xref: /linux/drivers/mmc/core/sd.c (revision 509d3f45847627f4c5cdce004c3ec79262b5239c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/sd.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/string.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/random.h>
17 #include <linux/scatterlist.h>
18 #include <linux/sysfs.h>
19 
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/mmc.h>
23 #include <linux/mmc/sd.h>
24 
25 #include "core.h"
26 #include "card.h"
27 #include "host.h"
28 #include "bus.h"
29 #include "mmc_ops.h"
30 #include "quirks.h"
31 #include "sd.h"
32 #include "sd_ops.h"
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int taac_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int taac_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 static const unsigned int sd_au_size[] = {
54 	0,		SZ_16K / 512,		SZ_32K / 512,	SZ_64K / 512,
55 	SZ_128K / 512,	SZ_256K / 512,		SZ_512K / 512,	SZ_1M / 512,
56 	SZ_2M / 512,	SZ_4M / 512,		SZ_8M / 512,	(SZ_8M + SZ_4M) / 512,
57 	SZ_16M / 512,	(SZ_16M + SZ_8M) / 512,	SZ_32M / 512,	SZ_64M / 512,
58 };
59 
60 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
61 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
62 
63 struct sd_busy_data {
64 	struct mmc_card *card;
65 	u8 *reg_buf;
66 };
67 
68 /*
69  * Given the decoded CSD structure, decode the raw CID to our CID structure.
70  */
71 void mmc_decode_cid(struct mmc_card *card)
72 {
73 	u32 *resp = card->raw_cid;
74 
75 	/*
76 	 * Add the raw card ID (cid) data to the entropy pool. It doesn't
77 	 * matter that not all of it is unique, it's just bonus entropy.
78 	 */
79 	add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
80 
81 	/*
82 	 * SD doesn't currently have a version field so we will
83 	 * have to assume we can parse this.
84 	 */
85 	card->cid.manfid		= unstuff_bits(resp, 120, 8);
86 	card->cid.oemid			= unstuff_bits(resp, 104, 16);
87 	card->cid.prod_name[0]		= unstuff_bits(resp, 96, 8);
88 	card->cid.prod_name[1]		= unstuff_bits(resp, 88, 8);
89 	card->cid.prod_name[2]		= unstuff_bits(resp, 80, 8);
90 	card->cid.prod_name[3]		= unstuff_bits(resp, 72, 8);
91 	card->cid.prod_name[4]		= unstuff_bits(resp, 64, 8);
92 	card->cid.hwrev			= unstuff_bits(resp, 60, 4);
93 	card->cid.fwrev			= unstuff_bits(resp, 56, 4);
94 	card->cid.serial		= unstuff_bits(resp, 24, 32);
95 	card->cid.year			= unstuff_bits(resp, 12, 8);
96 	card->cid.month			= unstuff_bits(resp, 8, 4);
97 
98 	card->cid.year += 2000; /* SD cards year offset */
99 
100 	/* some product names may include trailing whitespace */
101 	strim(card->cid.prod_name);
102 }
103 
104 /*
105  * Given a 128-bit response, decode to our card CSD structure.
106  */
107 static int mmc_decode_csd(struct mmc_card *card, bool is_sduc)
108 {
109 	struct mmc_csd *csd = &card->csd;
110 	unsigned int e, m, csd_struct;
111 	u32 *resp = card->raw_csd;
112 
113 	csd_struct = unstuff_bits(resp, 126, 2);
114 
115 	switch (csd_struct) {
116 	case 0:
117 		m = unstuff_bits(resp, 115, 4);
118 		e = unstuff_bits(resp, 112, 3);
119 		csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
120 		csd->taac_clks	 = unstuff_bits(resp, 104, 8) * 100;
121 
122 		m = unstuff_bits(resp, 99, 4);
123 		e = unstuff_bits(resp, 96, 3);
124 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
125 		csd->cmdclass	  = unstuff_bits(resp, 84, 12);
126 
127 		e = unstuff_bits(resp, 47, 3);
128 		m = unstuff_bits(resp, 62, 12);
129 		csd->capacity	  = (1 + m) << (e + 2);
130 
131 		csd->read_blkbits = unstuff_bits(resp, 80, 4);
132 		csd->read_partial = unstuff_bits(resp, 79, 1);
133 		csd->write_misalign = unstuff_bits(resp, 78, 1);
134 		csd->read_misalign = unstuff_bits(resp, 77, 1);
135 		csd->dsr_imp = unstuff_bits(resp, 76, 1);
136 		csd->r2w_factor = unstuff_bits(resp, 26, 3);
137 		csd->write_blkbits = unstuff_bits(resp, 22, 4);
138 		csd->write_partial = unstuff_bits(resp, 21, 1);
139 
140 		if (unstuff_bits(resp, 46, 1)) {
141 			csd->erase_size = 1;
142 		} else if (csd->write_blkbits >= 9) {
143 			csd->erase_size = unstuff_bits(resp, 39, 7) + 1;
144 			csd->erase_size <<= csd->write_blkbits - 9;
145 		}
146 
147 		if (unstuff_bits(resp, 13, 1))
148 			mmc_card_set_readonly(card);
149 		break;
150 	case 1:
151 	case 2:
152 		/*
153 		 * This is a block-addressed SDHC, SDXC or SDUC card.
154 		 * Most interesting fields are unused and have fixed
155 		 * values. To avoid getting tripped by buggy cards,
156 		 * we assume those fixed values ourselves.
157 		 */
158 		mmc_card_set_blockaddr(card);
159 
160 		csd->taac_ns	 = 0; /* Unused */
161 		csd->taac_clks	 = 0; /* Unused */
162 
163 		m = unstuff_bits(resp, 99, 4);
164 		e = unstuff_bits(resp, 96, 3);
165 		csd->max_dtr	  = tran_exp[e] * tran_mant[m];
166 		csd->cmdclass	  = unstuff_bits(resp, 84, 12);
167 
168 		if (csd_struct == 1)
169 			m = unstuff_bits(resp, 48, 22);
170 		else
171 			m = unstuff_bits(resp, 48, 28);
172 		csd->c_size = m;
173 
174 		if (csd->c_size >= 0x400000 && is_sduc)
175 			mmc_card_set_ult_capacity(card);
176 		else if (csd->c_size >= 0xFFFF)
177 			mmc_card_set_ext_capacity(card);
178 
179 		csd->capacity     = (1 + (typeof(sector_t))m) << 10;
180 
181 		csd->read_blkbits = 9;
182 		csd->read_partial = 0;
183 		csd->write_misalign = 0;
184 		csd->read_misalign = 0;
185 		csd->r2w_factor = 4; /* Unused */
186 		csd->write_blkbits = 9;
187 		csd->write_partial = 0;
188 		csd->erase_size = 1;
189 
190 		if (unstuff_bits(resp, 13, 1))
191 			mmc_card_set_readonly(card);
192 		break;
193 	default:
194 		pr_err("%s: unrecognised CSD structure version %d\n",
195 			mmc_hostname(card->host), csd_struct);
196 		return -EINVAL;
197 	}
198 
199 	card->erase_size = csd->erase_size;
200 
201 	return 0;
202 }
203 
204 /*
205  * Given a 64-bit response, decode to our card SCR structure.
