1 /* 2 * linux/drivers/mmc/core/sd.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/sizes.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "sd.h" 28 #include "sd_ops.h" 29 30 static const unsigned int tran_exp[] = { 31 10000, 100000, 1000000, 10000000, 32 0, 0, 0, 0 33 }; 34 35 static const unsigned char tran_mant[] = { 36 0, 10, 12, 13, 15, 20, 25, 30, 37 35, 40, 45, 50, 55, 60, 70, 80, 38 }; 39 40 static const unsigned int tacc_exp[] = { 41 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 42 }; 43 44 static const unsigned int tacc_mant[] = { 45 0, 10, 12, 13, 15, 20, 25, 30, 46 35, 40, 45, 50, 55, 60, 70, 80, 47 }; 48 49 static const unsigned int sd_au_size[] = { 50 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 51 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 52 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 53 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 54 }; 55 56 #define UNSTUFF_BITS(resp,start,size) \ 57 ({ \ 58 const int __size = size; \ 59 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 60 const int __off = 3 - ((start) / 32); \ 61 const int __shft = (start) & 31; \ 62 u32 __res; \ 63 \ 64 __res = resp[__off] >> __shft; \ 65 if (__size + __shft > 32) \ 66 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 67 __res & __mask; \ 68 }) 69 70 /* 71 * Given the decoded CSD structure, decode the raw CID to our CID structure. 72 */ 73 void mmc_decode_cid(struct mmc_card *card) 74 { 75 u32 *resp = card->raw_cid; 76 77 memset(&card->cid, 0, sizeof(struct mmc_cid)); 78 79 /* 80 * SD doesn't currently have a version field so we will 81 * have to assume we can parse this. 82 */ 83 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 84 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 85 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 86 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 87 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 88 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 89 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 90 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); 91 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); 92 card->cid.serial = UNSTUFF_BITS(resp, 24, 32); 93 card->cid.year = UNSTUFF_BITS(resp, 12, 8); 94 card->cid.month = UNSTUFF_BITS(resp, 8, 4); 95 96 card->cid.year += 2000; /* SD cards year offset */ 97 } 98 99 /* 100 * Given a 128-bit response, decode to our card CSD structure. 101 */ 102 static int mmc_decode_csd(struct mmc_card *card) 103 { 104 struct mmc_csd *csd = &card->csd; 105 unsigned int e, m, csd_struct; 106 u32 *resp = card->raw_csd; 107 108 csd_struct = UNSTUFF_BITS(resp, 126, 2); 109 110 switch (csd_struct) { 111 case 0: 112 m = UNSTUFF_BITS(resp, 115, 4); 113 e = UNSTUFF_BITS(resp, 112, 3); 114 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; 115 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 116 117 m = UNSTUFF_BITS(resp, 99, 4); 118 e = UNSTUFF_BITS(resp, 96, 3); 119 csd->max_dtr = tran_exp[e] * tran_mant[m]; 120 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 121 122 e = UNSTUFF_BITS(resp, 47, 3); 123 m = UNSTUFF_BITS(resp, 62, 12); 124 csd->capacity = (1 + m) << (e + 2); 125 126 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 127 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 128 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 129 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 130 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 131 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 132 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 133 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 134 135 if (UNSTUFF_BITS(resp, 46, 1)) { 136 csd->erase_size = 1; 137 } else if (csd->write_blkbits >= 9) { 138 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; 139 csd->erase_size <<= csd->write_blkbits - 9; 140 } 141 break; 142 case 1: 143 /* 144 * This is a block-addressed SDHC or SDXC card. Most 145 * interesting fields are unused and have fixed 146 * values. To avoid getting tripped by buggy cards, 147 * we assume those fixed values ourselves. 