xref: /linux/drivers/mmc/host/cqhci-core.c (revision 722ecdbce68a87de2d9296f91308f44ea900a039)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15 
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22 
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25 
26 struct cqhci_slot {
27 	struct mmc_request *mrq;
28 	unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT	BIT(0)
30 #define CQHCI_COMPLETED		BIT(1)
31 #define CQHCI_HOST_CRC		BIT(2)
32 #define CQHCI_HOST_TIMEOUT	BIT(3)
33 #define CQHCI_HOST_OTHER	BIT(4)
34 };
35 
36 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
37 {
38 	return cq_host->desc_base + (tag * cq_host->slot_sz);
39 }
40 
41 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 	u8 *desc = get_desc(cq_host, tag);
44 
45 	return desc + cq_host->task_desc_len;
46 }
47 
48 static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag)
49 {
50 	return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag;
51 }
52 
53 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
54 {
55 	size_t offset = get_trans_desc_offset(cq_host, tag);
56 
57 	return cq_host->trans_desc_dma_base + offset;
58 }
59 
60 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
61 {
62 	size_t offset = get_trans_desc_offset(cq_host, tag);
63 
64 	return cq_host->trans_desc_base + offset;
65 }
66 
67 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
68 {
69 	u8 *link_temp;
70 	dma_addr_t trans_temp;
71 
72 	link_temp = get_link_desc(cq_host, tag);
73 	trans_temp = get_trans_desc_dma(cq_host, tag);
74 
75 	memset(link_temp, 0, cq_host->link_desc_len);
76 	if (cq_host->link_desc_len > 8)
77 		*(link_temp + 8) = 0;
78 
79 	if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
80 		*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
81 		return;
82 	}
83 
84 	*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
85 
86 	if (cq_host->dma64) {
87 		__le64 *data_addr = (__le64 __force *)(link_temp + 4);
88 
89 		data_addr[0] = cpu_to_le64(trans_temp);
90 	} else {
91 		__le32 *data_addr = (__le32 __force *)(link_temp + 4);
92 
93 		data_addr[0] = cpu_to_le32(trans_temp);
94 	}
95 }
96 
97 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
98 {
99 	cqhci_writel(cq_host, set, CQHCI_ISTE);
100 	cqhci_writel(cq_host, set, CQHCI_ISGE);
101 }
102 
103 #define DRV_NAME "cqhci"
104 
105 #define CQHCI_DUMP(f, x...) \
106 	pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
107 
108 static void cqhci_dumpregs(struct cqhci_host *cq_host)
109 {
110 	struct mmc_host *mmc = cq_host->mmc;
111 
112 	CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
113 
114 	CQHCI_DUMP("Caps:      0x%08x | Version:  0x%08x\n",
115 		   cqhci_readl(cq_host, CQHCI_CAP),
116 		   cqhci_readl(cq_host, CQHCI_VER));
117 	CQHCI_DUMP("Config:    0x%08x | Control:  0x%08x\n",
118 		   cqhci_readl(cq_host, CQHCI_CFG),
119 		   cqhci_readl(cq_host, CQHCI_CTL));
120 	CQHCI_DUMP("Int stat:  0x%08x | Int enab: 0x%08x\n",
121 		   cqhci_readl(cq_host, CQHCI_IS),
122 		   cqhci_readl(cq_host, CQHCI_ISTE));
123 	CQHCI_DUMP("Int sig:   0x%08x | Int Coal: 0x%08x\n",
124 		   cqhci_readl(cq_host, CQHCI_ISGE),
125 		   cqhci_readl(cq_host, CQHCI_IC));
126 	CQHCI_DUMP("TDL base:  0x%08x | TDL up32: 0x%08x\n",
127 		   cqhci_readl(cq_host, CQHCI_TDLBA),
128 		   cqhci_readl(cq_host, CQHCI_TDLBAU));
129 	CQHCI_DUMP("Doorbell:  0x%08x | TCN:      0x%08x\n",
130 		   cqhci_readl(cq_host, CQHCI_TDBR),
131 		   cqhci_readl(cq_host, CQHCI_TCN));
132 	CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
133 		   cqhci_readl(cq_host, CQHCI_DQS),
134 		   cqhci_readl(cq_host, CQHCI_DPT));
135 	CQHCI_DUMP("Task clr:  0x%08x | SSC1:     0x%08x\n",
136 		   cqhci_readl(cq_host, CQHCI_TCLR),
137 		   cqhci_readl(cq_host, CQHCI_SSC1));
138 	CQHCI_DUMP("SSC2:      0x%08x | DCMD rsp: 0x%08x\n",
139 		   cqhci_readl(cq_host, CQHCI_SSC2),
140 		   cqhci_readl(cq_host, CQHCI_CRDCT));
141 	CQHCI_DUMP("RED mask:  0x%08x | TERRI:    0x%08x\n",
142 		   cqhci_readl(cq_host, CQHCI_RMEM),
143 		   cqhci_readl(cq_host, CQHCI_TERRI));
144 	CQHCI_DUMP("Resp idx:  0x%08x | Resp arg: 0x%08x\n",
145 		   cqhci_readl(cq_host, CQHCI_CRI),
146 		   cqhci_readl(cq_host, CQHCI_CRA));
147 
148 	if (cq_host->ops->dumpregs)
149 		cq_host->ops->dumpregs(mmc);
150 	else
151 		CQHCI_DUMP(": ===========================================\n");
152 }
153 
154 /*
155  * The allocated descriptor table for task, link & transfer descriptors
156  * looks like:
157  * |----------|
158  * |task desc |  |->|----------|
159  * |----------|  |  |trans desc|
160  * |link desc-|->|  |----------|
161  * |----------|          .
