1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/string.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/random.h> 17 #include <linux/scatterlist.h> 18 #include <linux/sysfs.h> 19 20 #include <linux/mmc/host.h> 21 #include <linux/mmc/card.h> 22 #include <linux/mmc/mmc.h> 23 #include <linux/mmc/sd.h> 24 25 #include "core.h" 26 #include "card.h" 27 #include "host.h" 28 #include "bus.h" 29 #include "mmc_ops.h" 30 #include "quirks.h" 31 #include "sd.h" 32 #include "sd_ops.h" 33 34 static const unsigned int tran_exp[] = { 35 10000, 100000, 1000000, 10000000, 36 0, 0, 0, 0 37 }; 38 39 static const unsigned char tran_mant[] = { 40 0, 10, 12, 13, 15, 20, 25, 30, 41 35, 40, 45, 50, 55, 60, 70, 80, 42 }; 43 44 static const unsigned int taac_exp[] = { 45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 46 }; 47 48 static const unsigned int taac_mant[] = { 49 0, 10, 12, 13, 15, 20, 25, 30, 50 35, 40, 45, 50, 55, 60, 70, 80, 51 }; 52 53 static const unsigned int sd_au_size[] = { 54 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 55 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 56 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 57 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 58 }; 59 60 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 61 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 62 63 struct sd_busy_data { 64 struct mmc_card *card; 65 u8 *reg_buf; 66 }; 67 68 /* 69 * Given the decoded CSD structure, decode the raw CID to our CID structure. 70 */ 71 void mmc_decode_cid(struct mmc_card *card) 72 { 73 u32 *resp = card->raw_cid; 74 75 /* 76 * Add the raw card ID (cid) data to the entropy pool. It doesn't 77 * matter that not all of it is unique, it's just bonus entropy. 78 */ 79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 80 81 /* 82 * SD doesn't currently have a version field so we will 83 * have to assume we can parse this. 84 */ 85 card->cid.manfid = unstuff_bits(resp, 120, 8); 86 card->cid.oemid = unstuff_bits(resp, 104, 16); 87 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); 88 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); 89 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); 90 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); 91 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); 92 card->cid.hwrev = unstuff_bits(resp, 60, 4); 93 card->cid.fwrev = unstuff_bits(resp, 56, 4); 94 card->cid.serial = unstuff_bits(resp, 24, 32); 95 card->cid.year = unstuff_bits(resp, 12, 8); 96 card->cid.month = unstuff_bits(resp, 8, 4); 97 98 card->cid.year += 2000; /* SD cards year offset */ 99 100 /* some product names may include trailing whitespace */ 101 strim(card->cid.prod_name); 102 } 103 104 /* 105 * Given a 128-bit response, decode to our card CSD structure. 106 */ 107 static int mmc_decode_csd(struct mmc_card *card, bool is_sduc) 108 { 109 struct mmc_csd *csd = &card->csd; 110 unsigned int e, m, csd_struct; 111 u32 *resp = card->raw_csd; 112 113 csd_struct = unstuff_bits(resp, 126, 2); 114 115 switch (csd_struct) { 116 case 0: 117 m = unstuff_bits(resp, 115, 4); 118 e = unstuff_bits(resp, 112, 3); 119 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 120 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100; 121 122 m = unstuff_bits(resp, 99, 4); 123 e = unstuff_bits(resp, 96, 3); 124 csd->max_dtr = tran_exp[e] * tran_mant[m]; 125 csd->cmdclass = unstuff_bits(resp, 84, 12); 126 127 e = unstuff_bits(resp, 47, 3); 128 m = unstuff_bits(resp, 62, 12); 129 csd->capacity = (1 + m) << (e + 2); 130 131 csd->read_blkbits = unstuff_bits(resp, 80, 4); 132 csd->read_partial = unstuff_bits(resp, 79, 1); 133 csd->write_misalign = unstuff_bits(resp, 78, 1); 134 csd->read_misalign = unstuff_bits(resp, 77, 1); 135 csd->dsr_imp = unstuff_bits(resp, 76, 1); 136 csd->r2w_factor = unstuff_bits(resp, 26, 3); 137 csd->write_blkbits = unstuff_bits(resp, 22, 4); 138 csd->write_partial = unstuff_bits(resp, 21, 1); 139 140 if (unstuff_bits(resp, 46, 1)) { 141 csd->erase_size = 1; 142 } else if (csd->write_blkbits >= 9) { 143 csd->erase_size = unstuff_bits(resp, 39, 7) + 1; 144 csd->erase_size <<= csd->write_blkbits - 9; 145 } 146 147 if (unstuff_bits(resp, 13, 1)) 148 mmc_card_set_readonly(card); 149 break; 150 case 1: 151 case 2: 152 /* 153 * This is a block-addressed SDHC, SDXC or SDUC card. 154 * Most interesting fields are unused and have fixed 155 * values. To avoid getting tripped by buggy cards, 156 * we assume those fixed values ourselves. 157 */ 158 mmc_card_set_blockaddr(card); 159 160 csd->taac_ns = 0; /* Unused */ 161 csd->taac_clks = 0; /* Unused */ 162 163 m = unstuff_bits(resp, 99, 4); 164 e = unstuff_bits(resp, 96, 3); 165 csd->max_dtr = tran_exp[e] * tran_mant[m]; 166 csd->cmdclass = unstuff_bits(resp, 84, 12); 167 168 if (csd_struct == 1) 169 m = unstuff_bits(resp, 48, 22); 170 else 171 m = unstuff_bits(resp, 48, 28); 172 csd->c_size = m; 173 174 if (csd->c_size >= 0x400000 && is_sduc) 175 mmc_card_set_ult_capacity(card); 176 else if (csd->c_size >= 0xFFFF) 177 mmc_card_set_ext_capacity(card); 178 179 csd->capacity = (1 + (typeof(sector_t))m) << 10; 180 181 csd->read_blkbits = 9; 182 csd->read_partial = 0; 183 csd->write_misalign = 0; 184 csd->read_misalign = 0; 185 csd->r2w_factor = 4; /* Unused */ 186 csd->write_blkbits = 9; 187 csd->write_partial = 0; 188 csd->erase_size = 1; 189 190 if (unstuff_bits(resp, 13, 1)) 191 mmc_card_set_readonly(card); 192 break; 193 default: 194 pr_err("%s: unrecognised CSD structure version %d\n", 195 mmc_hostname(card->host), csd_struct); 196 return -EINVAL; 197 } 198 199 card->erase_size = csd->erase_size; 200 201 return 0; 202 } 203 204 /* 205 * Given a 64-bit response, decode to our card SCR structure. 