1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/sd.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/sizes.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/scatterlist.h> 17 #include <linux/sysfs.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/sd.h> 23 24 #include "core.h" 25 #include "card.h" 26 #include "host.h" 27 #include "bus.h" 28 #include "mmc_ops.h" 29 #include "quirks.h" 30 #include "sd.h" 31 #include "sd_ops.h" 32 33 static const unsigned int tran_exp[] = { 34 10000, 100000, 1000000, 10000000, 35 0, 0, 0, 0 36 }; 37 38 static const unsigned char tran_mant[] = { 39 0, 10, 12, 13, 15, 20, 25, 30, 40 35, 40, 45, 50, 55, 60, 70, 80, 41 }; 42 43 static const unsigned int taac_exp[] = { 44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 45 }; 46 47 static const unsigned int taac_mant[] = { 48 0, 10, 12, 13, 15, 20, 25, 30, 49 35, 40, 45, 50, 55, 60, 70, 80, 50 }; 51 52 static const unsigned int sd_au_size[] = { 53 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, 54 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, 55 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, 56 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, 57 }; 58 59 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000 60 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000 61 62 struct sd_busy_data { 63 struct mmc_card *card; 64 u8 *reg_buf; 65 }; 66 67 /* 68 * Given the decoded CSD structure, decode the raw CID to our CID structure. 69 */ 70 void mmc_decode_cid(struct mmc_card *card) 71 { 72 u32 *resp = card->raw_cid; 73 74 /* 75 * Add the raw card ID (cid) data to the entropy pool. It doesn't 76 * matter that not all of it is unique, it's just bonus entropy. 77 */ 78 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 79 80 /* 81 * SD doesn't currently have a version field so we will 82 * have to assume we can parse this. 83 */ 84 card->cid.manfid = unstuff_bits(resp, 120, 8); 85 card->cid.oemid = unstuff_bits(resp, 104, 16); 86 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); 87 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); 88 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); 89 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); 90 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); 91 card->cid.hwrev = unstuff_bits(resp, 60, 4); 92 card->cid.fwrev = unstuff_bits(resp, 56, 4); 93 card->cid.serial = unstuff_bits(resp, 24, 32); 94 card->cid.year = unstuff_bits(resp, 12, 8); 95 card->cid.month = unstuff_bits(resp, 8, 4); 96 97 card->cid.year += 2000; /* SD cards year offset */ 98 } 99 100 /* 101 * Given a 128-bit response, decode to our card CSD structure. 102 */ 103 static int mmc_decode_csd(struct mmc_card *card) 104 { 105 struct mmc_csd *csd = &card->csd; 106 unsigned int e, m, csd_struct; 107 u32 *resp = card->raw_csd; 108 109 csd_struct = unstuff_bits(resp, 126, 2); 110 111 switch (csd_struct) { 112 case 0: 113 m = unstuff_bits(resp, 115, 4); 114 e = unstuff_bits(resp, 112, 3); 115 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 116 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100; 117 118 m = unstuff_bits(resp, 99, 4); 119 e = unstuff_bits(resp, 96, 3); 120 csd->max_dtr = tran_exp[e] * tran_mant[m]; 121 csd->cmdclass = unstuff_bits(resp, 84, 12); 122 123 e = unstuff_bits(resp, 47, 3); 124 m = unstuff_bits(resp, 62, 12); 125 csd->capacity = (1 + m) << (e + 2); 126 127 csd->read_blkbits = unstuff_bits(resp, 80, 4); 128 csd->read_partial = unstuff_bits(resp, 79, 1); 129 csd->write_misalign = unstuff_bits(resp, 78, 1); 130 csd->read_misalign = unstuff_bits(resp, 77, 1); 131 csd->dsr_imp = unstuff_bits(resp, 76, 1); 132 csd->r2w_factor = unstuff_bits(resp, 26, 3); 133 csd->write_blkbits = unstuff_bits(resp, 22, 4); 134 csd->write_partial = unstuff_bits(resp, 21, 1); 135 136 if (unstuff_bits(resp, 46, 1)) { 137 csd->erase_size = 1; 138 } else if (csd->write_blkbits >= 9) { 139 csd->erase_size = unstuff_bits(resp, 39, 7) + 1; 140 csd->erase_size <<= csd->write_blkbits - 9; 141 } 142 143 if (unstuff_bits(resp, 13, 1)) 144 mmc_card_set_readonly(card); 145 break; 146 case 1: 147 /* 148 * This is a block-addressed SDHC or SDXC card. Most 149 * interesting fields are unused and have fixed 150 * values. To avoid getting tripped by buggy cards, 151 * we assume those fixed values ourselves. 152 */ 153 mmc_card_set_blockaddr(card); 154 155 csd->taac_ns = 0; /* Unused */ 156 csd->taac_clks = 0; /* Unused */ 157 158 m = unstuff_bits(resp, 99, 4); 159 e = unstuff_bits(resp, 96, 3); 160 csd->max_dtr = tran_exp[e] * tran_mant[m]; 161 csd->cmdclass = unstuff_bits(resp, 84, 12); 162 csd->c_size = unstuff_bits(resp, 48, 22); 163 164 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ 165 if (csd->c_size >= 0xFFFF) 166 mmc_card_set_ext_capacity(card); 167 168 m = unstuff_bits(resp, 48, 22); 169 csd->capacity = (1 + m) << 10; 170 171 csd->read_blkbits = 9; 172 csd->read_partial = 0; 173 csd->write_misalign = 0; 174 csd->read_misalign = 0; 175 csd->r2w_factor = 4; /* Unused */ 176 csd->write_blkbits = 9; 177 csd->write_partial = 0; 178 csd->erase_size = 1; 179 180 if (unstuff_bits(resp, 13, 1)) 181 mmc_card_set_readonly(card); 182 break; 183 default: 184 pr_err("%s: unrecognised CSD structure version %d\n", 185 mmc_hostname(card->host), csd_struct); 186 return -EINVAL; 187 } 188 189 card->erase_size = csd->erase_size; 190 191 return 0; 192 } 193 194 /* 195 * Given a 64-bit response, decode to our card SCR structure. 196 */ 197 static int mmc_decode_scr(struct mmc_card *card) 198 { 199 struct sd_scr *scr = &card->scr; 200 unsigned int scr_struct; 201 u32 resp[4]; 202 203 resp[3] = card->raw_scr[1]; 204 resp[2] = card->raw_scr[0]; 205 206 scr_struct = unstuff_bits(resp, 60, 4); 207 if (scr_struct != 0) { 208 pr_err("%s: unrecognised SCR structure version %d\n", 209 mmc_hostname(card->host), scr_struct); 210 return -EINVAL; 211 } 212 213 scr->sda_vsn = unstuff_bits(resp, 56, 4); 214 scr->bus_widths = unstuff_bits(resp, 48, 4); 215 if (scr->sda_vsn == SCR_SPEC_VER_2) 216 /* Check if Physical Layer Spec v3.0 is supported */ 217 scr->sda_spec3 = unstuff_bits(resp, 47, 1); 218 219 if (scr->sda_spec3) { 220 scr->sda_spec4 = unstuff_bits(resp, 42, 1); 221 scr->sda_specx = unstuff_bits(resp, 38, 4); 222 } 223 224 if (unstuff_bits(resp, 55, 1)) 225 card->erased_byte = 0xFF; 226 else 227 card->erased_byte = 0x0; 228 229 if (scr->sda_spec4) 230 scr->cmds = unstuff_bits(resp, 32, 4); 231 else if (scr->sda_spec3) 232 scr->cmds = unstuff_bits(resp, 32, 2); 233 234 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */ 235 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) || 236 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) { 237 pr_err("%s: invalid bus width\n", mmc_hostname(card->host)); 238 return -EINVAL; 239 } 240 241 return 0; 242 } 243 244 /* 245 * Fetch and process SD Status register. 