xref: /linux/drivers/mmc/core/queue.c (revision 0350785b0a092c99c5ddd2ace0260dbe7b3f919f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2003 Russell King, All Rights Reserved.
4  *  Copyright 2006-2007 Pierre Ossman
5  */
6 #include <linux/slab.h>
7 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/freezer.h>
10 #include <linux/scatterlist.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/backing-dev.h>
13 
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/host.h>
16 
17 #include "queue.h"
18 #include "block.h"
19 #include "core.h"
20 #include "card.h"
21 #include "crypto.h"
22 #include "host.h"
23 
24 #define MMC_DMA_MAP_MERGE_SEGMENTS	512
25 
26 static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq)
27 {
28 	/* Allow only 1 DCMD at a time */
29 	return mq->in_flight[MMC_ISSUE_DCMD];
30 }
31 
32 void mmc_cqe_check_busy(struct mmc_queue *mq)
33 {
34 	if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq))
35 		mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY;
36 }
37 
38 static inline bool mmc_cqe_can_dcmd(struct mmc_host *host)
39 {
40 	return host->caps2 & MMC_CAP2_CQE_DCMD;
41 }
42 
43 static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host,
44 					      struct request *req)
45 {
46 	switch (req_op(req)) {
47 	case REQ_OP_DRV_IN:
48 	case REQ_OP_DRV_OUT:
49 	case REQ_OP_DISCARD:
50 	case REQ_OP_SECURE_ERASE:
51 		return MMC_ISSUE_SYNC;
52 	case REQ_OP_FLUSH:
53 		return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC;
54 	default:
55 		return MMC_ISSUE_ASYNC;
56 	}
57 }
58 
59 enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req)
60 {
61 	struct mmc_host *host = mq->card->host;
62 
63 	if (host->cqe_enabled && !host->hsq_enabled)
64 		return mmc_cqe_issue_type(host, req);
65 
66 	if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE)
67 		return MMC_ISSUE_ASYNC;
68 
69 	return MMC_ISSUE_SYNC;
70 }
71 
72 static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq)
73 {
74 	if (!mq->recovery_needed) {
75 		mq->recovery_needed = true;
76 		schedule_work(&mq->recovery_work);
77 	}
78 }
79 
80 void mmc_cqe_recovery_notifier(struct mmc_request *mrq)
81 {
82 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
83 						  brq.mrq);
84 	struct request *req = mmc_queue_req_to_req(mqrq);
85 	struct request_queue *q = req->q;
86 	struct mmc_queue *mq = q->queuedata;
87 	unsigned long flags;
88 
89 	spin_lock_irqsave(&mq->lock, flags);
90 	__mmc_cqe_recovery_notifier(mq);
91 	spin_unlock_irqrestore(&mq->lock, flags);
92 }
93 
94 static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req)
95 {
96 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
97 	struct mmc_request *mrq = &mqrq->brq.mrq;
98 	struct mmc_queue *mq = req->q->queuedata;
99 	struct mmc_host *host = mq->card->host;
100 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
101 	bool recovery_needed = false;
102 
103 	switch (issue_type) {
104 	case MMC_ISSUE_ASYNC:
105 	case MMC_ISSUE_DCMD:
106 		if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) {
107 			if (recovery_needed)
108 				mmc_cqe_recovery_notifier(mrq);
109 			return BLK_EH_RESET_TIMER;
110 		}
111 		/* The request has gone already */
112 		return BLK_EH_DONE;
113 	default:
114 		/* Timeout is handled by mmc core */
115 		return BLK_EH_RESET_TIMER;
116 	}
117 }
118 
119 static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req,
120 						 bool reserved)
121 {
122 	struct request_queue *q = req->q;
123 	struct mmc_queue *mq = q->queuedata;
124 	struct mmc_card *card = mq->card;
125 	struct mmc_host *host = card->host;
126 	unsigned long flags;
127 	bool ignore_tout;
128 
129 	spin_lock_irqsave(&mq->lock, flags);
130 	ignore_tout = mq->recovery_needed || !host->cqe_enabled || host->hsq_enabled;
131 	spin_unlock_irqrestore(&mq->lock, flags);
132 
133 	return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req);
134 }
135 