206 */ 207 int mmc_decode_scr(struct mmc_card *card) 208 { 209 struct sd_scr *scr = &card->scr; 210 unsigned int scr_struct; 211 u32 resp[4]; 212 213 resp[3] = card->raw_scr[1]; 214 resp[2] = card->raw_scr[0]; 215 216 scr_struct = unstuff_bits(resp, 60, 4); 217 if (scr_struct != 0) { 218 pr_err("%s: unrecognised SCR structure version %d\n", 219 mmc_hostname(card->host), scr_struct); 220 return -EINVAL; 221 } 222 223 scr->sda_vsn = unstuff_bits(resp, 56, 4); 224 scr->bus_widths = unstuff_bits(resp, 48, 4); 225 if (scr->sda_vsn == SCR_SPEC_VER_2) 226 /* Check if Physical Layer Spec v3.0 is supported */ 227 scr->sda_spec3 = unstuff_bits(resp, 47, 1); 228 229 if (scr->sda_spec3) { 230 scr->sda_spec4 = unstuff_bits(resp, 42, 1); 231 scr->sda_specx = unstuff_bits(resp, 38, 4); 232 } 233 234 if (unstuff_bits(resp, 55, 1)) 235 card->erased_byte = 0xFF; 236 else 237 card->erased_byte = 0x0; 238 239 if (scr->sda_spec4) 240 scr->cmds = unstuff_bits(resp, 32, 4); 241 else if (scr->sda_spec3) 242 scr->cmds = unstuff_bits(resp, 32, 2); 243 244 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 245 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 246 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 247 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 248 return -EINVAL; 249 } 250 251 return 0; 252 } 253 254 /* 255 * Fetch and process SD Status register. 256 */ 257 static int mmc_read_ssr(struct mmc_card *card) 258 { 259 unsigned int au, es, et, eo; 260 __be32 *raw_ssr; 261 u32 resp[4] = {}; 262 u8 discard_support; 263 int i; 264 265 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 266 pr_warn("%s: card lacks mandatory SD Status function\n", 267 mmc_hostname(card->host)); 268 return 0; 269 } 270 271 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 272 if (!raw_ssr) 273 return -ENOMEM; 274 275 if (mmc_app_sd_status(card, raw_ssr)) { 276 pr_warn("%s: problem reading SD Status register\n", 277 mmc_hostname(card->host)); 278 kfree(raw_ssr); 279 return 0; 280 } 281 282 for (i = 0; i < 16; i++) 283 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 284 285 kfree(raw_ssr); 286 287 /* 288 * unstuff_bits only works with four u32s so we have to offset the 289 * bitfield positions accordingly. 290 */ 291 au = unstuff_bits(card->raw_ssr, 428 - 384, 4); 292 if (au) { 293 if (au <= 9 || card->scr.sda_spec3) { 294 card->ssr.au = sd_au_size[au]; 295 es = unstuff_bits(card->raw_ssr, 408 - 384, 16); 296 et = unstuff_bits(card->raw_ssr, 402 - 384, 6); 297 if (es && et) { 298 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2); 299 card->ssr.erase_timeout = (et * 1000) / es; 300 card->ssr.erase_offset = eo * 1000; 301 } 302 } else { 303 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 304 mmc_hostname(card->host)); 305 } 306 } 307 308 /* 309 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 310 */ 311 resp[3] = card->raw_ssr[6]; 312 discard_support = unstuff_bits(resp, 313 - 288, 1); 313 card->erase_arg = (card->scr.sda_specx && discard_support) ? 314 SD_DISCARD_ARG : SD_ERASE_ARG; 315 316 return 0; 317 } 318 319 /* 320 * Fetches and decodes switch information 321 */ 322 static int mmc_read_switch(struct mmc_card *card) 323 { 324 int err; 325 u8 *status; 326 327 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 328 return 0; 329 330 if (!(card->csd.cmdclass & CCC_SWITCH)) { 331 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 332 mmc_hostname(card->host)); 333 return 0; 334 } 335 336 status = kmalloc(64, GFP_KERNEL); 337 if (!status) 338 return -ENOMEM; 339 340 /* 341 * Find out the card's support bits with a mode 0 operation. 342 * The argument does not matter, as the support bits do not 343 * change with the arguments. 344 */ 345 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status); 346 if (err) { 347 /* 348 * If the host or the card can't do the switch, 349 * fail more gracefully. 350 */ 351 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 352 goto out; 353 354 pr_warn("%s: problem reading Bus Speed modes\n", 355 mmc_hostname(card->host)); 356 err = 0; 357 358 goto out; 359 } 360 361 if (status[13] & SD_MODE_HIGH_SPEED) 362 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 363 364 if (card->scr.sda_spec3) { 365 card->sw_caps.sd3_bus_mode = status[13]; 366 /* Driver Strengths supported by the card */ 367 card->sw_caps.sd3_drv_type = status[9]; 368 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 369 } 370 371 out: 372 kfree(status); 373 374 return err; 375 } 376 377 /* 378 * Test if the card supports high-speed mode and, if so, switch to it. 379 */ 380 int mmc_sd_switch_hs(struct mmc_card *card) 381 { 382 int err; 383 u8 *status; 384 385 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 386 return 0; 387 388 if (!(card->csd.cmdclass & CCC_SWITCH)) 389 return 0; 390 391 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 392 return 0; 393 394 if (card->sw_caps.hs_max_dtr == 0) 395 return 0; 396 397 status = kmalloc(64, GFP_KERNEL); 398 if (!status) 399 return -ENOMEM; 400 401 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, 402 HIGH_SPEED_BUS_SPEED, status); 403 if (err) 404 goto out; 405 406 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 407 pr_warn("%s: Problem switching card into high-speed mode!\n", 408 mmc_hostname(card->host)); 409 err = 0; 410 } else { 411 err = 1; 412 } 413 414 out: 415 kfree(status); 416 417 return err; 418 } 419 420 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 421 { 422 int card_drv_type, drive_strength, drv_type; 423 int err; 424 425 card->drive_strength = 0; 426 427 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 428 429 drive_strength = mmc_select_drive_strength(card, 430 card->sw_caps.uhs_max_dtr, 431 card_drv_type, &drv_type); 432 433 if (drive_strength) { 434 err = mmc_sd_switch(card, SD_SWITCH_SET, 2, 435 drive_strength, status); 436 if (err) 437 return err; 438 if ((status[15] & 0xF) != drive_strength) { 439 pr_warn("%s: Problem setting drive strength!\n", 440 mmc_hostname(card->host)); 441 return 0; 442 } 443 card->drive_strength = drive_strength; 444 } 445 446 if (drv_type) 447 mmc_set_driver_type(card->host, drv_type); 448 449 return 0; 450 } 451 452 static void sd_update_bus_speed_mode(struct mmc_card *card) 453 { 454 /* 455 * If the host doesn't support any of the UHS-I modes, fallback on 456 * default speed. 