246 */ 247 static int mmc_read_ssr(struct mmc_card *card) 248 { 249 unsigned int au, es, et, eo; 250 __be32 *raw_ssr; 251 u32 resp[4] = {}; 252 u8 discard_support; 253 int i; 254 255 if (!(card->csd.cmdclass & CCC_APP_SPEC)) { 256 pr_warn("%s: card lacks mandatory SD Status function\n", 257 mmc_hostname(card->host)); 258 return 0; 259 } 260 261 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL); 262 if (!raw_ssr) 263 return -ENOMEM; 264 265 if (mmc_app_sd_status(card, raw_ssr)) { 266 pr_warn("%s: problem reading SD Status register\n", 267 mmc_hostname(card->host)); 268 kfree(raw_ssr); 269 return 0; 270 } 271 272 for (i = 0; i < 16; i++) 273 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]); 274 275 kfree(raw_ssr); 276 277 /* 278 * unstuff_bits only works with four u32s so we have to offset the 279 * bitfield positions accordingly. 280 */ 281 au = unstuff_bits(card->raw_ssr, 428 - 384, 4); 282 if (au) { 283 if (au <= 9 || card->scr.sda_spec3) { 284 card->ssr.au = sd_au_size[au]; 285 es = unstuff_bits(card->raw_ssr, 408 - 384, 16); 286 et = unstuff_bits(card->raw_ssr, 402 - 384, 6); 287 if (es && et) { 288 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2); 289 card->ssr.erase_timeout = (et * 1000) / es; 290 card->ssr.erase_offset = eo * 1000; 291 } 292 } else { 293 pr_warn("%s: SD Status: Invalid Allocation Unit size\n", 294 mmc_hostname(card->host)); 295 } 296 } 297 298 /* 299 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set 300 */ 301 resp[3] = card->raw_ssr[6]; 302 discard_support = unstuff_bits(resp, 313 - 288, 1); 303 card->erase_arg = (card->scr.sda_specx && discard_support) ? 304 SD_DISCARD_ARG : SD_ERASE_ARG; 305 306 return 0; 307 } 308 309 /* 310 * Fetches and decodes switch information 311 */ 312 static int mmc_read_switch(struct mmc_card *card) 313 { 314 int err; 315 u8 *status; 316 317 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 318 return 0; 319 320 if (!(card->csd.cmdclass & CCC_SWITCH)) { 321 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n", 322 mmc_hostname(card->host)); 323 return 0; 324 } 325 326 status = kmalloc(64, GFP_KERNEL); 327 if (!status) 328 return -ENOMEM; 329 330 /* 331 * Find out the card's support bits with a mode 0 operation. 332 * The argument does not matter, as the support bits do not 333 * change with the arguments. 334 */ 335 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status); 336 if (err) { 337 /* 338 * If the host or the card can't do the switch, 339 * fail more gracefully. 340 */ 341 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) 342 goto out; 343 344 pr_warn("%s: problem reading Bus Speed modes\n", 345 mmc_hostname(card->host)); 346 err = 0; 347 348 goto out; 349 } 350 351 if (status[13] & SD_MODE_HIGH_SPEED) 352 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR; 353 354 if (card->scr.sda_spec3) { 355 card->sw_caps.sd3_bus_mode = status[13]; 356 /* Driver Strengths supported by the card */ 357 card->sw_caps.sd3_drv_type = status[9]; 358 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8; 359 } 360 361 out: 362 kfree(status); 363 364 return err; 365 } 366 367 /* 368 * Test if the card supports high-speed mode and, if so, switch to it. 369 */ 370 int mmc_sd_switch_hs(struct mmc_card *card) 371 { 372 int err; 373 u8 *status; 374 375 if (card->scr.sda_vsn < SCR_SPEC_VER_1) 376 return 0; 377 378 if (!(card->csd.cmdclass & CCC_SWITCH)) 379 return 0; 380 381 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) 382 return 0; 383 384 if (card->sw_caps.hs_max_dtr == 0) 385 return 0; 386 387 status = kmalloc(64, GFP_KERNEL); 388 if (!status) 389 return -ENOMEM; 390 391 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, 392 HIGH_SPEED_BUS_SPEED, status); 393 if (err) 394 goto out; 395 396 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) { 397 pr_warn("%s: Problem switching card into high-speed mode!\n", 398 mmc_hostname(card->host)); 399 err = 0; 400 } else { 401 err = 1; 402 } 403 404 out: 405 kfree(status); 406 407 return err; 408 } 409 410 static int sd_select_driver_type(struct mmc_card *card, u8 *status) 411 { 412 int card_drv_type, drive_strength, drv_type; 413 int err; 414 415 card->drive_strength = 0; 416 417 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B; 418 419 drive_strength = mmc_select_drive_strength(card, 420 card->sw_caps.uhs_max_dtr, 421 card_drv_type, &drv_type); 422 423 if (drive_strength) { 424 err = mmc_sd_switch(card, SD_SWITCH_SET, 2, 425 drive_strength, status); 426 if (err) 427 return err; 428 if ((status[15] & 0xF) != drive_strength) { 429 pr_warn("%s: Problem setting drive strength!\n", 430 mmc_hostname(card->host)); 431 return 0; 432 } 433 card->drive_strength = drive_strength; 434 } 435 436 if (drv_type) 437 mmc_set_driver_type(card->host, drv_type); 438 439 return 0; 440 } 441 442 static void sd_update_bus_speed_mode(struct mmc_card *card) 443 { 444 /* 445 * If the host doesn't support any of the UHS-I modes, fallback on 446 * default speed. 