1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/scatterlist.h> 17 #include <linux/sysfs.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "card.h" 26 #include "host.h" 27 #include "bus.h" 28 #include "mmc_ops.h" 29 #include "sd.h" 30 #include "sd_ops.h" 31 32 static const unsigned int tran_exp[] = { 33 10000, 100000, 1000000, 10000000, 34 0, 0, 0, 0 35 }; 36 37 static const unsigned char tran_mant[] = { 38 0, 10, 12, 13, 15, 20, 25, 30, 39 35, 40, 45, 50, 55, 60, 70, 80, 40 }; 41 42 static const unsigned int taac_exp[] = { 43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 44 }; 45 46 static const unsigned int taac_mant[] = { 47 0, 10, 12, 13, 15, 20, 25, 30, 48 35, 40, 45, 50, 55, 60, 70, 80, 49 }; 50 51 static const unsigned int sd_au_size[] = { 52 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 53 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 54 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 55 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 56 }; 57 58 #define UNSTUFF_BITS(resp,start,size) \ 59 ({ \ 60 const int __size = size; \ 61 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 62 const int __off = 3 - ((start) / 32); \ 63 const int __shft = (start) & 31; \ 64 u32 __res; \ 65 \ 66 __res = resp[__off] >> __shft; \ 67 if (__size + __shft > 32) \ 68 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 69 __res & __mask; \ 70 }) 71 72 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 73 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 74 75 struct sd_busy_data { 76 struct mmc_card *card; 77 u8 *reg_buf; 78 }; 79 80 /* 81 * Given the decoded CSD structure, decode the raw CID to our CID structure. 82 */ 83 void mmc_decode_cid(struct mmc_card *card) 84 { 85 u32 *resp = card->raw_cid; 86 87 /* 88 * Add the raw card ID (cid) data to the entropy pool. It doesn't 89 * matter that not all of it is unique, it's just bonus entropy. 90 */ 91 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 92 93 /* 94 * SD doesn't currently have a version field so we will 95 * have to assume we can parse this. 96 */ 97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 104 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 105 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 106 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 107 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 108 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 109 110 card->cid.year += 2000; /* SD cards year offset */ 111 } 112 113 /* 114 * Given a 128-bit response, decode to our card CSD structure. 115 */ 116 static int mmc_decode_csd(struct mmc_card *card) 117 { 118 struct mmc_csd *csd = &card->csd; 119 unsigned int e, m, csd_struct; 120 u32 *resp = card->raw_csd; 121 122 csd_struct = UNSTUFF_BITS(resp, 126, 2); 123 124 switch (csd_struct) { 125 case 0: 126 m = UNSTUFF_BITS(resp, 115, 4); 127 e = UNSTUFF_BITS(resp, 112, 3); 128 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 129 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 130 131 m = UNSTUFF_BITS(resp, 99, 4); 132 e = UNSTUFF_BITS(resp, 96, 3); 133 csd->max_dtr = tran_exp[e] * tran_mant[m]; 134 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 135 136 e = UNSTUFF_BITS(resp, 47, 3); 137 m = UNSTUFF_BITS(resp, 62, 12); 138 csd->capacity = (1 + m) << (e + 2); 139 140 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 141 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 142 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 143 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 144 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 145 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 146 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 147 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 148 149 if (UNSTUFF_BITS(resp, 46, 1)) { 150 csd->erase_size = 1; 151 } else if (csd->write_blkbits >= 9) { 152 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 153 csd->erase_size <<= csd->write_blkbits - 9; 154 } 155 156 if (UNSTUFF_BITS(resp, 13, 1)) 157 mmc_card_set_readonly(card); 158 break; 159 case 1: 160 /* 161 * This is a block-addressed SDHC or SDXC card. Most 162 * interesting fields are unused and have fixed 163 * values. To avoid getting tripped by buggy cards, 164 * we assume those fixed values ourselves. 165 */ 166 mmc_card_set_blockaddr(card); 167 168 csd->taac_ns = 0; /* Unused */ 169 csd->taac_clks = 0; /* Unused */ 170 171 m = UNSTUFF_BITS(resp, 99, 4); 172 e = UNSTUFF_BITS(resp, 96, 3); 173 csd->max_dtr = tran_exp[e] * tran_mant[m]; 174 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 175 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 176 177 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 178 if (csd->c_size >= 0xFFFF) 179 mmc_card_set_ext_capacity(card); 180 181 m = UNSTUFF_BITS(resp, 48, 22); 182 csd->capacity = (1 + m) << 10; 183 184 csd->read_blkbits = 9; 185 csd->read_partial = 0; 186 csd->write_misalign = 0; 187 csd->read_misalign = 0; 188 csd->r2w_factor = 4; /* Unused */ 189 csd->write_blkbits = 9; 190 csd->write_partial = 0; 191 csd->erase_size = 1; 192 193 if (UNSTUFF_BITS(resp, 13, 1)) 194 mmc_card_set_readonly(card); 195 break; 196 default: 197 pr_err("%s: unrecognised CSD structure version %d\n", 198 mmc_hostname(card->host), csd_struct); 199 return -EINVAL; 200 } 201 202 card->erase_size = csd->erase_size; 203 204 return 0; 205 } 206 207 /* 208 * Given a 64-bit response, decode to our card SCR structure. 