148 */ 149 mmc_card_set_blockaddr(card); 150 151 csd->tacc_ns = 0; /* Unused */ 152 csd->tacc_clks = 0; /* Unused */ 153 154 m = UNSTUFF_BITS(resp, 99, 4); 155 e = UNSTUFF_BITS(resp, 96, 3); 156 csd->max_dtr = tran_exp[e] * tran_mant[m]; 157 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 158 csd->c_size = UNSTUFF_BITS(resp, 48, 22); 159 160 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 161 if (csd->c_size >= 0xFFFF) 162 mmc_card_set_ext_capacity(card); 163 164 m = UNSTUFF_BITS(resp, 48, 22); 165 csd->capacity = (1 + m) << 10; 166 167 csd->read_blkbits = 9; 168 csd->read_partial = 0; 169 csd->write_misalign = 0; 170 csd->read_misalign = 0; 171 csd->r2w_factor = 4; /* Unused */ 172 csd->write_blkbits = 9; 173 csd->write_partial = 0; 174 csd->erase_size = 1; 175 break; 176 default: 177 pr_err("%s: unrecognised CSD structure version %d\n", 178 mmc_hostname(card->host), csd_struct); 179 return -EINVAL; 180 } 181 182 card->erase_size = csd->erase_size; 183 184 return 0; 185 } 186 187 /* 188 * Given a 64-bit response, decode to our card SCR structure. 189 */ 190 static int mmc_decode_scr(struct mmc_card *card) 191 { 192 struct sd_scr *scr = &card->scr; 193 unsigned int scr_struct; 194 u32 resp[4]; 195 196 resp[3] = card->raw_scr[1]; 197 resp[2] = card->raw_scr[0]; 198 199 scr_struct = UNSTUFF_BITS(resp, 60, 4); 200 if (scr_struct != 0) { 201 pr_err("%s: unrecognised SCR structure version %d\n", 202 mmc_hostname(card->host), scr_struct); 203 return -EINVAL; 204 } 205 206 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); 207 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); 208 if (scr->sda_vsn == SCR_SPEC_VER_2) 209 /* Check if Physical Layer Spec v3.0 is supported */ 210 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); 211 212 if (UNSTUFF_BITS(resp, 55, 1)) 213 card->erased_byte = 0xFF; 214 else 215 card->erased_byte = 0x0; 216 217 if (scr->sda_spec3) 218 scr->cmds = UNSTUFF_BITS(resp, 32, 2); 219 return 0; 220 } 221 222 /* 223 * Fetch and process SD Status register. 224 */ 225 static int mmc_read_ssr(struct mmc_card *card) 226 { 227 unsigned int au, es, et, eo; 228 int err, i; 229 u32 *ssr; 230 231 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 232 pr_warn("%s: card lacks mandatory SD Status function\n", 233 mmc_hostname(card->host)); 234 return 0; 235 } 236 237 ssr = kmalloc(64, GFP_KERNEL); 238 if (!ssr) 239 return -ENOMEM; 240 241 err = mmc_app_sd_status(card, ssr); 242 if (err) { 243 pr_warn("%s: problem reading SD Status register\n", 244 mmc_hostname(card->host)); 245 err = 0; 246 goto out; 247 } 248 249 for (i = 0; i < 16; i++) 250 ssr[i] = be32_to_cpu(ssr[i]); 251 252 /* 253 * UNSTUFF_BITS only works with four u32s so we have to offset the 254 * bitfield positions accordingly. 255 */ 256 au = UNSTUFF_BITS(ssr, 428 - 384, 4); 257 if (au) { 258 if (au <= 9 || card->scr.sda_spec3) { 259 card->ssr.au = sd_au_size[au]; 260 es = UNSTUFF_BITS(ssr, 408 - 384, 16); 261 et = UNSTUFF_BITS(ssr, 402 - 384, 6); 262 if (es && et) { 263 eo = UNSTUFF_BITS(ssr, 400 - 384, 2); 264 card->ssr.erase_timeout = (et * 1000) / es; 265 card->ssr.erase_offset = eo * 1000; 266 } 267 } else { 268 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 269 mmc_hostname(card->host)); 270 } 271 } 272 out: 273 kfree(ssr); 274 return err; 275 } 276 277 /* 278 * Fetches and decodes switch information 279 */ 280 static int mmc_read_switch(struct mmc_card *card) 281 { 282 int err; 283 u8 *status; 284 285 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 286 return 0; 287 288 if (!(card->csd.cmdclass & CCC_SWITCH)) { 289 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 290 mmc_hostname(card->host)); 291 return 0; 292 } 293 294 err = -EIO; 295 296 status = kmalloc(64, GFP_KERNEL); 297 if (!status) { 298 pr_err("%s: could not allocate a buffer for " 299 "switch capabilities.