xref: /linux/drivers/mmc/host/cqhci-core.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15 
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22 
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25 
26 struct cqhci_slot {
27 	struct mmc_request *mrq;
28 	unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT	BIT(0)
30 #define CQHCI_COMPLETED		BIT(1)
31 #define CQHCI_HOST_CRC		BIT(2)
32 #define CQHCI_HOST_TIMEOUT	BIT(3)
33 #define CQHCI_HOST_OTHER	BIT(4)
34 };
35 
36 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
37 {
38 	return cq_host->desc_base + (tag * cq_host->slot_sz);
39 }
40 
41 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 	u8 *desc = get_desc(cq_host, tag);
44 
45 	return desc + cq_host->task_desc_len;
46 }
47 
48 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
49 {
50 	return cq_host->trans_desc_dma_base +
51 		(cq_host->mmc->max_segs * tag *
52 		 cq_host->trans_desc_len);
53 }
54 
55 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
56 {
57 	return cq_host->trans_desc_base +
58 		(cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
59 }
60 
61 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
62 {
63 	u8 *link_temp;
64 	dma_addr_t trans_temp;
65 
66 	link_temp = get_link_desc(cq_host, tag);
67 	trans_temp = get_trans_desc_dma(cq_host, tag);
68 
69 	memset(link_temp, 0, cq_host->link_desc_len);
70 	if (cq_host->link_desc_len > 8)
71 		*(link_temp + 8) = 0;
72 
73 	if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
74 		*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
75 		return;
76 	}
77 
78 	*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
79 
80 	if (cq_host->dma64) {
81 		__le64 *data_addr = (__le64 __force *)(link_temp + 4);
82 
83 		data_addr[0] = cpu_to_le64(trans_temp);
84 	} else {
85 		__le32 *data_addr = (__le32 __force *)(link_temp + 4);
86 
87 		data_addr[0] = cpu_to_le32(trans_temp);
88 	}
89 }
90 
91 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
92 {
93 	cqhci_writel(cq_host, set, CQHCI_ISTE);
94 	cqhci_writel(cq_host, set, CQHCI_ISGE);
95 }
96 
97 #define DRV_NAME "cqhci"
98 
99 #define CQHCI_DUMP(f, x...) \
100 	pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
101 
102 static void cqhci_dumpregs(struct cqhci_host *cq_host)
103 {
104 	struct mmc_host *mmc = cq_host->mmc;
105 
106 	CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
107 
108 	CQHCI_DUMP("Caps:      0x%08x | Version:  0x%08x\n",
109 		   cqhci_readl(cq_host, CQHCI_CAP),
110 		   cqhci_readl(cq_host, CQHCI_VER));
111 	CQHCI_DUMP("Config:    0x%08x | Control:  0x%08x\n",
112 		   cqhci_readl(cq_host, CQHCI_CFG),
113 		   cqhci_readl(cq_host, CQHCI_CTL));
114 	CQHCI_DUMP("Int stat:  0x%08x | Int enab: 0x%08x\n",
115 		   cqhci_readl(cq_host, CQHCI_IS),
116 		   cqhci_readl(cq_host, CQHCI_ISTE));
117 	CQHCI_DUMP("Int sig:   0x%08x | Int Coal: 0x%08x\n",
118 		   cqhci_readl(cq_host, CQHCI_ISGE),
119 		   cqhci_readl(cq_host, CQHCI_IC));
120 	CQHCI_DUMP("TDL base:  0x%08x | TDL up32: 0x%08x\n",
121 		   cqhci_readl(cq_host, CQHCI_TDLBA),
122 		   cqhci_readl(cq_host, CQHCI_TDLBAU));
123 	CQHCI_DUMP("Doorbell:  0x%08x | TCN:      0x%08x\n",
124 		   cqhci_readl(cq_host, CQHCI_TDBR),
125 		   cqhci_readl(cq_host, CQHCI_TCN));
126 	CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
127 		   cqhci_readl(cq_host, CQHCI_DQS),
128 		   cqhci_readl(cq_host, CQHCI_DPT));
129 	CQHCI_DUMP("Task clr:  0x%08x | SSC1:     0x%08x\n",
130 		   cqhci_readl(cq_host, CQHCI_TCLR),
131 		   cqhci_readl(cq_host, CQHCI_SSC1));
132 	CQHCI_DUMP("SSC2:      0x%08x | DCMD rsp: 0x%08x\n",
133 		   cqhci_readl(cq_host, CQHCI_SSC2),
134 		   cqhci_readl(cq_host, CQHCI_CRDCT));
135 	CQHCI_DUMP("RED mask:  0x%08x | TERRI:    0x%08x\n",
136 		   cqhci_readl(cq_host, CQHCI_RMEM),
137 		   cqhci_readl(cq_host, CQHCI_TERRI));
138 	CQHCI_DUMP("Resp idx:  0x%08x | Resp arg: 0x%08x\n",
139 		   cqhci_readl(cq_host, CQHCI_CRI),
140 		   cqhci_readl(cq_host, CQHCI_CRA));
141 
142 	if (cq_host->ops->dumpregs)
143 		cq_host->ops->dumpregs(mmc);
144 	else
145 		CQHCI_DUMP(": ===========================================\n");
146 }
147 
148 /*
149  * The allocated descriptor table for task, link & transfer descritors
150  * looks like:
151  * |----------|
152  * |task desc |  |->|----------|
153  * |----------|  |  |trans desc|
154  * |link desc-|->|  |----------|
155  * |----------|          .