209 */ 210 static int mmc_decode_scr(struct mmc_card *card) 211 { 212 struct sd_scr *scr = &card->scr; 213 unsigned int scr_struct; 214 u32 resp[4]; 215 216 resp[3] = card->raw_scr[1]; 217 resp[2] = card->raw_scr[0]; 218 219 scr_struct = UNSTUFF_BITS(resp, 60, 4); 220 if (scr_struct != 0) { 221 pr_err("%s: unrecognised SCR structure version %d\n", 222 mmc_hostname(card->host), scr_struct); 223 return -EINVAL; 224 } 225 226 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 227 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 228 if (scr->sda_vsn == SCR_SPEC_VER_2) 229 /* Check if Physical Layer Spec v3.0 is supported */ 230 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 231 232 if (scr->sda_spec3) { 233 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1); 234 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4); 235 } 236 237 if (UNSTUFF_BITS(resp, 55, 1)) 238 card->erased_byte = 0xFF; 239 else 240 card->erased_byte = 0x0; 241 242 if (scr->sda_spec4) 243 scr->cmds = UNSTUFF_BITS(resp, 32, 4); 244 else if (scr->sda_spec3) 245 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 246 247 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 248 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 249 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 250 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 251 return -EINVAL; 252 } 253 254 return 0; 255 } 256 257 /* 258 * Fetch and process SD Status register. 259 */ 260 static int mmc_read_ssr(struct mmc_card *card) 261 { 262 unsigned int au, es, et, eo; 263 __be32 *raw_ssr; 264 u32 resp[4] = {}; 265 u8 discard_support; 266 int i; 267 268 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 269 pr_warn("%s: card lacks mandatory SD Status function\n", 270 mmc_hostname(card->host)); 271 return 0; 272 } 273 274 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 275 if (!raw_ssr) 276 return -ENOMEM; 277 278 if (mmc_app_sd_status(card, raw_ssr)) { 279 pr_warn("%s: problem reading SD Status register\n", 280 mmc_hostname(card->host)); 281 kfree(raw_ssr); 282 return 0; 283 } 284 285 for (i = 0; i < 16; i++) 286 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 287 288 kfree(raw_ssr); 289 290 /* 291 * UNSTUFF_BITS only works with four u32s so we have to offset the 292 * bitfield positions accordingly. 293 */ 294 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4); 295 if (au) { 296 if (au <= 9 || card->scr.sda_spec3) { 297 card->ssr.au = sd_au_size[au]; 298 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16); 299 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6); 300 if (es && et) { 301 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2); 302 card->ssr.erase_timeout = (et * 1000) / es; 303 card->ssr.erase_offset = eo * 1000; 304 } 305 } else { 306 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 307 mmc_hostname(card->host)); 308 } 309 } 310 311 /* 312 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 313 */ 314 resp[3] = card->raw_ssr[6]; 315 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1); 316 card->erase_arg = (card->scr.sda_specx && discard_support) ? 317 SD_DISCARD_ARG : SD_ERASE_ARG; 318 319 return 0; 320 } 321 322 /* 323 * Fetches and decodes switch information 324 */ 325 static int mmc_read_switch(struct mmc_card *card) 326 { 327 int err; 328 u8 *status; 329 330 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 331 return 0; 332 333 if (!(card->csd.cmdclass & CCC_SWITCH)) { 334 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 335 mmc_hostname(card->host)); 336 return 0; 337 } 338 339 status = kmalloc(64, GFP_KERNEL); 340 if (!status) 341 return -ENOMEM; 342 343 /* 344 * Find out the card's support bits with a mode 0 operation. 345 * The argument does not matter, as the support bits do not 346 * change with the arguments. 347 */ 348 err = mmc_sd_switch(card, 0, 0, 0, status); 349 if (err) { 350 /* 351 * If the host or the card can't do the switch, 352 * fail more gracefully. 353 */ 354 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 355 goto out; 356 357 pr_warn("%s: problem reading Bus Speed modes\n", 358 mmc_hostname(card->host)); 359 err = 0; 360 361 goto out; 362 } 363 364 if (status[13] & SD_MODE_HIGH_SPEED) 365 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 366 367 if (card->scr.sda_spec3) { 368 card->sw_caps.sd3_bus_mode = status[13]; 369 /* Driver Strengths supported by the card */ 370 card->sw_caps.sd3_drv_type = status[9]; 371 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 372 } 373 374 out: 375 kfree(status); 376 377 return err; 378 } 379 380 /* 381 * Test if the card supports high-speed mode and, if so, switch to it. 382 */ 383 int mmc_sd_switch_hs(struct mmc_card *card) 384 { 385 int err; 386 u8 *status; 387 388 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 389 return 0; 390 391 if (!(card->csd.cmdclass & CCC_SWITCH)) 392 return 0; 393 394 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 395 return 0; 396 397 if (card->sw_caps.hs_max_dtr == 0) 398 return 0; 399 400 status = kmalloc(64, GFP_KERNEL); 401 if (!status) 402 return -ENOMEM; 403 404 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status); 405 if (err) 406 goto out; 407 408 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 409 pr_warn("%s: Problem switching card into high-speed mode!\n", 410 mmc_hostname(card->host)); 411 err = 0; 412 } else { 413 err = 1; 414 } 415 416 out: 417 kfree(status); 418 419 return err; 420 } 421 422 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 423 { 424 int card_drv_type, drive_strength, drv_type; 425 int err; 426 427 card->drive_strength = 0; 428 429 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 430 431 drive_strength = mmc_select_drive_strength(card, 432 card->sw_caps.uhs_max_dtr, 433 card_drv_type, &drv_type); 434 435 if (drive_strength) { 436 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 437 if (err) 438 return err; 439 if ((status[15] & 0xF) != drive_strength) { 440 pr_warn("%s: Problem setting drive strength!\n", 441 mmc_hostname(card->host)); 442 return 0; 443 } 444 card->drive_strength = drive_strength; 445 } 446 447 if (drv_type) 448 mmc_set_driver_type(card->host, drv_type); 449 450 return 0; 451 } 452 453 static void sd_update_bus_speed_mode(struct mmc_card *card) 454 { 455 /* 456 * If the host doesn't support any of the UHS-I modes, fallback on 457 * default speed. 