162  *      .                .
163  *  no. of slots      max-segs
164  *      .           |----------|
165  * |----------|
166  * The idea here is to create the [task+trans] table and mark & point the
167  * link desc to the transfer desc table on a per slot basis.
168  */
169 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
170 {
171 	int i = 0;
172 
173 	/* task descriptor can be 64/128 bit irrespective of arch */
174 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
175 		cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
176 			       CQHCI_TASK_DESC_SZ, CQHCI_CFG);
177 		cq_host->task_desc_len = 16;
178 	} else {
179 		cq_host->task_desc_len = 8;
180 	}
181 
182 	/*
183 	 * 96 bits length of transfer desc instead of 128 bits which means
184 	 * ADMA would expect next valid descriptor at the 96th bit
185 	 * or 128th bit
186 	 */
187 	if (cq_host->dma64) {
188 		if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
189 			cq_host->trans_desc_len = 12;
190 		else
191 			cq_host->trans_desc_len = 16;
192 		cq_host->link_desc_len = 16;
193 	} else {
194 		cq_host->trans_desc_len = 8;
195 		cq_host->link_desc_len = 8;
196 	}
197 
198 	/* total size of a slot: 1 task & 1 transfer (link) */
199 	cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
200 
201 	cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
202 
203 	cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth);
204 
205 	pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
206 		 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
207 		 cq_host->slot_sz);
208 
209 	/*
210 	 * allocate a dma-mapped chunk of memory for the descriptors
211 	 * allocate a dma-mapped chunk of memory for link descriptors
212 	 * setup each link-desc memory offset per slot-number to
213 	 * the descriptor table.
214 	 */
215 	cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
216 						 cq_host->desc_size,
217 						 &cq_host->desc_dma_base,
218 						 GFP_KERNEL);
219 	if (!cq_host->desc_base)
220 		return -ENOMEM;
221 
222 	cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
223 					      cq_host->data_size,
224 					      &cq_host->trans_desc_dma_base,
225 					      GFP_KERNEL);
226 	if (!cq_host->trans_desc_base) {
227 		dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
228 				   cq_host->desc_base,
229 				   cq_host->desc_dma_base);
230 		cq_host->desc_base = NULL;
231 		cq_host->desc_dma_base = 0;
232 		return -ENOMEM;
233 	}
234 
235 	pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
236 		 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
237 		(unsigned long long)cq_host->desc_dma_base,
238 		(unsigned long long)cq_host->trans_desc_dma_base);
239 
240 	for (; i < (cq_host->num_slots); i++)
241 		setup_trans_desc(cq_host, i);
242 
243 	return 0;
244 }
245 
246 static void __cqhci_enable(struct cqhci_host *cq_host)
247 {
248 	struct mmc_host *mmc = cq_host->mmc;
249 	u32 cqcfg;
250 
251 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
252 
253 	/* Configuration must not be changed while enabled */
254 	if (cqcfg & CQHCI_ENABLE) {
255 		cqcfg &= ~CQHCI_ENABLE;
256 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
257 	}
258 
259 	cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
260 
261 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
262 		cqcfg |= CQHCI_DCMD;
263 
264 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
265 		cqcfg |= CQHCI_TASK_DESC_SZ;
266 
267 	if (mmc->caps2 & MMC_CAP2_CRYPTO)
268 		cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
269 
270 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
271 
272 	cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
273 		     CQHCI_TDLBA);
274 	cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
275 		     CQHCI_TDLBAU);
276 
277 	cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
278 
279 	cqhci_set_irqs(cq_host, 0);
280 
281 	cqcfg |= CQHCI_ENABLE;
282 
283 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
284 
285 	if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT)
286 		cqhci_writel(cq_host, 0, CQHCI_CTL);
287 
288 	mmc->cqe_on = true;
289 
290 	if (cq_host->ops->enable)
291 		cq_host->ops->enable(mmc);
292 
293 	/* Ensure all writes are done before interrupts are enabled */
294 	wmb();
295 
296 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
297 
298 	cq_host->activated = true;
299 }
300 
301 static void __cqhci_disable(struct cqhci_host *cq_host)
302 {
303 	u32 cqcfg;
