xref: /linux/drivers/mmc/core/mmc_test.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2007-2008 Pierre Ossman
4  */
5 
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11 
12 #include <linux/scatterlist.h>
13 #include <linux/list.h>
14 
15 #include <linux/debugfs.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/module.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 
26 #define RESULT_OK		0
27 #define RESULT_FAIL		1
28 #define RESULT_UNSUP_HOST	2
29 #define RESULT_UNSUP_CARD	3
30 
31 #define BUFFER_ORDER		2
32 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
33 
34 #define TEST_ALIGN_END		8
35 
36 /*
37  * Limit the test area size to the maximum MMC HC erase group size.  Note that
38  * the maximum SD allocation unit size is just 4MiB.
39  */
40 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41 
42 /**
43  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
44  * @page: first page in the allocation
45  * @order: order of the number of pages allocated
46  */
47 struct mmc_test_pages {
48 	struct page *page;
49 	unsigned int order;
50 };
51 
52 /**
53  * struct mmc_test_mem - allocated memory.
54  * @arr: array of allocations
55  * @cnt: number of allocations
56  */
57 struct mmc_test_mem {
58 	struct mmc_test_pages *arr;
59 	unsigned int cnt;
60 };
61 
62 /**
63  * struct mmc_test_area - information for performance tests.
64  * @max_sz: test area size (in bytes)
65  * @dev_addr: address on card at which to do performance tests
66  * @max_tfr: maximum transfer size allowed by driver (in bytes)
67  * @max_segs: maximum segments allowed by driver in scatterlist @sg
68  * @max_seg_sz: maximum segment size allowed by driver
69  * @blocks: number of (512 byte) blocks currently mapped by @sg
70  * @sg_len: length of currently mapped scatterlist @sg
71  * @mem: allocated memory
72  * @sg: scatterlist
73  * @sg_areq: scatterlist for non-blocking request
74  */
75 struct mmc_test_area {
76 	unsigned long max_sz;
77 	unsigned int dev_addr;
78 	unsigned int max_tfr;
79 	unsigned int max_segs;
80 	unsigned int max_seg_sz;
81 	unsigned int blocks;
82 	unsigned int sg_len;
83 	struct mmc_test_mem *mem;
84 	struct scatterlist *sg;
85 	struct scatterlist *sg_areq;
86 };
87 
88 /**
89  * struct mmc_test_transfer_result - transfer results for performance tests.
90  * @link: double-linked list
91  * @count: amount of group of sectors to check
92  * @sectors: amount of sectors to check in one group
93  * @ts: time values of transfer
94  * @rate: calculated transfer rate
95  * @iops: I/O operations per second (times 100)
96  */
97 struct mmc_test_transfer_result {
98 	struct list_head link;
99 	unsigned int count;
100 	unsigned int sectors;
101 	struct timespec64 ts;
102 	unsigned int rate;
103 	unsigned int iops;
104 };
105 
106 /**
107  * struct mmc_test_general_result - results for tests.
108  * @link: double-linked list
109  * @card: card under test
110  * @testcase: number of test case
111  * @result: result of test run
112  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
113  */
114 struct mmc_test_general_result {
115 	struct list_head link;
116 	struct mmc_card *card;
117 	int testcase;
118 	int result;
119 	struct list_head tr_lst;
120 };
121 
122 /**
123  * struct mmc_test_dbgfs_file - debugfs related file.
124  * @link: double-linked list
125  * @card: card under test
126  * @file: file created under debugfs
127  */
128 struct mmc_test_dbgfs_file {
129 	struct list_head link;
130 	struct mmc_card *card;
131 	struct dentry *file;
132 };
133 
134 /**
135  * struct mmc_test_card - test information.
136  * @card: card under test
137  * @scratch: transfer buffer
138  * @buffer: transfer buffer
139  * @highmem: buffer for highmem tests
140  * @area: information for performance tests
141  * @gr: pointer to results of current testcase
142  */
143 struct mmc_test_card {
144 	struct mmc_card	*card;
145 
146 	u8		scratch[BUFFER_SIZE];
147 	u8		*buffer;
148 #ifdef CONFIG_HIGHMEM
149 	struct page	*highmem;
150 #endif
151 	struct mmc_test_area		area;
152 	struct mmc_test_general_result	*gr;
153 };
154 
155 enum mmc_test_prep_media {
156 	MMC_TEST_PREP_NONE = 0,
157 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
158 	MMC_TEST_PREP_ERASE = 1 << 1,
159 };
160 
161 struct mmc_test_multiple_rw {
162 	unsigned int *sg_len;
163 	unsigned int *bs;
164 	unsigned int len;
165 	unsigned int size;
166 	bool do_write;
167 	bool do_nonblock_req;
168 	enum mmc_test_prep_media prepare;
169 };
170 
171 /*******************************************************************/
172 /*  General helper functions                                       */
173 /*******************************************************************/
174 
175 /*
176  * Configure correct block size in card
177  */
178 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
179 {
180 	return mmc_set_blocklen(test->card, size);
181 }
182 
183 static bool mmc_test_card_cmd23(struct mmc_card *card)
184 {
185 	return mmc_card_mmc(card) ||
186 	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
187 }
188 
189 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
190 				 struct mmc_request *mrq, unsigned int blocks)
191 {
192 	struct mmc_card *card = test->card;
193 
194 	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
195 	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
196 	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
197 		mrq->sbc = NULL;
198 		return;
199 	}
200 
201 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
202 	mrq->sbc->arg = blocks;
203 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
204 }
205 
206 /*
207  * Fill in the mmc_request structure given a set of transfer parameters.
208  */
209 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
210 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
211 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
212 {
213 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
214 		return;
215 
216 	if (blocks > 1) {
217 		mrq->cmd->opcode = write ?
218 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
219 	} else {
220 		mrq->cmd->opcode = write ?