136 static void mmc_mq_recovery_handler(struct work_struct *work)
137 {
138 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
139 					    recovery_work);
140 	struct request_queue *q = mq->queue;
141 	struct mmc_host *host = mq->card->host;
142 
143 	mmc_get_card(mq->card, &mq->ctx);
144 
145 	mq->in_recovery = true;
146 
147 	if (host->cqe_enabled && !host->hsq_enabled)
148 		mmc_blk_cqe_recovery(mq);
149 	else
150 		mmc_blk_mq_recovery(mq);
151 
152 	mq->in_recovery = false;
153 
154 	spin_lock_irq(&mq->lock);
155 	mq->recovery_needed = false;
156 	spin_unlock_irq(&mq->lock);
157 
158 	if (host->hsq_enabled)
159 		host->cqe_ops->cqe_recovery_finish(host);
160 
161 	mmc_put_card(mq->card, &mq->ctx);
162 
163 	blk_mq_run_hw_queues(q, true);
164 }
165 
166 static struct scatterlist *mmc_alloc_sg(unsigned short sg_len, gfp_t gfp)
167 {
168 	struct scatterlist *sg;
169 
170 	sg = kmalloc_array(sg_len, sizeof(*sg), gfp);
171 	if (sg)
172 		sg_init_table(sg, sg_len);
173 
174 	return sg;
175 }
176 
177 static void mmc_queue_setup_discard(struct request_queue *q,
178 				    struct mmc_card *card)
179 {
180 	unsigned max_discard;
181 
182 	max_discard = mmc_calc_max_discard(card);
183 	if (!max_discard)
184 		return;
185 
186 	blk_queue_max_discard_sectors(q, max_discard);
187 	q->limits.discard_granularity = card->pref_erase << 9;
188 	/* granularity must not be greater than max. discard */
189 	if (card->pref_erase > max_discard)
190 		q->limits.discard_granularity = SECTOR_SIZE;
191 	if (mmc_can_secure_erase_trim(card))
192 		blk_queue_max_secure_erase_sectors(q, max_discard);
193 }
194 
195 static unsigned short mmc_get_max_segments(struct mmc_host *host)
196 {
197 	return host->can_dma_map_merge ? MMC_DMA_MAP_MERGE_SEGMENTS :
198 					 host->max_segs;
199 }
200 
201 static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req,
202 			       unsigned int hctx_idx, unsigned int numa_node)
203 {
204 	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
205 	struct mmc_queue *mq = set->driver_data;
206 	struct mmc_card *card = mq->card;
207 	struct mmc_host *host = card->host;
208 
209 	mq_rq->sg = mmc_alloc_sg(mmc_get_max_segments(host), GFP_KERNEL);
210 	if (!mq_rq->sg)
211 		return -ENOMEM;
212 
213 	return 0;
214 }
215 
216 static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req,
217 				unsigned int hctx_idx)
218 {
219 	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
220 
221 	kfree(mq_rq->sg);
222 	mq_rq->sg = NULL;
223 }
224 
225 static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
226 				    const struct blk_mq_queue_data *bd)
227 {
228 	struct request *req = bd->rq;
229 	struct request_queue *q = req->q;
230 	struct mmc_queue *mq = q->queuedata;
231 	struct mmc_card *card = mq->card;
232 	struct mmc_host *host = card->host;
233 	enum mmc_issue_type issue_type;
234 	enum mmc_issued issued;
235 	bool get_card, cqe_retune_ok;
236 	blk_status_t ret;
237 
238 	if (mmc_card_removed(mq->card)) {
239 		req->rq_flags |= RQF_QUIET;
240 		return BLK_STS_IOERR;
241 	}
242 
243 	issue_type = mmc_issue_type(mq, req);
244 
245 	spin_lock_irq(&mq->lock);
246 
247 	if (mq->recovery_needed || mq->busy) {
248 		spin_unlock_irq(&mq->lock);
249 		return BLK_STS_RESOURCE;
250 	}
251 
252 	switch (issue_type) {
253 	case MMC_ISSUE_DCMD:
254 		if (mmc_cqe_dcmd_busy(mq)) {
255 			mq->cqe_busy |= MMC_CQE_DCMD_BUSY;
256 			spin_unlock_irq(&mq->lock);
257 			return BLK_STS_RESOURCE;
258 		}
259 		break;
260 	case MMC_ISSUE_ASYNC:
261 		/*
262 		 * For MMC host software queue, we only allow 2 requests in
263 		 * flight to avoid a long latency.
264 		 */
265 		if (host->hsq_enabled && mq->in_flight[issue_type] > 2) {
266 			spin_unlock_irq(&mq->lock);
267 			return BLK_STS_RESOURCE;
268 		}
269 		break;
270 	default:
271 		/*
272 		 * Timeouts are handled by mmc core, and we don't have a host
273 		 * API to abort requests, so we can't handle the timeout anyway.