206  */
207 int mmc_decode_scr(struct mmc_card *card)
208 {
209 	struct sd_scr *scr = &card->scr;
210 	unsigned int scr_struct;
211 	u32 resp[4];
212 
213 	resp[3] = card->raw_scr[1];
214 	resp[2] = card->raw_scr[0];
215 
216 	scr_struct = unstuff_bits(resp, 60, 4);
217 	if (scr_struct != 0) {
218 		pr_err("%s: unrecognised SCR structure version %d\n",
219 			mmc_hostname(card->host), scr_struct);
220 		return -EINVAL;
221 	}
222 
223 	scr->sda_vsn = unstuff_bits(resp, 56, 4);
224 	scr->bus_widths = unstuff_bits(resp, 48, 4);
225 	if (scr->sda_vsn == SCR_SPEC_VER_2)
226 		/* Check if Physical Layer Spec v3.0 is supported */
227 		scr->sda_spec3 = unstuff_bits(resp, 47, 1);
228 
229 	if (scr->sda_spec3) {
230 		scr->sda_spec4 = unstuff_bits(resp, 42, 1);
231 		scr->sda_specx = unstuff_bits(resp, 38, 4);
232 	}
233 
234 	if (unstuff_bits(resp, 55, 1))
235 		card->erased_byte = 0xFF;
236 	else
237 		card->erased_byte = 0x0;
238 
239 	if (scr->sda_spec4)
240 		scr->cmds = unstuff_bits(resp, 32, 4);
241 	else if (scr->sda_spec3)
242 		scr->cmds = unstuff_bits(resp, 32, 2);
243 
244 	/* SD Spec says: any SD Card shall set at least bits 0 and 2 */
245 	if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
246 	    !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
247 		pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 /*
255  * Fetch and process SD Status register.
256  */
257 static int mmc_read_ssr(struct mmc_card *card)
258 {
259 	unsigned int au, es, et, eo;
260 	__be32 *raw_ssr;
261 	u32 resp[4] = {};
262 	u8 discard_support;
263 	int i;
264 
265 	if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
266 		pr_warn("%s: card lacks mandatory SD Status function\n",
267 			mmc_hostname(card->host));
268 		return 0;
269 	}
270 
271 	raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
272 	if (!raw_ssr)
273 		return -ENOMEM;
274 
275 	if (mmc_app_sd_status(card, raw_ssr)) {
276 		pr_warn("%s: problem reading SD Status register\n",
277 			mmc_hostname(card->host));
278 		kfree(raw_ssr);
279 		return 0;
280 	}
281 
282 	for (i = 0; i < 16; i++)
283 		card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
284 
285 	kfree(raw_ssr);
286 
287 	/*
288 	 * unstuff_bits only works with four u32s so we have to offset the
289 	 * bitfield positions accordingly.
290 	 */
291 	au = unstuff_bits(card->raw_ssr, 428 - 384, 4);
292 	if (au) {
293 		if (au <= 9 || card->scr.sda_spec3) {
294 			card->ssr.au = sd_au_size[au];
295 			es = unstuff_bits(card->raw_ssr, 408 - 384, 16);
296 			et = unstuff_bits(card->raw_ssr, 402 - 384, 6);
297 			if (es && et) {
298 				eo = unstuff_bits(card->raw_ssr, 400 - 384, 2);
299 				card->ssr.erase_timeout = (et * 1000) / es;
300 				card->ssr.erase_offset = eo * 1000;
301 			}
302 		} else {
303 			pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
304 				mmc_hostname(card->host));
305 		}
306 	}
307 
308 	/*
309 	 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
310 	 */
311 	resp[3] = card->raw_ssr[6];
312 	discard_support = unstuff_bits(resp, 313 - 288, 1);
313 	card->erase_arg = (card->scr.sda_specx && discard_support) ?
314 			    SD_DISCARD_ARG : SD_ERASE_ARG;
315 
316 	return 0;
317 }
318 
319 /*
320  * Fetches and decodes switch information
321  */
322 static int mmc_read_switch(struct mmc_card *card)
323 {
324 	int err;
325 	u8 *status;
326 
327 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
328 		return 0;
329 
330 	if (!(card->csd.cmdclass & CCC_SWITCH)) {
331 		pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
332 			mmc_hostname(card->host));
333 		return 0;
334 	}
335 
336 	status = kmalloc(64, GFP_KERNEL);
337 	if (!status)
338 		return -ENOMEM;
339 
340 	/*
341 	 * Find out the card's support bits with a mode 0 operation.
342 	 * The argument does not matter, as the support bits do not
343 	 * change with the arguments.
344 	 */
345 	err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status);
346 	if (err) {
347 		/*
348 		 * If the host or the card can't do the switch,
349 		 * fail more gracefully.
350 		 */
351 		if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
352 			goto out;
353 
354 		pr_warn("%s: problem reading Bus Speed modes\n",
355 			mmc_hostname(card->host));
356 		err = 0;
357 
358 		goto out;
359 	}
360 
361 	if (status[13] & SD_MODE_HIGH_SPEED)
362 		card->sw_caps.hs_max_dtr = card->host->max_sd_hs_hz ?: HIGH_SPEED_MAX_DTR;
363 
364 	if (card->scr.sda_spec3) {
365 		card->sw_caps.sd3_bus_mode = status[13];
366 		/* Driver Strengths supported by the card */
367 		card->sw_caps.sd3_drv_type = status[9];
368 		card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
369 	}
370 
371 out:
372 	kfree(status);
373 
374 	return err;
375 }
376 
377 /*
378  * Test if the card supports high-speed mode and, if so, switch to it.
379  */
380 int mmc_sd_switch_hs(struct mmc_card *card)
381 {
382 	int err;
383 	u8 *status;
384 
385 	if (card->scr.sda_vsn < SCR_SPEC_VER_1)
386 		return 0;
387 
388 	if (!(card->csd.cmdclass & CCC_SWITCH))
389 		return 0;
390 
391 	if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
392 		return 0;
393 
394 	if (card->sw_caps.hs_max_dtr == 0)
395 		return 0;
396 
397 	status = kmalloc(64, GFP_KERNEL);
398 	if (!status)
399 		return -ENOMEM;
400 
401 	err = mmc_sd_switch(card, SD_SWITCH_SET, 0,
402 			HIGH_SPEED_BUS_SPEED, status);
403 	if (err)
404 		goto out;
405 
406 	if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
407 		pr_warn("%s: Problem switching card into high-speed mode!\n",
408 			mmc_hostname(card->host));
409 		err = 0;
410 	} else {
411 		err = 1;
412 	}
413 
414 out:
415 	kfree(status);
416 
417 	return err;
418 }
419 
420 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
421 {
422 	int card_drv_type, drive_strength, drv_type;
423 	int err;
424 
425 	card->drive_strength = 0;
426 
427 	card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
428 
429 	drive_strength = mmc_select_drive_strength(card,
430 						   card->sw_caps.uhs_max_dtr,
431 						   card_drv_type, &drv_type);
432 
433 	if (drive_strength) {
434 		err = mmc_sd_switch(card, SD_SWITCH_SET, 2,
435 				drive_strength, status);
436 		if (err)
437 			return err;
438 		if ((status[15] & 0xF) != drive_strength) {
439 			pr_warn("%s: Problem setting drive strength!\n",
440 				mmc_hostname(card->host));
441 			return 0;
442 		}
443 		card->drive_strength = drive_strength;
444 	}
445 
446 	if (drv_type)
447 		mmc_set_driver_type(card->host, drv_type);
448 
449 	return 0;
450 }
451 
452 static void sd_update_bus_speed_mode(struct mmc_card *card)
453 {
454 	/*
455 	 * If the host doesn't support any of the UHS-I modes, fallback on
456 	 * default speed.