304 
305 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
306 	cqcfg &= ~CQHCI_ENABLE;
307 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
308 
309 	cq_host->mmc->cqe_on = false;
310 
311 	cq_host->activated = false;
312 }
313 
314 int cqhci_deactivate(struct mmc_host *mmc)
315 {
316 	struct cqhci_host *cq_host = mmc->cqe_private;
317 
318 	if (cq_host->enabled && cq_host->activated)
319 		__cqhci_disable(cq_host);
320 
321 	return 0;
322 }
323 EXPORT_SYMBOL(cqhci_deactivate);
324 
325 int cqhci_resume(struct mmc_host *mmc)
326 {
327 	/* Re-enable is done upon first request */
328 	return 0;
329 }
330 EXPORT_SYMBOL(cqhci_resume);
331 
332 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
333 {
334 	struct cqhci_host *cq_host = mmc->cqe_private;
335 	int err;
336 
337 	if (!card->ext_csd.cmdq_en)
338 		return -EINVAL;
339 
340 	if (cq_host->enabled)
341 		return 0;
342 
343 	cq_host->rca = card->rca;
344 
345 	err = cqhci_host_alloc_tdl(cq_host);
346 	if (err) {
347 		pr_err("%s: Failed to enable CQE, error %d\n",
348 		       mmc_hostname(mmc), err);
349 		return err;
350 	}
351 
352 	__cqhci_enable(cq_host);
353 
354 	cq_host->enabled = true;
355 
356 #ifdef DEBUG
357 	cqhci_dumpregs(cq_host);
358 #endif
359 	return 0;
360 }
361 
362 /* CQHCI is idle and should halt immediately, so set a small timeout */
363 #define CQHCI_OFF_TIMEOUT 100
364 
365 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
366 {
367 	return cqhci_readl(cq_host, CQHCI_CTL);
368 }
369 
370 static void cqhci_off(struct mmc_host *mmc)
371 {
372 	struct cqhci_host *cq_host = mmc->cqe_private;
373 	u32 reg;
374 	int err;
375 
376 	if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
377 		return;
378 
379 	if (cq_host->ops->disable)
380 		cq_host->ops->disable(mmc, false);
381 
382 	cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
383 
384 	err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
385 				 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
386 	if (err < 0)
387 		pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
388 	else
389 		pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
390 
391 	if (cq_host->ops->post_disable)
392 		cq_host->ops->post_disable(mmc);
393 
394 	mmc->cqe_on = false;
395 }
396 
397 static void cqhci_disable(struct mmc_host *mmc)
398 {
399 	struct cqhci_host *cq_host = mmc->cqe_private;
400 
401 	if (!cq_host->enabled)
402 		return;
403 
404 	cqhci_off(mmc);
405 
406 	__cqhci_disable(cq_host);
407 
408 	dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
409 			   cq_host->trans_desc_base,
410 			   cq_host->trans_desc_dma_base);
411 
412 	dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
413 			   cq_host->desc_base,
414 			   cq_host->desc_dma_base);
415 
416 	cq_host->trans_desc_base = NULL;
417 	cq_host->desc_base = NULL;
418 
419 	cq_host->enabled = false;
420 }
421 
422 static void cqhci_prep_task_desc(struct mmc_request *mrq,
423 				 struct cqhci_host *cq_host, int tag)
424 {
425 	__le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
426 	u32 req_flags = mrq->data->flags;
427 	u64 desc0;
428 
429 	desc0 = CQHCI_VALID(1) |
430 		CQHCI_END(1) |
431 		CQHCI_INT(1) |
432 		CQHCI_ACT(0x5) |
433 		CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
434 		CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
435 		CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
436 		CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
437 		CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
438 		CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
439 		CQHCI_BLK_COUNT(mrq->data->blocks) |
440 		CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
441 
442 	task_desc[0] = cpu_to_le64(desc0);
443 
444 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
445 		u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
446 
447 		task_desc[1] = cpu_to_le64(desc1);
448 
449 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
450 			 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
451 	} else {
452 		pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
453 			 mmc_hostname(mrq->host), mrq->tag, desc0);
454 	}
455 }
456 
457 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
458 {
459 	int sg_count;
460 	struct mmc_data *data = mrq->data;
461 
462 	if (!data)
463 		return -EINVAL;
464 
465 	sg_count = dma_map_sg(mmc_dev(host), data->sg,
466 			      data->sg_len,
467 			      (data->flags & MMC_DATA_WRITE) ?
