1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/scatterlist.h> 17 #include <linux/sysfs.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "card.h" 26 #include "host.h" 27 #include "bus.h" 28 #include "mmc_ops.h" 29 #include "quirks.h" 30 #include "sd.h" 31 #include "sd_ops.h" 32 33 static const unsigned int tran_exp[] = { 34 10000, 100000, 1000000, 10000000, 35 0, 0, 0, 0 36 }; 37 38 static const unsigned char tran_mant[] = { 39 0, 10, 12, 13, 15, 20, 25, 30, 40 35, 40, 45, 50, 55, 60, 70, 80, 41 }; 42 43 static const unsigned int taac_exp[] = { 44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 45 }; 46 47 static const unsigned int taac_mant[] = { 48 0, 10, 12, 13, 15, 20, 25, 30, 49 35, 40, 45, 50, 55, 60, 70, 80, 50 }; 51 52 static const unsigned int sd_au_size[] = { 53 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 54 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 55 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 56 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 57 }; 58 59 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 60 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 61 62 struct sd_busy_data { 63 struct mmc_card *card; 64 u8 *reg_buf; 65 }; 66 67 /* 68 * Given the decoded CSD structure, decode the raw CID to our CID structure. 69 */ 70 void mmc_decode_cid(struct mmc_card *card) 71 { 72 u32 *resp = card->raw_cid; 73 74 /* 75 * Add the raw card ID (cid) data to the entropy pool. It doesn't 76 * matter that not all of it is unique, it's just bonus entropy. 77 */ 78 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 79 80 /* 81 * SD doesn't currently have a version field so we will 82 * have to assume we can parse this. 83 */ 84 card->cid.manfid = unstuff_bits(resp, 120, 8); 85 card->cid.oemid = unstuff_bits(resp, 104, 16); 86 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); 87 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); 88 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); 89 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); 90 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); 91 card->cid.hwrev = unstuff_bits(resp, 60, 4); 92 card->cid.fwrev = unstuff_bits(resp, 56, 4); 93 card->cid.serial = unstuff_bits(resp, 24, 32); 94 card->cid.year = unstuff_bits(resp, 12, 8); 95 card->cid.month = unstuff_bits(resp, 8, 4); 96 97 card->cid.year += 2000; /* SD cards year offset */ 98 } 99 100 /* 101 * Given a 128-bit response, decode to our card CSD structure. 102 */ 103 static int mmc_decode_csd(struct mmc_card *card, bool is_sduc) 104 { 105 struct mmc_csd *csd = &card->csd; 106 unsigned int e, m, csd_struct; 107 u32 *resp = card->raw_csd; 108 109 csd_struct = unstuff_bits(resp, 126, 2); 110 111 switch (csd_struct) { 112 case 0: 113 m = unstuff_bits(resp, 115, 4); 114 e = unstuff_bits(resp, 112, 3); 115 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 116 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100; 117 118 m = unstuff_bits(resp, 99, 4); 119 e = unstuff_bits(resp, 96, 3); 120 csd->max_dtr = tran_exp[e] * tran_mant[m]; 121 csd->cmdclass = unstuff_bits(resp, 84, 12); 122 123 e = unstuff_bits(resp, 47, 3); 124 m = unstuff_bits(resp, 62, 12); 125 csd->capacity = (1 + m) << (e + 2); 126 127 csd->read_blkbits = unstuff_bits(resp, 80, 4); 128 csd->read_partial = unstuff_bits(resp, 79, 1); 129 csd->write_misalign = unstuff_bits(resp, 78, 1); 130 csd->read_misalign = unstuff_bits(resp, 77, 1); 131 csd->dsr_imp = unstuff_bits(resp, 76, 1); 132 csd->r2w_factor = unstuff_bits(resp, 26, 3); 133 csd->write_blkbits = unstuff_bits(resp, 22, 4); 134 csd->write_partial = unstuff_bits(resp, 21, 1); 135 136 if (unstuff_bits(resp, 46, 1)) { 137 csd->erase_size = 1; 138 } else if (csd->write_blkbits >= 9) { 139 csd->erase_size = unstuff_bits(resp, 39, 7) + 1; 140 csd->erase_size <<= csd->write_blkbits - 9; 141 } 142 143 if (unstuff_bits(resp, 13, 1)) 144 mmc_card_set_readonly(card); 145 break; 146 case 1: 147 case 2: 148 /* 149 * This is a block-addressed SDHC, SDXC or SDUC card. 150 * Most interesting fields are unused and have fixed 151 * values. To avoid getting tripped by buggy cards, 152 * we assume those fixed values ourselves. 153 */ 154 mmc_card_set_blockaddr(card); 155 156 csd->taac_ns = 0; /* Unused */ 157 csd->taac_clks = 0; /* Unused */ 158 159 m = unstuff_bits(resp, 99, 4); 160 e = unstuff_bits(resp, 96, 3); 161 csd->max_dtr = tran_exp[e] * tran_mant[m]; 162 csd->cmdclass = unstuff_bits(resp, 84, 12); 163 164 if (csd_struct == 1) 165 m = unstuff_bits(resp, 48, 22); 166 else 167 m = unstuff_bits(resp, 48, 28); 168 csd->c_size = m; 169 170 if (csd->c_size >= 0x400000 && is_sduc) 171 mmc_card_set_ult_capacity(card); 172 else if (csd->c_size >= 0xFFFF) 173 mmc_card_set_ext_capacity(card); 174 175 csd->capacity = (1 + (typeof(sector_t))m) << 10; 176 177 csd->read_blkbits = 9; 178 csd->read_partial = 0; 179 csd->write_misalign = 0; 180 csd->read_misalign = 0; 181 csd->r2w_factor = 4; /* Unused */ 182 csd->write_blkbits = 9; 183 csd->write_partial = 0; 184 csd->erase_size = 1; 185 186 if (unstuff_bits(resp, 13, 1)) 187 mmc_card_set_readonly(card); 188 break; 189 default: 190 pr_err("%s: unrecognised CSD structure version %d\n", 191 mmc_hostname(card->host), csd_struct); 192 return -EINVAL; 193 } 194 195 card->erase_size = csd->erase_size; 196 197 return 0; 198 } 199 200 /* 201 * Given a 64-bit response, decode to our card SCR structure. 202 */ 203 int mmc_decode_scr(struct mmc_card *card) 204 { 205 struct sd_scr *scr = &card->scr; 206 unsigned int scr_struct; 207 u32 resp[4]; 208 209 resp[3] = card->raw_scr[1]; 210 resp[2] = card->raw_scr[0]; 211 212 scr_struct = unstuff_bits(resp, 60, 4); 213 if (scr_struct != 0) { 214 pr_err("%s: unrecognised SCR structure version %d\n", 215 mmc_hostname(card->host), scr_struct); 216 return -EINVAL; 217 } 218 219 scr->sda_vsn = unstuff_bits(resp, 56, 4); 220 scr->bus_widths = unstuff_bits(resp, 48, 4); 221 if (scr->sda_vsn == SCR_SPEC_VER_2) 222 /* Check if Physical Layer Spec v3.0 is supported */ 223 scr->sda_spec3 = unstuff_bits(resp, 47, 1); 224 225 if (scr->sda_spec3) { 226 scr->sda_spec4 = unstuff_bits(resp, 42, 1); 227 scr->sda_specx = unstuff_bits(resp, 38, 4); 228 } 229 230 if (unstuff_bits(resp, 55, 1)) 231 card->erased_byte = 0xFF; 232 else 233 card->erased_byte = 0x0; 234 235 if (scr->sda_spec4) 236 scr->cmds = unstuff_bits(resp, 32, 4); 237 else if (scr->sda_spec3) 238 scr->cmds = unstuff_bits(resp, 32, 2); 239 240 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 241 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 242 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 243 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 244 return -EINVAL; 245 } 246 247 return 0; 248 } 249 250 /* 251 * Fetch and process SD Status register. 