457 	 */
458 	if (!mmc_host_can_uhs(card->host)) {
459 		card->sd_bus_speed = 0;
460 		return;
461 	}
462 
463 	if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
464 	    (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
465 			card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
466 	} else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
467 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
468 			card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
469 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 		    MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
471 		    SD_MODE_UHS_SDR50)) {
472 			card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
473 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
474 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
475 		   (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
476 			card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
477 	} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
478 		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
479 		    MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
480 		    SD_MODE_UHS_SDR12)) {
481 			card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
482 	}
483 }
484 
485 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
486 {
487 	int err;
488 	unsigned int timing = 0;
489 
490 	switch (card->sd_bus_speed) {
491 	case UHS_SDR104_BUS_SPEED:
492 		timing = MMC_TIMING_UHS_SDR104;
493 		card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
494 		break;
495 	case UHS_DDR50_BUS_SPEED:
496 		timing = MMC_TIMING_UHS_DDR50;
497 		card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
498 		break;
499 	case UHS_SDR50_BUS_SPEED:
500 		timing = MMC_TIMING_UHS_SDR50;
501 		card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
502 		break;
503 	case UHS_SDR25_BUS_SPEED:
504 		timing = MMC_TIMING_UHS_SDR25;
505 		card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
506 		break;
507 	case UHS_SDR12_BUS_SPEED:
508 		timing = MMC_TIMING_UHS_SDR12;
509 		card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
510 		break;
511 	default:
512 		return 0;
513 	}
514 
515 	err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status);
516 	if (err)
517 		return err;
518 
519 	if ((status[16] & 0xF) != card->sd_bus_speed)
520 		pr_warn("%s: Problem setting bus speed mode!\n",
521 			mmc_hostname(card->host));
522 	else {
523 		mmc_set_timing(card->host, timing);
524 		mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
525 	}
526 
527 	return 0;
528 }
529 
530 /* Get host's max current setting at its current voltage */
531 static u32 sd_get_host_max_current(struct mmc_host *host)
532 {
533 	u32 voltage, max_current;
534 
535 	voltage = 1 << host->ios.vdd;
536 	switch (voltage) {
537 	case MMC_VDD_165_195:
538 		max_current = host->max_current_180;
539 		break;
540 	case MMC_VDD_29_30:
541 	case MMC_VDD_30_31:
542 		max_current = host->max_current_300;
543 		break;
544 	case MMC_VDD_32_33:
545 	case MMC_VDD_33_34:
546 		max_current = host->max_current_330;
547 		break;
548 	default:
549 		max_current = 0;
550 	}
551 
552 	return max_current;
553 }
554 
555 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
556 {
557 	int current_limit = SD_SET_CURRENT_LIMIT_200;
558 	int err;
559 	u32 max_current;
560 
561 	/*
562 	 * Current limit switch is only defined for SDR50, SDR104, and DDR50
563 	 * bus speed modes. For other bus speed modes, we do not change the
564 	 * current limit.
565 	 */
566 	if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
567 	    (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
568 	    (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
569 		return 0;
570 
571 	/*
572 	 * Host has different current capabilities when operating at
573 	 * different voltages, so find out its max current first.
574 	 */
575 	max_current = sd_get_host_max_current(card->host);
576 
577 	/*
578 	 * We only check host's capability here, if we set a limit that is
579 	 * higher than the card's maximum current, the card will be using its
580 	 * maximum current, e.g. if the card's maximum current is 300ma, and
581 	 * when we set current limit to 200ma, the card will draw 200ma, and
582 	 * when we set current limit to 400/600/800ma, the card will draw its
583 	 * maximum 300ma from the host.
584 	 *
585 	 * The above is incorrect: if we try to set a current limit that is
586 	 * not supported by the card, the card can rightfully error out the
587 	 * attempt, and remain at the default current limit.  This results
588 	 * in a 300mA card being limited to 200mA even though the host
589 	 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
590 	 * an iMX6 host. --rmk
591 	 */
592 	if (max_current >= 800 &&
593 	    card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
594 		current_limit = SD_SET_CURRENT_LIMIT_800;
595 	else if (max_current >= 600 &&
596 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
597 		current_limit = SD_SET_CURRENT_LIMIT_600;
598 	else if (max_current >= 400 &&
599 		 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
600 		current_limit = SD_SET_CURRENT_LIMIT_400;
601 
602 	if (current_limit != SD_SET_CURRENT_LIMIT_200) {
603 		err = mmc_sd_switch(card, SD_SWITCH_SET, 3,
604 				current_limit, status);
605 		if (err)
606 			return err;
607 
608 		if (((status[15] >> 4) & 0x0F) != current_limit)
609 			pr_warn("%s: Problem setting current limit!\n",
610 				mmc_hostname(card->host));
611 
612 	}
613 
614 	return 0;
615 }
616 
617 /*
618  * Determine if the card should tune or not.
619  */
620 static bool mmc_sd_use_tuning(struct mmc_card *card)
621 {
622 	/*
623 	 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
624 	 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
625 	 */
626 	if (mmc_host_is_spi(card->host))
627 		return false;
628 
629 	switch (card->host->ios.timing) {
630 	case MMC_TIMING_UHS_SDR50:
631 	case MMC_TIMING_UHS_SDR104:
632 		return true;
633 	case MMC_TIMING_UHS_DDR50:
634 		return !mmc_card_no_uhs_ddr50_tuning(card);
635 	}
636 
637 	return false;
638 }
639 
640 /*
641  * UHS-I specific initialization procedure
642  */
643 static int mmc_sd_init_uhs_card(struct mmc_card *card)
644 {
645 	int err;
646 	u8 *status;
647 
648 	if (!(card->csd.cmdclass & CCC_SWITCH))
649 		return 0;
650 
651 	status = kmalloc(64, GFP_KERNEL);
652 	if (!status)
653 		return -ENOMEM;
654 
655 	/* Set 4-bit bus width */
656 	err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
657 	if (err)
658 		goto out;
659 
660 	mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
661 
662 	/*
663 	 * Select the bus speed mode depending on host
664 	 * and card capability.
665 	 */
666 	sd_update_bus_speed_mode(card);
667 
668 	/* Set the driver strength for the card */
669 	err = sd_select_driver_type(card, status);
670 	if (err)
671 		goto out;
672 
673 	/* Set current limit for the card */
674 	err = sd_set_current_limit(card, status);
675 	if (err)
676 		goto out;
677 
678 	/* Set bus speed mode of the card */
679 	err = sd_set_bus_speed_mode(card, status);
680 	if (err)
681 		goto out;
682 
683 	if (mmc_sd_use_tuning(card)) {
684 		err = mmc_execute_tuning(card);
685 
686 		/*
687 		 * As SD Specifications Part1 Physical Layer Specification
688 		 * Version 3.01 says, CMD19 tuning is available for unlocked
689 		 * cards in transfer state of 1.8V signaling mode. The small
690 		 * difference between v3.00 and 3.01 spec means that CMD19
691 		 * tuning is also available for DDR50 mode.