221 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
222 	}
223 
224 	mrq->cmd->arg = dev_addr;
225 	if (!mmc_card_blockaddr(test->card))
226 		mrq->cmd->arg <<= 9;
227 
228 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
229 
230 	if (blocks == 1)
231 		mrq->stop = NULL;
232 	else {
233 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
234 		mrq->stop->arg = 0;
235 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
236 	}
237 
238 	mrq->data->blksz = blksz;
239 	mrq->data->blocks = blocks;
240 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
241 	mrq->data->sg = sg;
242 	mrq->data->sg_len = sg_len;
243 
244 	mmc_test_prepare_sbc(test, mrq, blocks);
245 
246 	mmc_set_data_timeout(mrq->data, test->card);
247 }
248 
249 static int mmc_test_busy(struct mmc_command *cmd)
250 {
251 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
252 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
253 }
254 
255 /*
256  * Wait for the card to finish the busy state
257  */
258 static int mmc_test_wait_busy(struct mmc_test_card *test)
259 {
260 	int ret, busy;
261 	struct mmc_command cmd = {};
262 
263 	busy = 0;
264 	do {
265 		memset(&cmd, 0, sizeof(struct mmc_command));
266 
267 		cmd.opcode = MMC_SEND_STATUS;
268 		cmd.arg = test->card->rca << 16;
269 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
270 
271 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
272 		if (ret)
273 			break;
274 
275 		if (!busy && mmc_test_busy(&cmd)) {
276 			busy = 1;
277 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
278 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
279 					mmc_hostname(test->card->host));
280 		}
281 	} while (mmc_test_busy(&cmd));
282 
283 	return ret;
284 }
285 
286 /*
287  * Transfer a single sector of kernel addressable data
288  */
289 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
290 	u8 *buffer, unsigned addr, unsigned blksz, int write)
291 {
292 	struct mmc_request mrq = {};
293 	struct mmc_command cmd = {};
294 	struct mmc_command stop = {};
295 	struct mmc_data data = {};
296 
297 	struct scatterlist sg;
298 
299 	mrq.cmd = &cmd;
300 	mrq.data = &data;
301 	mrq.stop = &stop;
302 
303 	sg_init_one(&sg, buffer, blksz);
304 
305 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
306 
307 	mmc_wait_for_req(test->card->host, &mrq);
308 
309 	if (cmd.error)
310 		return cmd.error;
311 	if (data.error)
312 		return data.error;
313 
314 	return mmc_test_wait_busy(test);
315 }
316 
317 static void mmc_test_free_mem(struct mmc_test_mem *mem)
318 {
319 	if (!mem)
320 		return;
321 	while (mem->cnt--)
322 		__free_pages(mem->arr[mem->cnt].page,
323 			     mem->arr[mem->cnt].order);
324 	kfree(mem->arr);
325 	kfree(mem);
326 }
327 
328 /*
329  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
330  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
331  * not exceed a maximum number of segments and try not to make segments much
332  * bigger than maximum segment size.
333  */
334 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
335 					       unsigned long max_sz,
336 					       unsigned int max_segs,
337 					       unsigned int max_seg_sz)
338 {
339 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
340 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
341 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
342 	unsigned long page_cnt = 0;
343 	unsigned long limit = nr_free_buffer_pages() >> 4;
344 	struct mmc_test_mem *mem;
345 
346 	if (max_page_cnt > limit)
347 		max_page_cnt = limit;
348 	if (min_page_cnt > max_page_cnt)
349 		min_page_cnt = max_page_cnt;
350 
351 	if (max_seg_page_cnt > max_page_cnt)
352 		max_seg_page_cnt = max_page_cnt;
353 
354 	if (max_segs > max_page_cnt)
355 		max_segs = max_page_cnt;
356 
357 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
358 	if (!mem)
359 		return NULL;
360 
361 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
362 	if (!mem->arr)
363 		goto out_free;
364 
365 	while (max_page_cnt) {
366 		struct page *page;
367 		unsigned int order;
368 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
369 				__GFP_NORETRY;
370 
371 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
372 		while (1) {
373 			page = alloc_pages(flags, order);
374 			if (page || !order)
375 				break;
376 			order -= 1;
377 		}
378 		if (!page) {
379 			if (page_cnt < min_page_cnt)
380 				goto out_free;
381 			break;
382 		}
383 		mem->arr[mem->cnt].page = page;
384 		mem->arr[mem->cnt].order = order;
385 		mem->cnt += 1;
386 		if (max_page_cnt <= (1UL << order))
387 			break;
388 		max_page_cnt -= 1UL << order;
389 		page_cnt += 1UL << order;
390 		if (mem->cnt >= max_segs) {
391 			if (page_cnt < min_page_cnt)
392 				goto out_free;
393 			break;
394 		}
395 	}
396 
397 	return mem;
398 
399 out_free:
400 	mmc_test_free_mem(mem);
401 	return NULL;
402 }
403 
404 /*
405  * Map memory into a scatterlist.  Optionally allow the same memory to be
406  * mapped more than once.
407  */
408 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
409 			   struct scatterlist *sglist, int repeat,
410 			   unsigned int max_segs, unsigned int max_seg_sz,
411 			   unsigned int *sg_len, int min_sg_len)
412 {
413 	struct scatterlist *sg = NULL;
414 	unsigned int i;
415 	unsigned long sz = size;
416 
417 	sg_init_table(sglist, max_segs);
418 	if (min_sg_len > max_segs)
419 		min_sg_len = max_segs;
420 
421 	*sg_len = 0;
422 	do {
423 		for (i = 0; i < mem->cnt; i++) {
424 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
425 
426 			if (min_sg_len && (size / min_sg_len < len))
427 				len = ALIGN(size / min_sg_len, 512);
428 			if (len > sz)
429 				len = sz;
430 			if (len > max_seg_sz)
431 				len = max_seg_sz;
432 			if (sg)
433 				sg = sg_next(sg);
434 			else
435 				sg = sglist;
436 			if (!sg)
437 				return -EINVAL;
438 			sg_set_page(sg, mem->arr[i].page, len, 0);
439 			sz -= len;
440 			*sg_len += 1;
441 			if (!sz)
442 				break;
443 		}
444 	} while (sz && repeat);
445 
446 	if (sz)
447 		return -EINVAL;
448 
449 	if (sg)
450 		sg_mark_end(sg);
451 
452 	return 0;
453 }
454 
455 /*
456  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
457  * same memory to be mapped more than once.
458  */
459 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
460 				       unsigned long sz,
461 				       struct scatterlist *sglist,
462 				       unsigned int max_segs,
463 				       unsigned int max_seg_sz,
464 				       unsigned int *sg_len)
465 {
466 	struct scatterlist *sg = NULL;
467 	unsigned int i = mem->cnt, cnt;
468 	unsigned long len;
469 	void *base, *addr, *last_addr = NULL;
470 
471 	sg_init_table(sglist, max_segs);
472 
473 	*sg_len = 0;
474 	while (sz) {
475 		base = page_address(mem->arr[--i].page);
476 		cnt = 1 << mem->arr[i].order;
477 		while (sz && cnt) {
478 			addr = base + PAGE_SIZE * --cnt;
479 			if (last_addr && last_addr + PAGE_SIZE == addr)
480 				continue;
481 			last_addr = addr;
482 			len = PAGE_SIZE;
483 			if (len > max_seg_sz)
484 				len = max_seg_sz;
485 			if (len > sz)
486 				len = sz;
487 			if (sg)
488 				sg = sg_next(sg);
489 			else
490 				sg = sglist;
491 			if (!sg)
492 				return -EINVAL;
493 			sg_set_page(sg, virt_to_page(addr), len, 0);
494 			sz -= len;
495 			*sg_len += 1;
496 		}
497 		if (i == 0)
498 			i = mem->cnt;
499 	}
500 
501 	if (sg)
502 		sg_mark_end(sg);
503 
504 	return 0;
505 }
506 
507 /*
508  * Calculate transfer rate in bytes per second.