156  *      .                .
157  *  no. of slots      max-segs
158  *      .           |----------|
159  * |----------|
160  * The idea here is to create the [task+trans] table and mark & point the
161  * link desc to the transfer desc table on a per slot basis.
162  */
163 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
164 {
165 	int i = 0;
166 
167 	/* task descriptor can be 64/128 bit irrespective of arch */
168 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
169 		cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
170 			       CQHCI_TASK_DESC_SZ, CQHCI_CFG);
171 		cq_host->task_desc_len = 16;
172 	} else {
173 		cq_host->task_desc_len = 8;
174 	}
175 
176 	/*
177 	 * 96 bits length of transfer desc instead of 128 bits which means
178 	 * ADMA would expect next valid descriptor at the 96th bit
179 	 * or 128th bit
180 	 */
181 	if (cq_host->dma64) {
182 		if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
183 			cq_host->trans_desc_len = 12;
184 		else
185 			cq_host->trans_desc_len = 16;
186 		cq_host->link_desc_len = 16;
187 	} else {
188 		cq_host->trans_desc_len = 8;
189 		cq_host->link_desc_len = 8;
190 	}
191 
192 	/* total size of a slot: 1 task & 1 transfer (link) */
193 	cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
194 
195 	cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
196 
197 	cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
198 		cq_host->mmc->cqe_qdepth;
199 
200 	pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
201 		 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
202 		 cq_host->slot_sz);
203 
204 	/*
205 	 * allocate a dma-mapped chunk of memory for the descriptors
206 	 * allocate a dma-mapped chunk of memory for link descriptors
207 	 * setup each link-desc memory offset per slot-number to
208 	 * the descriptor table.
209 	 */
210 	cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
211 						 cq_host->desc_size,
212 						 &cq_host->desc_dma_base,
213 						 GFP_KERNEL);
214 	if (!cq_host->desc_base)
215 		return -ENOMEM;
216 
217 	cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
218 					      cq_host->data_size,
219 					      &cq_host->trans_desc_dma_base,
220 					      GFP_KERNEL);
221 	if (!cq_host->trans_desc_base) {
222 		dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
223 				   cq_host->desc_base,
224 				   cq_host->desc_dma_base);
225 		cq_host->desc_base = NULL;
226 		cq_host->desc_dma_base = 0;
227 		return -ENOMEM;
228 	}
229 
230 	pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
231 		 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
232 		(unsigned long long)cq_host->desc_dma_base,
233 		(unsigned long long)cq_host->trans_desc_dma_base);
234 
235 	for (; i < (cq_host->num_slots); i++)
236 		setup_trans_desc(cq_host, i);
237 
238 	return 0;
239 }
240 
241 static void __cqhci_enable(struct cqhci_host *cq_host)
242 {
243 	struct mmc_host *mmc = cq_host->mmc;
244 	u32 cqcfg;
245 
246 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
247 
248 	/* Configuration must not be changed while enabled */
249 	if (cqcfg & CQHCI_ENABLE) {
250 		cqcfg &= ~CQHCI_ENABLE;
251 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
252 	}
253 
254 	cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
255 
256 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
257 		cqcfg |= CQHCI_DCMD;
258 
259 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
260 		cqcfg |= CQHCI_TASK_DESC_SZ;
261 
262 	if (mmc->caps2 & MMC_CAP2_CRYPTO)
263 		cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
264 
265 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
266 
267 	cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
268 		     CQHCI_TDLBA);
269 	cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
270 		     CQHCI_TDLBAU);
271 
272 	cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
273 
274 	cqhci_set_irqs(cq_host, 0);
275 
276 	cqcfg |= CQHCI_ENABLE;
277 
278 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
279 
280 	mmc->cqe_on = true;
281 
282 	if (cq_host->ops->enable)
283 		cq_host->ops->enable(mmc);
284 
285 	/* Ensure all writes are done before interrupts are enabled */
286 	wmb();
287 
288 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
289 
290 	cq_host->activated = true;
291 }
292 
293 static void __cqhci_disable(struct cqhci_host *cq_host)
294 {
295 	u32 cqcfg;
296 
297 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
