xref: /linux/drivers/mmc/core/queue.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2003 Russell King, All Rights Reserved.
4  *  Copyright 2006-2007 Pierre Ossman
5  */
6 #include <linux/slab.h>
7 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/freezer.h>
10 #include <linux/scatterlist.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/backing-dev.h>
13 
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/host.h>
16 
17 #include "queue.h"
18 #include "block.h"
19 #include "core.h"
20 #include "card.h"
21 #include "crypto.h"
22 #include "host.h"
23 
24 #define MMC_DMA_MAP_MERGE_SEGMENTS	512
25 
26 static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq)
27 {
28 	/* Allow only 1 DCMD at a time */
29 	return mq->in_flight[MMC_ISSUE_DCMD];
30 }
31 
32 void mmc_cqe_check_busy(struct mmc_queue *mq)
33 {
34 	if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq))
35 		mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY;
36 }
37 
38 static inline bool mmc_cqe_can_dcmd(struct mmc_host *host)
39 {
40 	return host->caps2 & MMC_CAP2_CQE_DCMD;
41 }
42 
43 static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host,
44 					      struct request *req)
45 {
46 	switch (req_op(req)) {
47 	case REQ_OP_DRV_IN:
48 	case REQ_OP_DRV_OUT:
49 	case REQ_OP_DISCARD:
50 	case REQ_OP_SECURE_ERASE:
51 	case REQ_OP_WRITE_ZEROES:
52 		return MMC_ISSUE_SYNC;
53 	case REQ_OP_FLUSH:
54 		return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC;
55 	default:
56 		return MMC_ISSUE_ASYNC;
57 	}
58 }
59 
60 enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req)
61 {
62 	struct mmc_host *host = mq->card->host;
63 
64 	if (host->cqe_enabled && !host->hsq_enabled)
65 		return mmc_cqe_issue_type(host, req);
66 
67 	if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE)
68 		return MMC_ISSUE_ASYNC;
69 
70 	return MMC_ISSUE_SYNC;
71 }
72 
73 static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq)
74 {
75 	if (!mq->recovery_needed) {
76 		mq->recovery_needed = true;
77 		schedule_work(&mq->recovery_work);
78 	}
79 }
80 
81 void mmc_cqe_recovery_notifier(struct mmc_request *mrq)
82 {
83 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
84 						  brq.mrq);
85 	struct request *req = mmc_queue_req_to_req(mqrq);
86 	struct request_queue *q = req->q;
87 	struct mmc_queue *mq = q->queuedata;
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&mq->lock, flags);
91 	__mmc_cqe_recovery_notifier(mq);
92 	spin_unlock_irqrestore(&mq->lock, flags);
93 }
94 
95 static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req)
96 {
97 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
98 	struct mmc_request *mrq = &mqrq->brq.mrq;
99 	struct mmc_queue *mq = req->q->queuedata;
100 	struct mmc_host *host = mq->card->host;
101 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
102 	bool recovery_needed = false;
103 
104 	switch (issue_type) {
105 	case MMC_ISSUE_ASYNC:
106 	case MMC_ISSUE_DCMD:
107 		if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) {
108 			if (recovery_needed)
109 				mmc_cqe_recovery_notifier(mrq);
110 			return BLK_EH_RESET_TIMER;
111 		}
112 		/* The request has gone already */
113 		return BLK_EH_DONE;
114 	default:
115 		/* Timeout is handled by mmc core */
116 		return BLK_EH_RESET_TIMER;
117 	}
118 }
119 
120 static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req)
121 {
122 	struct request_queue *q = req->q;
123 	struct mmc_queue *mq = q->queuedata;
124 	struct mmc_card *card = mq->card;
125 	struct mmc_host *host = card->host;
126 	unsigned long flags;
127 	bool ignore_tout;
128 
129 	spin_lock_irqsave(&mq->lock, flags);
130 	ignore_tout = mq->recovery_needed || !host->cqe_enabled || host->hsq_enabled;
131 	spin_unlock_irqrestore(&mq->lock, flags);
132 
133 	return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req);
134 }
135 
136 static void mmc_mq_recovery_handler(struct work_struct *work)