509  */
510 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
511 {
512 	uint64_t ns;
513 
514 	ns = timespec64_to_ns(ts);
515 	bytes *= 1000000000;
516 
517 	while (ns > UINT_MAX) {
518 		bytes >>= 1;
519 		ns >>= 1;
520 	}
521 
522 	if (!ns)
523 		return 0;
524 
525 	do_div(bytes, (uint32_t)ns);
526 
527 	return bytes;
528 }
529 
530 /*
531  * Save transfer results for future usage
532  */
533 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
534 	unsigned int count, unsigned int sectors, struct timespec64 ts,
535 	unsigned int rate, unsigned int iops)
536 {
537 	struct mmc_test_transfer_result *tr;
538 
539 	if (!test->gr)
540 		return;
541 
542 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
543 	if (!tr)
544 		return;
545 
546 	tr->count = count;
547 	tr->sectors = sectors;
548 	tr->ts = ts;
549 	tr->rate = rate;
550 	tr->iops = iops;
551 
552 	list_add_tail(&tr->link, &test->gr->tr_lst);
553 }
554 
555 /*
556  * Print the transfer rate.
557  */
558 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
559 				struct timespec64 *ts1, struct timespec64 *ts2)
560 {
561 	unsigned int rate, iops, sectors = bytes >> 9;
562 	struct timespec64 ts;
563 
564 	ts = timespec64_sub(*ts2, *ts1);
565 
566 	rate = mmc_test_rate(bytes, &ts);
567 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
568 
569 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
570 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
571 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
572 			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
573 			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
574 			 iops / 100, iops % 100);
575 
576 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
577 }
578 
579 /*
580  * Print the average transfer rate.
581  */
582 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
583 				    unsigned int count, struct timespec64 *ts1,
584 				    struct timespec64 *ts2)
585 {
586 	unsigned int rate, iops, sectors = bytes >> 9;
587 	uint64_t tot = bytes * count;
588 	struct timespec64 ts;
589 
590 	ts = timespec64_sub(*ts2, *ts1);
591 
592 	rate = mmc_test_rate(tot, &ts);
593 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
594 
595 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
596 			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
597 			 "%u.%02u IOPS, sg_len %d)\n",
598 			 mmc_hostname(test->card->host), count, sectors, count,
599 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
600 			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
601 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
602 			 test->area.sg_len);
603 
604 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
605 }
606 
607 /*
608  * Return the card size in sectors.
609  */
610 static unsigned int mmc_test_capacity(struct mmc_card *card)
611 {
612 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
613 		return card->ext_csd.sectors;
614 	else
615 		return card->csd.capacity << (card->csd.read_blkbits - 9);
616 }
617 
618 /*******************************************************************/
619 /*  Test preparation and cleanup                                   */
620 /*******************************************************************/
621 
622 /*
623  * Fill the first couple of sectors of the card with known data
624  * so that bad reads/writes can be detected
625  */
626 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
627 {
628 	int ret, i;
629 
630 	ret = mmc_test_set_blksize(test, 512);
631 	if (ret)
632 		return ret;
633 
634 	if (write)
635 		memset(test->buffer, val, 512);
636 	else {
637 		for (i = 0; i < 512; i++)
638 			test->buffer[i] = i;
639 	}
640 
641 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
642 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
643 		if (ret)
644 			return ret;
645 	}
646 
647 	return 0;
648 }
649 
650 static int mmc_test_prepare_write(struct mmc_test_card *test)
651 {
652 	return __mmc_test_prepare(test, 1, 0xDF);
653 }
654 
655 static int mmc_test_prepare_read(struct mmc_test_card *test)
656 {
657 	return __mmc_test_prepare(test, 0, 0);
658 }
659 
660 static int mmc_test_cleanup(struct mmc_test_card *test)
661 {
662 	return __mmc_test_prepare(test, 1, 0);
663 }
664 
665 /*******************************************************************/
666 /*  Test execution helpers                                         */
667 /*******************************************************************/
668 
669 /*
670  * Modifies the mmc_request to perform the "short transfer" tests
671  */
672 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
673 	struct mmc_request *mrq, int write)
674 {
675 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
676 		return;
677 
678 	if (mrq->data->blocks > 1) {
679 		mrq->cmd->opcode = write ?