298 	cqcfg &= ~CQHCI_ENABLE;
299 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
300 
301 	cq_host->mmc->cqe_on = false;
302 
303 	cq_host->activated = false;
304 }
305 
306 int cqhci_deactivate(struct mmc_host *mmc)
307 {
308 	struct cqhci_host *cq_host = mmc->cqe_private;
309 
310 	if (cq_host->enabled && cq_host->activated)
311 		__cqhci_disable(cq_host);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(cqhci_deactivate);
316 
317 int cqhci_resume(struct mmc_host *mmc)
318 {
319 	/* Re-enable is done upon first request */
320 	return 0;
321 }
322 EXPORT_SYMBOL(cqhci_resume);
323 
324 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
325 {
326 	struct cqhci_host *cq_host = mmc->cqe_private;
327 	int err;
328 
329 	if (!card->ext_csd.cmdq_en)
330 		return -EINVAL;
331 
332 	if (cq_host->enabled)
333 		return 0;
334 
335 	cq_host->rca = card->rca;
336 
337 	err = cqhci_host_alloc_tdl(cq_host);
338 	if (err) {
339 		pr_err("%s: Failed to enable CQE, error %d\n",
340 		       mmc_hostname(mmc), err);
341 		return err;
342 	}
343 
344 	__cqhci_enable(cq_host);
345 
346 	cq_host->enabled = true;
347 
348 #ifdef DEBUG
349 	cqhci_dumpregs(cq_host);
350 #endif
351 	return 0;
352 }
353 
354 /* CQHCI is idle and should halt immediately, so set a small timeout */
355 #define CQHCI_OFF_TIMEOUT 100
356 
357 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
358 {
359 	return cqhci_readl(cq_host, CQHCI_CTL);
360 }
361 
362 static void cqhci_off(struct mmc_host *mmc)
363 {
364 	struct cqhci_host *cq_host = mmc->cqe_private;
365 	u32 reg;
366 	int err;
367 
368 	if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
369 		return;
370 
371 	if (cq_host->ops->disable)
372 		cq_host->ops->disable(mmc, false);
373 
374 	cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
375 
376 	err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
377 				 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
378 	if (err < 0)
379 		pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
380 	else
381 		pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
382 
383 	if (cq_host->ops->post_disable)
384 		cq_host->ops->post_disable(mmc);
385 
386 	mmc->cqe_on = false;
387 }
388 
389 static void cqhci_disable(struct mmc_host *mmc)
390 {
391 	struct cqhci_host *cq_host = mmc->cqe_private;
392 
393 	if (!cq_host->enabled)
394 		return;
395 
396 	cqhci_off(mmc);
397 
398 	__cqhci_disable(cq_host);
399 
400 	dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
401 			   cq_host->trans_desc_base,
402 			   cq_host->trans_desc_dma_base);
403 
404 	dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
405 			   cq_host->desc_base,
406 			   cq_host->desc_dma_base);
407 
408 	cq_host->trans_desc_base = NULL;
409 	cq_host->desc_base = NULL;
410 
411 	cq_host->enabled = false;
412 }
413 
414 static void cqhci_prep_task_desc(struct mmc_request *mrq,
415 				 struct cqhci_host *cq_host, int tag)
416 {
417 	__le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
418 	u32 req_flags = mrq->data->flags;
419 	u64 desc0;
420 
421 	desc0 = CQHCI_VALID(1) |
422 		CQHCI_END(1) |
423 		CQHCI_INT(1) |
424 		CQHCI_ACT(0x5) |
425 		CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
426 		CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
427 		CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
428 		CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
429 		CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
430 		CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
431 		CQHCI_BLK_COUNT(mrq->data->blocks) |
432 		CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
433 
434 	task_desc[0] = cpu_to_le64(desc0);
435 
436 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
437 		u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
438 
439 		task_desc[1] = cpu_to_le64(desc1);
440 
441 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
442 			 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
443 	} else {
444 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
445 			 mmc_hostname(mrq->host), mrq->tag, desc0);
446 	}
447 }
448 
449 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
450 {
451 	int sg_count;
452 	struct mmc_data *data = mrq->data;
453 
454 	if (!data)
455 		return -EINVAL;
456 
457 	sg_count = dma_map_sg(mmc_dev(host), data->sg,
458 			      data->sg_len,
459 			      (data->flags & MMC_DATA_WRITE) ?