252 */ 253 static int mmc_read_ssr(struct mmc_card *card) 254 { 255 unsigned int au, es, et, eo; 256 __be32 *raw_ssr; 257 u32 resp[4] = {}; 258 u8 discard_support; 259 int i; 260 261 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 262 pr_warn("%s: card lacks mandatory SD Status function\n", 263 mmc_hostname(card->host)); 264 return 0; 265 } 266 267 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 268 if (!raw_ssr) 269 return -ENOMEM; 270 271 if (mmc_app_sd_status(card, raw_ssr)) { 272 pr_warn("%s: problem reading SD Status register\n", 273 mmc_hostname(card->host)); 274 kfree(raw_ssr); 275 return 0; 276 } 277 278 for (i = 0; i < 16; i++) 279 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 280 281 kfree(raw_ssr); 282 283 /* 284 * unstuff_bits only works with four u32s so we have to offset the 285 * bitfield positions accordingly. 286 */ 287 au = unstuff_bits(card->raw_ssr, 428 - 384, 4); 288 if (au) { 289 if (au <= 9 || card->scr.sda_spec3) { 290 card->ssr.au = sd_au_size[au]; 291 es = unstuff_bits(card->raw_ssr, 408 - 384, 16); 292 et = unstuff_bits(card->raw_ssr, 402 - 384, 6); 293 if (es && et) { 294 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2); 295 card->ssr.erase_timeout = (et * 1000) / es; 296 card->ssr.erase_offset = eo * 1000; 297 } 298 } else { 299 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 300 mmc_hostname(card->host)); 301 } 302 } 303 304 /* 305 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 306 */ 307 resp[3] = card->raw_ssr[6]; 308 discard_support = unstuff_bits(resp, 313 - 288, 1); 309 card->erase_arg = (card->scr.sda_specx && discard_support) ? 310 SD_DISCARD_ARG : SD_ERASE_ARG; 311 312 return 0; 313 } 314 315 /* 316 * Fetches and decodes switch information 317 */ 318 static int mmc_read_switch(struct mmc_card *card) 319 { 320 int err; 321 u8 *status; 322 323 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 324 return 0; 325 326 if (!(card->csd.cmdclass & CCC_SWITCH)) { 327 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 328 mmc_hostname(card->host)); 329 return 0; 330 } 331 332 status = kmalloc(64, GFP_KERNEL); 333 if (!status) 334 return -ENOMEM; 335 336 /* 337 * Find out the card's support bits with a mode 0 operation. 338 * The argument does not matter, as the support bits do not 339 * change with the arguments. 340 */ 341 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status); 342 if (err) { 343 /* 344 * If the host or the card can't do the switch, 345 * fail more gracefully. 346 */ 347 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 348 goto out; 349 350 pr_warn("%s: problem reading Bus Speed modes\n", 351 mmc_hostname(card->host)); 352 err = 0; 353 354 goto out; 355 } 356 357 if (status[13] & SD_MODE_HIGH_SPEED) 358 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 359 360 if (card->scr.sda_spec3) { 361 card->sw_caps.sd3_bus_mode = status[13]; 362 /* Driver Strengths supported by the card */ 363 card->sw_caps.sd3_drv_type = status[9]; 364 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 365 } 366 367 out: 368 kfree(status); 369 370 return err; 371 } 372 373 /* 374 * Test if the card supports high-speed mode and, if so, switch to it. 375 */ 376 int mmc_sd_switch_hs(struct mmc_card *card) 377 { 378 int err; 379 u8 *status; 380 381 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 382 return 0; 383 384 if (!(card->csd.cmdclass & CCC_SWITCH)) 385 return 0; 386 387 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 388 return 0; 389 390 if (card->sw_caps.hs_max_dtr == 0) 391 return 0; 392 393 status = kmalloc(64, GFP_KERNEL); 394 if (!status) 395 return -ENOMEM; 396 397 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, 398 HIGH_SPEED_BUS_SPEED, status); 399 if (err) 400 goto out; 401 402 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 403 pr_warn("%s: Problem switching card into high-speed mode!\n", 404 mmc_hostname(card->host)); 405 err = 0; 406 } else { 407 err = 1; 408 } 409 410 out: 411 kfree(status); 412 413 return err; 414 } 415 416 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 417 { 418 int card_drv_type, drive_strength, drv_type; 419 int err; 420 421 card->drive_strength = 0; 422 423 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 424 425 drive_strength = mmc_select_drive_strength(card, 426 card->sw_caps.uhs_max_dtr, 427 card_drv_type, &drv_type); 428 429 if (drive_strength) { 430 err = mmc_sd_switch(card, SD_SWITCH_SET, 2, 431 drive_strength, status); 432 if (err) 433 return err; 434 if ((status[15] & 0xF) != drive_strength) { 435 pr_warn("%s: Problem setting drive strength!\n", 436 mmc_hostname(card->host)); 437 return 0; 438 } 439 card->drive_strength = drive_strength; 440 } 441 442 if (drv_type) 443 mmc_set_driver_type(card->host, drv_type); 444 445 return 0; 446 } 447 448 static void sd_update_bus_speed_mode(struct mmc_card *card) 449 { 450 /* 451 * If the host doesn't support any of the UHS-I modes, fallback on 452 * default speed. 