274 		 * However, when the timeout happens, blk_mq_complete_request()
275 		 * no longer works (to stop the request disappearing under us).
276 		 * To avoid racing with that, set a large timeout.
277 		 */
278 		req->timeout = 600 * HZ;
279 		break;
280 	}
281 
282 	/* Parallel dispatch of requests is not supported at the moment */
283 	mq->busy = true;
284 
285 	mq->in_flight[issue_type] += 1;
286 	get_card = (mmc_tot_in_flight(mq) == 1);
287 	cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1);
288 
289 	spin_unlock_irq(&mq->lock);
290 
291 	if (!(req->rq_flags & RQF_DONTPREP)) {
292 		req_to_mmc_queue_req(req)->retries = 0;
293 		req->rq_flags |= RQF_DONTPREP;
294 	}
295 
296 	if (get_card)
297 		mmc_get_card(card, &mq->ctx);
298 
299 	if (host->cqe_enabled) {
300 		host->retune_now = host->need_retune && cqe_retune_ok &&
301 				   !host->hold_retune;
302 	}
303 
304 	blk_mq_start_request(req);
305 
306 	issued = mmc_blk_mq_issue_rq(mq, req);
307 
308 	switch (issued) {
309 	case MMC_REQ_BUSY:
310 		ret = BLK_STS_RESOURCE;
311 		break;
312 	case MMC_REQ_FAILED_TO_START:
313 		ret = BLK_STS_IOERR;
314 		break;
315 	default:
316 		ret = BLK_STS_OK;
317 		break;
318 	}
319 
320 	if (issued != MMC_REQ_STARTED) {
321 		bool put_card = false;
322 
323 		spin_lock_irq(&mq->lock);
324 		mq->in_flight[issue_type] -= 1;
325 		if (mmc_tot_in_flight(mq) == 0)
326 			put_card = true;
327 		mq->busy = false;
328 		spin_unlock_irq(&mq->lock);
329 		if (put_card)
330 			mmc_put_card(card, &mq->ctx);
331 	} else {
332 		WRITE_ONCE(mq->busy, false);
333 	}
334 
335 	return ret;
336 }
337 
338 static const struct blk_mq_ops mmc_mq_ops = {
339 	.queue_rq	= mmc_mq_queue_rq,
340 	.init_request	= mmc_mq_init_request,
341 	.exit_request	= mmc_mq_exit_request,
342 	.complete	= mmc_blk_mq_complete,
343 	.timeout	= mmc_mq_timed_out,
344 };
345 
346 static void mmc_setup_queue(struct mmc_queue *mq, struct mmc_card *card)
347 {
348 	struct mmc_host *host = card->host;
349 	unsigned block_size = 512;
350 
351 	blk_queue_flag_set(QUEUE_FLAG_NONROT, mq->queue);
352 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, mq->queue);
353 	if (mmc_can_erase(card))
354 		mmc_queue_setup_discard(mq->queue, card);
355 
356 	if (!mmc_dev(host)->dma_mask || !*mmc_dev(host)->dma_mask)
357 		blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_HIGH);
358 	blk_queue_max_hw_sectors(mq->queue,
359 		min(host->max_blk_count, host->max_req_size / 512));
360 	if (host->can_dma_map_merge)
361 		WARN(!blk_queue_can_use_dma_map_merging(mq->queue,
362 							mmc_dev(host)),
363 		     "merging was advertised but not possible");
364 	blk_queue_max_segments(mq->queue, mmc_get_max_segments(host));
365 
366 	if (mmc_card_mmc(card) && card->ext_csd.data_sector_size) {
367 		block_size = card->ext_csd.data_sector_size;
368 		WARN_ON(block_size != 512 && block_size != 4096);
369 	}
370 
371 	blk_queue_logical_block_size(mq->queue, block_size);
372 	/*
373 	 * After blk_queue_can_use_dma_map_merging() was called with succeed,
374 	 * since it calls blk_queue_virt_boundary(), the mmc should not call
375 	 * both blk_queue_max_segment_size().
376 	 */
377 	if (!host->can_dma_map_merge)
378 		blk_queue_max_segment_size(mq->queue,
379 			round_down(host->max_seg_size, block_size));
380 
381 	dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue));
382 
383 	INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler);
384 	INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work);
385 
386 	mutex_init(&mq->complete_lock);
387 
388 	init_waitqueue_head(&mq->wait);
389 
390 	mmc_crypto_setup_queue(mq->queue, host);
391 }
392 
393 static inline bool mmc_merge_capable(struct mmc_host *host)
394 {
395 	return host->caps2 & MMC_CAP2_MERGE_CAPABLE;
396 }
397 
398 /* Set queue depth to get a reasonable value for q->nr_requests */
399 #define MMC_QUEUE_DEPTH 64
400 
401 /**
402  * mmc_init_queue - initialise a queue structure.