\n", 300 mmc_hostname(card->host)); 301 return -ENOMEM; 302 } 303 304 /* 305 * Find out the card's support bits with a mode 0 operation. 306 * The argument does not matter, as the support bits do not 307 * change with the arguments. 308 */ 309 err = mmc_sd_switch(card, 0, 0, 0, status); 310 if (err) { 311 /* 312 * If the host or the card can't do the switch, 313 * fail more gracefully. 314 */ 315 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 316 goto out; 317 318 pr_warn("%s: problem reading Bus Speed modes\n", 319 mmc_hostname(card->host)); 320 err = 0; 321 322 goto out; 323 } 324 325 if (status[13] & SD_MODE_HIGH_SPEED) 326 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 327 328 if (card->scr.sda_spec3) { 329 card->sw_caps.sd3_bus_mode = status[13]; 330 /* Driver Strengths supported by the card */ 331 card->sw_caps.sd3_drv_type = status[9]; 332 } 333 334 out: 335 kfree(status); 336 337 return err; 338 } 339 340 /* 341 * Test if the card supports high-speed mode and, if so, switch to it. 342 */ 343 int mmc_sd_switch_hs(struct mmc_card *card) 344 { 345 int err; 346 u8 *status; 347 348 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 349 return 0; 350 351 if (!(card->csd.cmdclass & CCC_SWITCH)) 352 return 0; 353 354 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 355 return 0; 356 357 if (card->sw_caps.hs_max_dtr == 0) 358 return 0; 359 360 err = -EIO; 361 362 status = kmalloc(64, GFP_KERNEL); 363 if (!status) { 364 pr_err("%s: could not allocate a buffer for " 365 "switch capabilities.\n", mmc_hostname(card->host)); 366 return -ENOMEM; 367 } 368 369 err = mmc_sd_switch(card, 1, 0, 1, status); 370 if (err) 371 goto out; 372 373 if ((status[16] & 0xF) != 1) { 374 pr_warn("%s: Problem switching card into high-speed mode!\n", 375 mmc_hostname(card->host)); 376 err = 0; 377 } else { 378 err = 1; 379 } 380 381 out: 382 kfree(status); 383 384 return err; 385 } 386 387 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 388 { 389 int host_drv_type = SD_DRIVER_TYPE_B; 390 int card_drv_type = SD_DRIVER_TYPE_B; 391 int drive_strength; 392 int err; 393 394 /* 395 * If the host doesn't support any of the Driver Types A,C or D, 396 * or there is no board specific handler then default Driver 397 * Type B is used. 398 */ 399 if (!(card->host->caps & (MMC_CAP_DRIVER_TYPE_A | MMC_CAP_DRIVER_TYPE_C 400 | MMC_CAP_DRIVER_TYPE_D))) 401 return 0; 402 403 if (!card->host->ops->select_drive_strength) 404 return 0; 405 406 if (card->host->caps & MMC_CAP_DRIVER_TYPE_A) 407 host_drv_type |= SD_DRIVER_TYPE_A; 408 409 if (card->host->caps & MMC_CAP_DRIVER_TYPE_C) 410 host_drv_type |= SD_DRIVER_TYPE_C; 411 412 if (card->host->caps & MMC_CAP_DRIVER_TYPE_D) 413 host_drv_type |= SD_DRIVER_TYPE_D; 414 415 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_A) 416 card_drv_type |= SD_DRIVER_TYPE_A; 417 418 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C) 419 card_drv_type |= SD_DRIVER_TYPE_C; 420 421 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_D) 422 card_drv_type |= SD_DRIVER_TYPE_D; 423 424 /* 425 * The drive strength that the hardware can support 426 * depends on the board design. Pass the appropriate 427 * information and let the hardware specific code 428 * return what is possible given the options 429 */ 430 mmc_host_clk_hold(card->host); 431 drive_strength = card->host->ops->select_drive_strength( 432 card->sw_caps.uhs_max_dtr, 433 host_drv_type, card_drv_type); 434 mmc_host_clk_release(card->host); 435 436 err = mmc_sd_switch(card, 1, 2, drive_strength, status); 437 if (err) 438 return err; 439 440 if ((status[15] & 0xF) != drive_strength) { 441 pr_warn("%s: Problem setting drive strength!\n", 442 mmc_hostname(card->host)); 443 return 0; 444 } 445 446 mmc_set_driver_type(card->host, drive_strength); 447 448 return 0; 449 } 450 451 static void sd_update_bus_speed_mode(struct mmc_card *card) 452 { 453 /* 454 * If the host doesn't support any of the UHS-I modes, fallback on 455 * default speed. 