453 */ 454 if (!mmc_host_uhs(card->host)) { 455 card->sd_bus_speed = 0; 456 return; 457 } 458 459 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 460 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 461 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 462 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 463 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 464 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 465 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 466 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 467 SD_MODE_UHS_SDR50)) { 468 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 470 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 471 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 472 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 473 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 474 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 475 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 476 SD_MODE_UHS_SDR12)) { 477 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 478 } 479 } 480 481 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 482 { 483 int err; 484 unsigned int timing = 0; 485 486 switch (card->sd_bus_speed) { 487 case UHS_SDR104_BUS_SPEED: 488 timing = MMC_TIMING_UHS_SDR104; 489 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 490 break; 491 case UHS_DDR50_BUS_SPEED: 492 timing = MMC_TIMING_UHS_DDR50; 493 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 494 break; 495 case UHS_SDR50_BUS_SPEED: 496 timing = MMC_TIMING_UHS_SDR50; 497 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 498 break; 499 case UHS_SDR25_BUS_SPEED: 500 timing = MMC_TIMING_UHS_SDR25; 501 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 502 break; 503 case UHS_SDR12_BUS_SPEED: 504 timing = MMC_TIMING_UHS_SDR12; 505 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 506 break; 507 default: 508 return 0; 509 } 510 511 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status); 512 if (err) 513 return err; 514 515 if ((status[16] & 0xF) != card->sd_bus_speed) 516 pr_warn("%s: Problem setting bus speed mode!\n", 517 mmc_hostname(card->host)); 518 else { 519 mmc_set_timing(card->host, timing); 520 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 521 } 522 523 return 0; 524 } 525 526 /* Get host's max current setting at its current voltage */ 527 static u32 sd_get_host_max_current(struct mmc_host *host) 528 { 529 u32 voltage, max_current; 530 531 voltage = 1 << host->ios.vdd; 532 switch (voltage) { 533 case MMC_VDD_165_195: 534 max_current = host->max_current_180; 535 break; 536 case MMC_VDD_29_30: 537 case MMC_VDD_30_31: 538 max_current = host->max_current_300; 539 break; 540 case MMC_VDD_32_33: 541 case MMC_VDD_33_34: 542 max_current = host->max_current_330; 543 break; 544 default: 545 max_current = 0; 546 } 547 548 return max_current; 549 } 550 551 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 552 { 553 int current_limit = SD_SET_CURRENT_NO_CHANGE; 554 int err; 555 u32 max_current; 556 557 /* 558 * Current limit switch is only defined for SDR50, SDR104, and DDR50 559 * bus speed modes. For other bus speed modes, we do not change the 560 * current limit. 561 */ 562 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 563 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 564 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 565 return 0; 566 567 /* 568 * Host has different current capabilities when operating at 569 * different voltages, so find out its max current first. 570 */ 571 max_current = sd_get_host_max_current(card->host); 572 573 /* 574 * We only check host's capability here, if we set a limit that is 575 * higher than the card's maximum current, the card will be using its 576 * maximum current, e.g. if the card's maximum current is 300ma, and 577 * when we set current limit to 200ma, the card will draw 200ma, and 578 * when we set current limit to 400/600/800ma, the card will draw its 579 * maximum 300ma from the host. 580 * 581 * The above is incorrect: if we try to set a current limit that is 582 * not supported by the card, the card can rightfully error out the 583 * attempt, and remain at the default current limit. This results 584 * in a 300mA card being limited to 200mA even though the host 585 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 586 * an iMX6 host. --rmk 587 */ 588 if (max_current >= 800 && 589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 590 current_limit = SD_SET_CURRENT_LIMIT_800; 591 else if (max_current >= 600 && 592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 593 current_limit = SD_SET_CURRENT_LIMIT_600; 594 else if (max_current >= 400 && 595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 596 current_limit = SD_SET_CURRENT_LIMIT_400; 597 else if (max_current >= 200 && 598 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 599 current_limit = SD_SET_CURRENT_LIMIT_200; 600 601 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 602 err = mmc_sd_switch(card, SD_SWITCH_SET, 3, 603 current_limit, status); 604 if (err) 605 return err; 606 607 if (((status[15] >> 4) & 0x0F) != current_limit) 608 pr_warn("%s: Problem setting current limit!\n", 609 mmc_hostname(card->host)); 610 611 } 612 613 return 0; 614 } 615 616 /* 617 * UHS-I specific initialization procedure 618 */ 619 static int mmc_sd_init_uhs_card(struct mmc_card *card) 620 { 621 int err; 622 u8 *status; 623 624 if (!(card->csd.cmdclass & CCC_SWITCH)) 625 return 0; 626 627 status = kmalloc(64, GFP_KERNEL); 628 if (!status) 629 return -ENOMEM; 630 631 /* Set 4-bit bus width */ 632 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 633 if (err) 634 goto out; 635 636 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 637 638 /* 639 * Select the bus speed mode depending on host 640 * and card capability. 641 */ 642 sd_update_bus_speed_mode(card); 643 644 /* Set the driver strength for the card */ 645 err = sd_select_driver_type(card, status); 646 if (err) 647 goto out; 648 649 /* Set current limit for the card */ 650 err = sd_set_current_limit(card, status); 651 if (err) 652 goto out; 653 654 /* Set bus speed mode of the card */ 655 err = sd_set_bus_speed_mode(card, status); 656 if (err) 657 goto out; 658 659 /* 660 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 661 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 662 */ 663 if (!mmc_host_is_spi(card->host) && 664 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 665 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 666 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 667 err = mmc_execute_tuning(card); 668 669 /* 670 * As SD Specifications Part1 Physical Layer Specification 671 * Version 3.01 says, CMD19 tuning is available for unlocked 672 * cards in transfer state of 1.8V signaling mode. The small 673 * difference between v3.00 and 3.01 spec means that CMD19 674 * tuning is also available for DDR50 mode. 675 */ 676 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 677 pr_warn("%s: ddr50 tuning failed\n", 678 