403  * @mq: mmc queue
404  * @card: mmc card to attach this queue
405  *
406  * Initialise a MMC card request queue.
407  */
408 struct gendisk *mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card)
409 {
410 	struct mmc_host *host = card->host;
411 	struct gendisk *disk;
412 	int ret;
413 
414 	mq->card = card;
415 
416 	spin_lock_init(&mq->lock);
417 
418 	memset(&mq->tag_set, 0, sizeof(mq->tag_set));
419 	mq->tag_set.ops = &mmc_mq_ops;
420 	/*
421 	 * The queue depth for CQE must match the hardware because the request
422 	 * tag is used to index the hardware queue.
423 	 */
424 	if (host->cqe_enabled && !host->hsq_enabled)
425 		mq->tag_set.queue_depth =
426 			min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth);
427 	else
428 		mq->tag_set.queue_depth = MMC_QUEUE_DEPTH;
429 	mq->tag_set.numa_node = NUMA_NO_NODE;
430 	mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
431 	mq->tag_set.nr_hw_queues = 1;
432 	mq->tag_set.cmd_size = sizeof(struct mmc_queue_req);
433 	mq->tag_set.driver_data = mq;
434 
435 	/*
436 	 * Since blk_mq_alloc_tag_set() calls .init_request() of mmc_mq_ops,
437 	 * the host->can_dma_map_merge should be set before to get max_segs
438 	 * from mmc_get_max_segments().
439 	 */
440 	if (mmc_merge_capable(host) &&
441 	    host->max_segs < MMC_DMA_MAP_MERGE_SEGMENTS &&
442 	    dma_get_merge_boundary(mmc_dev(host)))
443 		host->can_dma_map_merge = 1;
444 	else
445 		host->can_dma_map_merge = 0;
446 
447 	ret = blk_mq_alloc_tag_set(&mq->tag_set);
448 	if (ret)
449 		return ERR_PTR(ret);
450 
451 
452 	disk = blk_mq_alloc_disk(&mq->tag_set, mq);
453 	if (IS_ERR(disk)) {
454 		blk_mq_free_tag_set(&mq->tag_set);
455 		return disk;
456 	}
457 	mq->queue = disk->queue;
458 
459 	if (mmc_host_is_spi(host) && host->use_spi_crc)
460 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, mq->queue);
461 	blk_queue_rq_timeout(mq->queue, 60 * HZ);
462 
463 	mmc_setup_queue(mq, card);
464 	return disk;
465 }
466 
467 void mmc_queue_suspend(struct mmc_queue *mq)
468 {
469 	blk_mq_quiesce_queue(mq->queue);
470 
471 	/*
472 	 * The host remains claimed while there are outstanding requests, so
473 	 * simply claiming and releasing here ensures there are none.
474 	 */
475 	mmc_claim_host(mq->card->host);
476 	mmc_release_host(mq->card->host);
477 }
478 
479 void mmc_queue_resume(struct mmc_queue *mq)
480 {
481 	blk_mq_unquiesce_queue(mq->queue);
482 }
483 
484 void mmc_cleanup_queue(struct mmc_queue *mq)
485 {
486 	struct request_queue *q = mq->queue;
487 
488 	/*
489 	 * The legacy code handled the possibility of being suspended,
490 	 * so do that here too.
491 	 */
492 	if (blk_queue_quiesced(q))
493 		blk_mq_unquiesce_queue(q);
494 
495 	blk_cleanup_queue(q);
496 	blk_mq_free_tag_set(&mq->tag_set);
497 
498 	/*
499 	 * A request can be completed before the next request, potentially
500 	 * leaving a complete_work with nothing to do. Such a work item might
501 	 * still be queued at this point. Flush it.
502 	 */
503 	flush_work(&mq->complete_work);
504 
505 	mq->card = NULL;
506 }
507 
508 /*
509  * Prepare the sg list(s) to be handed of to the host driver
510  */
511 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
512 {
513 	struct request *req = mmc_queue_req_to_req(mqrq);
514 
515 	return blk_rq_map_sg(mq->queue, req, mqrq->sg);
516 }
517