680 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681 		mrq->stop = NULL;
682 	} else {
683 		mrq->cmd->opcode = MMC_SEND_STATUS;
684 		mrq->cmd->arg = test->card->rca << 16;
685 	}
686 }
687 
688 /*
689  * Checks that a normal transfer didn't have any errors
690  */
691 static int mmc_test_check_result(struct mmc_test_card *test,
692 				 struct mmc_request *mrq)
693 {
694 	int ret;
695 
696 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
697 		return -EINVAL;
698 
699 	ret = 0;
700 
701 	if (mrq->sbc && mrq->sbc->error)
702 		ret = mrq->sbc->error;
703 	if (!ret && mrq->cmd->error)
704 		ret = mrq->cmd->error;
705 	if (!ret && mrq->data->error)
706 		ret = mrq->data->error;
707 	if (!ret && mrq->stop && mrq->stop->error)
708 		ret = mrq->stop->error;
709 	if (!ret && mrq->data->bytes_xfered !=
710 		mrq->data->blocks * mrq->data->blksz)
711 		ret = RESULT_FAIL;
712 
713 	if (ret == -EINVAL)
714 		ret = RESULT_UNSUP_HOST;
715 
716 	return ret;
717 }
718 
719 /*
720  * Checks that a "short transfer" behaved as expected
721  */
722 static int mmc_test_check_broken_result(struct mmc_test_card *test,
723 	struct mmc_request *mrq)
724 {
725 	int ret;
726 
727 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
728 		return -EINVAL;
729 
730 	ret = 0;
731 
732 	if (!ret && mrq->cmd->error)
733 		ret = mrq->cmd->error;
734 	if (!ret && mrq->data->error == 0)
735 		ret = RESULT_FAIL;
736 	if (!ret && mrq->data->error != -ETIMEDOUT)
737 		ret = mrq->data->error;
738 	if (!ret && mrq->stop && mrq->stop->error)
739 		ret = mrq->stop->error;
740 	if (mrq->data->blocks > 1) {
741 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
742 			ret = RESULT_FAIL;
743 	} else {
744 		if (!ret && mrq->data->bytes_xfered > 0)
745 			ret = RESULT_FAIL;
746 	}
747 
748 	if (ret == -EINVAL)
749 		ret = RESULT_UNSUP_HOST;
750 
751 	return ret;
752 }
753 
754 struct mmc_test_req {
755 	struct mmc_request mrq;
756 	struct mmc_command sbc;
757 	struct mmc_command cmd;
758 	struct mmc_command stop;
759 	struct mmc_command status;
760 	struct mmc_data data;
761 };
762 
763 /*
764  * Tests nonblock transfer with certain parameters
765  */
766 static void mmc_test_req_reset(struct mmc_test_req *rq)
767 {
768 	memset(rq, 0, sizeof(struct mmc_test_req));
769 
770 	rq->mrq.cmd = &rq->cmd;
771 	rq->mrq.data = &rq->data;
772 	rq->mrq.stop = &rq->stop;
773 }
774 
775 static struct mmc_test_req *mmc_test_req_alloc(void)
776 {
777 	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
778 
779 	if (rq)
780 		mmc_test_req_reset(rq);
781 
782 	return rq;
783 }
784 
785 static void mmc_test_wait_done(struct mmc_request *mrq)
786 {
787 	complete(&mrq->completion);
788 }
789 
790 static int mmc_test_start_areq(struct mmc_test_card *test,
791 			       struct mmc_request *mrq,
792 			       struct mmc_request *prev_mrq)
793 {
794 	struct mmc_host *host = test->card->host;
795 	int err = 0;
796 
797 	if (mrq) {
798 		init_completion(&mrq->completion);
799 		mrq->done = mmc_test_wait_done;
800 		mmc_pre_req(host, mrq);
801 	}
802 
803 	if (prev_mrq) {
804 		wait_for_completion(&prev_mrq->completion);
805 		err = mmc_test_wait_busy(test);
806 		if (!err)
807 			err = mmc_test_check_result(test, prev_mrq);
808 	}
809 
810 	if (!err && mrq) {
811 		err = mmc_start_request(host, mrq);
812 		if (err)
813 			mmc_retune_release(host);
814 	}
815 
816 	if (prev_mrq)
817 		mmc_post_req(host, prev_mrq, 0);
818 
819 	if (err && mrq)
820 		mmc_post_req(host, mrq, err);
821 
822 	return err;
823 }
824 
825 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
826 				      unsigned int dev_addr, int write,
827 				      int count)
828 {
829 	struct mmc_test_req *rq1, *rq2;
830 	struct mmc_request *mrq, *prev_mrq;
831 	int i;
832 	int ret = RESULT_OK;
833 	struct mmc_test_area *t = &test->area;
834 	struct scatterlist *sg = t->sg;
835 	struct scatterlist *sg_areq = t->sg_areq;
836 
837 	rq1 = mmc_test_req_alloc();
838 	rq2 = mmc_test_req_alloc();
839 	if (!rq1 || !rq2) {
840 		ret = RESULT_FAIL;
841 		goto err;
842 	}
843 
844 	mrq = &rq1->mrq;
845 	prev_mrq = NULL;
846 
847 	for (i = 0; i < count; i++) {
848 		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
849 		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
850 				     t->blocks, 512, write);
851 		ret = mmc_test_start_areq(test, mrq, prev_mrq);
852 		if (ret)
853 			goto err;
854 
855 		if (!prev_mrq)
856 			prev_mrq = &rq2->mrq;
857 
858 		swap(mrq, prev_mrq);
859 		swap(sg, sg_areq);
860 		dev_addr += t->blocks;
861 	}
862 
863 	ret = mmc_test_start_areq(test, NULL, prev_mrq);
864 err:
865 	kfree(rq1);
866 	kfree(rq2);
867 	return ret;
868 }
869 
870 /*
871  * Tests a basic transfer with certain parameters
872  */
873 static int mmc_test_simple_transfer(struct mmc_test_card *test,
874 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
875 	unsigned blocks, unsigned blksz, int write)
876 {
877 	struct mmc_request mrq = {};
878 	struct mmc_command cmd = {};
879 	struct mmc_command stop = {};
880 	struct mmc_data data = {};
881 
882 	mrq.cmd = &cmd;
883 	mrq.data = &data;
884 	mrq.stop = &stop;
885 
886 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
887 		blocks, blksz, write);
888 
889 	mmc_wait_for_req(test->card->host, &mrq);
890 
891 	mmc_test_wait_busy(test);
892 
893 	return mmc_test_check_result(test, &mrq);
894 }
895 
896 /*
897  * Tests a transfer where the card will fail completely or partly
898  */
899 static int mmc_test_broken_transfer(struct mmc_test_card *test,
900 	unsigned blocks, unsigned blksz, int write)
901 {
902 	struct mmc_request mrq = {};
903 	struct mmc_command cmd = {};
904 	struct mmc_command stop = {};
905 	struct mmc_data data = {};
906 
907 	struct scatterlist sg;
908 
909 	mrq.cmd = &cmd;
910 	mrq.data = &data;
911 	mrq.stop = &stop;
912 
913 	sg_init_one(&sg, test->buffer, blocks * blksz);
914 
915 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
916 	mmc_test_prepare_broken_mrq(test, &mrq, write);
917 
918 	mmc_wait_for_req(test->card->host, &mrq);
919 
920 	mmc_test_wait_busy(test);
921 
922 	return mmc_test_check_broken_result(test, &mrq);
923 }
924 
925 /*
926  * Does a complete transfer test where data is also validated
927  *
928  * Note: mmc_test_prepare() must have been done before this call
929  */
930 static int mmc_test_transfer(struct mmc_test_card *test,