456 */ 457 if (!mmc_host_uhs(card->host)) { 458 card->sd_bus_speed = 0; 459 return; 460 } 461 462 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 463 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 464 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 465 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 466 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 467 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 468 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 469 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 470 SD_MODE_UHS_SDR50)) { 471 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 472 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 473 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 474 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 475 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 476 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 477 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 478 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 479 SD_MODE_UHS_SDR12)) { 480 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 481 } 482 } 483 484 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 485 { 486 int err; 487 unsigned int timing = 0; 488 489 switch (card->sd_bus_speed) { 490 case UHS_SDR104_BUS_SPEED: 491 timing = MMC_TIMING_UHS_SDR104; 492 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 493 break; 494 case UHS_DDR50_BUS_SPEED: 495 timing = MMC_TIMING_UHS_DDR50; 496 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 497 break; 498 case UHS_SDR50_BUS_SPEED: 499 timing = MMC_TIMING_UHS_SDR50; 500 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 501 break; 502 case UHS_SDR25_BUS_SPEED: 503 timing = MMC_TIMING_UHS_SDR25; 504 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 505 break; 506 case UHS_SDR12_BUS_SPEED: 507 timing = MMC_TIMING_UHS_SDR12; 508 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 509 break; 510 default: 511 return 0; 512 } 513 514 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status); 515 if (err) 516 return err; 517 518 if ((status[16] & 0xF) != card->sd_bus_speed) 519 pr_warn("%s: Problem setting bus speed mode!\n", 520 mmc_hostname(card->host)); 521 else { 522 mmc_set_timing(card->host, timing); 523 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 524 } 525 526 return 0; 527 } 528 529 /* Get host's max current setting at its current voltage */ 530 static u32 sd_get_host_max_current(struct mmc_host *host) 531 { 532 u32 voltage, max_current; 533 534 voltage = 1 << host->ios.vdd; 535 switch (voltage) { 536 case MMC_VDD_165_195: 537 max_current = host->max_current_180; 538 break; 539 case MMC_VDD_29_30: 540 case MMC_VDD_30_31: 541 max_current = host->max_current_300; 542 break; 543 case MMC_VDD_32_33: 544 case MMC_VDD_33_34: 545 max_current = host->max_current_330; 546 break; 547 default: 548 max_current = 0; 549 } 550 551 return max_current; 552 } 553 554 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 555 { 556 int current_limit = SD_SET_CURRENT_NO_CHANGE; 557 int err; 558 u32 max_current; 559 560 /* 561 * Current limit switch is only defined for SDR50, SDR104, and DDR50 562 * bus speed modes. For other bus speed modes, we do not change the 563 * current limit. 564 */ 565 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 566 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 567 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 568 return 0; 569 570 /* 571 * Host has different current capabilities when operating at 572 * different voltages, so find out its max current first. 