460 			      DMA_TO_DEVICE : DMA_FROM_DEVICE);
461 	if (!sg_count) {
462 		pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
463 		return -ENOMEM;
464 	}
465 
466 	return sg_count;
467 }
468 
469 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
470 				bool dma64)
471 {
472 	__le32 *attr = (__le32 __force *)desc;
473 
474 	*attr = (CQHCI_VALID(1) |
475 		 CQHCI_END(end ? 1 : 0) |
476 		 CQHCI_INT(0) |
477 		 CQHCI_ACT(0x4) |
478 		 CQHCI_DAT_LENGTH(len));
479 
480 	if (dma64) {
481 		__le64 *dataddr = (__le64 __force *)(desc + 4);
482 
483 		dataddr[0] = cpu_to_le64(addr);
484 	} else {
485 		__le32 *dataddr = (__le32 __force *)(desc + 4);
486 
487 		dataddr[0] = cpu_to_le32(addr);
488 	}
489 }
490 
491 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
492 			       struct cqhci_host *cq_host, int tag)
493 {
494 	struct mmc_data *data = mrq->data;
495 	int i, sg_count, len;
496 	bool end = false;
497 	bool dma64 = cq_host->dma64;
498 	dma_addr_t addr;
499 	u8 *desc;
500 	struct scatterlist *sg;
501 
502 	sg_count = cqhci_dma_map(mrq->host, mrq);
503 	if (sg_count < 0) {
504 		pr_err("%s: %s: unable to map sg lists, %d\n",
505 				mmc_hostname(mrq->host), __func__, sg_count);
506 		return sg_count;
507 	}
508 
509 	desc = get_trans_desc(cq_host, tag);
510 
511 	for_each_sg(data->sg, sg, sg_count, i) {
512 		addr = sg_dma_address(sg);
513 		len = sg_dma_len(sg);
514 
515 		if ((i+1) == sg_count)
516 			end = true;
517 		cqhci_set_tran_desc(desc, addr, len, end, dma64);
518 		desc += cq_host->trans_desc_len;
519 	}
520 
521 	return 0;
522 }
523 
524 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
525 				   struct mmc_request *mrq)
526 {
527 	u64 *task_desc = NULL;
528 	u64 data = 0;
529 	u8 resp_type;
530 	u8 *desc;
531 	__le64 *dataddr;
532 	struct cqhci_host *cq_host = mmc->cqe_private;
533 	u8 timing;
534 
535 	if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
536 		resp_type = 0x0;
537 		timing = 0x1;
538 	} else {
539 		if (mrq->cmd->flags & MMC_RSP_R1B) {
540 			resp_type = 0x3;
541 			timing = 0x0;
542 		} else {
543 			resp_type = 0x2;
544 			timing = 0x1;
545 		}
546 	}
547 
548 	task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
549 	memset(task_desc, 0, cq_host->task_desc_len);
550 	data |= (CQHCI_VALID(1) |
551 		 CQHCI_END(1) |
552 		 CQHCI_INT(1) |
553 		 CQHCI_QBAR(1) |
554 		 CQHCI_ACT(0x5) |
555 		 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
556 		 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
557 	if (cq_host->ops->update_dcmd_desc)
558 		cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
559 	*task_desc |= data;
560 	desc = (u8 *)task_desc;
561 	pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
562 		 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
563 	dataddr = (__le64 __force *)(desc + 4);
564 	dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
565 
566 }
567 
568 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
569 {
570 	struct mmc_data *data = mrq->data;
571 
572 	if (data) {
573 		dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
574 			     (data->flags & MMC_DATA_READ) ?