457 */ 458 if (!mmc_host_uhs(card->host)) { 459 card->sd_bus_speed = 0; 460 return; 461 } 462 463 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 464 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 465 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 466 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 467 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 468 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 470 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 471 SD_MODE_UHS_SDR50)) { 472 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 473 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 474 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 475 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 476 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 477 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 478 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 479 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 480 SD_MODE_UHS_SDR12)) { 481 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 482 } 483 } 484 485 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 486 { 487 int err; 488 unsigned int timing = 0; 489 490 switch (card->sd_bus_speed) { 491 case UHS_SDR104_BUS_SPEED: 492 timing = MMC_TIMING_UHS_SDR104; 493 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 494 break; 495 case UHS_DDR50_BUS_SPEED: 496 timing = MMC_TIMING_UHS_DDR50; 497 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 498 break; 499 case UHS_SDR50_BUS_SPEED: 500 timing = MMC_TIMING_UHS_SDR50; 501 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 502 break; 503 case UHS_SDR25_BUS_SPEED: 504 timing = MMC_TIMING_UHS_SDR25; 505 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 506 break; 507 case UHS_SDR12_BUS_SPEED: 508 timing = MMC_TIMING_UHS_SDR12; 509 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 510 break; 511 default: 512 return 0; 513 } 514 515 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status); 516 if (err) 517 return err; 518 519 if ((status[16] & 0xF) != card->sd_bus_speed) 520 pr_warn("%s: Problem setting bus speed mode!\n", 521 mmc_hostname(card->host)); 522 else { 523 mmc_set_timing(card->host, timing); 524 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 525 } 526 527 return 0; 528 } 529 530 /* Get host's max current setting at its current voltage */ 531 static u32 sd_get_host_max_current(struct mmc_host *host) 532 { 533 u32 voltage, max_current; 534 535 voltage = 1 << host->ios.vdd; 536 switch (voltage) { 537 case MMC_VDD_165_195: 538 max_current = host->max_current_180; 539 break; 540 case MMC_VDD_29_30: 541 case MMC_VDD_30_31: 542 max_current = host->max_current_300; 543 break; 544 case MMC_VDD_32_33: 545 case MMC_VDD_33_34: 546 max_current = host->max_current_330; 547 break; 548 default: 549 max_current = 0; 550 } 551 552 return max_current; 553 } 554 555 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 556 { 557 int current_limit = SD_SET_CURRENT_NO_CHANGE; 558 int err; 559 u32 max_current; 560 561 /* 562 * Current limit switch is only defined for SDR50, SDR104, and DDR50 563 * bus speed modes. For other bus speed modes, we do not change the 564 * current limit. 565 */ 566 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 567 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 568 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 569 return 0; 570 571 /* 572 * Host has different current capabilities when operating at 573 * different voltages, so find out its max current first. 574 */ 575 max_current = sd_get_host_max_current(card->host); 576 577 /* 578 * We only check host's capability here, if we set a limit that is 579 * higher than the card's maximum current, the card will be using its 580 * maximum current, e.g. if the card's maximum current is 300ma, and 581 * when we set current limit to 200ma, the card will draw 200ma, and 582 * when we set current limit to 400/600/800ma, the card will draw its 583 * maximum 300ma from the host. 584 * 585 * The above is incorrect: if we try to set a current limit that is 586 * not supported by the card, the card can rightfully error out the 587 * attempt, and remain at the default current limit. This results 588 * in a 300mA card being limited to 200mA even though the host 589 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 590 * an iMX6 host. --rmk 591 */ 592 if (max_current >= 800 && 593 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 594 current_limit = SD_SET_CURRENT_LIMIT_800; 595 else if (max_current >= 600 && 596 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 597 current_limit = SD_SET_CURRENT_LIMIT_600; 598 else if (max_current >= 400 && 599 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 600 current_limit = SD_SET_CURRENT_LIMIT_400; 601 else if (max_current >= 200 && 602 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 603 current_limit = SD_SET_CURRENT_LIMIT_200; 604 605 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 606 err = mmc_sd_switch(card, SD_SWITCH_SET, 3, 607 current_limit, status); 608 if (err) 609 return err; 610 611 if (((status[15] >> 4) & 0x0F) != current_limit) 612 pr_warn("%s: Problem setting current limit!\n", 613 mmc_hostname(card->host)); 614 615 } 616 617 return 0; 618 } 619 620 /* 621 * UHS-I specific initialization procedure 622 */ 623 static int mmc_sd_init_uhs_card(struct mmc_card *card) 624 { 625 int err; 626 u8 *status; 627 628 if (!(card->csd.cmdclass & CCC_SWITCH)) 629 return 0; 630 631 status = kmalloc(64, GFP_KERNEL); 632 if (!status) 633 return -ENOMEM; 634 635 /* Set 4-bit bus width */ 636 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 637 if (err) 638 goto out; 639 640 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 641 642 /* 643 * Select the bus speed mode depending on host 644 * and card capability. 645 */ 646 sd_update_bus_speed_mode(card); 647 648 /* Set the driver strength for the card */ 649 err = sd_select_driver_type(card, status); 650 if (err) 651 goto out; 652 653 /* Set current limit for the card */ 654 err = sd_set_current_limit(card, status); 655 if (err) 656 goto out; 657 658 /* Set bus speed mode of the card */ 659 err = sd_set_bus_speed_mode(card, status); 660 if (err) 661 goto out; 662 663 /* 664 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 665 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 666 */ 667 if (!mmc_host_is_spi(card->host) && 668 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 669 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 670 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 671 err = mmc_execute_tuning(card); 672 673 /* 674 * As SD Specifications Part1 Physical Layer Specification 675 * Version 3.01 says, CMD19 tuning is available for unlocked 676 * cards in transfer state of 1.8V signaling mode. The small 677 * difference between v3.00 and 3.01 spec