573 */ 574 max_current = sd_get_host_max_current(card->host); 575 576 /* 577 * We only check host's capability here, if we set a limit that is 578 * higher than the card's maximum current, the card will be using its 579 * maximum current, e.g. if the card's maximum current is 300ma, and 580 * when we set current limit to 200ma, the card will draw 200ma, and 581 * when we set current limit to 400/600/800ma, the card will draw its 582 * maximum 300ma from the host. 583 */ 584 if (max_current >= 800) 585 current_limit = SD_SET_CURRENT_LIMIT_800; 586 else if (max_current >= 600) 587 current_limit = SD_SET_CURRENT_LIMIT_600; 588 else if (max_current >= 400) 589 current_limit = SD_SET_CURRENT_LIMIT_400; 590 else if (max_current >= 200) 591 current_limit = SD_SET_CURRENT_LIMIT_200; 592 593 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 594 err = mmc_sd_switch(card, 1, 3, current_limit, status); 595 if (err) 596 return err; 597 598 if (((status[15] >> 4) & 0x0F) != current_limit) 599 pr_warn("%s: Problem setting current limit!\n", 600 mmc_hostname(card->host)); 601 602 } 603 604 return 0; 605 } 606 607 /* 608 * UHS-I specific initialization procedure 609 */ 610 static int mmc_sd_init_uhs_card(struct mmc_card *card) 611 { 612 int err; 613 u8 *status; 614 615 if (!card->scr.sda_spec3) 616 return 0; 617 618 if (!(card->csd.cmdclass & CCC_SWITCH)) 619 return 0; 620 621 status = kmalloc(64, GFP_KERNEL); 622 if (!status) { 623 pr_err("%s: could not allocate a buffer for " 624 "switch capabilities.\n", mmc_hostname(card->host)); 625 return -ENOMEM; 626 } 627 628 /* Set 4-bit bus width */ 629 if ((card->host->caps & MMC_CAP_4_BIT_DATA) && 630 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 631 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 632 if (err) 633 goto out; 634 635 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 636 } 637 638 /* 639 * Select the bus speed mode depending on host 640 * and card capability. 641 */ 642 sd_update_bus_speed_mode(card); 643 644 /* Set the driver strength for the card */ 645 err = sd_select_driver_type(card, status); 646 if (err) 647 goto out; 648 649 /* Set current limit for the card */ 650 err = sd_set_current_limit(card, status); 651 if (err) 652 goto out; 653 654 /* Set bus speed mode of the card */ 655 err = sd_set_bus_speed_mode(card, status); 656 if (err) 657 goto out; 658 659 /* 660 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 661 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 662 */ 663 if (!mmc_host_is_spi(card->host) && card->host->ops->execute_tuning && 664 (card->sd_bus_speed == UHS_SDR50_BUS_SPEED || 665 card->sd_bus_speed == UHS_SDR104_BUS_SPEED)) { 666 mmc_host_clk_hold(card->host); 667 err = card->host->ops->execute_tuning(card->host, 668 MMC_SEND_TUNING_BLOCK); 669 mmc_host_clk_release(card->host); 670 } 671 672 out: 673 kfree(status); 674 675 return err; 676 } 677 678 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 679 card->raw_cid[2], card->raw_cid[3]); 680 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 681 card->raw_csd[2], card->raw_csd[3]); 682 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 683 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 684 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 685 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 686 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 687 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 688 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 689 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 690 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 691 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 692 693 694 static struct attribute *sd_std_attrs[] = { 695 &dev_attr_cid.attr, 696 &dev_attr_csd.attr, 697 &dev_attr_scr.attr, 698 &dev_attr_date.attr, 699 &dev_attr_erase_size.attr, 700 &dev_attr_preferred_erase_size.attr, 701 &dev_attr_fwrev.attr, 702 &dev_attr_hwrev.attr, 703 &dev_attr_manfid.attr, 704 &dev_attr_name.attr, 705 &dev_attr_oemid.attr, 706 &dev_attr_serial.attr, 707 NULL, 708 }; 709 ATTRIBUTE_GROUPS(sd_std); 710 711 struct device_type sd_type = { 712 .groups = sd_std_groups, 713 }; 714 715 /* 716 * Fetch CID from card. 717 */ 718 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 719 { 720 int err; 721 u32 max_current; 722 int retries = 10; 723 u32 pocr = ocr; 724 725 try_again: 726 if (!retries) { 727 ocr &= ~SD_OCR_S18R; 728 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 729 } 730 731 /* 732 * Since we're changing the OCR value, we seem to 733 * need to tell some cards to go back to the idle 734 * state. We wait 1ms to give cards time to 735 * respond. 