575 			     DMA_FROM_DEVICE : DMA_TO_DEVICE);
576 	}
577 }
578 
579 static inline int cqhci_tag(struct mmc_request *mrq)
580 {
581 	return mrq->cmd ? DCMD_SLOT : mrq->tag;
582 }
583 
584 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
585 {
586 	int err = 0;
587 	int tag = cqhci_tag(mrq);
588 	struct cqhci_host *cq_host = mmc->cqe_private;
589 	unsigned long flags;
590 
591 	if (!cq_host->enabled) {
592 		pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
593 		return -EINVAL;
594 	}
595 
596 	/* First request after resume has to re-enable */
597 	if (!cq_host->activated)
598 		__cqhci_enable(cq_host);
599 
600 	if (!mmc->cqe_on) {
601 		if (cq_host->ops->pre_enable)
602 			cq_host->ops->pre_enable(mmc);
603 
604 		cqhci_writel(cq_host, 0, CQHCI_CTL);
605 		mmc->cqe_on = true;
606 		pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
607 		if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
608 			pr_err("%s: cqhci: CQE failed to exit halt state\n",
609 			       mmc_hostname(mmc));
610 		}
611 		if (cq_host->ops->enable)
612 			cq_host->ops->enable(mmc);
613 	}
614 
615 	if (mrq->data) {
616 		cqhci_prep_task_desc(mrq, cq_host, tag);
617 
618 		err = cqhci_prep_tran_desc(mrq, cq_host, tag);
619 		if (err) {
620 			pr_err("%s: cqhci: failed to setup tx desc: %d\n",
621 			       mmc_hostname(mmc), err);
622 			return err;
623 		}
624 	} else {
625 		cqhci_prep_dcmd_desc(mmc, mrq);
626 	}
627 
628 	spin_lock_irqsave(&cq_host->lock, flags);
629 
630 	if (cq_host->recovery_halt) {
631 		err = -EBUSY;
632 		goto out_unlock;
633 	}
634 
635 	cq_host->slot[tag].mrq = mrq;
636 	cq_host->slot[tag].flags = 0;
637 
638 	cq_host->qcnt += 1;
639 	/* Make sure descriptors are ready before ringing the doorbell */
640 	wmb();
641 	cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
642 	if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
643 		pr_debug("%s: cqhci: doorbell not set for tag %d\n",
644 			 mmc_hostname(mmc), tag);
645 out_unlock:
646 	spin_unlock_irqrestore(&cq_host->lock, flags);
647 
648 	if (err)
649 		cqhci_post_req(mmc, mrq);
650 
651 	return err;
652 }
653 
654 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
655 				  bool notify)
656 {
657 	struct cqhci_host *cq_host = mmc->cqe_private;
658 
659 	if (!cq_host->recovery_halt) {
660 		cq_host->recovery_halt = true;
661 		pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
662 		wake_up(&cq_host->wait_queue);
663 		if (notify && mrq->recovery_notifier)
664 			mrq->recovery_notifier(mrq);
665 	}
666 }
667 
668 static unsigned int cqhci_error_flags(int error1, int error2)
669 {
670 	int error = error1 ? error1 : error2;
671 
672 	switch (error) {
673 	case -EILSEQ:
674 		return CQHCI_HOST_CRC;
675 	case -ETIMEDOUT:
676 		return CQHCI_HOST_TIMEOUT;
677 	default:
678 		return CQHCI_HOST_OTHER;
679 	}
680 }
681 
682 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
683 			    int data_error)
684 {
685 	struct cqhci_host *cq_host = mmc->cqe_private;
686 	struct cqhci_slot *slot;
687 	u32 terri;
688 	u32 tdpe;
689 	int tag;
690 
691 	spin_lock(&cq_host->lock);
692 
693 	terri = cqhci_readl(cq_host, CQHCI_TERRI);
694 
695 	pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
696 		 mmc_hostname(mmc), status, cmd_error, data_error, terri);
697 
698 	/* Forget about errors when recovery has already been triggered */
699 	if (cq_host->recovery_halt)
700 		goto out_unlock;
701 
702 	if (!cq_host->qcnt) {
703 		WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
704 			  mmc_hostname(mmc), status, cmd_error, data_error,
705 			  terri);
706 		goto out_unlock;
707 	}
708 
709 	if (CQHCI_TERRI_C_VALID(terri)) {
710 		tag = CQHCI_TERRI_C_TASK(terri);
711 		slot = &cq_host->slot[tag];
712 		if (slot->mrq) {
713 			slot->flags = cqhci_error_flags(cmd_error, data_error);
714 			cqhci_recovery_needed(mmc, slot->mrq, true);
715 		}
716 	}
717 
718 	if (CQHCI_TERRI_D_VALID(terri)) {
719 		tag = CQHCI_TERRI_D_TASK(terri);
720 		slot = &cq_host->slot[tag];
721 		if (slot->mrq) {
722 			slot->flags = cqhci_error_flags(data_error, cmd_error);
723 			cqhci_recovery_needed(mmc, slot->mrq, true);
724 		}
725 	}
726 
727 	/*
728 	 * Handle ICCE ("Invalid Crypto Configuration Error").  This should
729 	 * never happen, since the block layer ensures that all crypto-enabled
730 	 * I/O requests have a valid keyslot before they reach the driver.
731 	 *
732 	 * Note that GCE ("General Crypto Error") is different; it already got
733 	 * handled above by checking TERRI.
734 	 */
735 	if (status & CQHCI_IS_ICCE) {
736 		tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
737 		WARN_ONCE(1,
738 			  "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
739 			  mmc_hostname(mmc), status, tdpe);
740 		while (tdpe != 0) {
741 			tag = __ffs(tdpe);
742 			tdpe &= ~(1 << tag);
743 			slot = &cq_host->slot[tag];
744 			if (!slot->mrq)
745 				continue;
746 			slot->flags = cqhci_error_flags(data_error, cmd_error);
747 			cqhci_recovery_needed(mmc, slot->mrq, true);
748 		}
749 	}
750 
751 	if (!cq_host->recovery_halt) {
752 		/*
753 		 * The only way to guarantee forward progress is to mark at
754 		 * least one task in error, so if none is indicated, pick one.