447 */ 448 if (!mmc_host_uhs(card->host)) { 449 card->sd_bus_speed = 0; 450 return; 451 } 452 453 if ((card->host->caps & MMC_CAP_UHS_SDR104) && 454 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { 455 card->sd_bus_speed = UHS_SDR104_BUS_SPEED; 456 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && 457 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { 458 card->sd_bus_speed = UHS_DDR50_BUS_SPEED; 459 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 460 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & 461 SD_MODE_UHS_SDR50)) { 462 card->sd_bus_speed = UHS_SDR50_BUS_SPEED; 463 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 464 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && 465 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { 466 card->sd_bus_speed = UHS_SDR25_BUS_SPEED; 467 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | 468 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | 469 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & 470 SD_MODE_UHS_SDR12)) { 471 card->sd_bus_speed = UHS_SDR12_BUS_SPEED; 472 } 473 } 474 475 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) 476 { 477 int err; 478 unsigned int timing = 0; 479 480 switch (card->sd_bus_speed) { 481 case UHS_SDR104_BUS_SPEED: 482 timing = MMC_TIMING_UHS_SDR104; 483 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; 484 break; 485 case UHS_DDR50_BUS_SPEED: 486 timing = MMC_TIMING_UHS_DDR50; 487 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; 488 break; 489 case UHS_SDR50_BUS_SPEED: 490 timing = MMC_TIMING_UHS_SDR50; 491 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; 492 break; 493 case UHS_SDR25_BUS_SPEED: 494 timing = MMC_TIMING_UHS_SDR25; 495 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; 496 break; 497 case UHS_SDR12_BUS_SPEED: 498 timing = MMC_TIMING_UHS_SDR12; 499 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; 500 break; 501 default: 502 return 0; 503 } 504 505 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status); 506 if (err) 507 return err; 508 509 if ((status[16] & 0xF) != card->sd_bus_speed) 510 pr_warn("%s: Problem setting bus speed mode!\n", 511 mmc_hostname(card->host)); 512 else { 513 mmc_set_timing(card->host, timing); 514 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); 515 } 516 517 return 0; 518 } 519 520 /* Get host's max current setting at its current voltage */ 521 static u32 sd_get_host_max_current(struct mmc_host *host) 522 { 523 u32 voltage, max_current; 524 525 voltage = 1 << host->ios.vdd; 526 switch (voltage) { 527 case MMC_VDD_165_195: 528 max_current = host->max_current_180; 529 break; 530 case MMC_VDD_29_30: 531 case MMC_VDD_30_31: 532 max_current = host->max_current_300; 533 break; 534 case MMC_VDD_32_33: 535 case MMC_VDD_33_34: 536 max_current = host->max_current_330; 537 break; 538 default: 539 max_current = 0; 540 } 541 542 return max_current; 543 } 544 545 static int sd_set_current_limit(struct mmc_card *card, u8 *status) 546 { 547 int current_limit = SD_SET_CURRENT_NO_CHANGE; 548 int err; 549 u32 max_current; 550 551 /* 552 * Current limit switch is only defined for SDR50, SDR104, and DDR50 553 * bus speed modes. For other bus speed modes, we do not change the 554 * current limit. 555 */ 556 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) && 557 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) && 558 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED)) 559 return 0; 560 561 /* 562 * Host has different current capabilities when operating at 563 * different voltages, so find out its max current first. 564 */ 565 max_current = sd_get_host_max_current(card->host); 566 567 /* 568 * We only check host's capability here, if we set a limit that is 569 * higher than the card's maximum current, the card will be using its 570 * maximum current, e.g. if the card's maximum current is 300ma, and 571 * when we set current limit to 200ma, the card will draw 200ma, and 572 * when we set current limit to 400/600/800ma, the card will draw its 573 * maximum 300ma from the host. 574 * 575 * The above is incorrect: if we try to set a current limit that is 576 * not supported by the card, the card can rightfully error out the 577 * attempt, and remain at the default current limit. This results 578 * in a 300mA card being limited to 200mA even though the host 579 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with 580 * an iMX6 host. --rmk 581 */ 582 if (max_current >= 800 && 583 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) 584 current_limit = SD_SET_CURRENT_LIMIT_800; 585 else if (max_current >= 600 && 586 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) 587 current_limit = SD_SET_CURRENT_LIMIT_600; 588 else if (max_current >= 400 && 589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) 590 current_limit = SD_SET_CURRENT_LIMIT_400; 591 else if (max_current >= 200 && 592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) 593 current_limit = SD_SET_CURRENT_LIMIT_200; 594 595 if (current_limit != SD_SET_CURRENT_NO_CHANGE) { 596 err = mmc_sd_switch(card, SD_SWITCH_SET, 3, 597 current_limit, status); 598 if (err) 599 return err; 600 601 if (((status[15] >> 4) & 0x0F) != current_limit) 602 pr_warn("%s: Problem setting current limit!\n", 603 mmc_hostname(card->host)); 604 605 } 606 607 return 0; 608 } 609 610 /* 611 * UHS-I specific initialization procedure 612 */ 613 static int mmc_sd_init_uhs_card(struct mmc_card *card) 614 { 615 int err; 616 u8 *status; 617 618 if (!(card->csd.cmdclass & CCC_SWITCH)) 619 return 0; 620 621 status = kmalloc(64, GFP_KERNEL); 622 if (!status) 623 return -ENOMEM; 624 625 /* Set 4-bit bus width */ 626 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 627 if (err) 628 goto out; 629 630 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); 631 632 /* 633 * Select the bus speed mode depending on host 634 * and card capability. 635 */ 636 sd_update_bus_speed_mode(card); 637 638 /* Set the driver strength for the card */ 639 err = sd_select_driver_type(card, status); 640 if (err) 641 goto out; 642 643 /* Set current limit for the card */ 644 err = sd_set_current_limit(card, status); 645 if (err) 646 goto out; 647 648 /* Set bus speed mode of the card */ 649 err = sd_set_bus_speed_mode(card, status); 650 if (err) 651 goto out; 652 653 /* 654 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and 655 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104. 