458 */ 459 if (!mmc_host_uhs(card->host)) { 460 card->sd_bus_speed = 0; 461 return; 462 } 463 464 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 465 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 466 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 467 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 468 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 469 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 470 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 471 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 472 SD_MODE_UHS_SDR50)) { 473 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 474 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 475 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 476 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 477 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 478 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 479 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 480 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 481 SD_MODE_UHS_SDR12)) { 482 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 483 } 484 } 485 486 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 487 { 488 int err; 489 unsigned int timing = 0; 490 491 switch (card->sd_bus_speed) { 492 case UHS_SDR104_BUS_SPEED: 493 timing = MMC_TIMING_UHS_SDR104; 494 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 495 break; 496 case UHS_DDR50_BUS_SPEED: 497 timing = MMC_TIMING_UHS_DDR50; 498 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 499 break; 500 case UHS_SDR50_BUS_SPEED: 501 timing = MMC_TIMING_UHS_SDR50; 502 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 503 break; 504 case UHS_SDR25_BUS_SPEED: 505 timing = MMC_TIMING_UHS_SDR25; 506 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 507 break; 508 case UHS_SDR12_BUS_SPEED: 509 timing = MMC_TIMING_UHS_SDR12; 510 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 511 break; 512 default: 513 return 0; 514 } 515 516 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 517 if (err) 518 return err; 519 520 if ((status[16] & 0xF) != card->sd_bus_speed) 521 pr_warn("%s: Problem setting bus speed mode!\n", 522 mmc_hostname(card->host)); 523 else { 524 mmc_set_timing(card->host, timing); 525 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 526 } 527 528 return 0; 529 } 530 531 /* Get host's max current setting at its current voltage */ 532 static u32 sd_get_host_max_current(struct mmc_host *host) 533 { 534 u32 voltage, max_current; 535 536 voltage = 1 << host->ios.vdd; 537 switch (voltage) { 538 case MMC_VDD_165_195: 539 max_current = host->max_current_180; 540 break; 541 case MMC_VDD_29_30: 542 case MMC_VDD_30_31: 543 max_current = host->max_current_300; 544 break; 545 case MMC_VDD_32_33: 546 case MMC_VDD_33_34: 547 max_current = host->max_current_330; 548 break; 549 default: 550 max_current = 0; 551 } 552 553 return max_current; 554 } 555 556 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 557 { 558 int current_limit = SD_SET_CURRENT_NO_CHANGE; 559 int err; 560 u32 max_current; 561 562 /* 563 * Current limit switch is only defined for SDR50, SDR104, and DDR50 564 * bus speed modes. For other bus speed modes, we do not change the 565 * current limit. 566 */ 567 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 568 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 569 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 570 return 0; 571 572 /* 573 * Host has different current capabilities when operating at 574 * different voltages, so find out its max current first. 575 */ 576 max_current = sd_get_host_max_current(card->host); 577 578 /* 579 * We only check host's capability here, if we set a limit that is 580 * higher than the card's maximum current, the card will be using its 581 * maximum current, e.g. if the card's maximum current is 300ma, and 582 * when we set current limit to 200ma, the card will draw 200ma, and 583 * when we set current limit to 400/600/800ma, the card will draw its 584 * maximum 300ma from the host. 585 * 586 * The above is incorrect: if we try to set a current limit that is 587 * not supported by the card, the card can rightfully error out the 588 * attempt, and remain at the default current limit. This results 589 * in a 300mA card being limited to 200mA even though the host 590 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 591 * an iMX6 host. --rmk 592 */ 593 if (max_current >= 800 && 594 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 595 current_limit = SD_SET_CURRENT_LIMIT_800; 596 else if (max_current >= 600 && 597 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 598 current_limit = SD_SET_CURRENT_LIMIT_600; 599 else if (max_current >= 400 && 600 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 601 current_limit = SD_SET_CURRENT_LIMIT_400; 602 else if (max_current >= 200 && 603 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 604 current_limit = SD_SET_CURRENT_LIMIT_200; 605 606 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 607 err = mmc_sd_switch(card, 1, 3, current_limit, status); 608 if (err) 609 return err; 610 611 if (((status[15] >> 4) & 0x0F) != current_limit) 612 pr_warn("%s: Problem setting current limit!\n", 613 mmc_hostname(card->host)); 614 615 } 616 617 return 0; 618 } 619 620 /* 621 * UHS-I specific initialization procedure 622 */ 623 static int mmc_sd_init_uhs_card(struct mmc_card *card) 624 { 625 int err; 626 u8 *status; 627 628 if (!(card->csd.cmdclass & CCC_SWITCH)) 629 return 0; 630 631 status = kmalloc(64, GFP_KERNEL); 632 if (!status) 633 return -ENOMEM; 634 635 /* Set 4-bit bus width */ 636 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 637 if (err) 638 goto out; 639 640 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 641 642 /* 643 * Select the bus speed mode depending on host 644 * and card capability. 