tag];
730 		if (slot->mrq) {
731 			slot->flags = cqhci_error_flags(cmd_error, data_error);
732 			cqhci_recovery_needed(mmc, slot->mrq, true);
733 		}
734 	}
735 
736 	if (CQHCI_TERRI_D_VALID(terri)) {
737 		tag = CQHCI_TERRI_D_TASK(terri);
738 		slot = &cq_host->slot[tag];
739 		if (slot->mrq) {
740 			slot->flags = cqhci_error_flags(data_error, cmd_error);
741 			cqhci_recovery_needed(mmc, slot->mrq, true);
742 		}
743 	}
744 
745 	/*
746 	 * Handle ICCE ("Invalid Crypto Configuration Error").  This should
747 	 * never happen, since the block layer ensures that all crypto-enabled
748 	 * I/O requests have a valid keyslot before they reach the driver.
749 	 *
750 	 * Note that GCE ("General Crypto Error") is different; it already got
751 	 * handled above by checking TERRI.
752 	 */
753 	if (status & CQHCI_IS_ICCE) {
754 		tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
755 		WARN_ONCE(1,
756 			  "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
757 			  mmc_hostname(mmc), status, tdpe);
758 		while (tdpe != 0) {
759 			tag = __ffs(tdpe);
760 			tdpe &= ~(1 << tag);
761 			slot = &cq_host->slot[tag];
762 			if (!slot->mrq)
763 				continue;
764 			slot->flags = cqhci_error_flags(data_error, cmd_error);
765 			cqhci_recovery_needed(mmc, slot->mrq, true);
766 		}
767 	}
768 
769 	if (!cq_host->recovery_halt) {
770 		/*
771 		 * The only way to guarantee forward progress is to mark at
772 		 * least one task in error, so if none is indicated, pick one.
773 		 */
774 		for (tag = 0; tag < NUM_SLOTS; tag++) {
775 			slot = &cq_host->slot[tag];
776 			if (!slot->mrq)
777 				continue;
778 			slot->flags = cqhci_error_flags(data_error, cmd_error);
779 			cqhci_recovery_needed(mmc, slot->mrq, true);
780 			break;
781 		}
782 	}
783 
784 out_unlock:
785 	spin_unlock(&cq_host->lock);
786 }
787 
788 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
789 {
790 	struct cqhci_host *cq_host = mmc->cqe_private;
791 	struct cqhci_slot *slot = &cq_host->slot[tag];
792 	struct mmc_request *mrq = slot->mrq;
793 	struct mmc_data *data;
794 
795 	if (!mrq) {
796 		WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
797 			  mmc_hostname(mmc), tag);
798 		return;
799 	}
800 
801 	/* No completions allowed during recovery */
802 	if (cq_host->recovery_halt) {
803 		slot->flags |= CQHCI_COMPLETED;
804 		return;
805 	}
806 
807 	slot->mrq = NULL;
808 
809 	cq_host->qcnt -= 1;
810 
811 	data = mrq->data;
812 	if (data) {
813 		if (data->error)
814 			data->bytes_xfered = 0;
815 		else
816 			data->bytes_xfered = data->blksz * data->blocks;
817 	}
818 
819 	mmc_cqe_request_done(mmc, mrq);
820 }
821 
822 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
823 		      int data_error)
824 {
825 	u32 status;
826 	unsigned long tag = 0, comp_status;
827 	struct cqhci_host *cq_host = mmc->cqe_private;
828 
829 	status = cqhci_readl(cq_host, CQHCI_IS);
830 	cqhci_writel(cq_host, status, CQHCI_IS);
831 
832 	pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
833 
834 	if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
835 	    cmd_error || data_error) {
836 		if (status & CQHCI_IS_RED)
837 			mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_RED);
838 		if (status & CQHCI_IS_GCE)
839 			mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_GCE);
840 		if (status & CQHCI_IS_ICCE)
841 			mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_ICCE);
842 		cqhci_error_irq(mmc, status, cmd_error, data_error);
843 	}
844 
845 	if (status & CQHCI_IS_TCC) {
846 		/* read TCN and complete the request */
847 		comp_status = cqhci_readl(cq_host, CQHCI_TCN);
848 		cqhci_writel(cq_host, comp_status, CQHCI_TCN);
849 		pr_debug("%s: cqhci: TCN: 0x%08lx\n",
850 			 mmc_hostname(mmc), comp_status);
851 
852 		spin_lock(&cq_host->lock);
853 
854 		for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
855 			/* complete the corresponding mrq */