656 */ 657 if (!mmc_host_is_spi(card->host) && 658 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 || 659 card->host->ios.timing == MMC_TIMING_UHS_DDR50 || 660 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) { 661 err = mmc_execute_tuning(card); 662 663 /* 664 * As SD Specifications Part1 Physical Layer Specification 665 * Version 3.01 says, CMD19 tuning is available for unlocked 666 * cards in transfer state of 1.8V signaling mode. The small 667 * difference between v3.00 and 3.01 spec means that CMD19 668 * tuning is also available for DDR50 mode. 669 */ 670 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) { 671 pr_warn("%s: ddr50 tuning failed\n", 672 mmc_hostname(card->host)); 673 err = 0; 674 } 675 } 676 677 out: 678 kfree(status); 679 680 return err; 681 } 682 683 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 684 card->raw_cid[2], card->raw_cid[3]); 685 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 686 card->raw_csd[2], card->raw_csd[3]); 687 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); 688 MMC_DEV_ATTR(ssr, 689 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n", 690 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2], 691 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5], 692 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8], 693 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11], 694 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14], 695 card->raw_ssr[15]); 696 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 697 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 698 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 699 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); 700 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 701 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 702 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 703 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 704 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 705 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 706 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 707 708 709 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr, 710 char *buf) 711 { 712 struct mmc_card *card = mmc_dev_to_card(dev); 713 struct mmc_host *host = card->host; 714 715 if (card->csd.dsr_imp && host->dsr_req) 716 return sysfs_emit(buf, "0x%x\n", host->dsr); 717 /* return default DSR value */ 718 return sysfs_emit(buf, "0x%x\n", 0x404); 719 } 720 721 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 722 723 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor); 724 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device); 725 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev); 726 727 #define sdio_info_attr(num) \ 728 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \ 729 { \ 730 struct mmc_card *card = mmc_dev_to_card(dev); \ 731 \ 732 if (num > card->num_info) \ 733 return -ENODATA; \ 734 if (!card->info[num - 1][0]) \ 735 return 0; \ 736 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \ 737 } \ 738 static DEVICE_ATTR_RO(info##num) 739 740 sdio_info_attr(1); 741 sdio_info_attr(2); 742 sdio_info_attr(3); 743 sdio_info_attr(4); 744 745 static struct attribute *sd_std_attrs[] = { 746 &dev_attr_vendor.attr, 747 &dev_attr_device.attr, 748 &dev_attr_revision.attr, 749 &dev_attr_info1.attr, 750 &dev_attr_info2.attr, 751 &dev_attr_info3.attr, 752 &dev_attr_info4.attr, 753 &dev_attr_cid.attr, 754 &dev_attr_csd.attr, 755 &dev_attr_scr.attr, 756 &dev_attr_ssr.attr, 757 &dev_attr_date.attr, 758 &dev_attr_erase_size.attr, 759 &dev_attr_preferred_erase_size.attr, 760 &dev_attr_fwrev.attr, 761 &dev_attr_hwrev.attr, 762 &dev_attr_manfid.attr, 763 &dev_attr_name.attr, 764 &dev_attr_oemid.attr, 765 &dev_attr_serial.attr, 766 &dev_attr_ocr.attr, 767 &dev_attr_rca.attr, 768 &dev_attr_dsr.attr, 769 NULL, 770 }; 771 772 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr, 773 int index) 774 { 775 struct device *dev = kobj_to_dev(kobj); 776 struct mmc_card *card = mmc_dev_to_card(dev); 777 778 /* CIS vendor and device ids, revision and info string are available only for Combo cards */ 779 if ((attr == &dev_attr_vendor.attr || 780 attr == &dev_attr_device.attr || 781 attr == &dev_attr_revision.attr || 782 attr == &dev_attr_info1.attr || 783 attr == &dev_attr_info2.attr || 784 attr == &dev_attr_info3.attr || 785 attr == &dev_attr_info4.attr 786 ) &&!mmc_card_sd_combo(card)) 787 return 0; 788 789 return attr->mode; 790 } 791 792 static const struct attribute_group sd_std_group = { 793 .attrs = sd_std_attrs, 794 .is_visible = sd_std_is_visible, 795 }; 796 __ATTRIBUTE_GROUPS(sd_std); 797 798 const struct device_type sd_type = { 799 .groups = sd_std_groups, 800 }; 801 802 /* 803 * Fetch CID from card. 804 */ 805 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) 806 { 807 int err; 808 u32 max_current; 809 int retries = 10; 810 u32 pocr = ocr; 811 812 try_again: 813 if (!retries) { 814 ocr &= ~SD_OCR_S18R; 815 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host)); 816 } 817 818 /* 819 * Since we're changing the OCR value, we seem to 820 * need to tell some cards to go back to the idle 821 * state. We wait 1ms to give cards time to 822 * respond. 823 */ 824 mmc_go_idle(host); 825 826 /* 827 * If SD_SEND_IF_COND indicates an SD 2.0 828 * compliant card and we should set bit 30 829 * of the ocr to indicate that we can handle 830 * block-addressed SDHC cards. 831 */ 832 err = mmc_send_if_cond(host, ocr); 833 if (!err) 834 ocr |= SD_OCR_CCS; 835 836 /* 837 * If the host supports one of UHS-I modes, request the card 838 * to switch to 1.8V signaling level. If the card has failed 839 * repeatedly to switch however, skip this. 840 */ 841 if (retries && mmc_host_uhs(host)) 842 ocr |= SD_OCR_S18R; 843 844 /* 845 * If the host can supply more than 150mA at current voltage, 846 * XPC should be set to 1. 847 */ 848 max_current = sd_get_host_max_current(host); 849 if (max_current > 150) 850 ocr |= SD_OCR_XPC; 851 852 err = mmc_send_app_op_cond(host, ocr, rocr); 853 if (err) 854 return err; 855 856 /* 857 * In case the S18A bit is set in the response, let's start the signal 858 * voltage switch procedure. SPI mode doesn't support CMD11. 859 * Note that, according to the spec, the S18A bit is not valid unless 860 * the CCS bit is set as well. We deliberately deviate from the spec in 861 * regards to this, which allows UHS-I to be supported for SDSC cards. 