468 			      DMA_TO_DEVICE : DMA_FROM_DEVICE);
469 	if (!sg_count) {
470 		pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
471 		return -ENOMEM;
472 	}
473 
474 	return sg_count;
475 }
476 
477 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
478 				bool dma64)
479 {
480 	__le32 *attr = (__le32 __force *)desc;
481 
482 	*attr = (CQHCI_VALID(1) |
483 		 CQHCI_END(end ? 1 : 0) |
484 		 CQHCI_INT(0) |
485 		 CQHCI_ACT(0x4) |
486 		 CQHCI_DAT_LENGTH(len));
487 
488 	if (dma64) {
489 		__le64 *dataddr = (__le64 __force *)(desc + 4);
490 
491 		dataddr[0] = cpu_to_le64(addr);
492 	} else {
493 		__le32 *dataddr = (__le32 __force *)(desc + 4);
494 
495 		dataddr[0] = cpu_to_le32(addr);
496 	}
497 }
498 
499 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
500 			       struct cqhci_host *cq_host, int tag)
501 {
502 	struct mmc_data *data = mrq->data;
503 	int i, sg_count, len;
504 	bool end = false;
505 	bool dma64 = cq_host->dma64;
506 	dma_addr_t addr;
507 	u8 *desc;
508 	struct scatterlist *sg;
509 
510 	sg_count = cqhci_dma_map(mrq->host, mrq);
511 	if (sg_count < 0) {
512 		pr_err("%s: %s: unable to map sg lists, %d\n",
513 				mmc_hostname(mrq->host), __func__, sg_count);
514 		return sg_count;
515 	}
516 
517 	desc = get_trans_desc(cq_host, tag);
518 
519 	for_each_sg(data->sg, sg, sg_count, i) {
520 		addr = sg_dma_address(sg);
521 		len = sg_dma_len(sg);
522 
523 		if ((i+1) == sg_count)
524 			end = true;
525 		cqhci_set_tran_desc(desc, addr, len, end, dma64);
526 		desc += cq_host->trans_desc_len;
527 	}
528 
529 	return 0;
530 }
531 
532 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
533 				   struct mmc_request *mrq)
534 {
535 	u64 *task_desc = NULL;
536 	u64 data = 0;
537 	u8 resp_type;
538 	u8 *desc;
539 	__le64 *dataddr;
540 	struct cqhci_host *cq_host = mmc->cqe_private;
541 	u8 timing;
542 
543 	if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
544 		resp_type = 0x0;
545 		timing = 0x1;
546 	} else {
547 		if (mrq->cmd->flags & MMC_RSP_R1B) {
548 			resp_type = 0x3;
549 			timing = 0x0;
550 		} else {
551 			resp_type = 0x2;
552 			timing = 0x1;
553 		}
554 	}
555 
556 	task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
557 	memset(task_desc, 0, cq_host->task_desc_len);
558 	data |= (CQHCI_VALID(1) |
559 		 CQHCI_END(1) |
560 		 CQHCI_INT(1) |
561 		 CQHCI_QBAR(1) |
562 		 CQHCI_ACT(0x5) |
563 		 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
564 		 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
565 	if (cq_host->ops->update_dcmd_desc)
566 		cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
567 	*task_desc |= data;
568 	desc = (u8 *)task_desc;
569 	pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
570 		 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
571 	dataddr = (__le64 __force *)(desc + 4);
572 	dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
573 
574 }
575 
576 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
577 {
578 	struct mmc_data *data = mrq->data;
579 
580 	if (data) {
581 		dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
582 			     (data->flags & MMC_DATA_READ) ?