645 */ 646 sd_update_bus_speed_mode(card); 647 648 /* Set the driver strength for the card */ 649 err = sd_select_driver_type(card, status); 650 if (err) 651 goto out; 652 653 /* Set current limit for the card */ 654 err = sd_set_current_limit(card, status); 655 if (err) 656 goto out; 657 658 /* Set bus speed mode of the card */ 659 err = sd_set_bus_speed_mode(card, status); 660 if (err) 661 goto out; 662 663 /* 664 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 665 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 666 */ 667 if (!mmc_host_is_spi(card->host) && 668 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 669 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 670 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 671 err = mmc_execute_tuning(card); 672 673 /* 674 * As SD Specifications Part1 Physical Layer Specification 675 * Version 3.01 says, CMD19 tuning is available for unlocked 676 * cards in transfer state of 1.8V signaling mode. The small 677 * difference between v3.00 and 3.01 spec means that CMD19 678 * tuning is also available for DDR50 mode. 679 */ 680 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 681 pr_warn("%s: ddr50 tuning failed\n", 682 mmc_hostname(card->host)); 683 err = 0; 684 } 685 } 686 687 out: 688 kfree(status); 689 690 return err; 691 } 692 693 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 694 card->raw_cid[2], card->raw_cid[3]); 695 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 696 card->raw_csd[2], card->raw_csd[3]); 697 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 698 MMC_DEV_ATTR(ssr, 699 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 700 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 701 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 702 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 703 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 704 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 705 card->raw_ssr[15]); 706 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 707 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 708 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 709 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 710 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 711 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 712 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 713 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 714 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 715 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 716 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 717 718 719 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, 720 char *buf) 721 { 722 struct mmc_card *card = mmc_dev_to_card(dev); 723 struct mmc_host *host = card->host; 724 725 if (card->csd.dsr_imp && host->dsr_req) 726 return sysfs_emit(buf, "0x%x\n", host->dsr); 727 /* return default DSR value */ 728 return sysfs_emit(buf, "0x%x\n", 0x404); 729 } 730 731 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 732 733 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 734 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 735 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 736 737 #define sdio_info_attr(num) \ 738 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 739 { \ 740 struct mmc_card *card = mmc_dev_to_card(dev); \ 741 \ 742 if (num > card->num_info) \ 743 return -ENODATA; \ 744 if (!card->info[num - 1][0]) \ 745 return 0; \ 746 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ 747 } \ 748 static DEVICE_ATTR_RO(info##num) 749 750 sdio_info_attr(1); 751 sdio_info_attr(2); 752 sdio_info_attr(3); 753 sdio_info_attr(4); 754 755 static struct attribute *sd_std_attrs[] = { 756 &dev_attr_vendor.attr, 757 &dev_attr_device.attr, 758 &dev_attr_revision.attr, 759 &dev_attr_info1.attr, 760 &dev_attr_info2.attr, 761 &dev_attr_info3.attr, 762 &dev_attr_info4.attr, 763 &dev_attr_cid.attr, 764 &dev_attr_csd.attr, 765 &dev_attr_scr.attr, 766 &dev_attr_ssr.attr, 767 &dev_attr_date.attr, 768 &dev_attr_erase_size.attr, 769 &dev_attr_preferred_erase_size.attr, 770 &dev_attr_fwrev.attr, 771 &dev_attr_hwrev.attr, 772 &dev_attr_manfid.attr, 773 &dev_attr_name.attr, 774 &dev_attr_oemid.attr, 775 &dev_attr_serial.attr, 776 &dev_attr_ocr.attr, 777 &dev_attr_rca.attr, 778 &dev_attr_dsr.attr, 779 NULL, 780 }; 781 782 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 783 int index) 784 { 785 struct device *dev = kobj_to_dev(kobj); 786 struct mmc_card *card = mmc_dev_to_card(dev); 787 788 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 789 if ((attr == &dev_attr_vendor.attr || 790 attr == &dev_attr_device.attr || 791 attr == &dev_attr_revision.attr || 792 attr == &dev_attr_info1.attr || 793 attr == &dev_attr_info2.attr || 794 attr == &dev_attr_info3.attr || 795 attr == &dev_attr_info4.attr 796 ) &&!mmc_card_sd_combo(card)) 797 return 0; 798 799 return attr->mode; 800 } 801 802 static const struct attribute_group sd_std_group = { 803 .attrs = sd_std_attrs, 804 .is_visible = sd_std_is_visible, 805 }; 806 __ATTRIBUTE_GROUPS(sd_std); 807 808 struct device_type sd_type = { 809 .groups = sd_std_groups, 810 }; 811 812 /* 813 * Fetch CID from card. 814 */ 815 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 816 { 817 int err; 818 u32 max_current; 819 int retries = 10; 820 u32 pocr = ocr; 821 822 try_again: 823 if (!retries) { 824 ocr &= ~SD_OCR_S18R; 825 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 826 } 827 828 /* 829 * Since we're changing the OCR value, we seem to 830 * need to tell some cards to go back to the idle 831 * state. We wait 1ms to give cards time to 832 * respond. 833 */ 834 mmc_go_idle(host); 835 836 /* 837 * If SD_SEND_IF_COND indicates an SD 2.0 838 * compliant card and we should set bit 30 839 * of the ocr to indicate that we can handle 840 * block-addressed SDHC cards. 841 */ 842 err = mmc_send_if_cond(host, ocr); 843 if (!err) 844 ocr |= SD_OCR_CCS; 845 846 /* 847 * If the host supports one of UHS-I modes, request the card 848 * to switch to 1.8V signaling level. If the card has failed 849 * repeatedly to switch however, skip this. 850 */ 851 if (retries && mmc_host_uhs(host)) 852 ocr |= SD_OCR_S18R; 853 854 /* 855 * If the host can supply more than 150mA at current voltage, 856 * XPC should be set to 1. 857 */ 858 max_current = sd_get_host_max_current(host); 859 if (max_current > 150) 860 ocr |= SD_OCR_XPC; 861 862 err = mmc_send_app_op_cond(host, ocr, rocr); 863 if (err) 864 return err; 865 866 /* 867 * In case the S18A bit is set in the response, let's start the signal 868 * voltage switch procedure. SPI mode doesn't support CMD11. 869 * Note that, according to the spec, the S18A bit is not valid unless 870 * the CCS bit is set as well. We deliberately deviate from the spec in 871 * regards to this, which allows UHS-I to be supported for SDSC cards. 