862 */ 863 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) && 864 rocr && (*rocr & SD_ROCR_S18A)) { 865 err = mmc_set_uhs_voltage(host, pocr); 866 if (err == -EAGAIN) { 867 retries--; 868 goto try_again; 869 } else if (err) { 870 retries = 0; 871 goto try_again; 872 } 873 } 874 875 err = mmc_send_cid(host, cid); 876 return err; 877 } 878 879 int mmc_sd_get_csd(struct mmc_card *card) 880 { 881 int err; 882 883 /* 884 * Fetch CSD from card. 885 */ 886 err = mmc_send_csd(card, card->raw_csd); 887 if (err) 888 return err; 889 890 err = mmc_decode_csd(card); 891 if (err) 892 return err; 893 894 return 0; 895 } 896 897 static int mmc_sd_get_ro(struct mmc_host *host) 898 { 899 int ro; 900 901 /* 902 * Some systems don't feature a write-protect pin and don't need one. 903 * E.g. because they only have micro-SD card slot. For those systems 904 * assume that the SD card is always read-write. 905 */ 906 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT) 907 return 0; 908 909 if (!host->ops->get_ro) 910 return -1; 911 912 ro = host->ops->get_ro(host); 913 914 return ro; 915 } 916 917 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, 918 bool reinit) 919 { 920 int err; 921 922 if (!reinit) { 923 /* 924 * Fetch SCR from card. 925 */ 926 err = mmc_app_send_scr(card); 927 if (err) 928 return err; 929 930 err = mmc_decode_scr(card); 931 if (err) 932 return err; 933 934 /* 935 * Fetch and process SD Status register. 936 */ 937 err = mmc_read_ssr(card); 938 if (err) 939 return err; 940 941 /* Erase init depends on CSD and SSR */ 942 mmc_init_erase(card); 943 } 944 945 /* 946 * Fetch switch information from card. Note, sd3_bus_mode can change if 947 * voltage switch outcome changes, so do this always. 948 */ 949 err = mmc_read_switch(card); 950 if (err) 951 return err; 952 953 /* 954 * For SPI, enable CRC as appropriate. 955 * This CRC enable is located AFTER the reading of the 956 * card registers because some SDHC cards are not able 957 * to provide valid CRCs for non-512-byte blocks. 958 */ 959 if (mmc_host_is_spi(host)) { 960 err = mmc_spi_set_crc(host, use_spi_crc); 961 if (err) 962 return err; 963 } 964 965 /* 966 * Check if read-only switch is active. 967 */ 968 if (!reinit) { 969 int ro = mmc_sd_get_ro(host); 970 971 if (ro < 0) { 972 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n", 973 mmc_hostname(host)); 974 } else if (ro > 0) { 975 mmc_card_set_readonly(card); 976 } 977 } 978 979 return 0; 980 } 981 982 unsigned mmc_sd_get_max_clock(struct mmc_card *card) 983 { 984 unsigned max_dtr = (unsigned int)-1; 985 986 if (mmc_card_hs(card)) { 987 if (max_dtr > card->sw_caps.hs_max_dtr) 988 max_dtr = card->sw_caps.hs_max_dtr; 989 } else if (max_dtr > card->csd.max_dtr) { 990 max_dtr = card->csd.max_dtr; 991 } 992 993 return max_dtr; 994 } 995 996 static bool mmc_sd_card_using_v18(struct mmc_card *card) 997 { 998 /* 999 * According to the SD spec., the Bus Speed Mode (function group 1) bits 1000 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus 1001 * they can be used to determine if the card has already switched to 1002 * 1.8V signaling. 1003 */ 1004 return card->sw_caps.sd3_bus_mode & 1005 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50); 1006 } 1007 1008 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset, 1009 u8 reg_data) 1010 { 1011 struct mmc_host *host = card->host; 1012 struct mmc_request mrq = {}; 1013 struct mmc_command cmd = {}; 1014 struct mmc_data data = {}; 1015 struct scatterlist sg; 1016 u8 *reg_buf; 1017 1018 reg_buf = kzalloc(512, GFP_KERNEL); 1019 if (!reg_buf) 1020 return -ENOMEM; 1021 1022 mrq.cmd = &cmd; 1023 mrq.data = &data; 1024 1025 /* 1026 * Arguments of CMD49: 1027 * [31:31] MIO (0 = memory). 1028 * [30:27] FNO (function number). 1029 * [26:26] MW - mask write mode (0 = disable). 1030 * [25:18] page number. 1031 * [17:9] offset address. 1032 * [8:0] length (0 = 1 byte). 1033 */ 1034 cmd.arg = fno << 27 | page << 18 | offset << 9; 1035 1036 /* The first byte in the buffer is the data to be written. */ 1037 reg_buf[0] = reg_data; 1038 1039 data.flags = MMC_DATA_WRITE; 1040 data.blksz = 512; 1041 data.blocks = 1; 1042 data.sg = &sg; 1043 data.sg_len = 1; 1044 sg_init_one(&sg, reg_buf, 512); 1045 1046 cmd.opcode = SD_WRITE_EXTR_SINGLE; 1047 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 1048 1049 mmc_set_data_timeout(&data, card); 1050 mmc_wait_for_req(host, &mrq); 1051 1052 kfree(reg_buf); 1053 1054 /* 1055 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s 1056 * after the CMD49. Although, let's leave this to be managed by the 1057 * caller. 1058 */ 1059 1060 if (cmd.error) 1061 return cmd.error; 1062 if (data.error) 1063 return data.error; 1064 1065 return 0; 1066 } 1067 1068 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page, 1069 u16 offset, u16 len, u8 *reg_buf) 1070 { 1071 u32 cmd_args; 1072 1073 /* 1074 * Command arguments of CMD48: 1075 * [31:31] MIO (0 = memory). 1076 * [30:27] FNO (function number). 1077 * [26:26] reserved (0). 1078 * [25:18] page number. 1079 * [17:9] offset address. 1080 * [8:0] length (0 = 1 byte, 1ff = 512 bytes). 1081 */ 1082 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1); 1083 1084 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE, 1085 cmd_args, reg_buf, 512); 1086 } 1087 1088 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page, 1089 u16 offset) 1090 { 1091 int err; 1092 u8 *reg_buf; 1093 1094 reg_buf = kzalloc(512, GFP_KERNEL); 1095 if (!reg_buf) 1096 return -ENOMEM; 1097 1098 /* Read the extension register for power management function. */ 1099 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1100 if (err) { 1101 pr_warn("%s: error %d reading PM func of ext reg\n", 1102 mmc_hostname(card->host), err); 1103 goto out; 1104 } 1105 1106 /* PM revision consists of 4 bits. */ 1107 card->ext_power.rev = reg_buf[0] & 0xf; 1108 1109 /* Power Off Notification support at bit 4. */ 1110 if (reg_buf[1] & BIT(4)) 1111 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY; 1112 1113 /* Power Sustenance support at bit 5. */ 1114 if (reg_buf[1] & BIT(5)) 1115 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE; 1116 1117 /* Power Down Mode support at bit 6. */ 1118 if (reg_buf[1] & BIT(6)) 1119 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE; 1120 1121 card->ext_power.fno = fno; 1122 card->ext_power.page = page; 1123 card->ext_power.offset = offset; 1124 1125 out: 1126 kfree(reg_buf); 1127 return err; 1128 } 1129 1130 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page, 1131 u16 offset) 1132 { 1133 int err; 1134 u8 *reg_buf; 1135 1136 reg_buf = kzalloc(512, GFP_KERNEL); 1137 if (!reg_buf) 1138 return -ENOMEM; 1139 1140 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf); 