856 			pr_debug("%s: cqhci: completing tag %lu\n",
857 				 mmc_hostname(mmc), tag);
858 			cqhci_finish_mrq(mmc, tag);
859 		}
860 
861 		if (cq_host->waiting_for_idle && !cq_host->qcnt) {
862 			cq_host->waiting_for_idle = false;
863 			wake_up(&cq_host->wait_queue);
864 		}
865 
866 		spin_unlock(&cq_host->lock);
867 	}
868 
869 	if (status & CQHCI_IS_TCL)
870 		wake_up(&cq_host->wait_queue);
871 
872 	if (status & CQHCI_IS_HAC)
873 		wake_up(&cq_host->wait_queue);
874 
875 	return IRQ_HANDLED;
876 }
877 EXPORT_SYMBOL(cqhci_irq);
878 
879 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
880 {
881 	unsigned long flags;
882 	bool is_idle;
883 
884 	spin_lock_irqsave(&cq_host->lock, flags);
885 	is_idle = !cq_host->qcnt || cq_host->recovery_halt;
886 	*ret = cq_host->recovery_halt ? -EBUSY : 0;
887 	cq_host->waiting_for_idle = !is_idle;
888 	spin_unlock_irqrestore(&cq_host->lock, flags);
889 
890 	return is_idle;
891 }
892 
893 static int cqhci_wait_for_idle(struct mmc_host *mmc)
894 {
895 	struct cqhci_host *cq_host = mmc->cqe_private;
896 	int ret;
897 
898 	wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
899 
900 	return ret;
901 }
902 
903 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
904 			  bool *recovery_needed)
905 {
906 	struct cqhci_host *cq_host = mmc->cqe_private;
907 	int tag = cqhci_tag(mrq);
908 	struct cqhci_slot *slot = &cq_host->slot[tag];
909 	unsigned long flags;
910 	bool timed_out;
911 
912 	spin_lock_irqsave(&cq_host->lock, flags);
913 	timed_out = slot->mrq == mrq;
914 	if (timed_out) {
915 		slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
916 		cqhci_recovery_needed(mmc, mrq, false);
917 		*recovery_needed = cq_host->recovery_halt;
918 	}
919 	spin_unlock_irqrestore(&cq_host->lock, flags);
920 
921 	if (timed_out) {
922 		pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n",
923 		       mmc_hostname(mmc), tag, cq_host->qcnt);
924 		cqhci_dumpregs(cq_host);
925 	}
926 
927 	return timed_out;
928 }
929 
930 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
931 {
932 	return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
933 }
934 
935 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
936 {
937 	struct cqhci_host *cq_host = mmc->cqe_private;
938 	bool ret;
939 	u32 ctl;
940 
941 	cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
942 
943 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
944 	ctl |= CQHCI_CLEAR_ALL_TASKS;
945 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
946 
947 	wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
948 			   msecs_to_jiffies(timeout) + 1);
949 
950 	cqhci_set_irqs(cq_host, 0);
951 
952 	ret = cqhci_tasks_cleared(cq_host);
953 
954 	if (!ret)
955 		pr_warn("%s: cqhci: Failed to clear tasks\n",
956 			mmc_hostname(mmc));
957 
958 	return ret;
959 }
960 
961 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
962 {
963 	struct cqhci_host *cq_host = mmc->cqe_private;
964 	bool ret;
965 	u32 ctl;
966 
967 	if (cqhci_halted(cq_host))
968 		return true;
969 
970 	cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
971 
972 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
973 	ctl |= CQHCI_HALT;
974 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
975 
976 	wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
977 			   msecs_to_jiffies(timeout) + 1);
978 
979 	cqhci_set_irqs(cq_host, 0);
980 
981 	ret = cqhci_halted(cq_host);
982 
983 	if (!ret)
984 		pr_warn("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
985 
986 	return ret;
987 }
988 
989 /*
990  * After halting we expect to be able to use the command line. We interpret the
991  * failure to halt to mean the data lines might still be in use (and the upper
992  * layers will need to send a STOP command), however failing to halt complicates
993  * the recovery, so set a timeout that would reasonably allow I/O to complete.