mmc_hostname(card->host)); 679 err = 0; 680 } 681 } 682 683 out: 684 kfree(status); 685 686 return err; 687 } 688 689 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 690 card->raw_cid[2], card->raw_cid[3]); 691 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 692 card->raw_csd[2], card->raw_csd[3]); 693 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 694 MMC_DEV_ATTR(ssr, 695 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 696 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 697 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 698 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 699 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 700 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 701 card->raw_ssr[15]); 702 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 703 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 704 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 705 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 706 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 707 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 708 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 709 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 710 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 711 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 712 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 713 714 715 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, 716 char *buf) 717 { 718 struct mmc_card *card = mmc_dev_to_card(dev); 719 struct mmc_host *host = card->host; 720 721 if (card->csd.dsr_imp && host->dsr_req) 722 return sysfs_emit(buf, "0x%x\n", host->dsr); 723 /* return default DSR value */ 724 return sysfs_emit(buf, "0x%x\n", 0x404); 725 } 726 727 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 728 729 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 730 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 731 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 732 733 #define sdio_info_attr(num) \ 734 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 735 { \ 736 struct mmc_card *card = mmc_dev_to_card(dev); \ 737 \ 738 if (num > card->num_info) \ 739 return -ENODATA; \ 740 if (!card->info[num - 1][0]) \ 741 return 0; \ 742 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ 743 } \ 744 static DEVICE_ATTR_RO(info##num) 745 746 sdio_info_attr(1); 747 sdio_info_attr(2); 748 sdio_info_attr(3); 749 sdio_info_attr(4); 750 751 static struct attribute *sd_std_attrs[] = { 752 &dev_attr_vendor.attr, 753 &dev_attr_device.attr, 754 &dev_attr_revision.attr, 755 &dev_attr_info1.attr, 756 &dev_attr_info2.attr, 757 &dev_attr_info3.attr, 758 &dev_attr_info4.attr, 759 &dev_attr_cid.attr, 760 &dev_attr_csd.attr, 761 &dev_attr_scr.attr, 762 &dev_attr_ssr.attr, 763 &dev_attr_date.attr, 764 &dev_attr_erase_size.attr, 765 &dev_attr_preferred_erase_size.attr, 766 &dev_attr_fwrev.attr, 767 &dev_attr_hwrev.attr, 768 &dev_attr_manfid.attr, 769 &dev_attr_name.attr, 770 &dev_attr_oemid.attr, 771 &dev_attr_serial.attr, 772 &dev_attr_ocr.attr, 773 &dev_attr_rca.attr, 774 &dev_attr_dsr.attr, 775 NULL, 776 }; 777 778 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 779 int index) 780 { 781 struct device *dev = kobj_to_dev(kobj); 782 struct mmc_card *card = mmc_dev_to_card(dev); 783 784 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 785 if ((attr == &dev_attr_vendor.attr || 786 attr == &dev_attr_device.attr || 787 attr == &dev_attr_revision.attr || 788 attr == &dev_attr_info1.attr || 789 attr == &dev_attr_info2.attr || 790 attr == &dev_attr_info3.attr || 791 attr == &dev_attr_info4.attr 792 ) &&!mmc_card_sd_combo(card)) 793 return 0; 794 795 return attr->mode; 796 } 797 798 static const struct attribute_group sd_std_group = { 799 .attrs = sd_std_attrs, 800 .is_visible = sd_std_is_visible, 801 }; 802 __ATTRIBUTE_GROUPS(sd_std); 803 804 const struct device_type sd_type = { 805 .groups = sd_std_groups, 806 }; 807 808 /* 809 * Fetch CID from card. 810 */ 811 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 812 { 813 int err; 814 u32 max_current; 815 int retries = 10; 816 u32 pocr = ocr; 817 818 try_again: 819 if (!retries) { 820 ocr &= ~SD_OCR_S18R; 821 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 822 } 823 824 /* 825 * Since we're changing the OCR value, we seem to 826 * need to tell some cards to go back to the idle 827 * state. We wait 1ms to give cards time to 828 * respond. 829 */ 830 mmc_go_idle(host); 831 832 /* 833 * If SD_SEND_IF_COND indicates an SD 2.0 834 * compliant card and we should set bit 30 835 * of the ocr to indicate that we can handle 836 * block-addressed SDHC cards. 837 */ 838 err = mmc_send_if_cond(host, ocr); 839 if (!err) { 840 ocr |= SD_OCR_CCS; 841 /* Set HO2T as well - SDUC card won't respond otherwise */ 842 ocr |= SD_OCR_2T; 843 } 844 845 /* 846 * If the host supports one of UHS-I modes, request the card 847 * to switch to 1.8V signaling level. If the card has failed 848 * repeatedly to switch however, skip this. 849 */ 850 if (retries && mmc_host_uhs(host)) 851 ocr |= SD_OCR_S18R; 852 853 /* 854 * If the host can supply more than 150mA at current voltage, 855 * XPC should be set to 1. 856 */ 857 max_current = sd_get_host_max_current(host); 858 if (max_current > 150) 859 ocr |= SD_OCR_XPC; 860 861 err = mmc_send_app_op_cond(host, ocr, rocr); 862 if (err) 863 return err; 864 865 /* 866 * In case the S18A bit is set in the response, let's start the signal 867 * voltage switch procedure. SPI mode doesn't support CMD11. 868 * Note that, according to the spec, the S18A bit is not valid unless 869 * the CCS bit is set as well. We deliberately deviate from the spec in 870 * regards to this, which allows UHS-I to be supported for SDSC cards. 871 */ 872 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) && 873 rocr && (*rocr & SD_ROCR_S18A)) { 874 err = mmc_set_uhs_voltage(host, pocr); 875 if (err == -EAGAIN) { 876 retries--; 877 goto try_again; 878 } else if (err) { 879 retries = 0; 880 goto try_again; 881 } 882 } 883 884 err = mmc_send_cid(host, cid); 885 return err; 886 } 887 888 int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc) 889 { 890 int err; 891 892 /* 893 * Fetch CSD from card. 894 */ 895 err = mmc_send_csd(card, card->raw_csd); 896 if (err) 897 return err; 898 899 err = mmc_decode_csd(card, is_sduc); 900 if (err) 901 return err; 902 903 return 0; 904 } 905 906 int mmc_sd_get_ro(struct mmc_host *host) 907 { 908 int ro; 909 910 /* 911 * Some systems don't feature a write-protect pin and don't need one. 912 * E.g. because they only have micro-SD card slot. For those systems 913 * assume that the SD card is always read-write. 