means that CMD19 678 * tuning is also available for DDR50 mode. 679 */ 680 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 681 pr_warn("%s: ddr50 tuning failed\n", 682 mmc_hostname(card->host)); 683 err = 0; 684 } 685 } 686 687 out: 688 kfree(status); 689 690 return err; 691 } 692 693 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 694 card->raw_cid[2], card->raw_cid[3]); 695 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 696 card->raw_csd[2], card->raw_csd[3]); 697 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 698 MMC_DEV_ATTR(ssr, 699 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 700 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 701 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 702 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 703 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 704 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 705 card->raw_ssr[15]); 706 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 707 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 708 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 709 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 710 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 711 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 712 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 713 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 714 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 715 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 716 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 717 718 719 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, 720 char *buf) 721 { 722 struct mmc_card *card = mmc_dev_to_card(dev); 723 struct mmc_host *host = card->host; 724 725 if (card->csd.dsr_imp && host->dsr_req) 726 return sysfs_emit(buf, "0x%x\n", host->dsr); 727 /* return default DSR value */ 728 return sysfs_emit(buf, "0x%x\n", 0x404); 729 } 730 731 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 732 733 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 734 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 735 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 736 737 #define sdio_info_attr(num) \ 738 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 739 { \ 740 struct mmc_card *card = mmc_dev_to_card(dev); \ 741 \ 742 if (num > card->num_info) \ 743 return -ENODATA; \ 744 if (!card->info[num - 1][0]) \ 745 return 0; \ 746 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ 747 } \ 748 static DEVICE_ATTR_RO(info##num) 749 750 sdio_info_attr(1); 751 sdio_info_attr(2); 752 sdio_info_attr(3); 753 sdio_info_attr(4); 754 755 static struct attribute *sd_std_attrs[] = { 756 &dev_attr_vendor.attr, 757 &dev_attr_device.attr, 758 &dev_attr_revision.attr, 759 &dev_attr_info1.attr, 760 &dev_attr_info2.attr, 761 &dev_attr_info3.attr, 762 &dev_attr_info4.attr, 763 &dev_attr_cid.attr, 764 &dev_attr_csd.attr, 765 &dev_attr_scr.attr, 766 &dev_attr_ssr.attr, 767 &dev_attr_date.attr, 768 &dev_attr_erase_size.attr, 769 &dev_attr_preferred_erase_size.attr, 770 &dev_attr_fwrev.attr, 771 &dev_attr_hwrev.attr, 772 &dev_attr_manfid.attr, 773 &dev_attr_name.attr, 774 &dev_attr_oemid.attr, 775 &dev_attr_serial.attr, 776 &dev_attr_ocr.attr, 777 &dev_attr_rca.attr, 778 &dev_attr_dsr.attr, 779 NULL, 780 }; 781 782 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 783 int index) 784 { 785 struct device *dev = kobj_to_dev(kobj); 786 struct mmc_card *card = mmc_dev_to_card(dev); 787 788 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 789 if ((attr == &dev_attr_vendor.attr || 790 attr == &dev_attr_device.attr || 791 attr == &dev_attr_revision.attr || 792 attr == &dev_attr_info1.attr || 793 attr == &dev_attr_info2.attr || 794 attr == &dev_attr_info3.attr || 795 attr == &dev_attr_info4.attr 796 ) &&!mmc_card_sd_combo(card)) 797 return 0; 798 799 return attr->mode; 800 } 801 802 static const struct attribute_group sd_std_group = { 803 .attrs = sd_std_attrs, 804 .is_visible = sd_std_is_visible, 805 }; 806 __ATTRIBUTE_GROUPS(sd_std); 807 808 const struct device_type sd_type = { 809 .groups = sd_std_groups, 810 }; 811 812 /* 813 * Fetch CID from card. 814 */ 815 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 816 { 817 int err; 818 u32 max_current; 819 int retries = 10; 820 u32 pocr = ocr; 821 822 try_again: 823 if (!retries) { 824 ocr &= ~SD_OCR_S18R; 825 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 826 } 827 828 /* 829 * Since we're changing the OCR value, we seem to 830 * need to tell some cards to go back to the idle 831 * state. We wait 1ms to give cards time to 832 * respond. 833 */ 834 mmc_go_idle(host); 835 836 /* 837 * If SD_SEND_IF_COND indicates an SD 2.0 838 * compliant card and we should set bit 30 839 * of the ocr to indicate that we can handle 840 * block-addressed SDHC cards. 841 */ 842 err = mmc_send_if_cond(host, ocr); 843 if (!err) { 844 ocr |= SD_OCR_CCS; 845 /* Set HO2T as well - SDUC card won't respond otherwise */ 846 ocr |= SD_OCR_2T; 847 } 848 849 /* 850 * If the host supports one of UHS-I modes, request the card 851 * to switch to 1.8V signaling level. If the card has failed 852 * repeatedly to switch however, skip this. 853 */ 854 if (retries && mmc_host_uhs(host)) 855 ocr |= SD_OCR_S18R; 856 857 /* 858 * If the host can supply more than 150mA at current voltage, 859 * XPC should be set to 1. 860 */ 861 max_current = sd_get_host_max_current(host); 862 if (max_current > 150) 863 ocr |= SD_OCR_XPC; 864 865 err = mmc_send_app_op_cond(host, ocr, rocr); 866 if (err) 867 return err; 868 869 /* 870 * In case the S18A bit is set in the response, let's start the signal 871 * voltage switch procedure. SPI mode doesn't support CMD11. 872 * Note that, according to the spec, the S18A bit is not valid unless 873 * the CCS bit is set as well. We deliberately deviate from the spec in 874 * regards to this, which allows UHS-I to be supported for SDSC cards. 