692 		 */
693 		if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
694 			pr_warn("%s: ddr50 tuning failed\n",
695 				mmc_hostname(card->host));
696 			err = 0;
697 		}
698 	}
699 
700 out:
701 	kfree(status);
702 
703 	return err;
704 }
705 
706 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
707 	card->raw_cid[2], card->raw_cid[3]);
708 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
709 	card->raw_csd[2], card->raw_csd[3]);
710 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
711 MMC_DEV_ATTR(ssr,
712 	"%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
713 		card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
714 		card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
715 		card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
716 		card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
717 		card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
718 		card->raw_ssr[15]);
719 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
720 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
721 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
722 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
723 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
724 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
725 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
726 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
727 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
728 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
729 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
730 
731 
732 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
733 			    char *buf)
734 {
735 	struct mmc_card *card = mmc_dev_to_card(dev);
736 	struct mmc_host *host = card->host;
737 
738 	if (card->csd.dsr_imp && host->dsr_req)
739 		return sysfs_emit(buf, "0x%x\n", host->dsr);
740 	/* return default DSR value */
741 	return sysfs_emit(buf, "0x%x\n", 0x404);
742 }
743 
744 static DEVICE_ATTR(dsr, 0444, mmc_dsr_show, NULL);
745 
746 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
747 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
748 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
749 
750 #define sdio_info_attr(num)									\
751 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf)	\
752 {												\
753 	struct mmc_card *card = mmc_dev_to_card(dev);						\
754 												\
755 	if (num > card->num_info)								\
756 		return -ENODATA;								\
757 	if (!card->info[num - 1][0])								\
758 		return 0;									\
759 	return sysfs_emit(buf, "%s\n", card->info[num - 1]);					\
760 }												\
761 static DEVICE_ATTR_RO(info##num)
762 
763 sdio_info_attr(1);
764 sdio_info_attr(2);
765 sdio_info_attr(3);
766 sdio_info_attr(4);
767 
768 static struct attribute *sd_std_attrs[] = {
769 	&dev_attr_vendor.attr,
770 	&dev_attr_device.attr,
771 	&dev_attr_revision.attr,
772 	&dev_attr_info1.attr,
773 	&dev_attr_info2.attr,
774 	&dev_attr_info3.attr,
775 	&dev_attr_info4.attr,
776 	&dev_attr_cid.attr,
777 	&dev_attr_csd.attr,
778 	&dev_attr_scr.attr,
779 	&dev_attr_ssr.attr,
780 	&dev_attr_date.attr,
781 	&dev_attr_erase_size.attr,
782 	&dev_attr_preferred_erase_size.attr,
783 	&dev_attr_fwrev.attr,
784 	&dev_attr_hwrev.attr,
785 	&dev_attr_manfid.attr,
786 	&dev_attr_name.attr,
787 	&dev_attr_oemid.attr,
788 	&dev_attr_serial.attr,
789 	&dev_attr_ocr.attr,
790 	&dev_attr_rca.attr,
791 	&dev_attr_dsr.attr,
792 	NULL,
793 };
794 
795 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
796 				 int index)
797 {
798 	struct device *dev = kobj_to_dev(kobj);
799 	struct mmc_card *card = mmc_dev_to_card(dev);
800 
801 	/* CIS vendor and device ids, revision and info string are available only for Combo cards */
802 	if ((attr == &dev_attr_vendor.attr ||
803 	     attr == &dev_attr_device.attr ||
804 	     attr == &dev_attr_revision.attr ||
805 	     attr == &dev_attr_info1.attr ||
806 	     attr == &dev_attr_info2.attr ||
807 	     attr == &dev_attr_info3.attr ||
808 	     attr == &dev_attr_info4.attr
809 	    ) &&!mmc_card_sd_combo(card))
810 		return 0;
811 
812 	return attr->mode;
813 }
814 
815 static const struct attribute_group sd_std_group = {
816 	.attrs = sd_std_attrs,
817 	.is_visible = sd_std_is_visible,
818 };
819 __ATTRIBUTE_GROUPS(sd_std);
820 
821 const struct device_type sd_type = {
822 	.groups = sd_std_groups,
823 };
824 
825 /*
826  * Fetch CID from card.
827  */
828 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
829 {
830 	int err;
831 	u32 max_current;
832 	int retries = 10;
833 	u32 pocr = ocr;
834 
835 try_again:
836 	if (!retries) {
837 		ocr &= ~SD_OCR_S18R;
838 		pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
839 	}
840 
841 	/*
842 	 * Since we're changing the OCR value, we seem to
843 	 * need to tell some cards to go back to the idle
844 	 * state.  We wait 1ms to give cards time to
845 	 * respond.
846 	 */
847 	mmc_go_idle(host);
848 
849 	/*
850 	 * If SD_SEND_IF_COND indicates an SD 2.0
851 	 * compliant card and we should set bit 30
852 	 * of the ocr to indicate that we can handle
853 	 * block-addressed SDHC cards.
854 	 */
855 	err = mmc_send_if_cond(host, ocr);
856 	if (!err) {
857 		ocr |= SD_OCR_CCS;
858 		/* Set HO2T as well - SDUC card won't respond otherwise */
859 		ocr |= SD_OCR_2T;
860 	}
861 
862 	/*
863 	 * If the host supports one of UHS-I modes, request the card
864 	 * to switch to 1.8V signaling level. If the card has failed
865 	 * repeatedly to switch however, skip this.
866 	 */
867 	if (retries && mmc_host_can_uhs(host))
868 		ocr |= SD_OCR_S18R;
869 
870 	/*
871 	 * If the host can supply more than 150mA at current voltage,
872 	 * XPC should be set to 1.
873 	 */
874 	max_current = sd_get_host_max_current(host);
875 	if (max_current > 150)
876 		ocr |= SD_OCR_XPC;
877 
878 	err = mmc_send_app_op_cond(host, ocr, rocr);
879 	if (err)
880 		return err;
881 
882 	/*
883 	 * In case the S18A bit is set in the response, let's start the signal
884 	 * voltage switch procedure. SPI mode doesn't support CMD11.
885 	 * Note that, according to the spec, the S18A bit is not valid unless
886 	 * the CCS bit is set as well. We deliberately deviate from the spec in
887 	 * regards to this, which allows UHS-I to be supported for SDSC cards.
888 	 */
889 	if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
890 	    rocr && (*rocr & SD_ROCR_S18A)) {
891 		err = mmc_set_uhs_voltage(host, pocr);
892 		if (err == -EAGAIN) {
893 			retries--;
894 			goto try_again;
895 		} else if (err) {
896 			retries = 0;
897 			goto try_again;
898 		}
899 	}
900 
901 	err = mmc_send_cid(host, cid);
902 	return err;
903 }
904 
905 int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc)
906 {
907 	int err;
908 
909 	/*
910 	 * Fetch CSD from card.
911 	 */
912 	err = mmc_send_csd(card, card->raw_csd);
913 	if (err)
914 		return err;
915 
916 	err = mmc_decode_csd(card, is_sduc);
917 	if (err)
918 		return err;
919 
920 	return 0;
921 }
922 
923 int mmc_sd_get_ro(struct mmc_host *host)
924 {
925 	int ro;
926 
927 	/*
928 	 * Some systems don't feature a write-protect pin and don't need one.
929 	 * E.g. because they only have micro-SD card slot. For those systems
930 	 * assume that the SD card is always read-write.
931 	 */
932 	if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
933 		return 0;
934 
935 	if (!host->ops->get_ro)
936 		return -1;
937 
938 	ro = host->ops->get_ro(host);
939 
940 	return ro;
941 }
942 
943 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
944 	bool reinit)
945 {
946 	int err;
947 
948 	if (!reinit) {
949 		/*
950 		 * Fetch SCR from card.
951 		 */
952 		err = mmc_app_send_scr(card);
953 		if (err)
954 			return err;
955 
956 		err = mmc_decode_scr(card);
957 		if (err)
958 			return err;
959 
960 		/*
961 		 * Fetch and process SD Status register.