914 */ 915 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 916 return 0; 917 918 if (!host->ops->get_ro) 919 return -1; 920 921 ro = host->ops->get_ro(host); 922 923 return ro; 924 } 925 926 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 927 bool reinit) 928 { 929 int err; 930 931 if (!reinit) { 932 /* 933 * Fetch SCR from card. 934 */ 935 err = mmc_app_send_scr(card); 936 if (err) 937 return err; 938 939 err = mmc_decode_scr(card); 940 if (err) 941 return err; 942 943 /* 944 * Fetch and process SD Status register. 945 */ 946 err = mmc_read_ssr(card); 947 if (err) 948 return err; 949 950 /* Erase init depends on CSD and SSR */ 951 mmc_init_erase(card); 952 } 953 954 /* 955 * Fetch switch information from card. Note, sd3_bus_mode can change if 956 * voltage switch outcome changes, so do this always. 957 */ 958 err = mmc_read_switch(card); 959 if (err) 960 return err; 961 962 /* 963 * For SPI, enable CRC as appropriate. 964 * This CRC enable is located AFTER the reading of the 965 * card registers because some SDHC cards are not able 966 * to provide valid CRCs for non-512-byte blocks. 967 */ 968 if (mmc_host_is_spi(host)) { 969 err = mmc_spi_set_crc(host, use_spi_crc); 970 if (err) 971 return err; 972 } 973 974 /* 975 * Check if read-only switch is active. 976 */ 977 if (!reinit) { 978 int ro = mmc_sd_get_ro(host); 979 980 if (ro < 0) { 981 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 982 mmc_hostname(host)); 983 } else if (ro > 0) { 984 mmc_card_set_readonly(card); 985 } 986 } 987 988 return 0; 989 } 990 991 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 992 { 993 unsigned max_dtr = (unsigned int)-1; 994 995 if (mmc_card_hs(card)) { 996 if (max_dtr > card->sw_caps.hs_max_dtr) 997 max_dtr = card->sw_caps.hs_max_dtr; 998 } else if (max_dtr > card->csd.max_dtr) { 999 max_dtr = card->csd.max_dtr; 1000 } 1001 1002 return max_dtr; 1003 } 1004 1005 static bool mmc_sd_card_using_v18(struct mmc_card *card) 1006 { 1007 /* 1008 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1009 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1010 * they can be used to determine if the card has already switched to 1011 * 1.8V signaling. 1012 */ 1013 return card->sw_caps.sd3_bus_mode & 1014 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1015 } 1016 1017 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1018 u8 reg_data) 1019 { 1020 struct mmc_host *host = card->host; 1021 struct mmc_request mrq = {}; 1022 struct mmc_command cmd = {}; 1023 struct mmc_data data = {}; 1024 struct scatterlist sg; 1025 u8 *reg_buf; 1026 1027 reg_buf = kzalloc(512, GFP_KERNEL); 1028 if (!reg_buf) 1029 return -ENOMEM; 1030 1031 mrq.cmd = &cmd; 1032 mrq.data = &data; 1033 1034 /* 1035 * Arguments of CMD49: 1036 * [31:31] MIO (0 = memory). 1037 * [30:27] FNO (function number). 1038 * [26:26] MW - mask write mode (0 = disable). 1039 * [25:18] page number. 1040 * [17:9] offset address. 1041 * [8:0] length (0 = 1 byte). 1042 */ 1043 cmd.arg = fno << 27 | page << 18 | offset << 9; 1044 1045 /* The first byte in the buffer is the data to be written. */ 1046 reg_buf[0] = reg_data; 1047 1048 data.flags = MMC_DATA_WRITE; 1049 data.blksz = 512; 1050 data.blocks = 1; 1051 data.sg = &sg; 1052 data.sg_len = 1; 1053 sg_init_one(&sg, reg_buf, 512); 1054 1055 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1056 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1057 1058 mmc_set_data_timeout(&data, card); 1059 mmc_wait_for_req(host, &mrq); 1060 1061 kfree(reg_buf); 1062 1063 /* 1064 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1065 * after the CMD49. Although, let's leave this to be managed by the 1066 * caller. 1067 */ 1068 1069 if (cmd.error) 1070 return cmd.error; 1071 if (data.error) 1072 return data.error; 1073 1074 return 0; 1075 } 1076 1077 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1078 u16 offset, u16 len, u8 *reg_buf) 1079 { 1080 u32 cmd_args; 1081 1082 /* 1083 * Command arguments of CMD48: 1084 * [31:31] MIO (0 = memory). 1085 * [30:27] FNO (function number). 1086 * [26:26] reserved (0). 1087 * [25:18] page number. 1088 * [17:9] offset address. 1089 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1090 */ 1091 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1092 1093 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1094 cmd_args, reg_buf, 512); 1095 } 1096 1097 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1098 u16 offset) 1099 { 1100 int err; 1101 u8 *reg_buf; 1102 1103 reg_buf = kzalloc(512, GFP_KERNEL); 1104 if (!reg_buf) 1105 return -ENOMEM; 1106 1107 /* Read the extension register for power management function. */ 1108 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1109 if (err) { 1110 pr_warn("%s: error %d reading PM func of ext reg\n", 1111 mmc_hostname(card->host), err); 1112 goto out; 1113 } 1114 1115 /* PM revision consists of 4 bits. */ 1116 card->ext_power.rev = reg_buf[0] & 0xf; 1117 1118 /* Power Off Notification support at bit 4. */ 1119 if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card)) 1120 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1121 1122 /* Power Sustenance support at bit 5. */ 1123 if (reg_buf[1] & BIT(5)) 1124 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1125 1126 /* Power Down Mode support at bit 6. */ 1127 if (reg_buf[1] & BIT(6)) 1128 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1129 1130 card->ext_power.fno = fno; 1131 card->ext_power.page = page; 1132 card->ext_power.offset = offset; 1133 1134 out: 1135 kfree(reg_buf); 1136 return err; 1137 } 1138 1139 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1140 u16 offset) 1141 { 1142 int err; 1143 u8 *reg_buf; 1144 1145 reg_buf = kzalloc(512, GFP_KERNEL); 1146 if (!reg_buf) 1147 return -ENOMEM; 1148 1149 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1150 if (err) { 1151 pr_warn("%s: error %d reading PERF