875 */ 876 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) && 877 rocr && (*rocr & SD_ROCR_S18A)) { 878 err = mmc_set_uhs_voltage(host, pocr); 879 if (err == -EAGAIN) { 880 retries--; 881 goto try_again; 882 } else if (err) { 883 retries = 0; 884 goto try_again; 885 } 886 } 887 888 err = mmc_send_cid(host, cid); 889 return err; 890 } 891 892 int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc) 893 { 894 int err; 895 896 /* 897 * Fetch CSD from card. 898 */ 899 err = mmc_send_csd(card, card->raw_csd); 900 if (err) 901 return err; 902 903 err = mmc_decode_csd(card, is_sduc); 904 if (err) 905 return err; 906 907 return 0; 908 } 909 910 int mmc_sd_get_ro(struct mmc_host *host) 911 { 912 int ro; 913 914 /* 915 * Some systems don't feature a write-protect pin and don't need one. 916 * E.g. because they only have micro-SD card slot. For those systems 917 * assume that the SD card is always read-write. 918 */ 919 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 920 return 0; 921 922 if (!host->ops->get_ro) 923 return -1; 924 925 ro = host->ops->get_ro(host); 926 927 return ro; 928 } 929 930 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 931 bool reinit) 932 { 933 int err; 934 935 if (!reinit) { 936 /* 937 * Fetch SCR from card. 938 */ 939 err = mmc_app_send_scr(card); 940 if (err) 941 return err; 942 943 err = mmc_decode_scr(card); 944 if (err) 945 return err; 946 947 /* 948 * Fetch and process SD Status register. 949 */ 950 err = mmc_read_ssr(card); 951 if (err) 952 return err; 953 954 /* Erase init depends on CSD and SSR */ 955 mmc_init_erase(card); 956 } 957 958 /* 959 * Fetch switch information from card. Note, sd3_bus_mode can change if 960 * voltage switch outcome changes, so do this always. 961 */ 962 err = mmc_read_switch(card); 963 if (err) 964 return err; 965 966 /* 967 * For SPI, enable CRC as appropriate. 968 * This CRC enable is located AFTER the reading of the 969 * card registers because some SDHC cards are not able 970 * to provide valid CRCs for non-512-byte blocks. 971 */ 972 if (mmc_host_is_spi(host)) { 973 err = mmc_spi_set_crc(host, use_spi_crc); 974 if (err) 975 return err; 976 } 977 978 /* 979 * Check if read-only switch is active. 980 */ 981 if (!reinit) { 982 int ro = mmc_sd_get_ro(host); 983 984 if (ro < 0) { 985 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 986 mmc_hostname(host)); 987 } else if (ro > 0) { 988 mmc_card_set_readonly(card); 989 } 990 } 991 992 return 0; 993 } 994 995 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 996 { 997 unsigned max_dtr = (unsigned int)-1; 998 999 if (mmc_card_hs(card)) { 1000 if (max_dtr > card->sw_caps.hs_max_dtr) 1001 max_dtr = card->sw_caps.hs_max_dtr; 1002 } else if (max_dtr > card->csd.max_dtr) { 1003 max_dtr = card->csd.max_dtr; 1004 } 1005 1006 return max_dtr; 1007 } 1008 1009 static bool mmc_sd_card_using_v18(struct mmc_card *card) 1010 { 1011 /* 1012 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1013 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1014 * they can be used to determine if the card has already switched to 1015 * 1.8V signaling. 1016 */ 1017 return card->sw_caps.sd3_bus_mode & 1018 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1019 } 1020 1021 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1022 u8 reg_data) 1023 { 1024 struct mmc_host *host = card->host; 1025 struct mmc_request mrq = {}; 1026 struct mmc_command cmd = {}; 1027 struct mmc_data data = {}; 1028 struct scatterlist sg; 1029 u8 *reg_buf; 1030 1031 reg_buf = kzalloc(512, GFP_KERNEL); 1032 if (!reg_buf) 1033 return -ENOMEM; 1034 1035 mrq.cmd = &cmd; 1036 mrq.data = &data; 1037 1038 /* 1039 * Arguments of CMD49: 1040 * [31:31] MIO (0 = memory). 1041 * [30:27] FNO (function number). 1042 * [26:26] MW - mask write mode (0 = disable). 1043 * [25:18] page number. 1044 * [17:9] offset address. 1045 * [8:0] length (0 = 1 byte). 1046 */ 1047 cmd.arg = fno << 27 | page << 18 | offset << 9; 1048 1049 /* The first byte in the buffer is the data to be written. */ 1050 reg_buf[0] = reg_data; 1051 1052 data.flags = MMC_DATA_WRITE; 1053 data.blksz = 512; 1054 data.blocks = 1; 1055 data.sg = &sg; 1056 data.sg_len = 1; 1057 sg_init_one(&sg, reg_buf, 512); 1058 1059 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1060 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1061 1062 mmc_set_data_timeout(&data, card); 1063 mmc_wait_for_req(host, &mrq); 1064 1065 kfree(reg_buf); 1066 1067 /* 1068 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1069 * after the CMD49. Although, let's leave this to be managed by the 1070 * caller. 1071 */ 1072 1073 if (cmd.error) 1074 return cmd.error; 1075 if (data.error) 1076 return data.error; 1077 1078 return 0; 1079 } 1080 1081 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1082 u16 offset, u16 len, u8 *reg_buf) 1083 { 1084 u32 cmd_args; 1085 1086 /* 1087 * Command arguments of CMD48: 1088 * [31:31] MIO (0 = memory). 1089 * [30:27] FNO (function number). 1090 * [26:26] reserved (0). 1091 * [25:18] page number. 1092 * [17:9] offset address. 1093 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1094 */ 1095 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1096 1097 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1098 cmd_args, reg_buf, 512); 1099 } 1100 1101 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1102 u16 offset) 1103 { 1104 int err; 1105 u8 *reg_buf; 1106 1107 reg_buf = kzalloc(512, GFP_KERNEL); 1108 if (!reg_buf) 1109 return -ENOMEM; 1110 1111 /* Read the extension register for power management function. */ 1112 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1113 if (err) { 1114 pr_warn("%s: error %d reading PM func of ext reg\n", 1115 mmc_hostname(card->host), err); 1116 goto out; 1117 } 1118 1119 /* PM revision consists of 4 bits. */ 1120 card->ext_power.rev = reg_buf[0] & 0xf; 1121 1122 /* Power Off Notification support at bit 4. */ 1123 if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card)) 1124 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1125 1126 /* Power Sustenance support at bit 5. */ 1127 if (reg_buf[1] & BIT(5)) 1128 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1129 1130 /* Power Down Mode support at bit 6. */ 1131 if (reg_buf[1] & BIT(6)) 1132 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1133 1134 card->ext_power.fno = fno; 1135 card->ext_power.page = page; 1136 card->ext_power.offset = offset; 1137 1138 out: 1139 kfree(reg_buf); 1140 return err; 1141 } 1142 1143 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1144 u16 offset) 1145 { 1146 int err; 1147 u8 *reg_buf; 1148 1149 reg_buf = kzalloc(512, GFP_KERNEL); 1150 if (!reg_buf) 1151 return -ENOMEM; 1152 