1141 if (err) { 1142 pr_warn("%s: error %d reading PERF func of ext reg\n", 1143 mmc_hostname(card->host), err); 1144 goto out; 1145 } 1146 1147 /* PERF revision. */ 1148 card->ext_perf.rev = reg_buf[0]; 1149 1150 /* FX_EVENT support at bit 0. */ 1151 if (reg_buf[1] & BIT(0)) 1152 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT; 1153 1154 /* Card initiated self-maintenance support at bit 0. */ 1155 if (reg_buf[2] & BIT(0)) 1156 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT; 1157 1158 /* Host initiated self-maintenance support at bit 1. */ 1159 if (reg_buf[2] & BIT(1)) 1160 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT; 1161 1162 /* Cache support at bit 0. */ 1163 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card)) 1164 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE; 1165 1166 /* Command queue support indicated via queue depth bits (0 to 4). */ 1167 if (reg_buf[6] & 0x1f) 1168 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE; 1169 1170 card->ext_perf.fno = fno; 1171 card->ext_perf.page = page; 1172 card->ext_perf.offset = offset; 1173 1174 out: 1175 kfree(reg_buf); 1176 return err; 1177 } 1178 1179 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf, 1180 u16 *next_ext_addr) 1181 { 1182 u8 num_regs, fno, page; 1183 u16 sfc, offset, ext = *next_ext_addr; 1184 u32 reg_addr; 1185 1186 /* 1187 * Parse only one register set per extension, as that is sufficient to 1188 * support the standard functions. This means another 48 bytes in the 1189 * buffer must be available. 1190 */ 1191 if (ext + 48 > 512) 1192 return -EFAULT; 1193 1194 /* Standard Function Code */ 1195 memcpy(&sfc, &gen_info_buf[ext], 2); 1196 1197 /* Address to the next extension. */ 1198 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2); 1199 1200 /* Number of registers for this extension. */ 1201 num_regs = gen_info_buf[ext + 42]; 1202 1203 /* We support only one register per extension. */ 1204 if (num_regs != 1) 1205 return 0; 1206 1207 /* Extension register address. */ 1208 memcpy(®_addr, &gen_info_buf[ext + 44], 4); 1209 1210 /* 9 bits (0 to 8) contains the offset address. */ 1211 offset = reg_addr & 0x1ff; 1212 1213 /* 8 bits (9 to 16) contains the page number. */ 1214 page = reg_addr >> 9 & 0xff ; 1215 1216 /* 4 bits (18 to 21) contains the function number. */ 1217 fno = reg_addr >> 18 & 0xf; 1218 1219 /* Standard Function Code for power management. */ 1220 if (sfc == 0x1) 1221 return sd_parse_ext_reg_power(card, fno, page, offset); 1222 1223 /* Standard Function Code for performance enhancement. */ 1224 if (sfc == 0x2) 1225 return sd_parse_ext_reg_perf(card, fno, page, offset); 1226 1227 return 0; 1228 } 1229 1230 static int sd_read_ext_regs(struct mmc_card *card) 1231 { 1232 int err, i; 1233 u8 num_ext, *gen_info_buf; 1234 u16 rev, len, next_ext_addr; 1235 1236 if (mmc_host_is_spi(card->host)) 1237 return 0; 1238 1239 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT)) 1240 return 0; 1241 1242 gen_info_buf = kzalloc(512, GFP_KERNEL); 1243 if (!gen_info_buf) 1244 return -ENOMEM; 1245 1246 /* 1247 * Read 512 bytes of general info, which is found at function number 0, 1248 * at page 0 and with no offset. 1249 */ 1250 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf); 1251 if (err) { 1252 pr_err("%s: error %d reading general info of SD ext reg\n", 1253 mmc_hostname(card->host), err); 1254 goto out; 1255 } 1256 1257 /* General info structure revision. */ 1258 memcpy(&rev, &gen_info_buf[0], 2); 1259 1260 /* Length of general info in bytes. */ 1261 memcpy(&len, &gen_info_buf[2], 2); 1262 1263 /* Number of extensions to be find. */ 1264 num_ext = gen_info_buf[4]; 1265 1266 /* 1267 * We only support revision 0 and limit it to 512 bytes for simplicity. 1268 * No matter what, let's return zero to allow us to continue using the 1269 * card, even if we can't support the features from the SD function 1270 * extensions registers. 1271 */ 1272 if (rev != 0 || len > 512) { 1273 pr_warn("%s: non-supported SD ext reg layout\n", 1274 mmc_hostname(card->host)); 1275 goto out; 1276 } 1277 1278 /* 1279 * Parse the extension registers. The first extension should start 1280 * immediately after the general info header (16 bytes). 1281 */ 1282 next_ext_addr = 16; 1283 for (i = 0; i < num_ext; i++) { 1284 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr); 1285 if (err) { 1286 pr_err("%s: error %d parsing SD ext reg\n", 1287 mmc_hostname(card->host), err); 1288 goto out; 1289 } 1290 } 1291 1292 out: 1293 kfree(gen_info_buf); 1294 return err; 1295 } 1296 1297 static bool sd_cache_enabled(struct mmc_host *host) 1298 { 1299 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE; 1300 } 1301 1302 static int sd_flush_cache(struct mmc_host *host) 1303 { 1304 struct mmc_card *card = host->card; 1305 u8 *reg_buf, fno, page; 1306 u16 offset; 1307 int err; 1308 1309 if (!sd_cache_enabled(host)) 1310 return 0; 1311 1312 reg_buf = kzalloc(512, GFP_KERNEL); 1313 if (!reg_buf) 1314 return -ENOMEM; 1315 1316 /* 1317 * Set Flush Cache at bit 0 in the performance enhancement register at 1318 * 261 bytes offset. 1319 */ 1320 fno = card->ext_perf.fno; 1321 page = card->ext_perf.page; 1322 offset = card->ext_perf.offset + 261; 1323 1324 err = sd_write_ext_reg(card, fno, page, offset, BIT(0)); 1325 if (err) { 1326 pr_warn("%s: error %d writing Cache Flush bit\n", 1327 mmc_hostname(host), err); 1328 goto out; 1329 } 1330 1331 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1332 MMC_BUSY_EXTR_SINGLE); 1333 if (err) 1334 goto out; 1335 1336 /* 1337 * Read the Flush Cache bit. The card shall reset it, to confirm that 1338 * it's has completed the flushing of the cache. 1339 */ 1340 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf); 1341 if (err) { 1342 pr_warn("%s: error %d reading Cache Flush bit\n", 1343 mmc_hostname(host), err); 1344 goto out; 1345 } 1346 1347 if (reg_buf[0] & BIT(0)) 1348 err = -ETIMEDOUT; 1349 out: 1350 kfree(reg_buf); 1351 return err; 1352 } 1353 1354 static int sd_enable_cache(struct mmc_card *card) 1355 { 1356 u8 *reg_buf; 1357 int err; 1358 1359 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE; 1360 1361 reg_buf = kzalloc(512, GFP_KERNEL); 1362 if (!reg_buf) 1363 return -ENOMEM; 1364 1365 /* 1366 * Set Cache Enable at bit 0 in the performance enhancement register at 1367 * 260 bytes offset. 