func of ext reg\n", 1152 mmc_hostname(card->host), err); 1153 goto out; 1154 } 1155 1156 /* PERF revision. */ 1157 card->ext_perf.rev = reg_buf[0]; 1158 1159 /* FX_EVENT support at bit 0. */ 1160 if (reg_buf[1] & BIT(0)) 1161 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1162 1163 /* Card initiated self-maintenance support at bit 0. */ 1164 if (reg_buf[2] & BIT(0)) 1165 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1166 1167 /* Host initiated self-maintenance support at bit 1. */ 1168 if (reg_buf[2] & BIT(1)) 1169 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1170 1171 /* Cache support at bit 0. */ 1172 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card)) 1173 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1174 1175 /* Command queue support indicated via queue depth bits (0 to 4). */ 1176 if (reg_buf[6] & 0x1f) 1177 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1178 1179 card->ext_perf.fno = fno; 1180 card->ext_perf.page = page; 1181 card->ext_perf.offset = offset; 1182 1183 out: 1184 kfree(reg_buf); 1185 return err; 1186 } 1187 1188 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1189 u16 *next_ext_addr) 1190 { 1191 u8 num_regs, fno, page; 1192 u16 sfc, offset, ext = *next_ext_addr; 1193 u32 reg_addr; 1194 1195 /* 1196 * Parse only one register set per extension, as that is sufficient to 1197 * support the standard functions. This means another 48 bytes in the 1198 * buffer must be available. 1199 */ 1200 if (ext + 48 > 512) 1201 return -EFAULT; 1202 1203 /* Standard Function Code */ 1204 memcpy(&sfc, &gen_info_buf[ext], 2); 1205 1206 /* Address to the next extension. */ 1207 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1208 1209 /* Number of registers for this extension. */ 1210 num_regs = gen_info_buf[ext + 42]; 1211 1212 /* We support only one register per extension. */ 1213 if (num_regs != 1) 1214 return 0; 1215 1216 /* Extension register address. */ 1217 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1218 1219 /* 9 bits (0 to 8) contains the offset address. */ 1220 offset = reg_addr & 0x1ff; 1221 1222 /* 8 bits (9 to 16) contains the page number. */ 1223 page = reg_addr >> 9 & 0xff ; 1224 1225 /* 4 bits (18 to 21) contains the function number. */ 1226 fno = reg_addr >> 18 & 0xf; 1227 1228 /* Standard Function Code for power management. */ 1229 if (sfc == 0x1) 1230 return sd_parse_ext_reg_power(card, fno, page, offset); 1231 1232 /* Standard Function Code for performance enhancement. */ 1233 if (sfc == 0x2) 1234 return sd_parse_ext_reg_perf(card, fno, page, offset); 1235 1236 return 0; 1237 } 1238 1239 static int sd_read_ext_regs(struct mmc_card *card) 1240 { 1241 int err, i; 1242 u8 num_ext, *gen_info_buf; 1243 u16 rev, len, next_ext_addr; 1244 1245 if (mmc_host_is_spi(card->host)) 1246 return 0; 1247 1248 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1249 return 0; 1250 1251 gen_info_buf = kzalloc(512, GFP_KERNEL); 1252 if (!gen_info_buf) 1253 return -ENOMEM; 1254 1255 /* 1256 * Read 512 bytes of general info, which is found at function number 0, 1257 * at page 0 and with no offset. 1258 */ 1259 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1260 if (err) { 1261 pr_err("%s: error %d reading general info of SD ext reg\n", 1262 mmc_hostname(card->host), err); 1263 goto out; 1264 } 1265 1266 /* General info structure revision. */ 1267 memcpy(&rev, &gen_info_buf[0], 2); 1268 1269 /* Length of general info in bytes. */ 1270 memcpy(&len, &gen_info_buf[2], 2); 1271 1272 /* Number of extensions to be find. */ 1273 num_ext = gen_info_buf[4]; 1274 1275 /* 1276 * We only support revision 0 and limit it to 512 bytes for simplicity. 1277 * No matter what, let's return zero to allow us to continue using the 1278 * card, even if we can't support the features from the SD function 1279 * extensions registers. 1280 */ 1281 if (rev != 0 || len > 512) { 1282 pr_warn("%s: non-supported SD ext reg layout\n", 1283 mmc_hostname(card->host)); 1284 goto out; 1285 } 1286 1287 /* 1288 * Parse the extension registers. The first extension should start 1289 * immediately after the general info header (16 bytes). 1290 */ 1291 next_ext_addr = 16; 1292 for (i = 0; i < num_ext; i++) { 1293 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1294 if (err) { 1295 pr_err("%s: error %d parsing SD ext reg\n", 1296 mmc_hostname(card->host), err); 1297 goto out; 1298 } 1299 } 1300 1301 out: 1302 kfree(gen_info_buf); 1303 return err; 1304 } 1305 1306 static bool sd_cache_enabled(struct mmc_host *host) 1307 { 1308 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1309 } 1310 1311 static int sd_flush_cache(struct mmc_host *host) 1312 { 1313 struct mmc_card *card = host->card; 1314 u8 *reg_buf, fno, page; 1315 u16 offset; 1316 int err; 1317 1318 if (!sd_cache_enabled(host)) 1319 return 0; 1320 1321 reg_buf = kzalloc(512, GFP_KERNEL); 1322 if (!reg_buf) 1323 return -ENOMEM; 1324 1325 /* 1326 * Set Flush Cache at bit 0 in the performance enhancement register at 1327 * 261 bytes offset. 1328 */ 1329 fno = card->ext_perf.fno; 1330 page = card->ext_perf.page; 1331 offset = card->ext_perf.offset + 261; 1332 1333 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1334 if (err) { 1335 pr_warn("%s: error %d writing Cache Flush bit\n", 1336 mmc_hostname(host), err); 1337 goto out; 1338 } 1339 1340 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1341 MMC_BUSY_EXTR_SINGLE); 1342 if (err) 1343 goto out; 1344 1345 /* 1346 * Read the Flush Cache bit. The card shall reset it, to confirm that 1347 * it's has completed the flushing of the cache. 1348 */ 1349 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1350 if (err) { 1351 pr_warn("%s: error %d reading Cache Flush bit\n", 1352 mmc_hostname(host), err); 1353 goto out; 1354 } 1355 1356 if (reg_buf[0] & BIT(0)) 1357 err = -ETIMEDOUT; 1358 out: 1359 kfree(reg_buf); 1360 return err; 1361 } 1362 1363 static int sd_enable_cache(struct mmc_card *card) 1364 { 1365 u8 *reg_buf; 1366 int err; 1367 1368 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1369 1370 reg_buf = kzalloc(512, GFP_KERNEL); 1371 if (!reg_buf) 1372 return -ENOMEM; 1373 1374 /* 1375 * Set Cache Enable at bit 0 in the performance enhancement register at 1376 * 260 bytes offset. 