931 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
932 	unsigned blocks, unsigned blksz, int write)
933 {
934 	int ret, i;
935 
936 	if (write) {
937 		for (i = 0; i < blocks * blksz; i++)
938 			test->scratch[i] = i;
939 	} else {
940 		memset(test->scratch, 0, BUFFER_SIZE);
941 	}
942 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
943 
944 	ret = mmc_test_set_blksize(test, blksz);
945 	if (ret)
946 		return ret;
947 
948 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
949 		blocks, blksz, write);
950 	if (ret)
951 		return ret;
952 
953 	if (write) {
954 		int sectors;
955 
956 		ret = mmc_test_set_blksize(test, 512);
957 		if (ret)
958 			return ret;
959 
960 		sectors = (blocks * blksz + 511) / 512;
961 		if ((sectors * 512) == (blocks * blksz))
962 			sectors++;
963 
964 		if ((sectors * 512) > BUFFER_SIZE)
965 			return -EINVAL;
966 
967 		memset(test->buffer, 0, sectors * 512);
968 
969 		for (i = 0; i < sectors; i++) {
970 			ret = mmc_test_buffer_transfer(test,
971 				test->buffer + i * 512,
972 				dev_addr + i, 512, 0);
973 			if (ret)
974 				return ret;
975 		}
976 
977 		for (i = 0; i < blocks * blksz; i++) {
978 			if (test->buffer[i] != (u8)i)
979 				return RESULT_FAIL;
980 		}
981 
982 		for (; i < sectors * 512; i++) {
983 			if (test->buffer[i] != 0xDF)
984 				return RESULT_FAIL;
985 		}
986 	} else {
987 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
988 		for (i = 0; i < blocks * blksz; i++) {
989 			if (test->scratch[i] != (u8)i)
990 				return RESULT_FAIL;
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 /*******************************************************************/
998 /*  Tests                                                          */
999 /*******************************************************************/
1000 
1001 struct mmc_test_case {
1002 	const char *name;
1003 
1004 	int (*prepare)(struct mmc_test_card *);
1005 	int (*run)(struct mmc_test_card *);
1006 	int (*cleanup)(struct mmc_test_card *);
1007 };
1008 
1009 static int mmc_test_basic_write(struct mmc_test_card *test)
1010 {
1011 	int ret;
1012 	struct scatterlist sg;
1013 
1014 	ret = mmc_test_set_blksize(test, 512);
1015 	if (ret)
1016 		return ret;
1017 
1018 	sg_init_one(&sg, test->buffer, 512);
1019 
1020 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1021 }
1022 
1023 static int mmc_test_basic_read(struct mmc_test_card *test)
1024 {
1025 	int ret;
1026 	struct scatterlist sg;
1027 
1028 	ret = mmc_test_set_blksize(test, 512);
1029 	if (ret)
1030 		return ret;
1031 
1032 	sg_init_one(&sg, test->buffer, 512);
1033 
1034 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1035 }
1036 
1037 static int mmc_test_verify_write(struct mmc_test_card *test)
1038 {
1039 	struct scatterlist sg;
1040 
1041 	sg_init_one(&sg, test->buffer, 512);
1042 
1043 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1044 }
1045 
1046 static int mmc_test_verify_read(struct mmc_test_card *test)
1047 {
1048 	struct scatterlist sg;
1049 
1050 	sg_init_one(&sg, test->buffer, 512);
1051 
1052 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1053 }
1054 
1055 static int mmc_test_multi_write(struct mmc_test_card *test)
1056 {
1057 	unsigned int size;
1058 	struct scatterlist sg;
1059 
1060 	if (test->card->host->max_blk_count == 1)
1061 		return RESULT_UNSUP_HOST;
1062 
1063 	size = PAGE_SIZE * 2;
1064 	size = min(size, test->card->host->max_req_size);
1065 	size = min(size, test->card->host->max_seg_size);
1066 	size = min(size, test->card->host->max_blk_count * 512);
1067 
1068 	if (size < 1024)
1069 		return RESULT_UNSUP_HOST;
1070 
1071 	sg_init_one(&sg, test->buffer, size);
1072 
1073 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1074 }
1075 
1076 static int mmc_test_multi_read(struct mmc_test_card *test)
1077 {
1078 	unsigned int size;
1079 	struct scatterlist sg;
1080 
1081 	if (test->card->host->max_blk_count == 1)
1082 		return RESULT_UNSUP_HOST;
1083 
1084 	size = PAGE_SIZE * 2;
1085 	size = min(size, test->card->host->max_req_size);
1086 	size = min(size, test->card->host->max_seg_size);
1087 	size = min(size, test->card->host->max_blk_count * 512);
1088 
1089 	if (size < 1024)
1090 		return RESULT_UNSUP_HOST;
1091 
1092 	sg_init_one(&sg, test->buffer, size);
1093 
1094 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1095 }
1096 
1097 static int mmc_test_pow2_write(struct mmc_test_card *test)
1098 {
1099 	int ret, i;
1100 	struct scatterlist sg;
1101 
1102 	if (!test->card->csd.write_partial)
1103 		return RESULT_UNSUP_CARD;
1104 
1105 	for (i = 1; i < 512; i <<= 1) {
1106 		sg_init_one(&sg, test->buffer, i);
1107 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1108 		if (ret)
1109 			return ret;
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int mmc_test_pow2_read(struct mmc_test_card *test)
1116 {
1117 	int ret, i;
1118 	struct scatterlist sg;
1119 
1120 	if (!test->card->csd.read_partial)
1121 		return RESULT_UNSUP_CARD;
1122 
1123 	for (i = 1; i < 512; i <<= 1) {
1124 		sg_init_one(&sg, test->buffer, i);
1125 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1126 		if (ret)
1127 			return ret;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static int mmc_test_weird_write(struct mmc_test_card *test)
1134 {
1135 	int ret, i;
1136 	struct scatterlist sg;
1137 
1138 	if (!test->card->csd.write_partial)
1139 		return RESULT_UNSUP_CARD;
1140 
1141 	for (i = 3; i < 512; i += 7) {
1142 		sg_init_one(&sg, test->buffer, i);
1143 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 static int mmc_test_weird_read(struct mmc_test_card *test)
1152 {
1153 	int ret, i;
1154 	struct scatterlist sg;
1155 
1156 	if (!test->card->csd.read_partial)
1157 		return RESULT_UNSUP_CARD;
1158 
1159 	for (i = 3; i < 512; i += 7) {
1160 		sg_init_one(&sg, test->buffer, i);
1161 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1162 		if (ret)
1163 			return ret;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int mmc_test_align_write(struct mmc_test_card *test)
1170 {
1171 	int ret, i;
1172 	struct scatterlist sg;
1173 
1174 	for (i = 1; i < TEST_ALIGN_END; i++) {
1175 		sg_init_one(&sg, test->buffer + i, 512);
1176 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1177 		if (ret)
1178 			return ret;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int mmc_test_align_read(struct mmc_test_card *test)