736 */ 737 mmc_go_idle(host); 738 739 /* 740 * If SD_SEND_IF_COND indicates an SD 2.0 741 * compliant card and we should set bit 30 742 * of the ocr to indicate that we can handle 743 * block-addressed SDHC cards. 744 */ 745 err = mmc_send_if_cond(host, ocr); 746 if (!err) 747 ocr |= SD_OCR_CCS; 748 749 /* 750 * If the host supports one of UHS-I modes, request the card 751 * to switch to 1.8V signaling level. If the card has failed 752 * repeatedly to switch however, skip this. 753 */ 754 if (retries && mmc_host_uhs(host)) 755 ocr |= SD_OCR_S18R; 756 757 /* 758 * If the host can supply more than 150mA at current voltage, 759 * XPC should be set to 1. 760 */ 761 max_current = sd_get_host_max_current(host); 762 if (max_current > 150) 763 ocr |= SD_OCR_XPC; 764 765 err = mmc_send_app_op_cond(host, ocr, rocr); 766 if (err) 767 return err; 768 769 /* 770 * In case CCS and S18A in the response is set, start Signal Voltage 771 * Switch procedure. SPI mode doesn't support CMD11. 772 */ 773 if (!mmc_host_is_spi(host) && rocr && 774 ((*rocr & 0x41000000) == 0x41000000)) { 775 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, 776 pocr); 777 if (err == -EAGAIN) { 778 retries--; 779 goto try_again; 780 } else if (err) { 781 retries = 0; 782 goto try_again; 783 } 784 } 785 786 if (mmc_host_is_spi(host)) 787 err = mmc_send_cid(host, cid); 788 else 789 err = mmc_all_send_cid(host, cid); 790 791 return err; 792 } 793 794 int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card) 795 { 796 int err; 797 798 /* 799 * Fetch CSD from card. 800 */ 801 err = mmc_send_csd(card, card->raw_csd); 802 if (err) 803 return err; 804 805 err = mmc_decode_csd(card); 806 if (err) 807 return err; 808 809 return 0; 810 } 811 812 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 813 bool reinit) 814 { 815 int err; 816 817 if (!reinit) { 818 /* 819 * Fetch SCR from card. 820 */ 821 err = mmc_app_send_scr(card, card->raw_scr); 822 if (err) 823 return err; 824 825 err = mmc_decode_scr(card); 826 if (err) 827 return err; 828 829 /* 830 * Fetch and process SD Status register. 831 */ 832 err = mmc_read_ssr(card); 833 if (err) 834 return err; 835 836 /* Erase init depends on CSD and SSR */ 837 mmc_init_erase(card); 838 839 /* 840 * Fetch switch information from card. 841 */ 842 err = mmc_read_switch(card); 843 if (err) 844 return err; 845 } 846 847 /* 848 * For SPI, enable CRC as appropriate. 849 * This CRC enable is located AFTER the reading of the 850 * card registers because some SDHC cards are not able 851 * to provide valid CRCs for non-512-byte blocks. 852 */ 853 if (mmc_host_is_spi(host)) { 854 err = mmc_spi_set_crc(host, use_spi_crc); 855 if (err) 856 return err; 857 } 858 859 /* 860 * Check if read-only switch is active. 861 */ 862 if (!reinit) { 863 int ro = -1; 864 865 if (host->ops->get_ro) { 866 mmc_host_clk_hold(card->host); 867 ro = host->ops->get_ro(host); 868 mmc_host_clk_release(card->host); 869 } 870 871 if (ro < 0) { 872 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 873 mmc_hostname(host)); 874 } else if (ro > 0) { 875 mmc_card_set_readonly(card); 876 } 877 } 878 879 return 0; 880 } 881 882 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 883 { 884 unsigned max_dtr = (unsigned int)-1; 885 886 if (mmc_card_hs(card)) { 887 if (max_dtr > card->sw_caps.hs_max_dtr) 888 max_dtr = card->sw_caps.hs_max_dtr; 889 } else if (max_dtr > card->csd.max_dtr) { 890 max_dtr = card->csd.max_dtr; 891 } 892 893 return max_dtr; 894 } 895 896 /* 897 * Handle the detection and initialisation of a card. 898 * 899 * In the case of a resume, "oldcard" will contain the card 900 * we're trying to reinitialise. 