755 		 */
756 		for (tag = 0; tag < NUM_SLOTS; tag++) {
757 			slot = &cq_host->slot[tag];
758 			if (!slot->mrq)
759 				continue;
760 			slot->flags = cqhci_error_flags(data_error, cmd_error);
761 			cqhci_recovery_needed(mmc, slot->mrq, true);
762 			break;
763 		}
764 	}
765 
766 out_unlock:
767 	spin_unlock(&cq_host->lock);
768 }
769 
770 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
771 {
772 	struct cqhci_host *cq_host = mmc->cqe_private;
773 	struct cqhci_slot *slot = &cq_host->slot[tag];
774 	struct mmc_request *mrq = slot->mrq;
775 	struct mmc_data *data;
776 
777 	if (!mrq) {
778 		WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
779 			  mmc_hostname(mmc), tag);
780 		return;
781 	}
782 
783 	/* No completions allowed during recovery */
784 	if (cq_host->recovery_halt) {
785 		slot->flags |= CQHCI_COMPLETED;
786 		return;
787 	}
788 
789 	slot->mrq = NULL;
790 
791 	cq_host->qcnt -= 1;
792 
793 	data = mrq->data;
794 	if (data) {
795 		if (data->error)
796 			data->bytes_xfered = 0;
797 		else
798 			data->bytes_xfered = data->blksz * data->blocks;
799 	}
800 
801 	mmc_cqe_request_done(mmc, mrq);
802 }
803 
804 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
805 		      int data_error)
806 {
807 	u32 status;
808 	unsigned long tag = 0, comp_status;
809 	struct cqhci_host *cq_host = mmc->cqe_private;
810 
811 	status = cqhci_readl(cq_host, CQHCI_IS);
812 	cqhci_writel(cq_host, status, CQHCI_IS);
813 
814 	pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
815 
816 	if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
817 	    cmd_error || data_error)
818 		cqhci_error_irq(mmc, status, cmd_error, data_error);
819 
820 	if (status & CQHCI_IS_TCC) {
821 		/* read TCN and complete the request */
822 		comp_status = cqhci_readl(cq_host, CQHCI_TCN);
823 		cqhci_writel(cq_host, comp_status, CQHCI_TCN);
824 		pr_debug("%s: cqhci: TCN: 0x%08lx\n",
825 			 mmc_hostname(mmc), comp_status);
826 
827 		spin_lock(&cq_host->lock);
828 
829 		for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
830 			/* complete the corresponding mrq */
831 			pr_debug("%s: cqhci: completing tag %lu\n",
832 				 mmc_hostname(mmc), tag);
833 			cqhci_finish_mrq(mmc, tag);
834 		}
835 
836 		if (cq_host->waiting_for_idle && !cq_host->qcnt) {
837 			cq_host->waiting_for_idle = false;
838 			wake_up(&cq_host->wait_queue);
839 		}
840 
841 		spin_unlock(&cq_host->lock);
842 	}
843 
844 	if (status & CQHCI_IS_TCL)
845 		wake_up(&cq_host->wait_queue);
846 
847 	if (status & CQHCI_IS_HAC)
848 		wake_up(&cq_host->wait_queue);
849 
850 	return IRQ_HANDLED;
851 }
852 EXPORT_SYMBOL(cqhci_irq);
853 
854 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
855 {
856 	unsigned long flags;
857 	bool is_idle;
858 
859 	spin_lock_irqsave(&cq_host->lock, flags);
860 	is_idle = !cq_host->qcnt || cq_host->recovery_halt;
861 	*ret = cq_host->recovery_halt ? -EBUSY : 0;
862 	cq_host->waiting_for_idle = !is_idle;
863 	spin_unlock_irqrestore(&cq_host->lock, flags);
864 
865 	return is_idle;
866 }
867 
868 static int cqhci_wait_for_idle(struct mmc_host *mmc)
869 {
870 	struct cqhci_host *cq_host = mmc->cqe_private;
871 	int ret;
872 
873 	wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
874 
875 	return ret;
876 }
877 
878 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
879 			  bool *recovery_needed)
880 {
881 	struct cqhci_host *cq_host = mmc->cqe_private;
882 	int tag = cqhci_tag(mrq);
883 	struct cqhci_slot *slot = &cq_host->slot[tag];
884 	unsigned long flags;
885 	bool timed_out;
886 
887 	spin_lock_irqsave(&cq_host->lock, flags);
888 	timed_out = slot->mrq == mrq;
889 	if (timed_out) {
890 		slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
891 		cqhci_recovery_needed(mmc, mrq, false);
892 		*recovery_needed = cq_host->recovery_halt;
893 	}
894 	spin_unlock_irqrestore(&cq_host->lock, flags);
895 
896 	if (timed_out) {
897 		pr_err("%s: cqhci: timeout for tag %d\n",
898 		       mmc_hostname(mmc), tag);
899 		cqhci_dumpregs(cq_host);
900 	}
901 
902 	return timed_out;
903 }
904 
905 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
906 {
907 	return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
908 }
909 
910 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
911 {
912 	struct cqhci_host *cq_host = mmc->cqe_private;