1153 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1154 if (err) { 1155 pr_warn("%s: error %d reading PERF func of ext reg\n", 1156 mmc_hostname(card->host), err); 1157 goto out; 1158 } 1159 1160 /* PERF revision. */ 1161 card->ext_perf.rev = reg_buf[0]; 1162 1163 /* FX_EVENT support at bit 0. */ 1164 if (reg_buf[1] & BIT(0)) 1165 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1166 1167 /* Card initiated self-maintenance support at bit 0. */ 1168 if (reg_buf[2] & BIT(0)) 1169 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1170 1171 /* Host initiated self-maintenance support at bit 1. */ 1172 if (reg_buf[2] & BIT(1)) 1173 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1174 1175 /* Cache support at bit 0. */ 1176 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card)) 1177 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1178 1179 /* Command queue support indicated via queue depth bits (0 to 4). */ 1180 if (reg_buf[6] & 0x1f) 1181 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1182 1183 card->ext_perf.fno = fno; 1184 card->ext_perf.page = page; 1185 card->ext_perf.offset = offset; 1186 1187 out: 1188 kfree(reg_buf); 1189 return err; 1190 } 1191 1192 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1193 u16 *next_ext_addr) 1194 { 1195 u8 num_regs, fno, page; 1196 u16 sfc, offset, ext = *next_ext_addr; 1197 u32 reg_addr; 1198 1199 /* 1200 * Parse only one register set per extension, as that is sufficient to 1201 * support the standard functions. This means another 48 bytes in the 1202 * buffer must be available. 1203 */ 1204 if (ext + 48 > 512) 1205 return -EFAULT; 1206 1207 /* Standard Function Code */ 1208 memcpy(&sfc, &gen_info_buf[ext], 2); 1209 1210 /* Address to the next extension. */ 1211 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1212 1213 /* Number of registers for this extension. */ 1214 num_regs = gen_info_buf[ext + 42]; 1215 1216 /* We support only one register per extension. */ 1217 if (num_regs != 1) 1218 return 0; 1219 1220 /* Extension register address. */ 1221 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1222 1223 /* 9 bits (0 to 8) contains the offset address. */ 1224 offset = reg_addr & 0x1ff; 1225 1226 /* 8 bits (9 to 16) contains the page number. */ 1227 page = reg_addr >> 9 & 0xff ; 1228 1229 /* 4 bits (18 to 21) contains the function number. */ 1230 fno = reg_addr >> 18 & 0xf; 1231 1232 /* Standard Function Code for power management. */ 1233 if (sfc == 0x1) 1234 return sd_parse_ext_reg_power(card, fno, page, offset); 1235 1236 /* Standard Function Code for performance enhancement. */ 1237 if (sfc == 0x2) 1238 return sd_parse_ext_reg_perf(card, fno, page, offset); 1239 1240 return 0; 1241 } 1242 1243 static int sd_read_ext_regs(struct mmc_card *card) 1244 { 1245 int err, i; 1246 u8 num_ext, *gen_info_buf; 1247 u16 rev, len, next_ext_addr; 1248 1249 if (mmc_host_is_spi(card->host)) 1250 return 0; 1251 1252 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1253 return 0; 1254 1255 gen_info_buf = kzalloc(512, GFP_KERNEL); 1256 if (!gen_info_buf) 1257 return -ENOMEM; 1258 1259 /* 1260 * Read 512 bytes of general info, which is found at function number 0, 1261 * at page 0 and with no offset. 1262 */ 1263 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1264 if (err) { 1265 pr_err("%s: error %d reading general info of SD ext reg\n", 1266 mmc_hostname(card->host), err); 1267 goto out; 1268 } 1269 1270 /* General info structure revision. */ 1271 memcpy(&rev, &gen_info_buf[0], 2); 1272 1273 /* Length of general info in bytes. */ 1274 memcpy(&len, &gen_info_buf[2], 2); 1275 1276 /* Number of extensions to be find. */ 1277 num_ext = gen_info_buf[4]; 1278 1279 /* 1280 * We only support revision 0 and limit it to 512 bytes for simplicity. 1281 * No matter what, let's return zero to allow us to continue using the 1282 * card, even if we can't support the features from the SD function 1283 * extensions registers. 1284 */ 1285 if (rev != 0 || len > 512) { 1286 pr_warn("%s: non-supported SD ext reg layout\n", 1287 mmc_hostname(card->host)); 1288 goto out; 1289 } 1290 1291 /* 1292 * Parse the extension registers. The first extension should start 1293 * immediately after the general info header (16 bytes). 1294 */ 1295 next_ext_addr = 16; 1296 for (i = 0; i < num_ext; i++) { 1297 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1298 if (err) { 1299 pr_err("%s: error %d parsing SD ext reg\n", 1300 mmc_hostname(card->host), err); 1301 goto out; 1302 } 1303 } 1304 1305 out: 1306 kfree(gen_info_buf); 1307 return err; 1308 } 1309 1310 static bool sd_cache_enabled(struct mmc_host *host) 1311 { 1312 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1313 } 1314 1315 static int sd_flush_cache(struct mmc_host *host) 1316 { 1317 struct mmc_card *card = host->card; 1318 u8 *reg_buf, fno, page; 1319 u16 offset; 1320 int err; 1321 1322 if (!sd_cache_enabled(host)) 1323 return 0; 1324 1325 reg_buf = kzalloc(512, GFP_KERNEL); 1326 if (!reg_buf) 1327 return -ENOMEM; 1328 1329 /* 1330 * Set Flush Cache at bit 0 in the performance enhancement register at 1331 * 261 bytes offset. 1332 */ 1333 fno = card->ext_perf.fno; 1334 page = card->ext_perf.page; 1335 offset = card->ext_perf.offset + 261; 1336 1337 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1338 if (err) { 1339 pr_warn("%s: error %d writing Cache Flush bit\n", 1340 mmc_hostname(host), err); 1341 goto out; 1342 } 1343 1344 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1345 MMC_BUSY_EXTR_SINGLE); 1346 if (err) 1347 goto out; 1348 1349 /* 1350 * Read the Flush Cache bit. The card shall reset it, to confirm that 1351 * it's has completed the flushing of the cache. 1352 */ 1353 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1354 if (err) { 1355 pr_warn("%s: error %d reading Cache Flush bit\n", 1356 mmc_hostname(host), err); 1357 goto out; 1358 } 1359 1360 if (reg_buf[0] & BIT(0)) 1361 err = -ETIMEDOUT; 1362 out: 1363 kfree(reg_buf); 1364 return err; 1365 } 1366 1367 static int sd_enable_cache(struct mmc_card *card) 1368 { 1369 u8 *reg_buf; 1370 int err; 1371 1372 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1373 1374 reg_buf = kzalloc(512, GFP_KERNEL); 1375 if (!reg_buf) 1376 return -ENOMEM; 1377 1378 /* 1379 * Set Cache Enable at bit 0 in the performance enhancement register at 1380 * 260 bytes offset. 