583 			     DMA_FROM_DEVICE : DMA_TO_DEVICE);
584 	}
585 }
586 
587 static inline int cqhci_tag(struct mmc_request *mrq)
588 {
589 	return mrq->cmd ? DCMD_SLOT : mrq->tag;
590 }
591 
592 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
593 {
594 	int err = 0;
595 	int tag = cqhci_tag(mrq);
596 	struct cqhci_host *cq_host = mmc->cqe_private;
597 	unsigned long flags;
598 
599 	if (!cq_host->enabled) {
600 		pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
601 		return -EINVAL;
602 	}
603 
604 	/* First request after resume has to re-enable */
605 	if (!cq_host->activated)
606 		__cqhci_enable(cq_host);
607 
608 	if (!mmc->cqe_on) {
609 		if (cq_host->ops->pre_enable)
610 			cq_host->ops->pre_enable(mmc);
611 
612 		cqhci_writel(cq_host, 0, CQHCI_CTL);
613 		mmc->cqe_on = true;
614 		pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
615 		if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
616 			pr_err("%s: cqhci: CQE failed to exit halt state\n",
617 			       mmc_hostname(mmc));
618 		}
619 		if (cq_host->ops->enable)
620 			cq_host->ops->enable(mmc);
621 	}
622 
623 	if (mrq->data) {
624 		cqhci_prep_task_desc(mrq, cq_host, tag);
625 
626 		err = cqhci_prep_tran_desc(mrq, cq_host, tag);
627 		if (err) {
628 			pr_err("%s: cqhci: failed to setup tx desc: %d\n",
629 			       mmc_hostname(mmc), err);
630 			return err;
631 		}
632 	} else {
633 		cqhci_prep_dcmd_desc(mmc, mrq);
634 	}
635 
636 	spin_lock_irqsave(&cq_host->lock, flags);
637 
638 	if (cq_host->recovery_halt) {
639 		err = -EBUSY;
640 		goto out_unlock;
641 	}
642 
643 	cq_host->slot[tag].mrq = mrq;
644 	cq_host->slot[tag].flags = 0;
645 
646 	cq_host->qcnt += 1;
647 	/* Make sure descriptors are ready before ringing the doorbell */
648 	wmb();
649 	cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
650 	if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
651 		pr_debug("%s: cqhci: doorbell not set for tag %d\n",
652 			 mmc_hostname(mmc), tag);
653 out_unlock:
654 	spin_unlock_irqrestore(&cq_host->lock, flags);
655 
656 	if (err)
657 		cqhci_post_req(mmc, mrq);
658 
659 	return err;
660 }
661 
662 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
663 				  bool notify)
664 {
665 	struct cqhci_host *cq_host = mmc->cqe_private;
666 
667 	if (!cq_host->recovery_halt) {
668 		cq_host->recovery_halt = true;
669 		pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
670 		wake_up(&cq_host->wait_queue);
671 		if (notify && mrq->recovery_notifier)
672 			mrq->recovery_notifier(mrq);
673 	}
674 }
675 
676 static unsigned int cqhci_error_flags(int error1, int error2)
677 {
678 	int error = error1 ? error1 : error2;
679 
680 	switch (error) {
681 	case -EILSEQ:
682 		return CQHCI_HOST_CRC;
683 	case -ETIMEDOUT:
684 		return CQHCI_HOST_TIMEOUT;
685 	default:
686 		return CQHCI_HOST_OTHER;
687 	}
688 }
689 
690 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
691 			    int data_error)
692 {
693 	struct cqhci_host *cq_host = mmc->cqe_private;
694 	struct cqhci_slot *slot;
695 	u32 terri;
696 	u32 tdpe;
697 	int tag;
698 
699 	spin_lock(&cq_host->lock);
700 
701 	terri = cqhci_readl(cq_host, CQHCI_TERRI);
702 
703 	pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
704 		 mmc_hostname(mmc), status, cmd_error, data_error, terri);
705 
706 	/* Forget about errors when recovery has already been triggered */
707 	if (cq_host->recovery_halt)
708 		goto out_unlock;
709 
710 	if (!cq_host->qcnt) {
711 		WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
712 			  mmc_hostname(mmc), status, cmd_error, data_error,
713 			  terri);
714 		goto out_unlock;
715 	}
716 
717 	if (CQHCI_TERRI_C_VALID(terri)) {
718 		tag = CQHCI_TERRI_C_TASK(terri);
719 		slot = &cq_host->slot[tag];
720 		if (slot->mrq) {
721 			slot->flags = cqhci_error_flags(cmd_error, data_error);
722 			cqhci_recovery_needed(mmc, slot->mrq, true);
723 		}
724 	}
725 
726 	if (CQHCI_TERRI_D_VALID(terri)) {
727 		tag = CQHCI_TERRI_D_TASK(terri);
728 		slot = &cq_host->slot[tag];
729 		if (slot->mrq) {
730 			slot->flags = cqhci_error_flags(data_error, cmd_error);
731 			cqhci_recovery_needed(mmc, slot->mrq, true);
732 		}
733 	}
734 
735 	/*
736 	 * Handle ICCE ("Invalid Crypto Configuration Error").  This should
737 	 * never happen, since the block layer ensures that all crypto-enabled
738 	 * I/O requests have a valid keyslot before they reach the driver.
739 	 *
740 	 * Note that GCE ("General Crypto Error") is different; it already got
741 	 * handled above by checking TERRI.
742 	 */
743 	if (status & CQHCI_IS_ICCE) {
744 		tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
745 		WARN_ONCE(1,
746 			  "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
747 			  mmc_hostname(mmc), status, tdpe);
748 		while (tdpe != 0) {
749 			tag = __ffs(tdpe);
750 			tdpe &= ~(1 << tag);
751 			slot = &cq_host->slot[tag];
752 			if (!slot->mrq)
753 				continue;
754 			slot->flags = cqhci_error_flags(data_error, cmd_error);
755 			cqhci_recovery_needed(mmc, slot->mrq, true);
756 		}
757 	}
758 
759 	if (!cq_host->recovery_halt) {
760 		/*
761 		 * The only way to guarantee forward progress is to mark at
762 		 * least one task in error, so if none is indicated, pick one.