913 	bool ret;
914 	u32 ctl;
915 
916 	cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
917 
918 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
919 	ctl |= CQHCI_CLEAR_ALL_TASKS;
920 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
921 
922 	wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
923 			   msecs_to_jiffies(timeout) + 1);
924 
925 	cqhci_set_irqs(cq_host, 0);
926 
927 	ret = cqhci_tasks_cleared(cq_host);
928 
929 	if (!ret)
930 		pr_debug("%s: cqhci: Failed to clear tasks\n",
931 			 mmc_hostname(mmc));
932 
933 	return ret;
934 }
935 
936 static bool cqhci_halted(struct cqhci_host *cq_host)
937 {
938 	return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
939 }
940 
941 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
942 {
943 	struct cqhci_host *cq_host = mmc->cqe_private;
944 	bool ret;
945 	u32 ctl;
946 
947 	if (cqhci_halted(cq_host))
948 		return true;
949 
950 	cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
951 
952 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
953 	ctl |= CQHCI_HALT;
954 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
955 
956 	wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
957 			   msecs_to_jiffies(timeout) + 1);
958 
959 	cqhci_set_irqs(cq_host, 0);
960 
961 	ret = cqhci_halted(cq_host);
962 
963 	if (!ret)
964 		pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
965 
966 	return ret;
967 }
968 
969 /*
970  * After halting we expect to be able to use the command line. We interpret the
971  * failure to halt to mean the data lines might still be in use (and the upper
972  * layers will need to send a STOP command), so we set the timeout based on a
973  * generous command timeout.
974  */
975 #define CQHCI_START_HALT_TIMEOUT	5
976 
977 static void cqhci_recovery_start(struct mmc_host *mmc)
978 {
979 	struct cqhci_host *cq_host = mmc->cqe_private;
980 
981 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
982 
983 	WARN_ON(!cq_host->recovery_halt);
984 
985 	cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
986 
987 	if (cq_host->ops->disable)
988 		cq_host->ops->disable(mmc, true);
989 
990 	mmc->cqe_on = false;
991 }
992 
993 static int cqhci_error_from_flags(unsigned int flags)
994 {
995 	if (!flags)
996 		return 0;
997 
998 	/* CRC errors might indicate re-tuning so prefer to report that */
999 	if (flags & CQHCI_HOST_CRC)
1000 		return -EILSEQ;
1001 
1002 	if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1003 		return -ETIMEDOUT;
1004 
1005 	return -EIO;
1006 }
1007 
1008 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1009 {
1010 	struct cqhci_slot *slot = &cq_host->slot[tag];
1011 	struct mmc_request *mrq = slot->mrq;
1012 	struct mmc_data *data;
1013 
1014 	if (!mrq)
1015 		return;
1016 
1017 	slot->mrq = NULL;
1018 
1019 	cq_host->qcnt -= 1;
1020 
1021 	data = mrq->data;
1022 	if (data) {
1023 		data->bytes_xfered = 0;
1024 		data->error = cqhci_error_from_flags(slot->flags);
1025 	} else {
1026 		mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1027 	}
1028 
1029 	mmc_cqe_request_done(cq_host->mmc, mrq);
1030 }
1031 
1032 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < cq_host->num_slots; i++)
1037 		cqhci_recover_mrq(cq_host, i);
1038 }
1039 
1040 /*
1041  * By now the command and data lines should be unused so there is no reason for
1042  * CQHCI to take a long time to halt, but if it doesn't halt there could be
1043  * problems clearing tasks, so be generous.
1044  */
1045 #define CQHCI_FINISH_HALT_TIMEOUT	20
1046 
1047 /* CQHCI could be expected to clear it's internal state pretty quickly */
1048 #define CQHCI_CLEAR_TIMEOUT		20
1049 
1050 static void cqhci_recovery_finish(struct mmc_host *mmc)
1051 {
1052 	struct cqhci_host *cq_host = mmc->cqe_private;
1053 	unsigned long flags;
1054 	u32 cqcfg;
1055 	bool ok;
1056 
1057 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1058 
1059 	WARN_ON(!cq_host->recovery_halt);
1060 
1061 	ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1062 
1063 	if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1064 		ok = false;
1065 
1066 	/*
1067 	 * The specification contradicts itself, by saying that tasks cannot be
1068 	 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1069 	 * be disabled/re-enabled, but not to disable before clearing tasks.