962 		 */
963 		err = mmc_read_ssr(card);
964 		if (err)
965 			return err;
966 
967 		/* Erase init depends on CSD and SSR */
968 		mmc_init_erase(card);
969 	}
970 
971 	/*
972 	 * Fetch switch information from card. Note, sd3_bus_mode can change if
973 	 * voltage switch outcome changes, so do this always.
974 	 */
975 	err = mmc_read_switch(card);
976 	if (err)
977 		return err;
978 
979 	/*
980 	 * For SPI, enable CRC as appropriate.
981 	 * This CRC enable is located AFTER the reading of the
982 	 * card registers because some SDHC cards are not able
983 	 * to provide valid CRCs for non-512-byte blocks.
984 	 */
985 	if (mmc_host_is_spi(host)) {
986 		err = mmc_spi_set_crc(host, use_spi_crc);
987 		if (err)
988 			return err;
989 	}
990 
991 	/*
992 	 * Check if read-only switch is active.
993 	 */
994 	if (!reinit) {
995 		int ro = mmc_sd_get_ro(host);
996 
997 		if (ro < 0) {
998 			pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
999 				mmc_hostname(host));
1000 		} else if (ro > 0) {
1001 			mmc_card_set_readonly(card);
1002 		}
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
1009 {
1010 	unsigned max_dtr = (unsigned int)-1;
1011 
1012 	if (mmc_card_hs(card)) {
1013 		if (max_dtr > card->sw_caps.hs_max_dtr)
1014 			max_dtr = card->sw_caps.hs_max_dtr;
1015 	} else if (max_dtr > card->csd.max_dtr) {
1016 		max_dtr = card->csd.max_dtr;
1017 	}
1018 
1019 	return max_dtr;
1020 }
1021 
1022 static bool mmc_sd_card_using_v18(struct mmc_card *card)
1023 {
1024 	/*
1025 	 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1026 	 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1027 	 * they can be used to determine if the card has already switched to
1028 	 * 1.8V signaling.
1029 	 */
1030 	return card->sw_caps.sd3_bus_mode &
1031 	       (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1032 }
1033 
1034 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1035 			    u8 reg_data)
1036 {
1037 	struct mmc_host *host = card->host;
1038 	struct mmc_request mrq = {};
1039 	struct mmc_command cmd = {};
1040 	struct mmc_data data = {};
1041 	struct scatterlist sg;
1042 	u8 *reg_buf;
1043 
1044 	reg_buf = kzalloc(512, GFP_KERNEL);
1045 	if (!reg_buf)
1046 		return -ENOMEM;
1047 
1048 	mrq.cmd = &cmd;
1049 	mrq.data = &data;
1050 
1051 	/*
1052 	 * Arguments of CMD49:
1053 	 * [31:31] MIO (0 = memory).
1054 	 * [30:27] FNO (function number).
1055 	 * [26:26] MW - mask write mode (0 = disable).
1056 	 * [25:18] page number.
1057 	 * [17:9] offset address.
1058 	 * [8:0] length (0 = 1 byte).
1059 	 */
1060 	cmd.arg = fno << 27 | page << 18 | offset << 9;
1061 
1062 	/* The first byte in the buffer is the data to be written. */
1063 	reg_buf[0] = reg_data;
1064 
1065 	data.flags = MMC_DATA_WRITE;
1066 	data.blksz = 512;
1067 	data.blocks = 1;
1068 	data.sg = &sg;
1069 	data.sg_len = 1;
1070 	sg_init_one(&sg, reg_buf, 512);
1071 
1072 	cmd.opcode = SD_WRITE_EXTR_SINGLE;
1073 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1074 
1075 	mmc_set_data_timeout(&data, card);
1076 	mmc_wait_for_req(host, &mrq);
1077 
1078 	kfree(reg_buf);
1079 
1080 	/*
1081 	 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1082 	 * after the CMD49. Although, let's leave this to be managed by the
1083 	 * caller.
1084 	 */
1085 
1086 	if (cmd.error)
1087 		return cmd.error;
1088 	if (data.error)
1089 		return data.error;
1090 
1091 	return 0;
1092 }
1093 
1094 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1095 			   u16 offset, u16 len, u8 *reg_buf)
1096 {
1097 	u32 cmd_args;
1098 
1099 	/*
1100 	 * Command arguments of CMD48:
1101 	 * [31:31] MIO (0 = memory).
1102 	 * [30:27] FNO (function number).
1103 	 * [26:26] reserved (0).
1104 	 * [25:18] page number.
1105 	 * [17:9] offset address.
1106 	 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1107 	 */
1108 	cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1109 
1110 	return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1111 				  cmd_args, reg_buf, 512);
1112 }
1113 
1114 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1115 				  u16 offset)
1116 {
1117 	int err;
1118 	u8 *reg_buf;
1119 
1120 	reg_buf = kzalloc(512, GFP_KERNEL);
1121 	if (!reg_buf)
1122 		return -ENOMEM;
1123 
1124 	/* Read the extension register for power management function. */
1125 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1126 	if (err) {
1127 		pr_warn("%s: error %d reading PM func of ext reg\n",
1128 			mmc_hostname(card->host), err);
1129 		goto out;
1130 	}
1131 
1132 	/* PM revision consists of 4 bits. */
1133 	card->ext_power.rev = reg_buf[0] & 0xf;
1134 
1135 	/* Power Off Notification support at bit 4. */
1136 	if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card))
1137 		card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1138 
1139 	/* Power Sustenance support at bit 5. */
1140 	if (reg_buf[1] & BIT(5))
1141 		card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1142 
1143 	/* Power Down Mode support at bit 6. */
1144 	if (reg_buf[1] & BIT(6))
1145 		card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1146 
1147 	card->ext_power.fno = fno;
1148 	card->ext_power.page = page;
1149 	card->ext_power.offset = offset;
1150 
1151 out:
1152 	kfree(reg_buf);
1153 	return err;
1154 }
1155 
1156 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1157 				 u16 offset)
1158 {
1159 	int err;
1160 	u8 *reg_buf;
1161 
1162 	reg_buf = kzalloc(512, GFP_KERNEL);
1163 	if (!reg_buf)
1164 		return -ENOMEM;
1165 
1166 	err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1167 	if (err) {
1168 		pr_warn("%s: error %d reading PERF func of ext reg\n",
1169 			mmc_hostname(card->host), err);
1170 		goto out;
1171 	}
1172 
1173 	/* PERF revision. */
1174 	card->ext_perf.rev = reg_buf[0];
1175 
1176 	/* FX_EVENT support at bit 0. */
1177 	if (reg_buf[1] & BIT(0))
1178 		card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1179 
1180 	/* Card initiated self-maintenance support at bit 0. */
1181 	if (reg_buf[2] & BIT(0))
1182 		card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1183 
1184 	/* Host initiated self-maintenance support at bit 1. */
1185 	if (reg_buf[2] & BIT(1))
1186 		card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1187 
1188 	/* Cache support at bit 0. */
1189 	if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card))
1190 		card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1191 
1192 	/* Command queue support indicated via queue depth bits (0 to 4). */
1193 	if (reg_buf[6] & 0x1f)
1194 		card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1195 
1196 	card->ext_perf.fno = fno;
1197 	card->ext_perf.page = page;
1198 	card->ext_perf.offset = offset;
1199 
1200 out:
1201 	kfree(reg_buf);
1202 	return err;
1203 }
1204 
1205 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1206 			    u16 *next_ext_addr)
1207 {
1208 	u8 num_regs, fno, page;
1209 	u16 sfc, offset, ext = *next_ext_addr;
1210 	u32 reg_addr;
1211 
1212 	/*
1213 	 * Parse only one register set per extension, as that is sufficient to
1214 	 * support the standard functions. This means another 48 bytes in the
1215 	 * buffer must be available.