994  */
995 #define CQHCI_START_HALT_TIMEOUT	500
996 
997 static void cqhci_recovery_start(struct mmc_host *mmc)
998 {
999 	struct cqhci_host *cq_host = mmc->cqe_private;
1000 
1001 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1002 
1003 	WARN_ON(!cq_host->recovery_halt);
1004 
1005 	cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
1006 
1007 	if (cq_host->ops->disable)
1008 		cq_host->ops->disable(mmc, true);
1009 
1010 	mmc->cqe_on = false;
1011 }
1012 
1013 static int cqhci_error_from_flags(unsigned int flags)
1014 {
1015 	if (!flags)
1016 		return 0;
1017 
1018 	/* CRC errors might indicate re-tuning so prefer to report that */
1019 	if (flags & CQHCI_HOST_CRC)
1020 		return -EILSEQ;
1021 
1022 	if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1023 		return -ETIMEDOUT;
1024 
1025 	return -EIO;
1026 }
1027 
1028 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1029 {
1030 	struct cqhci_slot *slot = &cq_host->slot[tag];
1031 	struct mmc_request *mrq = slot->mrq;
1032 	struct mmc_data *data;
1033 
1034 	if (!mrq)
1035 		return;
1036 
1037 	slot->mrq = NULL;
1038 
1039 	cq_host->qcnt -= 1;
1040 
1041 	data = mrq->data;
1042 	if (data) {
1043 		data->bytes_xfered = 0;
1044 		data->error = cqhci_error_from_flags(slot->flags);
1045 	} else {
1046 		mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1047 	}
1048 
1049 	mmc_cqe_request_done(cq_host->mmc, mrq);
1050 }
1051 
1052 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < cq_host->num_slots; i++)
1057 		cqhci_recover_mrq(cq_host, i);
1058 }
1059 
1060 /*
1061  * By now the command and data lines should be unused so there is no reason for
1062  * CQHCI to take a long time to halt, but if it doesn't halt there could be
1063  * problems clearing tasks, so be generous.
1064  */
1065 #define CQHCI_FINISH_HALT_TIMEOUT	20
1066 
1067 /* CQHCI could be expected to clear it's internal state pretty quickly */
1068 #define CQHCI_CLEAR_TIMEOUT		20
1069 
1070 static void cqhci_recovery_finish(struct mmc_host *mmc)
1071 {
1072 	struct cqhci_host *cq_host = mmc->cqe_private;
1073 	unsigned long flags;
1074 	u32 cqcfg;
1075 	bool ok;
1076 
1077 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1078 
1079 	WARN_ON(!cq_host->recovery_halt);
1080 
1081 	ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1082 
1083 	/*
1084 	 * The specification contradicts itself, by saying that tasks cannot be
1085 	 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1086 	 * be disabled/re-enabled, but not to disable before clearing tasks.
1087 	 * Have a go anyway.