1377 */ 1378 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1379 card->ext_perf.offset + 260, BIT(0)); 1380 if (err) { 1381 pr_warn("%s: error %d writing Cache Enable bit\n", 1382 mmc_hostname(card->host), err); 1383 goto out; 1384 } 1385 1386 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1387 MMC_BUSY_EXTR_SINGLE); 1388 if (!err) 1389 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1390 1391 out: 1392 kfree(reg_buf); 1393 return err; 1394 } 1395 1396 /* 1397 * Handle the detection and initialisation of a card. 1398 * 1399 * In the case of a resume, "oldcard" will contain the card 1400 * we're trying to reinitialise. 1401 */ 1402 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1403 struct mmc_card *oldcard) 1404 { 1405 struct mmc_card *card; 1406 int err; 1407 u32 cid[4]; 1408 u32 rocr = 0; 1409 bool v18_fixup_failed = false; 1410 1411 WARN_ON(!host->claimed); 1412 retry: 1413 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1414 if (err) 1415 return err; 1416 1417 if (oldcard) { 1418 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1419 pr_debug("%s: Perhaps the card was replaced\n", 1420 mmc_hostname(host)); 1421 return -ENOENT; 1422 } 1423 1424 card = oldcard; 1425 } else { 1426 /* 1427 * Allocate card structure. 1428 */ 1429 card = mmc_alloc_card(host, &sd_type); 1430 if (IS_ERR(card)) 1431 return PTR_ERR(card); 1432 1433 card->ocr = ocr; 1434 card->type = MMC_TYPE_SD; 1435 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1436 } 1437 1438 /* 1439 * Call the optional HC's init_card function to handle quirks. 1440 */ 1441 if (host->ops->init_card) 1442 host->ops->init_card(host, card); 1443 1444 /* 1445 * For native busses: get card RCA and quit open drain mode. 1446 */ 1447 if (!mmc_host_is_spi(host)) { 1448 err = mmc_send_relative_addr(host, &card->rca); 1449 if (err) 1450 goto free_card; 1451 } 1452 1453 if (!oldcard) { 1454 u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T; 1455 bool is_sduc = (rocr & sduc_arg) == sduc_arg; 1456 1457 err = mmc_sd_get_csd(card, is_sduc); 1458 if (err) 1459 goto free_card; 1460 1461 mmc_decode_cid(card); 1462 } 1463 1464 /* 1465 * handling only for cards supporting DSR and hosts requesting 1466 * DSR configuration 1467 */ 1468 if (card->csd.dsr_imp && host->dsr_req) 1469 mmc_set_dsr(host); 1470 1471 /* 1472 * Select card, as all following commands rely on that. 1473 */ 1474 if (!mmc_host_is_spi(host)) { 1475 err = mmc_select_card(card); 1476 if (err) 1477 goto free_card; 1478 } 1479 1480 /* Apply quirks prior to card setup */ 1481 mmc_fixup_device(card, mmc_sd_fixups); 1482 1483 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1484 if (err) 1485 goto free_card; 1486 1487 /* 1488 * If the card has not been power cycled, it may still be using 1.8V 1489 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1490 * transfer mode. 1491 */ 1492 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1493 mmc_sd_card_using_v18(card) && 1494 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1495 if (mmc_host_set_uhs_voltage(host) || 1496 mmc_sd_init_uhs_card(card)) { 1497 v18_fixup_failed = true; 1498 mmc_power_cycle(host, ocr); 1499 if (!oldcard) 1500 mmc_remove_card(card); 1501 goto retry; 1502 } 1503 goto cont; 1504 } 1505 1506 /* Initialization sequence for UHS-I cards */ 1507 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1508 err = mmc_sd_init_uhs_card(card); 1509 if (err) 1510 goto free_card; 1511 } else { 1512 /* 1513 * Attempt to change to high-speed (if supported) 1514 */ 1515 err = mmc_sd_switch_hs(card); 1516 if (err > 0) 1517 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1518 else if (err) 1519 goto free_card; 1520 1521 /* 1522 * Set bus speed. 1523 */ 1524 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1525 1526 if (host->ios.timing == MMC_TIMING_SD_HS && 1527 host->ops->prepare_sd_hs_tuning) { 1528 err = host->ops->prepare_sd_hs_tuning(host, card); 1529 if (err) 1530 goto free_card; 1531 } 1532 1533 /* 1534 * Switch to wider bus (if supported). 1535 */ 1536 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1537 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1538 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1539 if (err) 1540 goto free_card; 1541 1542 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1543 } 1544 1545 if (host->ios.timing == MMC_TIMING_SD_HS && 1546 host->ops->execute_sd_hs_tuning) { 1547 err = host->ops->execute_sd_hs_tuning(host, card); 1548 if (err) 1549 goto free_card; 1550 } 1551 } 1552 cont: 1553 if (!oldcard) { 1554 /* Read/parse the extension registers. */ 1555 err = sd_read_ext_regs(card); 1556 if (err) 1557 goto free_card; 1558 } 1559 1560 /* Enable internal SD cache if supported. */ 1561 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1562 err = sd_enable_cache(card); 1563 if (err) 1564 goto free_card; 1565 } 1566 1567 if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) { 1568 err = host->cqe_ops->cqe_enable(host, card); 1569 if (!err) { 1570 host->cqe_enabled = true; 1571 host->hsq_enabled = true; 1572 pr_info("%s: Host Software Queue enabled\n", 1573 mmc_hostname(host)); 1574 } 1575 } 1576 1577 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1578 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1579 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1580 mmc_hostname(host)); 1581 err = -EINVAL; 1582 goto free_card; 1583 } 1584 1585 host->card = card; 1586 return 0; 1587 1588 free_card: 1589 if (!oldcard) 1590 mmc_remove_card(card); 1591 1592 return err; 1593 } 1594 1595 /* 1596 * Host is being removed. Free up the current card. 1597 */ 1598 static void mmc_sd_remove(struct mmc_host *host) 1599 { 1600 mmc_remove_card(host->card); 1601 host->card = NULL; 1602 } 1603 1604 /* 1605 * Card detection - card is alive. 1606 */ 1607 static int mmc_sd_alive(struct mmc_host *host) 1608 { 1609 return mmc_send_status(host->card, NULL); 1610 } 1611 1612 /* 1613 * Card detection callback from host. 1614 */ 1615 static void mmc_sd_detect(struct mmc_host *host) 1616 { 1617 int err; 1618 1619 mmc_get_card(host->card, NULL); 1620 1621 /* 1622 * Just check if our card has been removed. 