137 {
138 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
139 					    recovery_work);
140 	struct request_queue *q = mq->queue;
141 	struct mmc_host *host = mq->card->host;
142 
143 	mmc_get_card(mq->card, &mq->ctx);
144 
145 	mq->in_recovery = true;
146 
147 	if (host->cqe_enabled && !host->hsq_enabled)
148 		mmc_blk_cqe_recovery(mq);
149 	else
150 		mmc_blk_mq_recovery(mq);
151 
152 	mq->in_recovery = false;
153 
154 	spin_lock_irq(&mq->lock);
155 	mq->recovery_needed = false;
156 	spin_unlock_irq(&mq->lock);
157 
158 	if (host->hsq_enabled)
159 		host->cqe_ops->cqe_recovery_finish(host);
160 
161 	mmc_put_card(mq->card, &mq->ctx);
162 
163 	blk_mq_run_hw_queues(q, true);
164 }
165 
166 static struct scatterlist *mmc_alloc_sg(unsigned short sg_len, gfp_t gfp)
167 {
168 	struct scatterlist *sg;
169 
170 	sg = kmalloc_array(sg_len, sizeof(*sg), gfp);
171 	if (sg)
172 		sg_init_table(sg, sg_len);
173 
174 	return sg;
175 }
176 
177 static void mmc_queue_setup_discard(struct mmc_card *card,
178 		struct queue_limits *lim)
179 {
180 	unsigned max_discard;
181 
182 	max_discard = mmc_calc_max_discard(card);
183 	if (!max_discard)
184 		return;
185 
186 	lim->max_hw_discard_sectors = max_discard;
187 	if (mmc_can_secure_erase_trim(card))
188 		lim->max_secure_erase_sectors = max_discard;
189 	if (mmc_can_trim(card) && card->erased_byte == 0)
190 		lim->max_write_zeroes_sectors = max_discard;
191 
192 	/* granularity must not be greater than max. discard */
193 	if (card->pref_erase > max_discard)
194 		lim->discard_granularity = SECTOR_SIZE;
195 	else
196 		lim->discard_granularity = card->pref_erase << 9;
197 }
198 
199 static unsigned short mmc_get_max_segments(struct mmc_host *host)
200 {
201 	return host->can_dma_map_merge ? MMC_DMA_MAP_MERGE_SEGMENTS :
202 					 host->max_segs;
203 }
204 
205 static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req,
206 			       unsigned int hctx_idx, unsigned int numa_node)
207 {
208 	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
209 	struct mmc_queue *mq = set->driver_data;
210 	struct mmc_card *card = mq->card;
211 	struct mmc_host *host = card->host;
212 
213 	mq_rq->sg = mmc_alloc_sg(mmc_get_max_segments(host), GFP_KERNEL);
214 	if (!mq_rq->sg)
215 		return -ENOMEM;
216 
217 	return 0;
218 }
219 
220 static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req,
221 				unsigned int hctx_idx)
222 {
223 	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
224 
225 	kfree(mq_rq->sg);
226 	mq_rq->sg = NULL;
227 }
228 
229 static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
230 				    const struct blk_mq_queue_data *bd)
231 {
232 	struct request *req = bd->rq;
233 	struct request_queue *q = req->q;
234 	struct mmc_queue *mq = q->queuedata;
235 	struct mmc_card *card = mq->card;
236 	struct mmc_host *host = card->host;
237 	enum mmc_issue_type issue_type;
238 	enum mmc_issued issued;
239 	bool get_card, cqe_retune_ok;
240 	blk_status_t ret;
241 
242 	if (mmc_card_removed(mq->card)) {
243 		req->rq_flags |= RQF_QUIET;
244 		return BLK_STS_IOERR;
245 	}
246 
247 	issue_type = mmc_issue_type(mq, req);
248 
249 	spin_lock_irq(&mq->lock);
250 
251 	if (mq->recovery_needed || mq->busy) {
252 		spin_unlock_irq(&mq->lock);
253 		return BLK_STS_RESOURCE;
254 	}
255 
256 	switch (issue_type) {
257 	case MMC_ISSUE_DCMD:
258 		if (mmc_cqe_dcmd_busy(mq)) {
259 			mq->cqe_busy |= MMC_CQE_DCMD_BUSY;
260 			spin_unlock_irq(&mq->lock);
261 			return BLK_STS_RESOURCE;
262 		}
263 		break;
264 	case MMC_ISSUE_ASYNC:
265 		if (host->hsq_enabled && mq->in_flight[issue_type] > host->hsq_depth) {
266 			spin_unlock_irq(&mq->lock);
267 			return BLK_STS_RESOURCE;
268 		}
269 		break;
270 	default:
271 		/*
272 		 * Timeouts are handled by mmc core, and we don't have a host
273 		 * API to abort requests, so we can't handle the timeout anyway.