1216 	 */
1217 	if (ext + 48 > 512)
1218 		return -EFAULT;
1219 
1220 	/* Standard Function Code */
1221 	memcpy(&sfc, &gen_info_buf[ext], 2);
1222 
1223 	/* Address to the next extension. */
1224 	memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1225 
1226 	/* Number of registers for this extension. */
1227 	num_regs = gen_info_buf[ext + 42];
1228 
1229 	/* We support only one register per extension. */
1230 	if (num_regs != 1)
1231 		return 0;
1232 
1233 	/* Extension register address. */
1234 	memcpy(&reg_addr, &gen_info_buf[ext + 44], 4);
1235 
1236 	/* 9 bits (0 to 8) contains the offset address. */
1237 	offset = reg_addr & 0x1ff;
1238 
1239 	/* 8 bits (9 to 16) contains the page number. */
1240 	page = reg_addr >> 9 & 0xff ;
1241 
1242 	/* 4 bits (18 to 21) contains the function number. */
1243 	fno = reg_addr >> 18 & 0xf;
1244 
1245 	/* Standard Function Code for power management. */
1246 	if (sfc == 0x1)
1247 		return sd_parse_ext_reg_power(card, fno, page, offset);
1248 
1249 	/* Standard Function Code for performance enhancement. */
1250 	if (sfc == 0x2)
1251 		return sd_parse_ext_reg_perf(card, fno, page, offset);
1252 
1253 	return 0;
1254 }
1255 
1256 static int sd_read_ext_regs(struct mmc_card *card)
1257 {
1258 	int err, i;
1259 	u8 num_ext, *gen_info_buf;
1260 	u16 rev, len, next_ext_addr;
1261 
1262 	if (mmc_host_is_spi(card->host))
1263 		return 0;
1264 
1265 	if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1266 		return 0;
1267 
1268 	gen_info_buf = kzalloc(512, GFP_KERNEL);
1269 	if (!gen_info_buf)
1270 		return -ENOMEM;
1271 
1272 	/*
1273 	 * Read 512 bytes of general info, which is found at function number 0,
1274 	 * at page 0 and with no offset.
1275 	 */
1276 	err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1277 	if (err) {
1278 		pr_err("%s: error %d reading general info of SD ext reg\n",
1279 			mmc_hostname(card->host), err);
1280 		goto out;
1281 	}
1282 
1283 	/* General info structure revision. */
1284 	memcpy(&rev, &gen_info_buf[0], 2);
1285 
1286 	/* Length of general info in bytes. */
1287 	memcpy(&len, &gen_info_buf[2], 2);
1288 
1289 	/* Number of extensions to be find. */
1290 	num_ext = gen_info_buf[4];
1291 
1292 	/*
1293 	 * We only support revision 0 and limit it to 512 bytes for simplicity.
1294 	 * No matter what, let's return zero to allow us to continue using the
1295 	 * card, even if we can't support the features from the SD function
1296 	 * extensions registers.
1297 	 */
1298 	if (rev != 0 || len > 512) {
1299 		pr_warn("%s: non-supported SD ext reg layout\n",
1300 			mmc_hostname(card->host));
1301 		goto out;
1302 	}
1303 
1304 	/*
1305 	 * Parse the extension registers. The first extension should start
1306 	 * immediately after the general info header (16 bytes).
1307 	 */
1308 	next_ext_addr = 16;
1309 	for (i = 0; i < num_ext; i++) {
1310 		err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1311 		if (err) {
1312 			pr_err("%s: error %d parsing SD ext reg\n",
1313 				mmc_hostname(card->host), err);
1314 			goto out;
1315 		}
1316 	}
1317 
1318 out:
1319 	kfree(gen_info_buf);
1320 	return err;
1321 }
1322 
1323 static bool sd_cache_enabled(struct mmc_host *host)
1324 {
1325 	return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1326 }
1327 
1328 static int sd_flush_cache(struct mmc_host *host)
1329 {
1330 	struct mmc_card *card = host->card;
1331 	u8 *reg_buf, fno, page;
1332 	u16 offset;
1333 	int err;
1334 
1335 	if (!sd_cache_enabled(host))
1336 		return 0;
1337 
1338 	reg_buf = kzalloc(512, GFP_KERNEL);
1339 	if (!reg_buf)
1340 		return -ENOMEM;
1341 
1342 	/*
1343 	 * Set Flush Cache at bit 0 in the performance enhancement register at
1344 	 * 261 bytes offset.
1345 	 */
1346 	fno = card->ext_perf.fno;
1347 	page = card->ext_perf.page;
1348 	offset = card->ext_perf.offset + 261;
1349 
1350 	err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1351 	if (err) {
1352 		pr_warn("%s: error %d writing Cache Flush bit\n",
1353 			mmc_hostname(host), err);
1354 		goto out;
1355 	}
1356 
1357 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1358 				MMC_BUSY_EXTR_SINGLE);
1359 	if (err)
1360 		goto out;
1361 
1362 	/*
1363 	 * Read the Flush Cache bit. The card shall reset it, to confirm that
1364 	 * it's has completed the flushing of the cache.
1365 	 */
1366 	err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1367 	if (err) {
1368 		pr_warn("%s: error %d reading Cache Flush bit\n",
1369 			mmc_hostname(host), err);
1370 		goto out;
1371 	}
1372 
1373 	if (reg_buf[0] & BIT(0))
1374 		err = -ETIMEDOUT;
1375 out:
1376 	kfree(reg_buf);
1377 	return err;
1378 }
1379 
1380 static int sd_enable_cache(struct mmc_card *card)
1381 {
1382 	u8 *reg_buf;
1383 	int err;
1384 
1385 	card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1386 
1387 	reg_buf = kzalloc(512, GFP_KERNEL);
1388 	if (!reg_buf)
1389 		return -ENOMEM;
1390 
1391 	/*
1392 	 * Set Cache Enable at bit 0 in the performance enhancement register at
1393 	 * 260 bytes offset.
1394 	 */
1395 	err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1396 			       card->ext_perf.offset + 260, BIT(0));
1397 	if (err) {
1398 		pr_warn("%s: error %d writing Cache Enable bit\n",
1399 			mmc_hostname(card->host), err);
1400 		goto out;
1401 	}
1402 
1403 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1404 				MMC_BUSY_EXTR_SINGLE);
1405 	if (!err)
1406 		card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1407 
1408 out:
1409 	kfree(reg_buf);
1410 	return err;
1411 }
1412 
1413 /*
1414  * Handle the detection and initialisation of a card.
1415  *
1416  * In the case of a resume, "oldcard" will contain the card
1417  * we're trying to reinitialise.
1418  */
1419 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1420 	struct mmc_card *oldcard)
1421 {
1422 	struct mmc_card *card;
1423 	int err;
1424 	u32 cid[4];
1425 	u32 rocr = 0;
1426 	bool v18_fixup_failed = false;
1427 
1428 	WARN_ON(!host->claimed);
1429 retry:
1430 	err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1431 	if (err)
1432 		return err;
1433 
1434 	if (oldcard) {
1435 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1436 			pr_debug("%s: Perhaps the card was replaced\n",
1437 				mmc_hostname(host));
1438 			return -ENOENT;
1439 		}
1440 
1441 		card = oldcard;
1442 	} else {
1443 		/*
1444 		 * Allocate card structure.