1368 */ 1369 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page, 1370 card->ext_perf.offset + 260, BIT(0)); 1371 if (err) { 1372 pr_warn("%s: error %d writing Cache Enable bit\n", 1373 mmc_hostname(card->host), err); 1374 goto out; 1375 } 1376 1377 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1378 MMC_BUSY_EXTR_SINGLE); 1379 if (!err) 1380 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE; 1381 1382 out: 1383 kfree(reg_buf); 1384 return err; 1385 } 1386 1387 /* 1388 * Handle the detection and initialisation of a card. 1389 * 1390 * In the case of a resume, "oldcard" will contain the card 1391 * we're trying to reinitialise. 1392 */ 1393 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, 1394 struct mmc_card *oldcard) 1395 { 1396 struct mmc_card *card; 1397 int err; 1398 u32 cid[4]; 1399 u32 rocr = 0; 1400 bool v18_fixup_failed = false; 1401 1402 WARN_ON(!host->claimed); 1403 retry: 1404 err = mmc_sd_get_cid(host, ocr, cid, &rocr); 1405 if (err) 1406 return err; 1407 1408 if (oldcard) { 1409 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1410 pr_debug("%s: Perhaps the card was replaced\n", 1411 mmc_hostname(host)); 1412 return -ENOENT; 1413 } 1414 1415 card = oldcard; 1416 } else { 1417 /* 1418 * Allocate card structure. 1419 */ 1420 card = mmc_alloc_card(host, &sd_type); 1421 if (IS_ERR(card)) 1422 return PTR_ERR(card); 1423 1424 card->ocr = ocr; 1425 card->type = MMC_TYPE_SD; 1426 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1427 } 1428 1429 /* 1430 * Call the optional HC's init_card function to handle quirks. 1431 */ 1432 if (host->ops->init_card) 1433 host->ops->init_card(host, card); 1434 1435 /* 1436 * For native busses: get card RCA and quit open drain mode. 1437 */ 1438 if (!mmc_host_is_spi(host)) { 1439 err = mmc_send_relative_addr(host, &card->rca); 1440 if (err) 1441 goto free_card; 1442 } 1443 1444 if (!oldcard) { 1445 err = mmc_sd_get_csd(card); 1446 if (err) 1447 goto free_card; 1448 1449 mmc_decode_cid(card); 1450 } 1451 1452 /* 1453 * handling only for cards supporting DSR and hosts requesting 1454 * DSR configuration 1455 */ 1456 if (card->csd.dsr_imp && host->dsr_req) 1457 mmc_set_dsr(host); 1458 1459 /* 1460 * Select card, as all following commands rely on that. 1461 */ 1462 if (!mmc_host_is_spi(host)) { 1463 err = mmc_select_card(card); 1464 if (err) 1465 goto free_card; 1466 } 1467 1468 /* Apply quirks prior to card setup */ 1469 mmc_fixup_device(card, mmc_sd_fixups); 1470 1471 err = mmc_sd_setup_card(host, card, oldcard != NULL); 1472 if (err) 1473 goto free_card; 1474 1475 /* 1476 * If the card has not been power cycled, it may still be using 1.8V 1477 * signaling. Detect that situation and try to initialize a UHS-I (1.8V) 1478 * transfer mode. 1479 */ 1480 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) && 1481 mmc_sd_card_using_v18(card) && 1482 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) { 1483 if (mmc_host_set_uhs_voltage(host) || 1484 mmc_sd_init_uhs_card(card)) { 1485 v18_fixup_failed = true; 1486 mmc_power_cycle(host, ocr); 1487 if (!oldcard) 1488 mmc_remove_card(card); 1489 goto retry; 1490 } 1491 goto cont; 1492 } 1493 1494 /* Initialization sequence for UHS-I cards */ 1495 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) { 1496 err = mmc_sd_init_uhs_card(card); 1497 if (err) 1498 goto free_card; 1499 } else { 1500 /* 1501 * Attempt to change to high-speed (if supported) 1502 */ 1503 err = mmc_sd_switch_hs(card); 1504 if (err > 0) 1505 mmc_set_timing(card->host, MMC_TIMING_SD_HS); 1506 else if (err) 1507 goto free_card; 1508 1509 /* 1510 * Set bus speed. 1511 */ 1512 mmc_set_clock(host, mmc_sd_get_max_clock(card)); 1513 1514 if (host->ios.timing == MMC_TIMING_SD_HS && 1515 host->ops->prepare_sd_hs_tuning) { 1516 err = host->ops->prepare_sd_hs_tuning(host, card); 1517 if (err) 1518 goto free_card; 1519 } 1520 1521 /* 1522 * Switch to wider bus (if supported). 1523 */ 1524 if ((host->caps & MMC_CAP_4_BIT_DATA) && 1525 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { 1526 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); 1527 if (err) 1528 goto free_card; 1529 1530 mmc_set_bus_width(host, MMC_BUS_WIDTH_4); 1531 } 1532 1533 if (host->ios.timing == MMC_TIMING_SD_HS && 1534 host->ops->execute_sd_hs_tuning) { 1535 err = host->ops->execute_sd_hs_tuning(host, card); 1536 if (err) 1537 goto free_card; 1538 } 1539 } 1540 cont: 1541 if (!oldcard) { 1542 /* Read/parse the extension registers. */ 1543 err = sd_read_ext_regs(card); 1544 if (err) 1545 goto free_card; 1546 } 1547 1548 /* Enable internal SD cache if supported. */ 1549 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) { 1550 err = sd_enable_cache(card); 1551 if (err) 1552 goto free_card; 1553 } 1554 1555 if (host->cqe_ops && !host->cqe_enabled) { 1556 err = host->cqe_ops->cqe_enable(host, card); 1557 if (!err) { 1558 host->cqe_enabled = true; 1559 host->hsq_enabled = true; 1560 pr_info("%s: Host Software Queue enabled\n", 1561 mmc_hostname(host)); 1562 } 1563 } 1564 1565 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1566 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1567 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1568 mmc_hostname(host)); 1569 err = -EINVAL; 1570 goto free_card; 1571 } 1572 1573 host->card = card; 1574 return 0; 1575 1576 free_card: 1577 if (!oldcard) 1578 mmc_remove_card(card); 1579 1580 return err; 1581 } 1582 1583 /* 1584 * Host is being removed. Free up the current card. 1585 */ 1586 static void mmc_sd_remove(struct mmc_host *host) 1587 { 1588 mmc_remove_card(host->card); 1589 host->card = NULL; 1590 } 1591 1592 /* 1593 * Card detection - card is alive. 1594 */ 1595 static int mmc_sd_alive(struct mmc_host *host) 1596 { 1597 return mmc_send_status(host->card, NULL); 1598 } 1599 1600 /* 1601 * Card detection callback from host. 1602 */ 1603 static void mmc_sd_detect(struct mmc_host *host) 1604 { 1605 int err; 1606 1607 mmc_get_card(host->card, NULL); 1608 1609 /* 1610 * Just check if our card has been removed. 