1088 	 */
1089 	if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1090 		ok = false;
1091 
1092 	/* Disable to make sure tasks really are cleared */
1093 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1094 	cqcfg &= ~CQHCI_ENABLE;
1095 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1096 
1097 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1098 	cqcfg |= CQHCI_ENABLE;
1099 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1100 
1101 	cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1102 
1103 	if (!ok)
1104 		cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT);
1105 
1106 	cqhci_recover_mrqs(cq_host);
1107 
1108 	WARN_ON(cq_host->qcnt);
1109 
1110 	spin_lock_irqsave(&cq_host->lock, flags);
1111 	cq_host->qcnt = 0;
1112 	cq_host->recovery_halt = false;
1113 	mmc->cqe_on = false;
1114 	spin_unlock_irqrestore(&cq_host->lock, flags);
1115 
1116 	/* Ensure all writes are done before interrupts are re-enabled */
1117 	wmb();
1118 
1119 	cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1120 
1121 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1122 
1123 	pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1124 }
1125 
1126 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1127 	.cqe_enable = cqhci_enable,
1128 	.cqe_disable = cqhci_disable,
1129 	.cqe_request = cqhci_request,
1130 	.cqe_post_req = cqhci_post_req,
1131 	.cqe_off = cqhci_off,
1132 	.cqe_wait_for_idle = cqhci_wait_for_idle,
1133 	.cqe_timeout = cqhci_timeout,
1134 	.cqe_recovery_start = cqhci_recovery_start,
1135 	.cqe_recovery_finish = cqhci_recovery_finish,
1136 };
1137 
1138 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1139 {
1140 	struct cqhci_host *cq_host;
1141 	struct resource *cqhci_memres = NULL;
1142 
1143 	/* check and setup CMDQ interface */
1144 	cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1145 						   "cqhci");
1146 	if (!cqhci_memres) {
1147 		dev_dbg(&pdev->dev, "CMDQ not supported\n");
1148 		return ERR_PTR(-EINVAL);
1149 	}
1150 
1151 	cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1152 	if (!cq_host)
1153 		return ERR_PTR(-ENOMEM);
1154 	cq_host->mmio = devm_ioremap(&pdev->dev,
1155 				     cqhci_memres->start,
1156 				     resource_size(cqhci_memres));
1157 	if (!cq_host->mmio) {
1158 		dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1159 		return ERR_PTR(-EBUSY);
1160 	}
1161 	dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1162 
1163 	return cq_host;
1164 }
1165 EXPORT_SYMBOL(cqhci_pltfm_init);
1166 
1167 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1168 {
1169 	return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1170 }
1171 
1172 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1173 {
1174 	u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1175 
1176 	return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1177 }
1178 
1179 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1180 	      bool dma64)
1181 {
1182 	int err;
1183 
1184 	cq_host->dma64 = dma64;
1185 	cq_host->mmc = mmc;
1186 	cq_host->mmc->cqe_private = cq_host;
1187 
1188 	cq_host->num_slots = NUM_SLOTS;
1189 	cq_host->dcmd_slot = DCMD_SLOT;
1190 
1191 	mmc->cqe_ops = &cqhci_cqe_ops;
1192 
1193 	mmc->cqe_qdepth = NUM_SLOTS;
1194 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1195 		mmc->cqe_qdepth -= 1;
1196 
1197 	cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1198 				     sizeof(*cq_host->slot), GFP_KERNEL);
1199 	if (!cq_host->slot) {
1200 		err = -ENOMEM;
1201 		goto out_err;
1202 	}
1203 
1204 	err = cqhci_crypto_init(cq_host);
1205 	if (err) {
1206 		pr_err("%s: CQHCI crypto initialization failed\n",
1207 		       mmc_hostname(mmc));
1208 		goto out_err;
1209 	}
1210 
1211 	spin_lock_init(&cq_host->lock);
1212 
1213 	init_completion(&cq_host->halt_comp);
1214 	init_waitqueue_head(&cq_host->wait_queue);
1215 
1216 	pr_info("%s: CQHCI version %u.%02u\n",
1217 		mmc_hostname(mmc), cqhci_ver_major(cq_host),
1218 		cqhci_ver_minor(cq_host));
1219 
1220 	return 0;
1221 
1222 out_err:
1223 	pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1224 	       mmc_hostname(mmc), cqhci_ver_major(cq_host),
1225 	       cqhci_ver_minor(cq_host), err);
1226 	return err;
1227 }
1228 EXPORT_SYMBOL(cqhci_init);
1229 
1230 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1231 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1232 MODULE_LICENSE("GPL v2");
1233