1445 		 */
1446 		card = mmc_alloc_card(host, &sd_type);
1447 		if (IS_ERR(card))
1448 			return PTR_ERR(card);
1449 
1450 		card->ocr = ocr;
1451 		card->type = MMC_TYPE_SD;
1452 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1453 	}
1454 
1455 	/*
1456 	 * Call the optional HC's init_card function to handle quirks.
1457 	 */
1458 	if (host->ops->init_card)
1459 		host->ops->init_card(host, card);
1460 
1461 	/*
1462 	 * For native busses:  get card RCA and quit open drain mode.
1463 	 */
1464 	if (!mmc_host_is_spi(host)) {
1465 		err = mmc_send_relative_addr(host, &card->rca);
1466 		if (err)
1467 			goto free_card;
1468 	}
1469 
1470 	if (!oldcard) {
1471 		u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T;
1472 		bool is_sduc = (rocr & sduc_arg) == sduc_arg;
1473 
1474 		err = mmc_sd_get_csd(card, is_sduc);
1475 		if (err)
1476 			goto free_card;
1477 
1478 		mmc_decode_cid(card);
1479 	}
1480 
1481 	/*
1482 	 * handling only for cards supporting DSR and hosts requesting
1483 	 * DSR configuration
1484 	 */
1485 	if (card->csd.dsr_imp && host->dsr_req)
1486 		mmc_set_dsr(host);
1487 
1488 	/*
1489 	 * Select card, as all following commands rely on that.
1490 	 */
1491 	if (!mmc_host_is_spi(host)) {
1492 		err = mmc_select_card(card);
1493 		if (err)
1494 			goto free_card;
1495 	}
1496 
1497 	/* Apply quirks prior to card setup */
1498 	mmc_fixup_device(card, mmc_sd_fixups);
1499 
1500 	err = mmc_sd_setup_card(host, card, oldcard != NULL);
1501 	if (err)
1502 		goto free_card;
1503 
1504 	/*
1505 	 * If the card has not been power cycled, it may still be using 1.8V
1506 	 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1507 	 * transfer mode.
1508 	 */
1509 	if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_can_uhs(host) &&
1510 	    mmc_sd_card_using_v18(card) &&
1511 	    host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1512 		if (mmc_host_set_uhs_voltage(host) ||
1513 		    mmc_sd_init_uhs_card(card)) {
1514 			v18_fixup_failed = true;
1515 			mmc_power_cycle(host, ocr);
1516 			if (!oldcard)
1517 				mmc_remove_card(card);
1518 			goto retry;
1519 		}
1520 		goto cont;
1521 	}
1522 
1523 	/* Initialization sequence for UHS-I cards */
1524 	if (rocr & SD_ROCR_S18A && mmc_host_can_uhs(host)) {
1525 		err = mmc_sd_init_uhs_card(card);
1526 		if (err)
1527 			goto free_card;
1528 	} else {
1529 		/*
1530 		 * Attempt to change to high-speed (if supported)
1531 		 */
1532 		err = mmc_sd_switch_hs(card);
1533 		if (err > 0)
1534 			mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1535 		else if (err)
1536 			goto free_card;
1537 
1538 		/*
1539 		 * Set bus speed.
1540 		 */
1541 		mmc_set_clock(host, mmc_sd_get_max_clock(card));
1542 
1543 		if (host->ios.timing == MMC_TIMING_SD_HS &&
1544 			host->ops->prepare_sd_hs_tuning) {
1545 			err = host->ops->prepare_sd_hs_tuning(host, card);
1546 			if (err)
1547 				goto free_card;
1548 		}
1549 
1550 		/*
1551 		 * Switch to wider bus (if supported).
1552 		 */
1553 		if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1554 			(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1555 			err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1556 			if (err)
1557 				goto free_card;
1558 
1559 			mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1560 		}
1561 
1562 		if (host->ios.timing == MMC_TIMING_SD_HS &&
1563 			host->ops->execute_sd_hs_tuning) {
1564 			err = host->ops->execute_sd_hs_tuning(host, card);
1565 			if (err)
1566 				goto free_card;
1567 		}
1568 	}
1569 cont:
1570 	if (!oldcard) {
1571 		/* Read/parse the extension registers. */
1572 		err = sd_read_ext_regs(card);
1573 		if (err)
1574 			goto free_card;
1575 	}
1576 
1577 	/* Enable internal SD cache if supported. */
1578 	if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1579 		err = sd_enable_cache(card);
1580 		if (err)
1581 			goto free_card;
1582 	}
1583 
1584 	if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) {
1585 		err = host->cqe_ops->cqe_enable(host, card);
1586 		if (!err) {
1587 			host->cqe_enabled = true;
1588 			host->hsq_enabled = true;
1589 			pr_info("%s: Host Software Queue enabled\n",
1590 				mmc_hostname(host));
1591 		}
1592 	}
1593 
1594 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1595 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1596 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1597 			mmc_hostname(host));
1598 		err = -EINVAL;
1599 		goto free_card;
1600 	}
1601 
1602 	host->card = card;
1603 	return 0;
1604 
1605 free_card:
1606 	if (!oldcard)
1607 		mmc_remove_card(card);
1608 
1609 	return err;
1610 }
1611 
1612 /*
1613  * Card detection - card is alive.
1614  */
1615 static int mmc_sd_alive(struct mmc_host *host)
1616 {
1617 	return mmc_send_status(host->card, NULL);
1618 }
1619 
1620 /*
1621  * Card detection callback from host.
1622  */
1623 static void mmc_sd_detect(struct mmc_host *host)
1624 {
1625 	int err;
1626 
1627 	mmc_get_card(host->card, NULL);
1628 
1629 	/*
1630 	 * Just check if our card has been removed.
1631 	 */
1632 	err = _mmc_detect_card_removed(host);
1633 
1634 	mmc_put_card(host->card, NULL);
1635 
1636 	if (err) {
1637 		mmc_remove_card(host->card);
1638 		host->card = NULL;
1639 
1640 		mmc_claim_host(host);
1641 		mmc_detach_bus(host);
1642 		mmc_power_off(host);
1643 		mmc_release_host(host);
1644 	}
1645 }
1646 
1647 static int sd_can_poweroff_notify(struct mmc_card *card)
1648 {
1649 	return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1650 }
1651 
1652 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1653 {
1654 	struct sd_busy_data *data = cb_data;
1655 	struct mmc_card *card = data->card;
1656 	int err;
1657 
1658 	/*
1659 	 * Read the status register for the power management function. It's at
1660 	 * one byte offset and is one byte long. The Power Off Notification
1661 	 * Ready is bit 0.
1662 	 */
1663 	err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1664 			      card->ext_power.offset + 1, 1, data->reg_buf);
1665 	if (err) {
1666 		pr_warn("%s: error %d reading status reg of PM func\n",
1667 			mmc_hostname(card->host), err);
1668 		return err;
1669 	}
1670 
1671 	*busy = !(data->reg_buf[0] & BIT(0));
1672 	return 0;
1673 }
1674 
1675 static int sd_poweroff_notify(struct mmc_card *card)
1676 {
1677 	struct sd_busy_data cb_data;
1678 	u8 *reg_buf;
1679 	int err;
1680 
1681 	reg_buf = kzalloc(512, GFP_KERNEL);
1682 	if (!reg_buf)
1683 		return -ENOMEM;
1684 
1685 	/*
1686 	 * Set the Power Off Notification bit in the power management settings
1687 	 * register at 2 bytes offset.