1611 */ 1612 err = _mmc_detect_card_removed(host); 1613 1614 mmc_put_card(host->card, NULL); 1615 1616 if (err) { 1617 mmc_sd_remove(host); 1618 1619 mmc_claim_host(host); 1620 mmc_detach_bus(host); 1621 mmc_power_off(host); 1622 mmc_release_host(host); 1623 } 1624 } 1625 1626 static int sd_can_poweroff_notify(struct mmc_card *card) 1627 { 1628 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY; 1629 } 1630 1631 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy) 1632 { 1633 struct sd_busy_data *data = cb_data; 1634 struct mmc_card *card = data->card; 1635 int err; 1636 1637 /* 1638 * Read the status register for the power management function. It's at 1639 * one byte offset and is one byte long. The Power Off Notification 1640 * Ready is bit 0. 1641 */ 1642 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1643 card->ext_power.offset + 1, 1, data->reg_buf); 1644 if (err) { 1645 pr_warn("%s: error %d reading status reg of PM func\n", 1646 mmc_hostname(card->host), err); 1647 return err; 1648 } 1649 1650 *busy = !(data->reg_buf[0] & BIT(0)); 1651 return 0; 1652 } 1653 1654 static int sd_poweroff_notify(struct mmc_card *card) 1655 { 1656 struct sd_busy_data cb_data; 1657 u8 *reg_buf; 1658 int err; 1659 1660 reg_buf = kzalloc(512, GFP_KERNEL); 1661 if (!reg_buf) 1662 return -ENOMEM; 1663 1664 /* 1665 * Set the Power Off Notification bit in the power management settings 1666 * register at 2 bytes offset. 1667 */ 1668 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page, 1669 card->ext_power.offset + 2, BIT(0)); 1670 if (err) { 1671 pr_warn("%s: error %d writing Power Off Notify bit\n", 1672 mmc_hostname(card->host), err); 1673 goto out; 1674 } 1675 1676 /* Find out when the command is completed. */ 1677 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false, 1678 MMC_BUSY_EXTR_SINGLE); 1679 if (err) 1680 goto out; 1681 1682 cb_data.card = card; 1683 cb_data.reg_buf = reg_buf; 1684 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS, 1685 &sd_busy_poweroff_notify_cb, &cb_data); 1686 1687 out: 1688 kfree(reg_buf); 1689 return err; 1690 } 1691 1692 static int _mmc_sd_suspend(struct mmc_host *host) 1693 { 1694 struct mmc_card *card = host->card; 1695 int err = 0; 1696 1697 mmc_claim_host(host); 1698 1699 if (mmc_card_suspended(card)) 1700 goto out; 1701 1702 if (sd_can_poweroff_notify(card)) 1703 err = sd_poweroff_notify(card); 1704 else if (!mmc_host_is_spi(host)) 1705 err = mmc_deselect_cards(host); 1706 1707 if (!err) { 1708 mmc_power_off(host); 1709 mmc_card_set_suspended(card); 1710 } 1711 1712 out: 1713 mmc_release_host(host); 1714 return err; 1715 } 1716 1717 /* 1718 * Callback for suspend 1719 */ 1720 static int mmc_sd_suspend(struct mmc_host *host) 1721 { 1722 int err; 1723 1724 err = _mmc_sd_suspend(host); 1725 if (!err) { 1726 pm_runtime_disable(&host->card->dev); 1727 pm_runtime_set_suspended(&host->card->dev); 1728 } 1729 1730 return err; 1731 } 1732 1733 /* 1734 * This function tries to determine if the same card is still present 1735 * and, if so, restore all state to it. 1736 */ 1737 static int _mmc_sd_resume(struct mmc_host *host) 1738 { 1739 int err = 0; 1740 1741 mmc_claim_host(host); 1742 1743 if (!mmc_card_suspended(host->card)) 1744 goto out; 1745 1746 mmc_power_up(host, host->card->ocr); 1747 err = mmc_sd_init_card(host, host->card->ocr, host->card); 1748 mmc_card_clr_suspended(host->card); 1749 1750 out: 1751 mmc_release_host(host); 1752 return err; 1753 } 1754 1755 /* 1756 * Callback for resume 1757 */ 1758 static int mmc_sd_resume(struct mmc_host *host) 1759 { 1760 pm_runtime_enable(&host->card->dev); 1761 return 0; 1762 } 1763 1764 /* 1765 * Callback for runtime_suspend. 1766 */ 1767 static int mmc_sd_runtime_suspend(struct mmc_host *host) 1768 { 1769 int err; 1770 1771 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1772 return 0; 1773 1774 err = _mmc_sd_suspend(host); 1775 if (err) 1776 pr_err("%s: error %d doing aggressive suspend\n", 1777 mmc_hostname(host), err); 1778 1779 return err; 1780 } 1781 1782 /* 1783 * Callback for runtime_resume. 1784 */ 1785 static int mmc_sd_runtime_resume(struct mmc_host *host) 1786 { 1787 int err; 1788 1789 err = _mmc_sd_resume(host); 1790 if (err && err != -ENOMEDIUM) 1791 pr_err("%s: error %d doing runtime resume\n", 1792 mmc_hostname(host), err); 1793 1794 return 0; 1795 } 1796 1797 static int mmc_sd_hw_reset(struct mmc_host *host) 1798 { 1799 mmc_power_cycle(host, host->card->ocr); 1800 return mmc_sd_init_card(host, host->card->ocr, host->card); 1801 } 1802 1803 static const struct mmc_bus_ops mmc_sd_ops = { 1804 .remove = mmc_sd_remove, 1805 .detect = mmc_sd_detect, 1806 .runtime_suspend = mmc_sd_runtime_suspend, 1807 .runtime_resume = mmc_sd_runtime_resume, 1808 .suspend = mmc_sd_suspend, 1809 .resume = mmc_sd_resume, 1810 .alive = mmc_sd_alive, 1811 .shutdown = mmc_sd_suspend, 1812 .hw_reset = mmc_sd_hw_reset, 1813 .cache_enabled = sd_cache_enabled, 1814 .flush_cache = sd_flush_cache, 1815 }; 1816 1817 /* 1818 * Starting point for SD card init. 1819 */ 1820 int mmc_attach_sd(struct mmc_host *host) 1821 { 1822 int err; 1823 u32 ocr, rocr; 1824 1825 WARN_ON(!host->claimed); 1826 1827 err = mmc_send_app_op_cond(host, 0, &ocr); 1828 if (err) 1829 return err; 1830 1831 mmc_attach_bus(host, &mmc_sd_ops); 1832 if (host->ocr_avail_sd) 1833 host->ocr_avail = host->ocr_avail_sd; 1834 1835 /* 1836 * We need to get OCR a different way for SPI. 1837 */ 1838 if (mmc_host_is_spi(host)) { 1839 mmc_go_idle(host); 1840 1841 err = mmc_spi_read_ocr(host, 0, &ocr); 1842 if (err) 1843 goto err; 1844 } 1845 1846 /* 1847 * Some SD cards claims an out of spec VDD voltage range. Let's treat 1848 * these bits as being in-valid and especially also bit7. 1849 */ 1850 ocr &= ~0x7FFF; 1851 1852 rocr = mmc_select_voltage(host, ocr); 1853 1854 /* 1855 * Can we support the voltage(s) of the card(s)? 1856 */ 1857 if (!rocr) { 1858 err = -EINVAL; 1859 goto err; 1860 } 1861 1862 /* 1863 * Detect and init the card. 1864 */ 1865 err = mmc_sd_init_card(host, rocr, NULL); 1866 if (err) 1867 goto err; 1868 1869 mmc_release_host(host); 1870 err = mmc_add_card(host->card); 1871 if (err) 1872 goto remove_card; 1873 1874 mmc_claim_host(host); 1875 return 0; 1876 1877 remove_card: 1878 mmc_remove_card(host->card); 1879 host->card = NULL; 1880 mmc_claim_host(host); 1881 err: 1882 mmc_detach_bus(host); 1883 1884 pr_err("%s: error %d whilst initialising SD card\n", 1885 mmc_hostname(host), err); 1886 1887 return err; 1888 } 1889