872 */ 873 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) && 874 rocr && (*rocr & SD_ROCR_S18A)) { 875 err = mmc_set_uhs_voltage(host, pocr); 876 if (err == -EAGAIN) { 877 retries--; 878 goto try_again; 879 } else if (err) { 880 retries = 0; 881 goto try_again; 882 } 883 } 884 885 err = mmc_send_cid(host, cid); 886 return err; 887 } 888 889 int mmc_sd_get_csd(struct mmc_card *card) 890 { 891 int err; 892 893 /* 894 * Fetch CSD from card. 895 */ 896 err = mmc_send_csd(card, card->raw_csd); 897 if (err) 898 return err; 899 900 err = mmc_decode_csd(card); 901 if (err) 902 return err; 903 904 return 0; 905 } 906 907 static int mmc_sd_get_ro(struct mmc_host *host) 908 { 909 int ro; 910 911 /* 912 * Some systems don't feature a write-protect pin and don't need one. 913 * E.g. because they only have micro-SD card slot. For those systems 914 * assume that the SD card is always read-write. 915 */ 916 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 917 return 0; 918 919 if (!host->ops->get_ro) 920 return -1; 921 922 ro = host->ops->get_ro(host); 923 924 return ro; 925 } 926 927 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 928 bool reinit) 929 { 930 int err; 931 932 if (!reinit) { 933 /* 934 * Fetch SCR from card. 935 */ 936 err = mmc_app_send_scr(card); 937 if (err) 938 return err; 939 940 err = mmc_decode_scr(card); 941 if (err) 942 return err; 943 944 /* 945 * Fetch and process SD Status register. 946 */ 947 err = mmc_read_ssr(card); 948 if (err) 949 return err; 950 951 /* Erase init depends on CSD and SSR */ 952 mmc_init_erase(card); 953 } 954 955 /* 956 * Fetch switch information from card. Note, sd3_bus_mode can change if 957 * voltage switch outcome changes, so do this always. 958 */ 959 err = mmc_read_switch(card); 960 if (err) 961 return err; 962 963 /* 964 * For SPI, enable CRC as appropriate. 965 * This CRC enable is located AFTER the reading of the 966 * card registers because some SDHC cards are not able 967 * to provide valid CRCs for non-512-byte blocks. 968 */ 969 if (mmc_host_is_spi(host)) { 970 err = mmc_spi_set_crc(host, use_spi_crc); 971 if (err) 972 return err; 973 } 974 975 /* 976 * Check if read-only switch is active. 977 */ 978 if (!reinit) { 979 int ro = mmc_sd_get_ro(host); 980 981 if (ro < 0) { 982 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 983 mmc_hostname(host)); 984 } else if (ro > 0) { 985 mmc_card_set_readonly(card); 986 } 987 } 988 989 return 0; 990 } 991 992 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 993 { 994 unsigned max_dtr = (unsigned int)-1; 995 996 if (mmc_card_hs(card)) { 997 if (max_dtr > card->sw_caps.hs_max_dtr) 998 max_dtr = card->sw_caps.hs_max_dtr; 999 } else if (max_dtr > card->csd.max_dtr) { 1000 max_dtr = card->csd.max_dtr; 1001 } 1002 1003 return max_dtr; 1004 } 1005 1006 static bool mmc_sd_card_using_v18(struct mmc_card *card) 1007 { 1008 /* 1009 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1010 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1011 * they can be used to determine if the card has already switched to 1012 * 1.8V signaling. 1013 */ 1014 return card->sw_caps.sd3_bus_mode & 1015 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1016 } 1017 1018 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1019 u8 reg_data) 1020 { 1021 struct mmc_host *host = card->host; 1022 struct mmc_request mrq = {}; 1023 struct mmc_command cmd = {}; 1024 struct mmc_data data = {}; 1025 struct scatterlist sg; 1026 u8 *reg_buf; 1027 1028 reg_buf = kzalloc(512, GFP_KERNEL); 1029 if (!reg_buf) 1030 return -ENOMEM; 1031 1032 mrq.cmd = &cmd; 1033 mrq.data = &data; 1034 1035 /* 1036 * Arguments of CMD49: 1037 * [31:31] MIO (0 = memory). 1038 * [30:27] FNO (function number). 1039 * [26:26] MW - mask write mode (0 = disable). 1040 * [25:18] page number. 1041 * [17:9] offset address. 1042 * [8:0] length (0 = 1 byte). 1043 */ 1044 cmd.arg = fno << 27 | page << 18 | offset << 9; 1045 1046 /* The first byte in the buffer is the data to be written. */ 1047 reg_buf[0] = reg_data; 1048 1049 data.flags = MMC_DATA_WRITE; 1050 data.blksz = 512; 1051 data.blocks = 1; 1052 data.sg = &sg; 1053 data.sg_len = 1; 1054 sg_init_one(&sg, reg_buf, 512); 1055 1056 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1057 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1058 1059 mmc_set_data_timeout(&data, card); 1060 mmc_wait_for_req(host, &mrq); 1061 1062 kfree(reg_buf); 1063 1064 /* 1065 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1066 * after the CMD49. Although, let's leave this to be managed by the 1067 * caller. 1068 */ 1069 1070 if (cmd.error) 1071 return cmd.error; 1072 if (data.error) 1073 return data.error; 1074 1075 return 0; 1076 } 1077 1078 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1079 u16 offset, u16 len, u8 *reg_buf) 1080 { 1081 u32 cmd_args; 1082 1083 /* 1084 * Command arguments of CMD48: 1085 * [31:31] MIO (0 = memory). 1086 * [30:27] FNO (function number). 1087 * [26:26] reserved (0). 1088 * [25:18] page number. 1089 * [17:9] offset address. 1090 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1091 */ 1092 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1093 1094 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1095 cmd_args, reg_buf, 512); 1096 } 1097 1098 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1099 u16 offset) 1100 { 1101 int err; 1102 u8 *reg_buf; 1103 1104 reg_buf = kzalloc(512, GFP_KERNEL); 1105 if (!reg_buf) 1106 return -ENOMEM; 1107 1108 /* Read the extension register for power management function. */ 1109 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1110 if (err) { 1111 pr_warn("%s: error %d reading PM func of ext reg\n", 1112 mmc_hostname(card->host), err); 1113 goto out; 1114 } 1115 1116 /* PM revision consists of 4 bits. */ 1117 card->ext_power.rev = reg_buf[0] & 0xf; 1118 1119 /* Power Off Notification support at bit 4. */ 1120 if (reg_buf[1] & BIT(4)) 1121 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1122 1123 /* Power Sustenance support at bit 5. */ 1124 if (reg_buf[1] & BIT(5)) 1125 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1126 1127 /* Power Down Mode support at bit 6. */ 1128 if (reg_buf[1] & BIT(6)) 1129 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1130 1131 card->ext_power.fno = fno; 1132 card->ext_power.page = page; 1133 card->ext_power.offset = offset; 