274 		 * However, when the timeout happens, blk_mq_complete_request()
275 		 * no longer works (to stop the request disappearing under us).
276 		 * To avoid racing with that, set a large timeout.
277 		 */
278 		req->timeout = 600 * HZ;
279 		break;
280 	}
281 
282 	/* Parallel dispatch of requests is not supported at the moment */
283 	mq->busy = true;
284 
285 	mq->in_flight[issue_type] += 1;
286 	get_card = (mmc_tot_in_flight(mq) == 1);
287 	cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1);
288 
289 	spin_unlock_irq(&mq->lock);
290 
291 	if (!(req->rq_flags & RQF_DONTPREP)) {
292 		req_to_mmc_queue_req(req)->retries = 0;
293 		req->rq_flags |= RQF_DONTPREP;
294 	}
295 
296 	if (get_card)
297 		mmc_get_card(card, &mq->ctx);
298 
299 	if (host->cqe_enabled) {
300 		host->retune_now = host->need_retune && cqe_retune_ok &&
301 				   !host->hold_retune;
302 	}
303 
304 	blk_mq_start_request(req);
305 
306 	issued = mmc_blk_mq_issue_rq(mq, req);
307 
308 	switch (issued) {
309 	case MMC_REQ_BUSY:
310 		ret = BLK_STS_RESOURCE;
311 		break;
312 	case MMC_REQ_FAILED_TO_START:
313 		ret = BLK_STS_IOERR;
314 		break;
315 	default:
316 		ret = BLK_STS_OK;
317 		break;
318 	}
319 
320 	if (issued != MMC_REQ_STARTED) {
321 		bool put_card = false;
322 
323 		spin_lock_irq(&mq->lock);
324 		mq->in_flight[issue_type] -= 1;
325 		if (mmc_tot_in_flight(mq) == 0)
326 			put_card = true;
327 		mq->busy = false;
328 		spin_unlock_irq(&mq->lock);
329 		if (put_card)
330 			mmc_put_card(card, &mq->ctx);
331 	} else {
332 		WRITE_ONCE(mq->busy, false);
333 	}
334 
335 	return ret;
336 }
337 
338 static const struct blk_mq_ops mmc_mq_ops = {
339 	.queue_rq	= mmc_mq_queue_rq,
340 	.init_request	= mmc_mq_init_request,
341 	.exit_request	= mmc_mq_exit_request,
342 	.complete	= mmc_blk_mq_complete,
343 	.timeout	= mmc_mq_timed_out,
344 };
345 
346 static struct gendisk *mmc_alloc_disk(struct mmc_queue *mq,
347 		struct mmc_card *card)
348 {
349 	struct mmc_host *host = card->host;
350 	struct queue_limits lim = { };
351 	struct gendisk *disk;
352 
353 	if (mmc_can_erase(card))
354 		mmc_queue_setup_discard(card, &lim);
355 
356 	lim.max_hw_sectors = min(host->max_blk_count, host->max_req_size / 512);
357 
358 	if (mmc_card_mmc(card) && card->ext_csd.data_sector_size)
359 		lim.logical_block_size = card->ext_csd.data_sector_size;
360 	else
361 		lim.logical_block_size = 512;
362 
363 	WARN_ON_ONCE(lim.logical_block_size != 512 &&
364 		     lim.logical_block_size != 4096);
365 
366 	/*
367 	 * Setting a virt_boundary implicity sets a max_segment_size, so try
368 	 * to set the hardware one here.
369 	 */
370 	if (host->can_dma_map_merge) {
371 		lim.virt_boundary_mask = dma_get_merge_boundary(mmc_dev(host));
372 		lim.max_segments = MMC_DMA_MAP_MERGE_SEGMENTS;
373 	} else {
374 		lim.max_segment_size =
375 			round_down(host->max_seg_size, lim.logical_block_size);
376 		lim.max_segments = host->max_segs;
377 	}
378 
379 	disk = blk_mq_alloc_disk(&mq->tag_set, &lim, mq);
380 	if (IS_ERR(disk))
381 		return disk;
382 	mq->queue = disk->queue;
383 
384 	if (mmc_host_is_spi(host) && host->use_spi_crc)
385 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, mq->queue);
386 	blk_queue_rq_timeout(mq->queue, 60 * HZ);
387 
388 	blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue);
389 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue);
390 
391 	dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue));
392 
393 	INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler);
394 	INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work);
395 
396 	mutex_init(&mq->complete_lock);
397 
398 	init_waitqueue_head(&mq->wait);
399 
400 	mmc_crypto_setup_queue(mq->queue, host);
401 	return disk;
402 }
403 
404 static inline bool mmc_merge_capable(struct mmc_host *host)
405 {
406 	return host->caps2 & MMC_CAP2_MERGE_CAPABLE;
407 }
408 
409 /* Set queue depth to get a reasonable value for q->nr_requests */
410 #define MMC_QUEUE_DEPTH 64
411 
412 /**
413  * mmc_init_queue - initialise a queue structure.