1185 {
1186 	int ret, i;
1187 	struct scatterlist sg;
1188 
1189 	for (i = 1; i < TEST_ALIGN_END; i++) {
1190 		sg_init_one(&sg, test->buffer + i, 512);
1191 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1200 {
1201 	int ret, i;
1202 	unsigned int size;
1203 	struct scatterlist sg;
1204 
1205 	if (test->card->host->max_blk_count == 1)
1206 		return RESULT_UNSUP_HOST;
1207 
1208 	size = PAGE_SIZE * 2;
1209 	size = min(size, test->card->host->max_req_size);
1210 	size = min(size, test->card->host->max_seg_size);
1211 	size = min(size, test->card->host->max_blk_count * 512);
1212 
1213 	if (size < 1024)
1214 		return RESULT_UNSUP_HOST;
1215 
1216 	for (i = 1; i < TEST_ALIGN_END; i++) {
1217 		sg_init_one(&sg, test->buffer + i, size);
1218 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1219 		if (ret)
1220 			return ret;
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1227 {
1228 	int ret, i;
1229 	unsigned int size;
1230 	struct scatterlist sg;
1231 
1232 	if (test->card->host->max_blk_count == 1)
1233 		return RESULT_UNSUP_HOST;
1234 
1235 	size = PAGE_SIZE * 2;
1236 	size = min(size, test->card->host->max_req_size);
1237 	size = min(size, test->card->host->max_seg_size);
1238 	size = min(size, test->card->host->max_blk_count * 512);
1239 
1240 	if (size < 1024)
1241 		return RESULT_UNSUP_HOST;
1242 
1243 	for (i = 1; i < TEST_ALIGN_END; i++) {
1244 		sg_init_one(&sg, test->buffer + i, size);
1245 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1246 		if (ret)
1247 			return ret;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1254 {
1255 	int ret;
1256 
1257 	ret = mmc_test_set_blksize(test, 512);
1258 	if (ret)
1259 		return ret;
1260 
1261 	return mmc_test_broken_transfer(test, 1, 512, 1);
1262 }
1263 
1264 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1265 {
1266 	int ret;
1267 
1268 	ret = mmc_test_set_blksize(test, 512);
1269 	if (ret)
1270 		return ret;
1271 
1272 	return mmc_test_broken_transfer(test, 1, 512, 0);
1273 }
1274 
1275 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1276 {
1277 	int ret;
1278 
1279 	if (test->card->host->max_blk_count == 1)
1280 		return RESULT_UNSUP_HOST;
1281 
1282 	ret = mmc_test_set_blksize(test, 512);
1283 	if (ret)
1284 		return ret;
1285 
1286 	return mmc_test_broken_transfer(test, 2, 512, 1);
1287 }
1288 
1289 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1290 {
1291 	int ret;
1292 
1293 	if (test->card->host->max_blk_count == 1)
1294 		return RESULT_UNSUP_HOST;
1295 
1296 	ret = mmc_test_set_blksize(test, 512);
1297 	if (ret)
1298 		return ret;
1299 
1300 	return mmc_test_broken_transfer(test, 2, 512, 0);
1301 }
1302 
1303 #ifdef CONFIG_HIGHMEM
1304 
1305 static int mmc_test_write_high(struct mmc_test_card *test)
1306 {
1307 	struct scatterlist sg;
1308 
1309 	sg_init_table(&sg, 1);
1310 	sg_set_page(&sg, test->highmem, 512, 0);
1311 
1312 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1313 }
1314 
1315 static int mmc_test_read_high(struct mmc_test_card *test)
1316 {
1317 	struct scatterlist sg;
1318 
1319 	sg_init_table(&sg, 1);
1320 	sg_set_page(&sg, test->highmem, 512, 0);
1321 
1322 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1323 }
1324 
1325 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1326 {
1327 	unsigned int size;
1328 	struct scatterlist sg;
1329 
1330 	if (test->card->host->max_blk_count == 1)
1331 		return RESULT_UNSUP_HOST;
1332 
1333 	size = PAGE_SIZE * 2;
1334 	size = min(size, test->card->host->max_req_size);
1335 	size = min(size, test->card->host->max_seg_size);
1336 	size = min(size, test->card->host->max_blk_count * 512);
1337 
1338 	if (size < 1024)
1339 		return RESULT_UNSUP_HOST;
1340 
1341 	sg_init_table(&sg, 1);
1342 	sg_set_page(&sg, test->highmem, size, 0);
1343 
1344 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1345 }
1346 
1347 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1348 {
1349 	unsigned int size;
1350 	struct scatterlist sg;
1351 
1352 	if (test->card->host->max_blk_count == 1)
1353 		return RESULT_UNSUP_HOST;
1354 
1355 	size = PAGE_SIZE * 2;
1356 	size = min(size, test->card->host->max_req_size);
1357 	size = min(size, test->card->host->max_seg_size);
1358 	size = min(size, test->card->host->max_blk_count * 512);
1359 
1360 	if (size < 1024)
1361 		return RESULT_UNSUP_HOST;
1362 
1363 	sg_init_table(&sg, 1);
1364 	sg_set_page(&sg, test->highmem, size, 0);
1365 
1366 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1367 }
1368 
1369 #else
1370 
1371 static int mmc_test_no_highmem(struct mmc_test_card *test)
1372 {
1373 	pr_info("%s: Highmem not configured - test skipped\n",
1374 	       mmc_hostname(test->card->host));
1375 	return 0;
1376 }
1377 
1378 #endif /* CONFIG_HIGHMEM */
1379 
1380 /*
1381  * Map sz bytes so that it can be transferred.
1382  */
1383 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1384 			     int max_scatter, int min_sg_len, bool nonblock)
1385 {
1386 	struct mmc_test_area *t = &test->area;
1387 	int err;
1388 	unsigned int sg_len = 0;
1389 
1390 	t->blocks = sz >> 9;
1391 
1392 	if (max_scatter) {
1393 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1394 						  t->max_segs, t->max_seg_sz,
1395 				       &t->sg_len);
1396 	} else {
1397 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1398 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1399 	}
1400 
1401 	if (err || !nonblock)
1402 		goto err;
1403 
1404 	if (max_scatter) {
1405 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1406 						  t->max_segs, t->max_seg_sz,
1407 						  &sg_len);
1408 	} else {
1409 		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1410 				      t->max_seg_sz, &sg_len, min_sg_len);
1411 	}
1412 	if (!err && sg_len != t->sg_len)
1413 		err = -EINVAL;
1414 
1415 err:
1416 	if (err)
1417 		pr_info("%s: Failed to map sg list\n",
1418 		       mmc_hostname(test->card->host));
1419 	return err;
1420 }
1421 
1422 /*
1423  * Transfer bytes mapped by mmc_test_area_map().
1424  */
1425 static int mmc_test_area_transfer(struct mmc_test_card *test,
1426 				  unsigned int dev_addr, int write)
1427 {
1428 	struct mmc_test_area *t = &test->area;
1429 
1430 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1431 					t->blocks, 512, write);
1432 }
1433 
1434 /*
1435  * Map and transfer bytes for multiple transfers.