1134 1135 out: 1136 kfree(reg_buf); 1137 return err; 1138 } 1139 1140 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1141 u16 offset) 1142 { 1143 int err; 1144 u8 *reg_buf; 1145 1146 reg_buf = kzalloc(512, GFP_KERNEL); 1147 if (!reg_buf) 1148 return -ENOMEM; 1149 1150 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1151 if (err) { 1152 pr_warn("%s: error %d reading PERF func of ext reg\n", 1153 mmc_hostname(card->host), err); 1154 goto out; 1155 } 1156 1157 /* PERF revision. */ 1158 card->ext_perf.rev = reg_buf[0]; 1159 1160 /* FX_EVENT support at bit 0. */ 1161 if (reg_buf[1] & BIT(0)) 1162 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1163 1164 /* Card initiated self-maintenance support at bit 0. */ 1165 if (reg_buf[2] & BIT(0)) 1166 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1167 1168 /* Host initiated self-maintenance support at bit 1. */ 1169 if (reg_buf[2] & BIT(1)) 1170 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1171 1172 /* Cache support at bit 0. */ 1173 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card)) 1174 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1175 1176 /* Command queue support indicated via queue depth bits (0 to 4). */ 1177 if (reg_buf[6] & 0x1f) 1178 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1179 1180 card->ext_perf.fno = fno; 1181 card->ext_perf.page = page; 1182 card->ext_perf.offset = offset; 1183 1184 out: 1185 kfree(reg_buf); 1186 return err; 1187 } 1188 1189 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1190 u16 *next_ext_addr) 1191 { 1192 u8 num_regs, fno, page; 1193 u16 sfc, offset, ext = *next_ext_addr; 1194 u32 reg_addr; 1195 1196 /* 1197 * Parse only one register set per extension, as that is sufficient to 1198 * support the standard functions. This means another 48 bytes in the 1199 * buffer must be available. 1200 */ 1201 if (ext + 48 > 512) 1202 return -EFAULT; 1203 1204 /* Standard Function Code */ 1205 memcpy(&sfc, &gen_info_buf[ext], 2); 1206 1207 /* Address to the next extension. */ 1208 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1209 1210 /* Number of registers for this extension. */ 1211 num_regs = gen_info_buf[ext + 42]; 1212 1213 /* We support only one register per extension. */ 1214 if (num_regs != 1) 1215 return 0; 1216 1217 /* Extension register address. */ 1218 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1219 1220 /* 9 bits (0 to 8) contains the offset address. */ 1221 offset = reg_addr & 0x1ff; 1222 1223 /* 8 bits (9 to 16) contains the page number. */ 1224 page = reg_addr >> 9 & 0xff ; 1225 1226 /* 4 bits (18 to 21) contains the function number. */ 1227 fno = reg_addr >> 18 & 0xf; 1228 1229 /* Standard Function Code for power management. */ 1230 if (sfc == 0x1) 1231 return sd_parse_ext_reg_power(card, fno, page, offset); 1232 1233 /* Standard Function Code for performance enhancement. */ 1234 if (sfc == 0x2) 1235 return sd_parse_ext_reg_perf(card, fno, page, offset); 1236 1237 return 0; 1238 } 1239 1240 static int sd_read_ext_regs(struct mmc_card *card) 1241 { 1242 int err, i; 1243 u8 num_ext, *gen_info_buf; 1244 u16 rev, len, next_ext_addr; 1245 1246 if (mmc_host_is_spi(card->host)) 1247 return 0; 1248 1249 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1250 return 0; 1251 1252 gen_info_buf = kzalloc(512, GFP_KERNEL); 1253 if (!gen_info_buf) 1254 return -ENOMEM; 1255 1256 /* 1257 * Read 512 bytes of general info, which is found at function number 0, 1258 * at page 0 and with no offset. 1259 */ 1260 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1261 if (err) { 1262 pr_err("%s: error %d reading general info of SD ext reg\n", 1263 mmc_hostname(card->host), err); 1264 goto out; 1265 } 1266 1267 /* General info structure revision. */ 1268 memcpy(&rev, &gen_info_buf[0], 2); 1269 1270 /* Length of general info in bytes. */ 1271 memcpy(&len, &gen_info_buf[2], 2); 1272 1273 /* Number of extensions to be find. */ 1274 num_ext = gen_info_buf[4]; 1275 1276 /* 1277 * We only support revision 0 and limit it to 512 bytes for simplicity. 1278 * No matter what, let's return zero to allow us to continue using the 1279 * card, even if we can't support the features from the SD function 1280 * extensions registers. 1281 */ 1282 if (rev != 0 || len > 512) { 1283 pr_warn("%s: non-supported SD ext reg layout\n", 1284 mmc_hostname(card->host)); 1285 goto out; 1286 } 1287 1288 /* 1289 * Parse the extension registers. The first extension should start 1290 * immediately after the general info header (16 bytes). 1291 */ 1292 next_ext_addr = 16; 1293 for (i = 0; i < num_ext; i++) { 1294 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1295 if (err) { 1296 pr_err("%s: error %d parsing SD ext reg\n", 1297 mmc_hostname(card->host), err); 1298 goto out; 1299 } 1300 } 1301 1302 out: 1303 kfree(gen_info_buf); 1304 return err; 1305 } 1306 1307 static bool sd_cache_enabled(struct mmc_host *host) 1308 { 1309 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1310 } 1311 1312 static int sd_flush_cache(struct mmc_host *host) 1313 { 1314 struct mmc_card *card = host->card; 1315 u8 *reg_buf, fno, page; 1316 u16 offset; 1317 int err; 1318 1319 if (!sd_cache_enabled(host)) 1320 return 0; 1321 1322 reg_buf = kzalloc(512, GFP_KERNEL); 1323 if (!reg_buf) 1324 return -ENOMEM; 1325 1326 /* 1327 * Set Flush Cache at bit 0 in the performance enhancement register at 1328 * 261 bytes offset. 1329 */ 1330 fno = card->ext_perf.fno; 1331 page = card->ext_perf.page; 1332 offset = card->ext_perf.offset + 261; 1333 1334 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1335 if (err) { 1336 pr_warn("%s: error %d writing Cache Flush bit\n", 1337 mmc_hostname(host), err); 1338 goto out; 1339 } 1340 1341 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1342 MMC_BUSY_EXTR_SINGLE); 1343 if (err) 1344 goto out; 1345 1346 /* 1347 * Read the Flush Cache bit. The card shall reset it, to confirm that 1348 * it's has completed the flushing of the cache. 