1623 */ 1624 err = _mmc_detect_card_removed(host); 1625 1626 mmc_put_card(host->card, NULL); 1627 1628 if (err) { 1629 mmc_sd_remove(host); 1630 1631 mmc_claim_host(host); 1632 mmc_detach_bus(host); 1633 mmc_power_off(host); 1634 mmc_release_host(host); 1635 } 1636 } 1637 1638 static int sd_can_poweroff_notify(struct mmc_card *card) 1639 { 1640 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1641 } 1642 1643 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1644 { 1645 struct sd_busy_data *data = cb_data; 1646 struct mmc_card *card = data->card; 1647 int err; 1648 1649 /* 1650 * Read the status register for the power management function. It's at 1651 * one byte offset and is one byte long. The Power Off Notification 1652 * Ready is bit 0. 1653 */ 1654 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1655 card->ext_power.offset + 1, 1, data->reg_buf); 1656 if (err) { 1657 pr_warn("%s: error %d reading status reg of PM func\n", 1658 mmc_hostname(card->host), err); 1659 return err; 1660 } 1661 1662 *busy = !(data->reg_buf[0] & BIT(0)); 1663 return 0; 1664 } 1665 1666 static int sd_poweroff_notify(struct mmc_card *card) 1667 { 1668 struct sd_busy_data cb_data; 1669 u8 *reg_buf; 1670 int err; 1671 1672 reg_buf = kzalloc(512, GFP_KERNEL); 1673 if (!reg_buf) 1674 return -ENOMEM; 1675 1676 /* 1677 * Set the Power Off Notification bit in the power management settings 1678 * register at 2 bytes offset. 1679 */ 1680 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1681 card->ext_power.offset + 2, BIT(0)); 1682 if (err) { 1683 pr_warn("%s: error %d writing Power Off Notify bit\n", 1684 mmc_hostname(card->host), err); 1685 goto out; 1686 } 1687 1688 /* Find out when the command is completed. */ 1689 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1690 MMC_BUSY_EXTR_SINGLE); 1691 if (err) 1692 goto out; 1693 1694 cb_data.card = card; 1695 cb_data.reg_buf = reg_buf; 1696 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1697 &sd_busy_poweroff_notify_cb, &cb_data); 1698 1699 out: 1700 kfree(reg_buf); 1701 return err; 1702 } 1703 1704 static int _mmc_sd_suspend(struct mmc_host *host) 1705 { 1706 struct mmc_card *card = host->card; 1707 int err = 0; 1708 1709 mmc_claim_host(host); 1710 1711 if (mmc_card_suspended(card)) 1712 goto out; 1713 1714 if (sd_can_poweroff_notify(card)) 1715 err = sd_poweroff_notify(card); 1716 else if (!mmc_host_is_spi(host)) 1717 err = mmc_deselect_cards(host); 1718 1719 if (!err) { 1720 mmc_power_off(host); 1721 mmc_card_set_suspended(card); 1722 } 1723 1724 out: 1725 mmc_release_host(host); 1726 return err; 1727 } 1728 1729 /* 1730 * Callback for suspend 1731 */ 1732 static int mmc_sd_suspend(struct mmc_host *host) 1733 { 1734 int err; 1735 1736 err = _mmc_sd_suspend(host); 1737 if (!err) { 1738 pm_runtime_disable(&host->card->dev); 1739 pm_runtime_set_suspended(&host->card->dev); 1740 } 1741 1742 return err; 1743 } 1744 1745 /* 1746 * This function tries to determine if the same card is still present 1747 * and, if so, restore all state to it. 1748 */ 1749 static int _mmc_sd_resume(struct mmc_host *host) 1750 { 1751 int err = 0; 1752 1753 mmc_claim_host(host); 1754 1755 if (!mmc_card_suspended(host->card)) 1756 goto out; 1757 1758 mmc_power_up(host, host->card->ocr); 1759 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1760 mmc_card_clr_suspended(host->card); 1761 1762 out: 1763 mmc_release_host(host); 1764 return err; 1765 } 1766 1767 /* 1768 * Callback for resume 1769 */ 1770 static int mmc_sd_resume(struct mmc_host *host) 1771 { 1772 pm_runtime_enable(&host->card->dev); 1773 return 0; 1774 } 1775 1776 /* 1777 * Callback for runtime_suspend. 1778 */ 1779 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1780 { 1781 int err; 1782 1783 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1784 return 0; 1785 1786 err = _mmc_sd_suspend(host); 1787 if (err) 1788 pr_err("%s: error %d doing aggressive suspend\n", 1789 mmc_hostname(host), err); 1790 1791 return err; 1792 } 1793 1794 /* 1795 * Callback for runtime_resume. 1796 */ 1797 static int mmc_sd_runtime_resume(struct mmc_host *host) 1798 { 1799 int err; 1800 1801 err = _mmc_sd_resume(host); 1802 if (err && err != -ENOMEDIUM) 1803 pr_err("%s: error %d doing runtime resume\n", 1804 mmc_hostname(host), err); 1805 1806 return 0; 1807 } 1808 1809 static int mmc_sd_hw_reset(struct mmc_host *host) 1810 { 1811 mmc_power_cycle(host, host->card->ocr); 1812 return mmc_sd_init_card(host, host->card->ocr, host->card); 1813 } 1814 1815 static const struct mmc_bus_ops mmc_sd_ops = { 1816 .remove = mmc_sd_remove, 1817 .detect = mmc_sd_detect, 1818 .runtime_suspend = mmc_sd_runtime_suspend, 1819 .runtime_resume = mmc_sd_runtime_resume, 1820 .suspend = mmc_sd_suspend, 1821 .resume = mmc_sd_resume, 1822 .alive = mmc_sd_alive, 1823 .shutdown = mmc_sd_suspend, 1824 .hw_reset = mmc_sd_hw_reset, 1825 .cache_enabled = sd_cache_enabled, 1826 .flush_cache = sd_flush_cache, 1827 }; 1828 1829 /* 1830 * Starting point for SD card init. 1831 */ 1832 int mmc_attach_sd(struct mmc_host *host) 1833 { 1834 int err; 1835 u32 ocr, rocr; 1836 1837 WARN_ON(!host->claimed); 1838 1839 err = mmc_send_app_op_cond(host, 0, &ocr); 1840 if (err) 1841 return err; 1842 1843 mmc_attach_bus(host, &mmc_sd_ops); 1844 if (host->ocr_avail_sd) 1845 host->ocr_avail = host->ocr_avail_sd; 1846 1847 /* 1848 * We need to get OCR a different way for SPI. 1849 */ 1850 if (mmc_host_is_spi(host)) { 1851 mmc_go_idle(host); 1852 1853 err = mmc_spi_read_ocr(host, 0, &ocr); 1854 if (err) 1855 goto err; 1856 } 1857 1858 /* 1859 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1860 * these bits as being in-valid and especially also bit7. 1861 */ 1862 ocr &= ~0x7FFF; 1863 1864 rocr = mmc_select_voltage(host, ocr); 1865 1866 /* 1867 * Can we support the voltage(s) of the card(s)? 1868 */ 1869 if (!rocr) { 1870 err = -EINVAL; 1871 goto err; 1872 } 1873 1874 /* 1875 * Detect and init the card. 1876 */ 1877 err = mmc_sd_init_card(host, rocr, NULL); 1878 if (err) 1879 goto err; 1880 1881 mmc_release_host(host); 1882 err = mmc_add_card(host->card); 1883 if (err) 1884 goto remove_card; 1885 1886 mmc_claim_host(host); 1887 return 0; 1888 1889 remove_card: 1890 mmc_remove_card(host->card); 1891 host->card = NULL; 1892 mmc_claim_host(host); 1893 err: 1894 mmc_detach_bus(host); 1895 1896 pr_err("%s: error %d whilst initialising SD card\n", 1897 mmc_hostname(host), err); 1898 1899 return err; 1900 } 1901