1381 */ 1382 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1383 card->ext_perf.offset + 260, BIT(0)); 1384 if (err) { 1385 pr_warn("%s: error %d writing Cache Enable bit\n", 1386 mmc_hostname(card->host), err); 1387 goto out; 1388 } 1389 1390 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1391 MMC_BUSY_EXTR_SINGLE); 1392 if (!err) 1393 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1394 1395 out: 1396 kfree(reg_buf); 1397 return err; 1398 } 1399 1400 /* 1401 * Handle the detection and initialisation of a card. 1402 * 1403 * In the case of a resume, "oldcard" will contain the card 1404 * we're trying to reinitialise. 1405 */ 1406 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1407 struct mmc_card *oldcard) 1408 { 1409 struct mmc_card *card; 1410 int err; 1411 u32 cid[4]; 1412 u32 rocr = 0; 1413 bool v18_fixup_failed = false; 1414 1415 WARN_ON(!host->claimed); 1416 retry: 1417 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1418 if (err) 1419 return err; 1420 1421 if (oldcard) { 1422 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1423 pr_debug("%s: Perhaps the card was replaced\n", 1424 mmc_hostname(host)); 1425 return -ENOENT; 1426 } 1427 1428 card = oldcard; 1429 } else { 1430 /* 1431 * Allocate card structure. 1432 */ 1433 card = mmc_alloc_card(host, &sd_type); 1434 if (IS_ERR(card)) 1435 return PTR_ERR(card); 1436 1437 card->ocr = ocr; 1438 card->type = MMC_TYPE_SD; 1439 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1440 } 1441 1442 /* 1443 * Call the optional HC's init_card function to handle quirks. 1444 */ 1445 if (host->ops->init_card) 1446 host->ops->init_card(host, card); 1447 1448 /* 1449 * For native busses: get card RCA and quit open drain mode. 1450 */ 1451 if (!mmc_host_is_spi(host)) { 1452 err = mmc_send_relative_addr(host, &card->rca); 1453 if (err) 1454 goto free_card; 1455 } 1456 1457 if (!oldcard) { 1458 u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T; 1459 bool is_sduc = (rocr & sduc_arg) == sduc_arg; 1460 1461 err = mmc_sd_get_csd(card, is_sduc); 1462 if (err) 1463 goto free_card; 1464 1465 mmc_decode_cid(card); 1466 } 1467 1468 /* 1469 * handling only for cards supporting DSR and hosts requesting 1470 * DSR configuration 1471 */ 1472 if (card->csd.dsr_imp && host->dsr_req) 1473 mmc_set_dsr(host); 1474 1475 /* 1476 * Select card, as all following commands rely on that. 1477 */ 1478 if (!mmc_host_is_spi(host)) { 1479 err = mmc_select_card(card); 1480 if (err) 1481 goto free_card; 1482 } 1483 1484 /* Apply quirks prior to card setup */ 1485 mmc_fixup_device(card, mmc_sd_fixups); 1486 1487 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1488 if (err) 1489 goto free_card; 1490 1491 /* 1492 * If the card has not been power cycled, it may still be using 1.8V 1493 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1494 * transfer mode. 1495 */ 1496 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1497 mmc_sd_card_using_v18(card) && 1498 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1499 if (mmc_host_set_uhs_voltage(host) || 1500 mmc_sd_init_uhs_card(card)) { 1501 v18_fixup_failed = true; 1502 mmc_power_cycle(host, ocr); 1503 if (!oldcard) 1504 mmc_remove_card(card); 1505 goto retry; 1506 } 1507 goto cont; 1508 } 1509 1510 /* Initialization sequence for UHS-I cards */ 1511 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1512 err = mmc_sd_init_uhs_card(card); 1513 if (err) 1514 goto free_card; 1515 } else { 1516 /* 1517 * Attempt to change to high-speed (if supported) 1518 */ 1519 err = mmc_sd_switch_hs(card); 1520 if (err > 0) 1521 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1522 else if (err) 1523 goto free_card; 1524 1525 /* 1526 * Set bus speed. 1527 */ 1528 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1529 1530 if (host->ios.timing == MMC_TIMING_SD_HS && 1531 host->ops->prepare_sd_hs_tuning) { 1532 err = host->ops->prepare_sd_hs_tuning(host, card); 1533 if (err) 1534 goto free_card; 1535 } 1536 1537 /* 1538 * Switch to wider bus (if supported). 1539 */ 1540 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1541 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1542 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1543 if (err) 1544 goto free_card; 1545 1546 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1547 } 1548 1549 if (host->ios.timing == MMC_TIMING_SD_HS && 1550 host->ops->execute_sd_hs_tuning) { 1551 err = host->ops->execute_sd_hs_tuning(host, card); 1552 if (err) 1553 goto free_card; 1554 } 1555 } 1556 cont: 1557 if (!oldcard) { 1558 /* Read/parse the extension registers. */ 1559 err = sd_read_ext_regs(card); 1560 if (err) 1561 goto free_card; 1562 } 1563 1564 /* Enable internal SD cache if supported. */ 1565 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1566 err = sd_enable_cache(card); 1567 if (err) 1568 goto free_card; 1569 } 1570 1571 if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) { 1572 err = host->cqe_ops->cqe_enable(host, card); 1573 if (!err) { 1574 host->cqe_enabled = true; 1575 host->hsq_enabled = true; 1576 pr_info("%s: Host Software Queue enabled\n", 1577 mmc_hostname(host)); 1578 } 1579 } 1580 1581 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1582 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1583 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1584 mmc_hostname(host)); 1585 err = -EINVAL; 1586 goto free_card; 1587 } 1588 1589 host->card = card; 1590 return 0; 1591 1592 free_card: 1593 if (!oldcard) 1594 mmc_remove_card(card); 1595 1596 return err; 1597 } 1598 1599 /* 1600 * Host is being removed. Free up the current card. 1601 */ 1602 static void mmc_sd_remove(struct mmc_host *host) 1603 { 1604 mmc_remove_card(host->card); 1605 host->card = NULL; 1606 } 1607 1608 /* 1609 * Card detection - card is alive. 1610 */ 1611 static int mmc_sd_alive(struct mmc_host *host) 1612 { 1613 return mmc_send_status(host->card, NULL); 1614 } 1615 1616 /* 1617 * Card detection callback from host. 1618 */ 1619 static void mmc_sd_detect(struct mmc_host *host) 1620 { 1621 int err; 1622 1623 mmc_get_card(host->card, NULL); 1624 1625 /* 1626 * Just check if our card has been removed. 