1349 */ 1350 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1351 if (err) { 1352 pr_warn("%s: error %d reading Cache Flush bit\n", 1353 mmc_hostname(host), err); 1354 goto out; 1355 } 1356 1357 if (reg_buf[0] & BIT(0)) 1358 err = -ETIMEDOUT; 1359 out: 1360 kfree(reg_buf); 1361 return err; 1362 } 1363 1364 static int sd_enable_cache(struct mmc_card *card) 1365 { 1366 u8 *reg_buf; 1367 int err; 1368 1369 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1370 1371 reg_buf = kzalloc(512, GFP_KERNEL); 1372 if (!reg_buf) 1373 return -ENOMEM; 1374 1375 /* 1376 * Set Cache Enable at bit 0 in the performance enhancement register at 1377 * 260 bytes offset. 1378 */ 1379 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1380 card->ext_perf.offset + 260, BIT(0)); 1381 if (err) { 1382 pr_warn("%s: error %d writing Cache Enable bit\n", 1383 mmc_hostname(card->host), err); 1384 goto out; 1385 } 1386 1387 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1388 MMC_BUSY_EXTR_SINGLE); 1389 if (!err) 1390 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1391 1392 out: 1393 kfree(reg_buf); 1394 return err; 1395 } 1396 1397 /* 1398 * Handle the detection and initialisation of a card. 1399 * 1400 * In the case of a resume, "oldcard" will contain the card 1401 * we're trying to reinitialise. 1402 */ 1403 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1404 struct mmc_card *oldcard) 1405 { 1406 struct mmc_card *card; 1407 int err; 1408 u32 cid[4]; 1409 u32 rocr = 0; 1410 bool v18_fixup_failed = false; 1411 1412 WARN_ON(!host->claimed); 1413 retry: 1414 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1415 if (err) 1416 return err; 1417 1418 if (oldcard) { 1419 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1420 pr_debug("%s: Perhaps the card was replaced\n", 1421 mmc_hostname(host)); 1422 return -ENOENT; 1423 } 1424 1425 card = oldcard; 1426 } else { 1427 /* 1428 * Allocate card structure. 1429 */ 1430 card = mmc_alloc_card(host, &sd_type); 1431 if (IS_ERR(card)) 1432 return PTR_ERR(card); 1433 1434 card->ocr = ocr; 1435 card->type = MMC_TYPE_SD; 1436 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1437 } 1438 1439 /* 1440 * Call the optional HC's init_card function to handle quirks. 1441 */ 1442 if (host->ops->init_card) 1443 host->ops->init_card(host, card); 1444 1445 /* 1446 * For native busses: get card RCA and quit open drain mode. 1447 */ 1448 if (!mmc_host_is_spi(host)) { 1449 err = mmc_send_relative_addr(host, &card->rca); 1450 if (err) 1451 goto free_card; 1452 } 1453 1454 if (!oldcard) { 1455 err = mmc_sd_get_csd(card); 1456 if (err) 1457 goto free_card; 1458 1459 mmc_decode_cid(card); 1460 } 1461 1462 /* 1463 * handling only for cards supporting DSR and hosts requesting 1464 * DSR configuration 1465 */ 1466 if (card->csd.dsr_imp && host->dsr_req) 1467 mmc_set_dsr(host); 1468 1469 /* 1470 * Select card, as all following commands rely on that. 1471 */ 1472 if (!mmc_host_is_spi(host)) { 1473 err = mmc_select_card(card); 1474 if (err) 1475 goto free_card; 1476 } 1477 1478 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1479 if (err) 1480 goto free_card; 1481 1482 /* 1483 * If the card has not been power cycled, it may still be using 1.8V 1484 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1485 * transfer mode. 1486 */ 1487 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1488 mmc_sd_card_using_v18(card) && 1489 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1490 if (mmc_host_set_uhs_voltage(host) || 1491 mmc_sd_init_uhs_card(card)) { 1492 v18_fixup_failed = true; 1493 mmc_power_cycle(host, ocr); 1494 if (!oldcard) 1495 mmc_remove_card(card); 1496 goto retry; 1497 } 1498 goto cont; 1499 } 1500 1501 /* Initialization sequence for UHS-I cards */ 1502 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1503 err = mmc_sd_init_uhs_card(card); 1504 if (err) 1505 goto free_card; 1506 } else { 1507 /* 1508 * Attempt to change to high-speed (if supported) 1509 */ 1510 err = mmc_sd_switch_hs(card); 1511 if (err > 0) 1512 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1513 else if (err) 1514 goto free_card; 1515 1516 /* 1517 * Set bus speed. 1518 */ 1519 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1520 1521 /* 1522 * Switch to wider bus (if supported). 1523 */ 1524 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1525 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1526 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1527 if (err) 1528 goto free_card; 1529 1530 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1531 } 1532 } 1533 cont: 1534 if (!oldcard) { 1535 /* Read/parse the extension registers. */ 1536 err = sd_read_ext_regs(card); 1537 if (err) 1538 goto free_card; 1539 } 1540 1541 /* Enable internal SD cache if supported. */ 1542 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1543 err = sd_enable_cache(card); 1544 if (err) 1545 goto free_card; 1546 } 1547 1548 if (host->cqe_ops && !host->cqe_enabled) { 1549 err = host->cqe_ops->cqe_enable(host, card); 1550 if (!err) { 1551 host->cqe_enabled = true; 1552 host->hsq_enabled = true; 1553 pr_info("%s: Host Software Queue enabled\n", 1554 mmc_hostname(host)); 1555 } 1556 } 1557 1558 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1559 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1560 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1561 mmc_hostname(host)); 1562 err = -EINVAL; 1563 goto free_card; 1564 } 1565 1566 host->card = card; 1567 return 0; 1568 1569 free_card: 1570 if (!oldcard) 1571 mmc_remove_card(card); 1572 1573 return err; 1574 } 1575 1576 /* 1577 * Host is being removed. Free up the current card. 1578 */ 1579 static void mmc_sd_remove(struct mmc_host *host) 1580 { 1581 mmc_remove_card(host->card); 1582 host->card = NULL; 1583 } 1584 1585 /* 1586 * Card detection - card is alive. 1587 */ 1588 static int mmc_sd_alive(struct mmc_host *host) 1589 { 1590 return mmc_send_status(host->card, NULL); 1591 } 1592 1593 /* 1594 * Card detection callback from host. 1595 */ 1596 static void mmc_sd_detect(struct mmc_host *host) 1597 { 1598 int err; 1599 1600 mmc_get_card(host->card, NULL); 1601 1602 /* 1603 * Just check if our card has been removed. 