1436  */
1437 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1438 				unsigned int dev_addr, int write,
1439 				int max_scatter, int timed, int count,
1440 				bool nonblock, int min_sg_len)
1441 {
1442 	struct timespec64 ts1, ts2;
1443 	int ret = 0;
1444 	int i;
1445 
1446 	/*
1447 	 * In the case of a maximally scattered transfer, the maximum transfer
1448 	 * size is further limited by using PAGE_SIZE segments.
1449 	 */
1450 	if (max_scatter) {
1451 		struct mmc_test_area *t = &test->area;
1452 		unsigned long max_tfr;
1453 
1454 		if (t->max_seg_sz >= PAGE_SIZE)
1455 			max_tfr = t->max_segs * PAGE_SIZE;
1456 		else
1457 			max_tfr = t->max_segs * t->max_seg_sz;
1458 		if (sz > max_tfr)
1459 			sz = max_tfr;
1460 	}
1461 
1462 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1463 	if (ret)
1464 		return ret;
1465 
1466 	if (timed)
1467 		ktime_get_ts64(&ts1);
1468 	if (nonblock)
1469 		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1470 	else
1471 		for (i = 0; i < count && ret == 0; i++) {
1472 			ret = mmc_test_area_transfer(test, dev_addr, write);
1473 			dev_addr += sz >> 9;
1474 		}
1475 
1476 	if (ret)
1477 		return ret;
1478 
1479 	if (timed)
1480 		ktime_get_ts64(&ts2);
1481 
1482 	if (timed)
1483 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1484 
1485 	return 0;
1486 }
1487 
1488 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1489 			    unsigned int dev_addr, int write, int max_scatter,
1490 			    int timed)
1491 {
1492 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1493 				    timed, 1, false, 0);
1494 }
1495 
1496 /*
1497  * Write the test area entirely.
1498  */
1499 static int mmc_test_area_fill(struct mmc_test_card *test)
1500 {
1501 	struct mmc_test_area *t = &test->area;
1502 
1503 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1504 }
1505 
1506 /*
1507  * Erase the test area entirely.
1508  */
1509 static int mmc_test_area_erase(struct mmc_test_card *test)
1510 {
1511 	struct mmc_test_area *t = &test->area;
1512 
1513 	if (!mmc_can_erase(test->card))
1514 		return 0;
1515 
1516 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1517 			 MMC_ERASE_ARG);
1518 }
1519 
1520 /*
1521  * Cleanup struct mmc_test_area.
1522  */
1523 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1524 {
1525 	struct mmc_test_area *t = &test->area;
1526 
1527 	kfree(t->sg);
1528 	kfree(t->sg_areq);
1529 	mmc_test_free_mem(t->mem);
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Initialize an area for testing large transfers.  The test area is set to the
1536  * middle of the card because cards may have different characteristics at the
1537  * front (for FAT file system optimization).  Optionally, the area is erased
1538  * (if the card supports it) which may improve write performance.  Optionally,
1539  * the area is filled with data for subsequent read tests.
1540  */
1541 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1542 {
1543 	struct mmc_test_area *t = &test->area;
1544 	unsigned long min_sz = 64 * 1024, sz;
1545 	int ret;
1546 
1547 	ret = mmc_test_set_blksize(test, 512);
1548 	if (ret)
1549 		return ret;
1550 
1551 	/* Make the test area size about 4MiB */
1552 	sz = (unsigned long)test->card->pref_erase << 9;
1553 	t->max_sz = sz;
1554 	while (t->max_sz < 4 * 1024 * 1024)
1555 		t->max_sz += sz;
1556 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1557 		t->max_sz -= sz;
1558 
1559 	t->max_segs = test->card->host->max_segs;
1560 	t->max_seg_sz = test->card->host->max_seg_size;
1561 	t->max_seg_sz -= t->max_seg_sz % 512;
1562 
1563 	t->max_tfr = t->max_sz;
1564 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1565 		t->max_tfr = test->card->host->max_blk_count << 9;
1566 	if (t->max_tfr > test->card->host->max_req_size)
1567 		t->max_tfr = test->card->host->max_req_size;
1568 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1569 		t->max_tfr = t->max_segs * t->max_seg_sz;
1570 
1571 	/*
1572 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1573 	 * because the same memory can be mapped into the scatterlist more than
1574 	 * once.  Also, take into account the limits imposed on scatterlist
1575 	 * segments by the host driver.
1576 	 */
1577 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1578 				    t->max_seg_sz);
1579 	if (!t->mem)
1580 		return -ENOMEM;
1581 
1582 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1583 	if (!t->sg) {
1584 		ret = -ENOMEM;
1585 		goto out_free;
1586 	}
1587 
1588 	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1589 				   GFP_KERNEL);
1590 	if (!t->sg_areq) {
1591 		ret = -ENOMEM;
1592 		goto out_free;
1593 	}
1594 
1595 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1596 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1597 
1598 	if (erase) {
1599 		ret = mmc_test_area_erase(test);
1600 		if (ret)
1601 			goto out_free;
1602 	}
1603 
1604 	if (fill) {
1605 		ret = mmc_test_area_fill(test);
1606 		if (ret)
1607 			goto out_free;
1608 	}
1609 
1610 	return 0;
1611 
1612 out_free:
1613 	mmc_test_area_cleanup(test);
1614 	return ret;
1615 }
1616 
1617 /*
1618  * Prepare for large transfers.  Do not erase the test area.
1619  */
1620 static int mmc_test_area_prepare(struct mmc_test_card *test)
1621 {
1622 	return mmc_test_area_init(test, 0, 0);
1623 }
1624 
1625 /*
1626  * Prepare for large transfers.  Do erase the test area.
1627  */
1628 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1629 {
1630 	return mmc_test_area_init(test, 1, 0);
1631 }
1632 
1633 /*
1634  * Prepare for large transfers.  Erase and fill the test area.
1635  */
1636 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1637 {
1638 	return mmc_test_area_init(test, 1, 1);
1639 }
1640 
1641 /*
1642  * Test best-case performance.  Best-case performance is expected from
1643  * a single large transfer.
1644  *
1645  * An additional option (max_scatter) allows the measurement of the same
1646  * transfer but with no contiguous pages in the scatter list.  This tests
1647  * the efficiency of DMA to handle scattered pages.
1648  */
1649 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1650 				     int max_scatter)
1651 {
1652 	struct mmc_test_area *t = &test->area;
1653 
1654 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1655 				max_scatter, 1);
1656 }
1657 
1658 /*
1659  * Best-case read performance.