763 		 */
764 		for (tag = 0; tag < NUM_SLOTS; tag++) {
765 			slot = &cq_host->slot[tag];
766 			if (!slot->mrq)
767 				continue;
768 			slot->flags = cqhci_error_flags(data_error, cmd_error);
769 			cqhci_recovery_needed(mmc, slot->mrq, true);
770 			break;
771 		}
772 	}
773 
774 out_unlock:
775 	spin_unlock(&cq_host->lock);
776 }
777 
778 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
779 {
780 	struct cqhci_host *cq_host = mmc->cqe_private;
781 	struct cqhci_slot *slot = &cq_host->slot[tag];
782 	struct mmc_request *mrq = slot->mrq;
783 	struct mmc_data *data;
784 
785 	if (!mrq) {
786 		WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
787 			  mmc_hostname(mmc), tag);
788 		return;
789 	}
790 
791 	/* No completions allowed during recovery */
792 	if (cq_host->recovery_halt) {
793 		slot->flags |= CQHCI_COMPLETED;
794 		return;
795 	}
796 
797 	slot->mrq = NULL;
798 
799 	cq_host->qcnt -= 1;
800 
801 	data = mrq->data;
802 	if (data) {
803 		if (data->error)
804 			data->bytes_xfered = 0;
805 		else
806 			data->bytes_xfered = data->blksz * data->blocks;
807 	}
808 
809 	mmc_cqe_request_done(mmc, mrq);
810 }
811 
812 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
813 		      int data_error)
814 {
815 	u32 status;
816 	unsigned long tag = 0, comp_status;
817 	struct cqhci_host *cq_host = mmc->cqe_private;
818 
819 	status = cqhci_readl(cq_host, CQHCI_IS);
820 	cqhci_writel(cq_host, status, CQHCI_IS);
821 
822 	pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
823 
824 	if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
825 	    cmd_error || data_error)
826 		cqhci_error_irq(mmc, status, cmd_error, data_error);
827 
828 	if (status & CQHCI_IS_TCC) {
829 		/* read TCN and complete the request */
830 		comp_status = cqhci_readl(cq_host, CQHCI_TCN);
831 		cqhci_writel(cq_host, comp_status, CQHCI_TCN);
832 		pr_debug("%s: cqhci: TCN: 0x%08lx\n",
833 			 mmc_hostname(mmc), comp_status);
834 
835 		spin_lock(&cq_host->lock);
836 
837 		for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
838 			/* complete the corresponding mrq */
839 			pr_debug("%s: cqhci: completing tag %lu\n",
840 				 mmc_hostname(mmc), tag);
841 			cqhci_finish_mrq(mmc, tag);
842 		}
843 
844 		if (cq_host->waiting_for_idle && !cq_host->qcnt) {
845 			cq_host->waiting_for_idle = false;
846 			wake_up(&cq_host->wait_queue);
847 		}
848 
849 		spin_unlock(&cq_host->lock);
850 	}
851 
852 	if (status & CQHCI_IS_TCL)
853 		wake_up(&cq_host->wait_queue);
854 
855 	if (status & CQHCI_IS_HAC)
856 		wake_up(&cq_host->wait_queue);
857 
858 	return IRQ_HANDLED;
859 }
860 EXPORT_SYMBOL(cqhci_irq);
861 
862 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
863 {
864 	unsigned long flags;
865 	bool is_idle;
866 
867 	spin_lock_irqsave(&cq_host->lock, flags);
868 	is_idle = !cq_host->qcnt || cq_host->recovery_halt;
869 	*ret = cq_host->recovery_halt ? -EBUSY : 0;
870 	cq_host->waiting_for_idle = !is_idle;
871 	spin_unlock_irqrestore(&cq_host->lock, flags);
872 
873 	return is_idle;
874 }
875 
876 static int cqhci_wait_for_idle(struct mmc_host *mmc)
877 {
878 	struct cqhci_host *cq_host = mmc->cqe_private;
879 	int ret;
880 
881 	wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
882 
883 	return ret;
884 }
885 
886 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
887 			  bool *recovery_needed)
888 {
889 	struct cqhci_host *cq_host = mmc->cqe_private;
890 	int tag = cqhci_tag(mrq);
891 	struct cqhci_slot *slot = &cq_host->slot[tag];
892 	unsigned long flags;
893 	bool timed_out;
894 
895 	spin_lock_irqsave(&cq_host->lock, flags);
896 	timed_out = slot->mrq == mrq;
897 	if (timed_out) {
898 		slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
899 		cqhci_recovery_needed(mmc, mrq, false);
900 		*recovery_needed = cq_host->recovery_halt;
901 	}
902 	spin_unlock_irqrestore(&cq_host->lock, flags);
903 
904 	if (timed_out) {
905 		pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n",
906 		       mmc_hostname(mmc), tag, cq_host->qcnt);
907 		cqhci_dumpregs(cq_host);
908 	}
909 
910 	return timed_out;
911 }
912 
913 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
914 {
915 	return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
916 }
917 
918 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
919 {
920 	struct cqhci_host *cq_host = mmc->cqe_private;