414  * @mq: mmc queue
415  * @card: mmc card to attach this queue
416  *
417  * Initialise a MMC card request queue.
418  */
419 struct gendisk *mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card)
420 {
421 	struct mmc_host *host = card->host;
422 	struct gendisk *disk;
423 	int ret;
424 
425 	mq->card = card;
426 
427 	spin_lock_init(&mq->lock);
428 
429 	memset(&mq->tag_set, 0, sizeof(mq->tag_set));
430 	mq->tag_set.ops = &mmc_mq_ops;
431 	/*
432 	 * The queue depth for CQE must match the hardware because the request
433 	 * tag is used to index the hardware queue.
434 	 */
435 	if (host->cqe_enabled && !host->hsq_enabled)
436 		mq->tag_set.queue_depth =
437 			min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth);
438 	else
439 		mq->tag_set.queue_depth = MMC_QUEUE_DEPTH;
440 	mq->tag_set.numa_node = NUMA_NO_NODE;
441 	mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
442 	mq->tag_set.nr_hw_queues = 1;
443 	mq->tag_set.cmd_size = sizeof(struct mmc_queue_req);
444 	mq->tag_set.driver_data = mq;
445 
446 	/*
447 	 * Since blk_mq_alloc_tag_set() calls .init_request() of mmc_mq_ops,
448 	 * the host->can_dma_map_merge should be set before to get max_segs
449 	 * from mmc_get_max_segments().
450 	 */
451 	if (mmc_merge_capable(host) &&
452 	    host->max_segs < MMC_DMA_MAP_MERGE_SEGMENTS &&
453 	    dma_get_merge_boundary(mmc_dev(host)))
454 		host->can_dma_map_merge = 1;
455 	else
456 		host->can_dma_map_merge = 0;
457 
458 	ret = blk_mq_alloc_tag_set(&mq->tag_set);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 
463 	disk = mmc_alloc_disk(mq, card);
464 	if (IS_ERR(disk))
465 		blk_mq_free_tag_set(&mq->tag_set);
466 	return disk;
467 }
468 
469 void mmc_queue_suspend(struct mmc_queue *mq)
470 {
471 	blk_mq_quiesce_queue(mq->queue);
472 
473 	/*
474 	 * The host remains claimed while there are outstanding requests, so
475 	 * simply claiming and releasing here ensures there are none.
476 	 */
477 	mmc_claim_host(mq->card->host);
478 	mmc_release_host(mq->card->host);
479 }
480 
481 void mmc_queue_resume(struct mmc_queue *mq)
482 {
483 	blk_mq_unquiesce_queue(mq->queue);
484 }
485 
486 void mmc_cleanup_queue(struct mmc_queue *mq)
487 {
488 	struct request_queue *q = mq->queue;
489 
490 	/*
491 	 * The legacy code handled the possibility of being suspended,
492 	 * so do that here too.
493 	 */
494 	if (blk_queue_quiesced(q))
495 		blk_mq_unquiesce_queue(q);
496 
497 	/*
498 	 * If the recovery completes the last (and only remaining) request in
499 	 * the queue, and the card has been removed, we could end up here with
500 	 * the recovery not quite finished yet, so cancel it.
501 	 */
502 	cancel_work_sync(&mq->recovery_work);
503 
504 	blk_mq_free_tag_set(&mq->tag_set);
505 
506 	/*
507 	 * A request can be completed before the next request, potentially
508 	 * leaving a complete_work with nothing to do. Such a work item might
509 	 * still be queued at this point. Flush it.
510 	 */
511 	flush_work(&mq->complete_work);
512 
513 	mq->card = NULL;
514 }
515 
516 /*
517  * Prepare the sg list(s) to be handed of to the host driver
518  */
519 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
520 {
521 	struct request *req = mmc_queue_req_to_req(mqrq);
522 
523 	return blk_rq_map_sg(mq->queue, req, mqrq->sg);
524 }
525