901 */ 902 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 903 struct mmc_card *oldcard) 904 { 905 struct mmc_card *card; 906 int err; 907 u32 cid[4]; 908 u32 rocr = 0; 909 910 BUG_ON(!host); 911 WARN_ON(!host->claimed); 912 913 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 914 if (err) 915 return err; 916 917 if (oldcard) { 918 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) 919 return -ENOENT; 920 921 card = oldcard; 922 } else { 923 /* 924 * Allocate card structure. 925 */ 926 card = mmc_alloc_card(host, &sd_type); 927 if (IS_ERR(card)) 928 return PTR_ERR(card); 929 930 card->ocr = ocr; 931 card->type = MMC_TYPE_SD; 932 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 933 } 934 935 /* 936 * For native busses: get card RCA and quit open drain mode. 937 */ 938 if (!mmc_host_is_spi(host)) { 939 err = mmc_send_relative_addr(host, &card->rca); 940 if (err) 941 goto free_card; 942 } 943 944 if (!oldcard) { 945 err = mmc_sd_get_csd(host, card); 946 if (err) 947 goto free_card; 948 949 mmc_decode_cid(card); 950 } 951 952 /* 953 * handling only for cards supporting DSR and hosts requesting 954 * DSR configuration 955 */ 956 if (card->csd.dsr_imp && host->dsr_req) 957 mmc_set_dsr(host); 958 959 /* 960 * Select card, as all following commands rely on that. 961 */ 962 if (!mmc_host_is_spi(host)) { 963 err = mmc_select_card(card); 964 if (err) 965 goto free_card; 966 } 967 968 err = mmc_sd_setup_card(host, card, oldcard != NULL); 969 if (err) 970 goto free_card; 971 972 /* Initialization sequence for UHS-I cards */ 973 if (rocr & SD_ROCR_S18A) { 974 err = mmc_sd_init_uhs_card(card); 975 if (err) 976 goto free_card; 977 } else { 978 /* 979 * Attempt to change to high-speed (if supported) 980 */ 981 err = mmc_sd_switch_hs(card); 982 if (err > 0) 983 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 984 else if (err) 985 goto free_card; 986 987 /* 988 * Set bus speed. 989 */ 990 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 991 992 /* 993 * Switch to wider bus (if supported). 994 */ 995 if ((host->caps & MMC_CAP_4_BIT_DATA) && 996 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 997 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 998 if (err) 999 goto free_card; 1000 1001 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1002 } 1003 } 1004 1005 host->card = card; 1006 return 0; 1007 1008 free_card: 1009 if (!oldcard) 1010 mmc_remove_card(card); 1011 1012 return err; 1013 } 1014 1015 /* 1016 * Host is being removed. Free up the current card. 1017 */ 1018 static void mmc_sd_remove(struct mmc_host *host) 1019 { 1020 BUG_ON(!host); 1021 BUG_ON(!host->card); 1022 1023 mmc_remove_card(host->card); 1024 host->card = NULL; 1025 } 1026 1027 /* 1028 * Card detection - card is alive. 1029 */ 1030 static int mmc_sd_alive(struct mmc_host *host) 1031 { 1032 return mmc_send_status(host->card, NULL); 1033 } 1034 1035 /* 1036 * Card detection callback from host. 1037 */ 1038 static void mmc_sd_detect(struct mmc_host *host) 1039 { 1040 int err; 1041 1042 BUG_ON(!host); 1043 BUG_ON(!host->card); 1044 1045 mmc_get_card(host->card); 1046 1047 /* 1048 * Just check if our card has been removed. 1049 */ 1050 err = _mmc_detect_card_removed(host); 1051 1052 mmc_put_card(host->card); 1053 1054 if (err) { 1055 mmc_sd_remove(host); 1056 1057 mmc_claim_host(host); 1058 mmc_detach_bus(host); 1059 mmc_power_off(host); 1060 mmc_release_host(host); 1061 } 1062 } 1063 1064 static int _mmc_sd_suspend(struct mmc_host *host) 1065 { 1066 int err = 0; 1067 1068 BUG_ON(!host); 1069 BUG_ON(!host->card); 1070 1071 mmc_claim_host(host); 1072 1073 if (mmc_card_suspended(host->card)) 1074 goto out; 1075 1076 if (!mmc_host_is_spi(host)) 1077 err = mmc_deselect_cards(host); 1078 1079 if (!err) { 1080 mmc_power_off(host); 1081 mmc_card_set_suspended(host->card); 1082 } 1083 1084 out: 1085 mmc_release_host(host); 1086 return err; 1087 } 1088 1089 /* 1090 * Callback for suspend 1091 */ 1092 static int mmc_sd_suspend(struct