921 	bool ret;
922 	u32 ctl;
923 
924 	cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
925 
926 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
927 	ctl |= CQHCI_CLEAR_ALL_TASKS;
928 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
929 
930 	wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
931 			   msecs_to_jiffies(timeout) + 1);
932 
933 	cqhci_set_irqs(cq_host, 0);
934 
935 	ret = cqhci_tasks_cleared(cq_host);
936 
937 	if (!ret)
938 		pr_debug("%s: cqhci: Failed to clear tasks\n",
939 			 mmc_hostname(mmc));
940 
941 	return ret;
942 }
943 
944 static bool cqhci_halted(struct cqhci_host *cq_host)
945 {
946 	return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
947 }
948 
949 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
950 {
951 	struct cqhci_host *cq_host = mmc->cqe_private;
952 	bool ret;
953 	u32 ctl;
954 
955 	if (cqhci_halted(cq_host))
956 		return true;
957 
958 	cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
959 
960 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
961 	ctl |= CQHCI_HALT;
962 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
963 
964 	wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
965 			   msecs_to_jiffies(timeout) + 1);
966 
967 	cqhci_set_irqs(cq_host, 0);
968 
969 	ret = cqhci_halted(cq_host);
970 
971 	if (!ret)
972 		pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
973 
974 	return ret;
975 }
976 
977 /*
978  * After halting we expect to be able to use the command line. We interpret the
979  * failure to halt to mean the data lines might still be in use (and the upper
980  * layers will need to send a STOP command), so we set the timeout based on a
981  * generous command timeout.
982  */
983 #define CQHCI_START_HALT_TIMEOUT	5
984 
985 static void cqhci_recovery_start(struct mmc_host *mmc)
986 {
987 	struct cqhci_host *cq_host = mmc->cqe_private;
988 
989 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
990 
991 	WARN_ON(!cq_host->recovery_halt);
992 
993 	cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
994 
995 	if (cq_host->ops->disable)
996 		cq_host->ops->disable(mmc, true);
997 
998 	mmc->cqe_on = false;
999 }
1000 
1001 static int cqhci_error_from_flags(unsigned int flags)
1002 {
1003 	if (!flags)
1004 		return 0;
1005 
1006 	/* CRC errors might indicate re-tuning so prefer to report that */
1007 	if (flags & CQHCI_HOST_CRC)
1008 		return -EILSEQ;
1009 
1010 	if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1011 		return -ETIMEDOUT;
1012 
1013 	return -EIO;
1014 }
1015 
1016 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1017 {
1018 	struct cqhci_slot *slot = &cq_host->slot[tag];
1019 	struct mmc_request *mrq = slot->mrq;
1020 	struct mmc_data *data;
1021 
1022 	if (!mrq)
1023 		return;
1024 
1025 	slot->mrq = NULL;
1026 
1027 	cq_host->qcnt -= 1;
1028 
1029 	data = mrq->data;
1030 	if (data) {
1031 		data->bytes_xfered = 0;
1032 		data->error = cqhci_error_from_flags(slot->flags);
1033 	} else {
1034 		mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1035 	}
1036 
1037 	mmc_cqe_request_done(cq_host->mmc, mrq);
1038 }
1039 
1040 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < cq_host->num_slots; i++)
1045 		cqhci_recover_mrq(cq_host, i);
1046 }
1047 
1048 /*
1049  * By now the command and data lines should be unused so there is no reason for
1050  * CQHCI to take a long time to halt, but if it doesn't halt there could be
1051  * problems clearing tasks, so be generous.
1052  */
1053 #define CQHCI_FINISH_HALT_TIMEOUT	20
1054 
1055 /* CQHCI could be expected to clear it's internal state pretty quickly */
1056 #define CQHCI_CLEAR_TIMEOUT		20
1057 
1058 static void cqhci_recovery_finish(struct mmc_host *mmc)
1059 {
1060 	struct cqhci_host *cq_host = mmc->cqe_private;
1061 	unsigned long flags;
1062 	u32 cqcfg;
1063 	bool ok;
1064 
1065 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1066 
1067 	WARN_ON(!cq_host->recovery_halt);
1068 
1069 	ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1070 
1071 	if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1072 		ok = false;
1073 
1074 	/*
1075 	 * The specification contradicts itself, by saying that tasks cannot be
1076 	 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1077 	 * be disabled/re-enabled, but not to disable before clearing tasks.