1688 	 */
1689 	err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1690 			       card->ext_power.offset + 2, BIT(0));
1691 	if (err) {
1692 		pr_warn("%s: error %d writing Power Off Notify bit\n",
1693 			mmc_hostname(card->host), err);
1694 		goto out;
1695 	}
1696 
1697 	/* Find out when the command is completed. */
1698 	err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1699 				MMC_BUSY_EXTR_SINGLE);
1700 	if (err)
1701 		goto out;
1702 
1703 	cb_data.card = card;
1704 	cb_data.reg_buf = reg_buf;
1705 	err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1706 				  &sd_busy_poweroff_notify_cb, &cb_data);
1707 
1708 out:
1709 	kfree(reg_buf);
1710 	return err;
1711 }
1712 
1713 static int _mmc_sd_suspend(struct mmc_host *host)
1714 {
1715 	struct mmc_card *card = host->card;
1716 	int err = 0;
1717 
1718 	mmc_claim_host(host);
1719 
1720 	if (mmc_card_suspended(card))
1721 		goto out;
1722 
1723 	if (sd_can_poweroff_notify(card))
1724 		err = sd_poweroff_notify(card);
1725 	else if (!mmc_host_is_spi(host))
1726 		err = mmc_deselect_cards(host);
1727 
1728 	if (!err) {
1729 		mmc_power_off(host);
1730 		mmc_card_set_suspended(card);
1731 	}
1732 
1733 out:
1734 	mmc_release_host(host);
1735 	return err;
1736 }
1737 
1738 /*
1739  * Host is being removed. Free up the current card and do a graceful power-off.
1740  */
1741 static void mmc_sd_remove(struct mmc_host *host)
1742 {
1743 	get_device(&host->card->dev);
1744 	mmc_remove_card(host->card);
1745 
1746 	_mmc_sd_suspend(host);
1747 
1748 	put_device(&host->card->dev);
1749 	host->card = NULL;
1750 }
1751 /*
1752  * Callback for suspend
1753  */
1754 static int mmc_sd_suspend(struct mmc_host *host)
1755 {
1756 	int err;
1757 
1758 	err = _mmc_sd_suspend(host);
1759 	if (!err) {
1760 		pm_runtime_disable(&host->card->dev);
1761 		pm_runtime_set_suspended(&host->card->dev);
1762 	}
1763 
1764 	return err;
1765 }
1766 
1767 /*
1768  * This function tries to determine if the same card is still present
1769  * and, if so, restore all state to it.
1770  */
1771 static int _mmc_sd_resume(struct mmc_host *host)
1772 {
1773 	int err = 0;
1774 
1775 	mmc_claim_host(host);
1776 
1777 	if (!mmc_card_suspended(host->card))
1778 		goto out;
1779 
1780 	mmc_power_up(host, host->card->ocr);
1781 	err = mmc_sd_init_card(host, host->card->ocr, host->card);
1782 	mmc_card_clr_suspended(host->card);
1783 
1784 out:
1785 	mmc_release_host(host);
1786 	return err;
1787 }
1788 
1789 /*
1790  * Callback for resume
1791  */
1792 static int mmc_sd_resume(struct mmc_host *host)
1793 {
1794 	pm_runtime_enable(&host->card->dev);
1795 	return 0;
1796 }
1797 
1798 /*
1799  * Callback for runtime_suspend.
1800  */
1801 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1802 {
1803 	int err;
1804 
1805 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1806 		return 0;
1807 
1808 	err = _mmc_sd_suspend(host);
1809 	if (err)
1810 		pr_err("%s: error %d doing aggressive suspend\n",
1811 			mmc_hostname(host), err);
1812 
1813 	return err;
1814 }
1815 
1816 /*
1817  * Callback for runtime_resume.
1818  */
1819 static int mmc_sd_runtime_resume(struct mmc_host *host)
1820 {
1821 	int err;
1822 
1823 	err = _mmc_sd_resume(host);
1824 	if (err && err != -ENOMEDIUM)
1825 		pr_err("%s: error %d doing runtime resume\n",
1826 			mmc_hostname(host), err);
1827 
1828 	return 0;
1829 }
1830 
1831 static int mmc_sd_hw_reset(struct mmc_host *host)
1832 {
1833 	mmc_power_cycle(host, host->card->ocr);
1834 	return mmc_sd_init_card(host, host->card->ocr, host->card);
1835 }
1836 
1837 static const struct mmc_bus_ops mmc_sd_ops = {
1838 	.remove = mmc_sd_remove,
1839 	.detect = mmc_sd_detect,
1840 	.runtime_suspend = mmc_sd_runtime_suspend,
1841 	.runtime_resume = mmc_sd_runtime_resume,
1842 	.suspend = mmc_sd_suspend,
1843 	.resume = mmc_sd_resume,
1844 	.alive = mmc_sd_alive,
1845 	.shutdown = mmc_sd_suspend,
1846 	.hw_reset = mmc_sd_hw_reset,
1847 	.cache_enabled = sd_cache_enabled,
1848 	.flush_cache = sd_flush_cache,
1849 };
1850 
1851 /*
1852  * Starting point for SD card init.
1853  */
1854 int mmc_attach_sd(struct mmc_host *host)
1855 {
1856 	int err;
1857 	u32 ocr, rocr;
1858 
1859 	WARN_ON(!host->claimed);
1860 
1861 	err = mmc_send_app_op_cond(host, 0, &ocr);
1862 	if (err)
1863 		return err;
1864 
1865 	mmc_attach_bus(host, &mmc_sd_ops);
1866 	if (host->ocr_avail_sd)
1867 		host->ocr_avail = host->ocr_avail_sd;
1868 
1869 	/*
1870 	 * We need to get OCR a different way for SPI.
1871 	 */
1872 	if (mmc_host_is_spi(host)) {
1873 		mmc_go_idle(host);
1874 
1875 		err = mmc_spi_read_ocr(host, 0, &ocr);
1876 		if (err)
1877 			goto err;
1878 	}
1879 
1880 	/*
1881 	 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1882 	 * these bits as being in-valid and especially also bit7.
1883 	 */
1884 	ocr &= ~0x7FFF;
1885 
1886 	rocr = mmc_select_voltage(host, ocr);
1887 
1888 	/*
1889 	 * Can we support the voltage(s) of the card(s)?
1890 	 */
1891 	if (!rocr) {
1892 		err = -EINVAL;
1893 		goto err;
1894 	}
1895 
1896 	/*
1897 	 * Detect and init the card.
1898 	 */
1899 	err = mmc_sd_init_card(host, rocr, NULL);
1900 	if (err)
1901 		goto err;
1902 
1903 	mmc_release_host(host);
1904 	err = mmc_add_card(host->card);
1905 	if (err)
1906 		goto remove_card;
1907 
1908 	mmc_claim_host(host);
1909 	return 0;
1910 
1911 remove_card:
1912 	mmc_remove_card(host->card);
1913 	host->card = NULL;
1914 	mmc_claim_host(host);
1915 err:
1916 	mmc_detach_bus(host);
1917 
1918 	pr_err("%s: error %d whilst initialising SD card\n",
1919 		mmc_hostname(host), err);
1920 
1921 	return err;
1922 }
1923