mmc_host *host) 1093 { 1094 int err; 1095 1096 err = _mmc_sd_suspend(host); 1097 if (!err) { 1098 pm_runtime_disable(&host->card->dev); 1099 pm_runtime_set_suspended(&host->card->dev); 1100 } 1101 1102 return err; 1103 } 1104 1105 /* 1106 * This function tries to determine if the same card is still present 1107 * and, if so, restore all state to it. 1108 */ 1109 static int _mmc_sd_resume(struct mmc_host *host) 1110 { 1111 int err = 0; 1112 1113 BUG_ON(!host); 1114 BUG_ON(!host->card); 1115 1116 mmc_claim_host(host); 1117 1118 if (!mmc_card_suspended(host->card)) 1119 goto out; 1120 1121 mmc_power_up(host, host->card->ocr); 1122 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1123 mmc_card_clr_suspended(host->card); 1124 1125 out: 1126 mmc_release_host(host); 1127 return err; 1128 } 1129 1130 /* 1131 * Callback for resume 1132 */ 1133 static int mmc_sd_resume(struct mmc_host *host) 1134 { 1135 int err = 0; 1136 1137 if (!(host->caps & MMC_CAP_RUNTIME_RESUME)) { 1138 err = _mmc_sd_resume(host); 1139 pm_runtime_set_active(&host->card->dev); 1140 pm_runtime_mark_last_busy(&host->card->dev); 1141 } 1142 pm_runtime_enable(&host->card->dev); 1143 1144 return err; 1145 } 1146 1147 /* 1148 * Callback for runtime_suspend. 1149 */ 1150 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1151 { 1152 int err; 1153 1154 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1155 return 0; 1156 1157 err = _mmc_sd_suspend(host); 1158 if (err) 1159 pr_err("%s: error %d doing aggessive suspend\n", 1160 mmc_hostname(host), err); 1161 1162 return err; 1163 } 1164 1165 /* 1166 * Callback for runtime_resume. 1167 */ 1168 static int mmc_sd_runtime_resume(struct mmc_host *host) 1169 { 1170 int err; 1171 1172 if (!(host->caps & (MMC_CAP_AGGRESSIVE_PM | MMC_CAP_RUNTIME_RESUME))) 1173 return 0; 1174 1175 err = _mmc_sd_resume(host); 1176 if (err) 1177 pr_err("%s: error %d doing aggessive resume\n", 1178 mmc_hostname(host), err); 1179 1180 return 0; 1181 } 1182 1183 static int mmc_sd_power_restore(struct mmc_host *host) 1184 { 1185 int ret; 1186 1187 mmc_claim_host(host); 1188 ret = mmc_sd_init_card(host, host->card->ocr, host->card); 1189 mmc_release_host(host); 1190 1191 return ret; 1192 } 1193 1194 static const struct mmc_bus_ops mmc_sd_ops = { 1195 .remove = mmc_sd_remove, 1196 .detect = mmc_sd_detect, 1197 .runtime_suspend = mmc_sd_runtime_suspend, 1198 .runtime_resume = mmc_sd_runtime_resume, 1199 .suspend = mmc_sd_suspend, 1200 .resume = mmc_sd_resume, 1201 .power_restore = mmc_sd_power_restore, 1202 .alive = mmc_sd_alive, 1203 .shutdown = mmc_sd_suspend, 1204 }; 1205 1206 /* 1207 * Starting point for SD card init. 1208 */ 1209 int mmc_attach_sd(struct mmc_host *host) 1210 { 1211 int err; 1212 u32 ocr, rocr; 1213 1214 BUG_ON(!host); 1215 WARN_ON(!host->claimed); 1216 1217 err = mmc_send_app_op_cond(host, 0, &ocr); 1218 if (err) 1219 return err; 1220 1221 mmc_attach_bus(host, &mmc_sd_ops); 1222 if (host->ocr_avail_sd) 1223 host->ocr_avail = host->ocr_avail_sd; 1224 1225 /* 1226 * We need to get OCR a different way for SPI. 1227 */ 1228 if (mmc_host_is_spi(host)) { 1229 mmc_go_idle(host); 1230 1231 err = mmc_spi_read_ocr(host, 0, &ocr); 1232 if (err) 1233 goto err; 1234 } 1235 1236 rocr = mmc_select_voltage(host, ocr); 1237 1238 /* 1239 * Can we support the voltage(s) of the card(s)? 1240 */ 1241 if (!rocr) { 1242 err = -EINVAL; 1243 goto err; 1244 } 1245 1246 /* 1247 * Detect and init the card. 1248 */ 1249 err = mmc_sd_init_card(host, rocr, NULL); 1250 if (err) 1251 goto err; 1252 1253 mmc_release_host(host); 1254 err = mmc_add_card(host->card); 1255 mmc_claim_host(host); 1256 if (err) 1257 goto remove_card; 1258 1259 return 0; 1260 1261 remove_card: 1262 mmc_release_host(host); 1263 mmc_remove_card(host->card); 1264 host->card = NULL; 1265 mmc_claim_host(host); 1266 err: 1267 mmc_detach_bus(host); 1268 1269 pr_err("%s: error %d whilst initialising SD card\n", 1270 mmc_hostname(host), err); 1271 1272 return err; 1273 } 1274 1275