1078 	 * Have a go anyway.
1079 	 */
1080 	if (!ok) {
1081 		pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1082 		cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1083 		cqcfg &= ~CQHCI_ENABLE;
1084 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1085 		cqcfg |= CQHCI_ENABLE;
1086 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1087 		/* Be sure that there are no tasks */
1088 		ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1089 		if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1090 			ok = false;
1091 		WARN_ON(!ok);
1092 	}
1093 
1094 	cqhci_recover_mrqs(cq_host);
1095 
1096 	WARN_ON(cq_host->qcnt);
1097 
1098 	spin_lock_irqsave(&cq_host->lock, flags);
1099 	cq_host->qcnt = 0;
1100 	cq_host->recovery_halt = false;
1101 	mmc->cqe_on = false;
1102 	spin_unlock_irqrestore(&cq_host->lock, flags);
1103 
1104 	/* Ensure all writes are done before interrupts are re-enabled */
1105 	wmb();
1106 
1107 	cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1108 
1109 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1110 
1111 	pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1112 }
1113 
1114 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1115 	.cqe_enable = cqhci_enable,
1116 	.cqe_disable = cqhci_disable,
1117 	.cqe_request = cqhci_request,
1118 	.cqe_post_req = cqhci_post_req,
1119 	.cqe_off = cqhci_off,
1120 	.cqe_wait_for_idle = cqhci_wait_for_idle,
1121 	.cqe_timeout = cqhci_timeout,
1122 	.cqe_recovery_start = cqhci_recovery_start,
1123 	.cqe_recovery_finish = cqhci_recovery_finish,
1124 };
1125 
1126 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1127 {
1128 	struct cqhci_host *cq_host;
1129 	struct resource *cqhci_memres = NULL;
1130 
1131 	/* check and setup CMDQ interface */
1132 	cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1133 						   "cqhci");
1134 	if (!cqhci_memres) {
1135 		dev_dbg(&pdev->dev, "CMDQ not supported\n");
1136 		return ERR_PTR(-EINVAL);
1137 	}
1138 
1139 	cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1140 	if (!cq_host)
1141 		return ERR_PTR(-ENOMEM);
1142 	cq_host->mmio = devm_ioremap(&pdev->dev,
1143 				     cqhci_memres->start,
1144 				     resource_size(cqhci_memres));
1145 	if (!cq_host->mmio) {
1146 		dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1147 		return ERR_PTR(-EBUSY);
1148 	}
1149 	dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1150 
1151 	return cq_host;
1152 }
1153 EXPORT_SYMBOL(cqhci_pltfm_init);
1154 
1155 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1156 {
1157 	return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1158 }
1159 
1160 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1161 {
1162 	u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1163 
1164 	return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1165 }
1166 
1167 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1168 	      bool dma64)
1169 {
1170 	int err;
1171 
1172 	cq_host->dma64 = dma64;
1173 	cq_host->mmc = mmc;
1174 	cq_host->mmc->cqe_private = cq_host;
1175 
1176 	cq_host->num_slots = NUM_SLOTS;
1177 	cq_host->dcmd_slot = DCMD_SLOT;
1178 
1179 	mmc->cqe_ops = &cqhci_cqe_ops;
1180 
1181 	mmc->cqe_qdepth = NUM_SLOTS;
1182 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1183 		mmc->cqe_qdepth -= 1;
1184 
1185 	cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1186 				     sizeof(*cq_host->slot), GFP_KERNEL);
1187 	if (!cq_host->slot) {
1188 		err = -ENOMEM;
1189 		goto out_err;
1190 	}
1191 
1192 	err = cqhci_crypto_init(cq_host);
1193 	if (err) {
1194 		pr_err("%s: CQHCI crypto initialization failed\n",
1195 		       mmc_hostname(mmc));
1196 		goto out_err;
1197 	}
1198 
1199 	spin_lock_init(&cq_host->lock);
1200 
1201 	init_completion(&cq_host->halt_comp);
1202 	init_waitqueue_head(&cq_host->wait_queue);
1203 
1204 	pr_info("%s: CQHCI version %u.%02u\n",
1205 		mmc_hostname(mmc), cqhci_ver_major(cq_host),
1206 		cqhci_ver_minor(cq_host));
1207 
1208 	return 0;
1209 
1210 out_err:
1211 	pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1212 	       mmc_hostname(mmc), cqhci_ver_major(cq_host),
1213 	       cqhci_ver_minor(cq_host), err);
1214 	return err;
1215 }
1216 EXPORT_SYMBOL(cqhci_init);
1217 
1218 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1219 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1220 MODULE_LICENSE("GPL v2");
1221