1627 */ 1628 err = _mmc_detect_card_removed(host); 1629 1630 mmc_put_card(host->card, NULL); 1631 1632 if (err) { 1633 mmc_sd_remove(host); 1634 1635 mmc_claim_host(host); 1636 mmc_detach_bus(host); 1637 mmc_power_off(host); 1638 mmc_release_host(host); 1639 } 1640 } 1641 1642 static int sd_can_poweroff_notify(struct mmc_card *card) 1643 { 1644 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1645 } 1646 1647 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1648 { 1649 struct sd_busy_data *data = cb_data; 1650 struct mmc_card *card = data->card; 1651 int err; 1652 1653 /* 1654 * Read the status register for the power management function. It's at 1655 * one byte offset and is one byte long. The Power Off Notification 1656 * Ready is bit 0. 1657 */ 1658 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1659 card->ext_power.offset + 1, 1, data->reg_buf); 1660 if (err) { 1661 pr_warn("%s: error %d reading status reg of PM func\n", 1662 mmc_hostname(card->host), err); 1663 return err; 1664 } 1665 1666 *busy = !(data->reg_buf[0] & BIT(0)); 1667 return 0; 1668 } 1669 1670 static int sd_poweroff_notify(struct mmc_card *card) 1671 { 1672 struct sd_busy_data cb_data; 1673 u8 *reg_buf; 1674 int err; 1675 1676 reg_buf = kzalloc(512, GFP_KERNEL); 1677 if (!reg_buf) 1678 return -ENOMEM; 1679 1680 /* 1681 * Set the Power Off Notification bit in the power management settings 1682 * register at 2 bytes offset. 1683 */ 1684 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1685 card->ext_power.offset + 2, BIT(0)); 1686 if (err) { 1687 pr_warn("%s: error %d writing Power Off Notify bit\n", 1688 mmc_hostname(card->host), err); 1689 goto out; 1690 } 1691 1692 /* Find out when the command is completed. */ 1693 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1694 MMC_BUSY_EXTR_SINGLE); 1695 if (err) 1696 goto out; 1697 1698 cb_data.card = card; 1699 cb_data.reg_buf = reg_buf; 1700 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1701 &sd_busy_poweroff_notify_cb, &cb_data); 1702 1703 out: 1704 kfree(reg_buf); 1705 return err; 1706 } 1707 1708 static int _mmc_sd_suspend(struct mmc_host *host) 1709 { 1710 struct mmc_card *card = host->card; 1711 int err = 0; 1712 1713 mmc_claim_host(host); 1714 1715 if (mmc_card_suspended(card)) 1716 goto out; 1717 1718 if (sd_can_poweroff_notify(card)) 1719 err = sd_poweroff_notify(card); 1720 else if (!mmc_host_is_spi(host)) 1721 err = mmc_deselect_cards(host); 1722 1723 if (!err) { 1724 mmc_power_off(host); 1725 mmc_card_set_suspended(card); 1726 } 1727 1728 out: 1729 mmc_release_host(host); 1730 return err; 1731 } 1732 1733 /* 1734 * Callback for suspend 1735 */ 1736 static int mmc_sd_suspend(struct mmc_host *host) 1737 { 1738 int err; 1739 1740 err = _mmc_sd_suspend(host); 1741 if (!err) { 1742 pm_runtime_disable(&host->card->dev); 1743 pm_runtime_set_suspended(&host->card->dev); 1744 } 1745 1746 return err; 1747 } 1748 1749 /* 1750 * This function tries to determine if the same card is still present 1751 * and, if so, restore all state to it. 1752 */ 1753 static int _mmc_sd_resume(struct mmc_host *host) 1754 { 1755 int err = 0; 1756 1757 mmc_claim_host(host); 1758 1759 if (!mmc_card_suspended(host->card)) 1760 goto out; 1761 1762 mmc_power_up(host, host->card->ocr); 1763 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1764 mmc_card_clr_suspended(host->card); 1765 1766 out: 1767 mmc_release_host(host); 1768 return err; 1769 } 1770 1771 /* 1772 * Callback for resume 1773 */ 1774 static int mmc_sd_resume(struct mmc_host *host) 1775 { 1776 pm_runtime_enable(&host->card->dev); 1777 return 0; 1778 } 1779 1780 /* 1781 * Callback for runtime_suspend. 1782 */ 1783 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1784 { 1785 int err; 1786 1787 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1788 return 0; 1789 1790 err = _mmc_sd_suspend(host); 1791 if (err) 1792 pr_err("%s: error %d doing aggressive suspend\n", 1793 mmc_hostname(host), err); 1794 1795 return err; 1796 } 1797 1798 /* 1799 * Callback for runtime_resume. 1800 */ 1801 static int mmc_sd_runtime_resume(struct mmc_host *host) 1802 { 1803 int err; 1804 1805 err = _mmc_sd_resume(host); 1806 if (err && err != -ENOMEDIUM) 1807 pr_err("%s: error %d doing runtime resume\n", 1808 mmc_hostname(host), err); 1809 1810 return 0; 1811 } 1812 1813 static int mmc_sd_hw_reset(struct mmc_host *host) 1814 { 1815 mmc_power_cycle(host, host->card->ocr); 1816 return mmc_sd_init_card(host, host->card->ocr, host->card); 1817 } 1818 1819 static const struct mmc_bus_ops mmc_sd_ops = { 1820 .remove = mmc_sd_remove, 1821 .detect = mmc_sd_detect, 1822 .runtime_suspend = mmc_sd_runtime_suspend, 1823 .runtime_resume = mmc_sd_runtime_resume, 1824 .suspend = mmc_sd_suspend, 1825 .resume = mmc_sd_resume, 1826 .alive = mmc_sd_alive, 1827 .shutdown = mmc_sd_suspend, 1828 .hw_reset = mmc_sd_hw_reset, 1829 .cache_enabled = sd_cache_enabled, 1830 .flush_cache = sd_flush_cache, 1831 }; 1832 1833 /* 1834 * Starting point for SD card init. 1835 */ 1836 int mmc_attach_sd(struct mmc_host *host) 1837 { 1838 int err; 1839 u32 ocr, rocr; 1840 1841 WARN_ON(!host->claimed); 1842 1843 err = mmc_send_app_op_cond(host, 0, &ocr); 1844 if (err) 1845 return err; 1846 1847 mmc_attach_bus(host, &mmc_sd_ops); 1848 if (host->ocr_avail_sd) 1849 host->ocr_avail = host->ocr_avail_sd; 1850 1851 /* 1852 * We need to get OCR a different way for SPI. 1853 */ 1854 if (mmc_host_is_spi(host)) { 1855 mmc_go_idle(host); 1856 1857 err = mmc_spi_read_ocr(host, 0, &ocr); 1858 if (err) 1859 goto err; 1860 } 1861 1862 /* 1863 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1864 * these bits as being in-valid and especially also bit7. 1865 */ 1866 ocr &= ~0x7FFF; 1867 1868 rocr = mmc_select_voltage(host, ocr); 1869 1870 /* 1871 * Can we support the voltage(s) of the card(s)? 1872 */ 1873 if (!rocr) { 1874 err = -EINVAL; 1875 goto err; 1876 } 1877 1878 /* 1879 * Detect and init the card. 1880 */ 1881 err = mmc_sd_init_card(host, rocr, NULL); 1882 if (err) 1883 goto err; 1884 1885 mmc_release_host(host); 1886 err = mmc_add_card(host->card); 1887 if (err) 1888 goto remove_card; 1889 1890 mmc_claim_host(host); 1891 return 0; 1892 1893 remove_card: 1894 mmc_remove_card(host->card); 1895 host->card = NULL; 1896 mmc_claim_host(host); 1897 err: 1898 mmc_detach_bus(host); 1899 1900 pr_err("%s: error %d whilst initialising SD card\n", 1901 mmc_hostname(host), err); 1902 1903 return err; 1904 } 1905