1604 */ 1605 err = _mmc_detect_card_removed(host); 1606 1607 mmc_put_card(host->card, NULL); 1608 1609 if (err) { 1610 mmc_sd_remove(host); 1611 1612 mmc_claim_host(host); 1613 mmc_detach_bus(host); 1614 mmc_power_off(host); 1615 mmc_release_host(host); 1616 } 1617 } 1618 1619 static int sd_can_poweroff_notify(struct mmc_card *card) 1620 { 1621 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1622 } 1623 1624 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1625 { 1626 struct sd_busy_data *data = cb_data; 1627 struct mmc_card *card = data->card; 1628 int err; 1629 1630 /* 1631 * Read the status register for the power management function. It's at 1632 * one byte offset and is one byte long. The Power Off Notification 1633 * Ready is bit 0. 1634 */ 1635 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1636 card->ext_power.offset + 1, 1, data->reg_buf); 1637 if (err) { 1638 pr_warn("%s: error %d reading status reg of PM func\n", 1639 mmc_hostname(card->host), err); 1640 return err; 1641 } 1642 1643 *busy = !(data->reg_buf[0] & BIT(0)); 1644 return 0; 1645 } 1646 1647 static int sd_poweroff_notify(struct mmc_card *card) 1648 { 1649 struct sd_busy_data cb_data; 1650 u8 *reg_buf; 1651 int err; 1652 1653 reg_buf = kzalloc(512, GFP_KERNEL); 1654 if (!reg_buf) 1655 return -ENOMEM; 1656 1657 /* 1658 * Set the Power Off Notification bit in the power management settings 1659 * register at 2 bytes offset. 1660 */ 1661 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1662 card->ext_power.offset + 2, BIT(0)); 1663 if (err) { 1664 pr_warn("%s: error %d writing Power Off Notify bit\n", 1665 mmc_hostname(card->host), err); 1666 goto out; 1667 } 1668 1669 /* Find out when the command is completed. */ 1670 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1671 MMC_BUSY_EXTR_SINGLE); 1672 if (err) 1673 goto out; 1674 1675 cb_data.card = card; 1676 cb_data.reg_buf = reg_buf; 1677 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1678 &sd_busy_poweroff_notify_cb, &cb_data); 1679 1680 out: 1681 kfree(reg_buf); 1682 return err; 1683 } 1684 1685 static int _mmc_sd_suspend(struct mmc_host *host) 1686 { 1687 struct mmc_card *card = host->card; 1688 int err = 0; 1689 1690 mmc_claim_host(host); 1691 1692 if (mmc_card_suspended(card)) 1693 goto out; 1694 1695 if (sd_can_poweroff_notify(card)) 1696 err = sd_poweroff_notify(card); 1697 else if (!mmc_host_is_spi(host)) 1698 err = mmc_deselect_cards(host); 1699 1700 if (!err) { 1701 mmc_power_off(host); 1702 mmc_card_set_suspended(card); 1703 } 1704 1705 out: 1706 mmc_release_host(host); 1707 return err; 1708 } 1709 1710 /* 1711 * Callback for suspend 1712 */ 1713 static int mmc_sd_suspend(struct mmc_host *host) 1714 { 1715 int err; 1716 1717 err = _mmc_sd_suspend(host); 1718 if (!err) { 1719 pm_runtime_disable(&host->card->dev); 1720 pm_runtime_set_suspended(&host->card->dev); 1721 } 1722 1723 return err; 1724 } 1725 1726 /* 1727 * This function tries to determine if the same card is still present 1728 * and, if so, restore all state to it. 1729 */ 1730 static int _mmc_sd_resume(struct mmc_host *host) 1731 { 1732 int err = 0; 1733 1734 mmc_claim_host(host); 1735 1736 if (!mmc_card_suspended(host->card)) 1737 goto out; 1738 1739 mmc_power_up(host, host->card->ocr); 1740 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1741 mmc_card_clr_suspended(host->card); 1742 1743 out: 1744 mmc_release_host(host); 1745 return err; 1746 } 1747 1748 /* 1749 * Callback for resume 1750 */ 1751 static int mmc_sd_resume(struct mmc_host *host) 1752 { 1753 pm_runtime_enable(&host->card->dev); 1754 return 0; 1755 } 1756 1757 /* 1758 * Callback for runtime_suspend. 1759 */ 1760 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1761 { 1762 int err; 1763 1764 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1765 return 0; 1766 1767 err = _mmc_sd_suspend(host); 1768 if (err) 1769 pr_err("%s: error %d doing aggressive suspend\n", 1770 mmc_hostname(host), err); 1771 1772 return err; 1773 } 1774 1775 /* 1776 * Callback for runtime_resume. 1777 */ 1778 static int mmc_sd_runtime_resume(struct mmc_host *host) 1779 { 1780 int err; 1781 1782 err = _mmc_sd_resume(host); 1783 if (err && err != -ENOMEDIUM) 1784 pr_err("%s: error %d doing runtime resume\n", 1785 mmc_hostname(host), err); 1786 1787 return 0; 1788 } 1789 1790 static int mmc_sd_hw_reset(struct mmc_host *host) 1791 { 1792 mmc_power_cycle(host, host->card->ocr); 1793 return mmc_sd_init_card(host, host->card->ocr, host->card); 1794 } 1795 1796 static const struct mmc_bus_ops mmc_sd_ops = { 1797 .remove = mmc_sd_remove, 1798 .detect = mmc_sd_detect, 1799 .runtime_suspend = mmc_sd_runtime_suspend, 1800 .runtime_resume = mmc_sd_runtime_resume, 1801 .suspend = mmc_sd_suspend, 1802 .resume = mmc_sd_resume, 1803 .alive = mmc_sd_alive, 1804 .shutdown = mmc_sd_suspend, 1805 .hw_reset = mmc_sd_hw_reset, 1806 .cache_enabled = sd_cache_enabled, 1807 .flush_cache = sd_flush_cache, 1808 }; 1809 1810 /* 1811 * Starting point for SD card init. 1812 */ 1813 int mmc_attach_sd(struct mmc_host *host) 1814 { 1815 int err; 1816 u32 ocr, rocr; 1817 1818 WARN_ON(!host->claimed); 1819 1820 err = mmc_send_app_op_cond(host, 0, &ocr); 1821 if (err) 1822 return err; 1823 1824 mmc_attach_bus(host, &mmc_sd_ops); 1825 if (host->ocr_avail_sd) 1826 host->ocr_avail = host->ocr_avail_sd; 1827 1828 /* 1829 * We need to get OCR a different way for SPI. 1830 */ 1831 if (mmc_host_is_spi(host)) { 1832 mmc_go_idle(host); 1833 1834 err = mmc_spi_read_ocr(host, 0, &ocr); 1835 if (err) 1836 goto err; 1837 } 1838 1839 /* 1840 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1841 * these bits as being in-valid and especially also bit7. 1842 */ 1843 ocr &= ~0x7FFF; 1844 1845 rocr = mmc_select_voltage(host, ocr); 1846 1847 /* 1848 * Can we support the voltage(s) of the card(s)? 1849 */ 1850 if (!rocr) { 1851 err = -EINVAL; 1852 goto err; 1853 } 1854 1855 /* 1856 * Detect and init the card. 1857 */ 1858 err = mmc_sd_init_card(host, rocr, NULL); 1859 if (err) 1860 goto err; 1861 1862 mmc_release_host(host); 1863 err = mmc_add_card(host->card); 1864 if (err) 1865 goto remove_card; 1866 1867 mmc_claim_host(host); 1868 return 0; 1869 1870 remove_card: 1871 mmc_remove_card(host->card); 1872 host->card = NULL; 1873 mmc_claim_host(host); 1874 err: 1875 mmc_detach_bus(host); 1876 1877 pr_err("%s: error %d whilst initialising SD card\n", 1878 mmc_hostname(host), err); 1879 1880 return err; 1881 } 1882