1070 	 * Have a go anyway.
1071 	 */
1072 	if (!ok) {
1073 		pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1074 		cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1075 		cqcfg &= ~CQHCI_ENABLE;
1076 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1077 		cqcfg |= CQHCI_ENABLE;
1078 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1079 		/* Be sure that there are no tasks */
1080 		ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1081 		if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1082 			ok = false;
1083 		WARN_ON(!ok);
1084 	}
1085 
1086 	cqhci_recover_mrqs(cq_host);
1087 
1088 	WARN_ON(cq_host->qcnt);
1089 
1090 	spin_lock_irqsave(&cq_host->lock, flags);
1091 	cq_host->qcnt = 0;
1092 	cq_host->recovery_halt = false;
1093 	mmc->cqe_on = false;
1094 	spin_unlock_irqrestore(&cq_host->lock, flags);
1095 
1096 	/* Ensure all writes are done before interrupts are re-enabled */
1097 	wmb();
1098 
1099 	cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1100 
1101 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1102 
1103 	pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1104 }
1105 
1106 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1107 	.cqe_enable = cqhci_enable,
1108 	.cqe_disable = cqhci_disable,
1109 	.cqe_request = cqhci_request,
1110 	.cqe_post_req = cqhci_post_req,
1111 	.cqe_off = cqhci_off,
1112 	.cqe_wait_for_idle = cqhci_wait_for_idle,
1113 	.cqe_timeout = cqhci_timeout,
1114 	.cqe_recovery_start = cqhci_recovery_start,
1115 	.cqe_recovery_finish = cqhci_recovery_finish,
1116 };
1117 
1118 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1119 {
1120 	struct cqhci_host *cq_host;
1121 	struct resource *cqhci_memres = NULL;
1122 
1123 	/* check and setup CMDQ interface */
1124 	cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1125 						   "cqhci");
1126 	if (!cqhci_memres) {
1127 		dev_dbg(&pdev->dev, "CMDQ not supported\n");
1128 		return ERR_PTR(-EINVAL);
1129 	}
1130 
1131 	cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1132 	if (!cq_host)
1133 		return ERR_PTR(-ENOMEM);
1134 	cq_host->mmio = devm_ioremap(&pdev->dev,
1135 				     cqhci_memres->start,
1136 				     resource_size(cqhci_memres));
1137 	if (!cq_host->mmio) {
1138 		dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1139 		return ERR_PTR(-EBUSY);
1140 	}
1141 	dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1142 
1143 	return cq_host;
1144 }
1145 EXPORT_SYMBOL(cqhci_pltfm_init);
1146 
1147 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1148 {
1149 	return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1150 }
1151 
1152 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1153 {
1154 	u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1155 
1156 	return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1157 }
1158 
1159 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1160 	      bool dma64)
1161 {
1162 	int err;
1163 
1164 	cq_host->dma64 = dma64;
1165 	cq_host->mmc = mmc;
1166 	cq_host->mmc->cqe_private = cq_host;
1167 
1168 	cq_host->num_slots = NUM_SLOTS;
1169 	cq_host->dcmd_slot = DCMD_SLOT;
1170 
1171 	mmc->cqe_ops = &cqhci_cqe_ops;
1172 
1173 	mmc->cqe_qdepth = NUM_SLOTS;
1174 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1175 		mmc->cqe_qdepth -= 1;
1176 
1177 	cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1178 				     sizeof(*cq_host->slot), GFP_KERNEL);
1179 	if (!cq_host->slot) {
1180 		err = -ENOMEM;
1181 		goto out_err;
1182 	}
1183 
1184 	err = cqhci_crypto_init(cq_host);
1185 	if (err) {
1186 		pr_err("%s: CQHCI crypto initialization failed\n",
1187 		       mmc_hostname(mmc));
1188 		goto out_err;
1189 	}
1190 
1191 	spin_lock_init(&cq_host->lock);
1192 
1193 	init_completion(&cq_host->halt_comp);
1194 	init_waitqueue_head(&cq_host->wait_queue);
1195 
1196 	pr_info("%s: CQHCI version %u.%02u\n",
1197 		mmc_hostname(mmc), cqhci_ver_major(cq_host),
1198 		cqhci_ver_minor(cq_host));
1199 
1200 	return 0;
1201 
1202 out_err:
1203 	pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1204 	       mmc_hostname(mmc), cqhci_ver_major(cq_host),
1205 	       cqhci_ver_minor(cq_host), err);
1206 	return err;
1207 }
1208 EXPORT_SYMBOL(cqhci_init);
1209 
1210 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1211 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1212 MODULE_LICENSE("GPL v2");
1213