1660  */
1661 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1662 {
1663 	return mmc_test_best_performance(test, 0, 0);
1664 }
1665 
1666 /*
1667  * Best-case write performance.
1668  */
1669 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1670 {
1671 	return mmc_test_best_performance(test, 1, 0);
1672 }
1673 
1674 /*
1675  * Best-case read performance into scattered pages.
1676  */
1677 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1678 {
1679 	return mmc_test_best_performance(test, 0, 1);
1680 }
1681 
1682 /*
1683  * Best-case write performance from scattered pages.
1684  */
1685 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1686 {
1687 	return mmc_test_best_performance(test, 1, 1);
1688 }
1689 
1690 /*
1691  * Single read performance by transfer size.
1692  */
1693 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1694 {
1695 	struct mmc_test_area *t = &test->area;
1696 	unsigned long sz;
1697 	unsigned int dev_addr;
1698 	int ret;
1699 
1700 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1701 		dev_addr = t->dev_addr + (sz >> 9);
1702 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1703 		if (ret)
1704 			return ret;
1705 	}
1706 	sz = t->max_tfr;
1707 	dev_addr = t->dev_addr;
1708 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1709 }
1710 
1711 /*
1712  * Single write performance by transfer size.
1713  */
1714 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1715 {
1716 	struct mmc_test_area *t = &test->area;
1717 	unsigned long sz;
1718 	unsigned int dev_addr;
1719 	int ret;
1720 
1721 	ret = mmc_test_area_erase(test);
1722 	if (ret)
1723 		return ret;
1724 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1725 		dev_addr = t->dev_addr + (sz >> 9);
1726 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1727 		if (ret)
1728 			return ret;
1729 	}
1730 	ret = mmc_test_area_erase(test);
1731 	if (ret)
1732 		return ret;
1733 	sz = t->max_tfr;
1734 	dev_addr = t->dev_addr;
1735 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1736 }
1737 
1738 /*
1739  * Single trim performance by transfer size.
1740  */
1741 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1742 {
1743 	struct mmc_test_area *t = &test->area;
1744 	unsigned long sz;
1745 	unsigned int dev_addr;
1746 	struct timespec64 ts1, ts2;
1747 	int ret;
1748 
1749 	if (!mmc_can_trim(test->card))
1750 		return RESULT_UNSUP_CARD;
1751 
1752 	if (!mmc_can_erase(test->card))
1753 		return RESULT_UNSUP_HOST;
1754 
1755 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1756 		dev_addr = t->dev_addr + (sz >> 9);
1757 		ktime_get_ts64(&ts1);
1758 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1759 		if (ret)
1760 			return ret;
1761 		ktime_get_ts64(&ts2);
1762 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1763 	}
1764 	dev_addr = t->dev_addr;
1765 	ktime_get_ts64(&ts1);
1766 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1767 	if (ret)
1768 		return ret;
1769 	ktime_get_ts64(&ts2);
1770 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1771 	return 0;
1772 }
1773 
1774 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1775 {
1776 	struct mmc_test_area *t = &test->area;
1777 	unsigned int dev_addr, i, cnt;
1778 	struct timespec64 ts1, ts2;
1779 	int ret;
1780 
1781 	cnt = t->max_sz / sz;
1782 	dev_addr = t->dev_addr;
1783 	ktime_get_ts64(&ts1);
1784 	for (i = 0; i < cnt; i++) {
1785 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1786 		if (ret)
1787 			return ret;
1788 		dev_addr += (sz >> 9);
1789 	}
1790 	ktime_get_ts64(&ts2);
1791 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1792 	return 0;
1793 }
1794 
1795 /*
1796  * Consecutive read performance by transfer size.
1797  */
1798 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1799 {
1800 	struct mmc_test_area *t = &test->area;
1801 	unsigned long sz;
1802 	int ret;
1803 
1804 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1805 		ret = mmc_test_seq_read_perf(test, sz);
1806 		if (ret)
1807 			return ret;
1808 	}
1809 	sz = t->max_tfr;
1810 	return mmc_test_seq_read_perf(test, sz);
1811 }
1812 
1813 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1814 {
1815 	struct mmc_test_area *t = &test->area;
1816 	unsigned int dev_addr, i, cnt;
1817 	struct timespec64 ts1, ts2;
1818 	int ret;
1819 
1820 	ret = mmc_test_area_erase(test);
1821 	if (ret)
1822 		return ret;
1823 	cnt = t->max_sz / sz;
1824 	dev_addr = t->dev_addr;
1825 	ktime_get_ts64(&ts1);
1826 	for (i = 0; i < cnt; i++) {
1827 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1828 		if (ret)
1829 			return ret;
1830 		dev_addr += (sz >> 9);
1831 	}
1832 	ktime_get_ts64(&ts2);
1833 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1834 	return 0;
1835 }
1836 
1837 /*
1838  * Consecutive write performance by transfer size.
1839  */
1840 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1841 {
1842 	struct mmc_test_area *t = &test->area;
1843 	unsigned long sz;
1844 	int ret;
1845 
1846 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1847 		ret = mmc_test_seq_write_perf(test, sz);
1848 		if (ret)
1849 			return ret;
1850 	}
1851 	sz = t->max_tfr;
1852 	return mmc_test_seq_write_perf(test, sz);
1853 }
1854 
1855 /*
1856  * Consecutive trim performance by transfer size.
1857  */
1858 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1859 {
1860 	struct mmc_test_area *t = &test->area;
1861 	unsigned long sz;
1862 	unsigned int dev_addr, i, cnt;
1863 	struct timespec64 ts1, ts2;
1864 	int ret;
1865 
1866 	if (!mmc_can_trim(test->card))
1867 		return RESULT_UNSUP_CARD;
1868 
1869 	if (!mmc_can_erase(test->card))
1870 		return RESULT_UNSUP_HOST;
1871 
1872 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1873 		ret = mmc_test_area_erase(test);
1874 		if (ret)
1875 			return ret;
1876 		ret = mmc_test_area_fill(test);
1877 		if (ret)
1878 			return ret;
1879 		cnt = t->max_sz / sz;
1880 		dev_addr = t->dev_addr;
1881 		ktime_get_ts64(&ts1);
1882 		for (i = 0; i < cnt; i++) {
1883 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1884 					MMC_TRIM_ARG);
1885 			if (ret)
1886 				return ret;
1887 			dev_addr += (sz >> 9);
1888 		}
1889 		ktime_get_ts64(&ts2);
1890 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1891 	}
1892 	return 0;
1893 }
1894 
1895 static unsigned int rnd_next = 1;
1896 
1897 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1898 {
1899 	uint64_t r;
1900 
1901 	rnd_next = rnd_next * 1103515245 + 12345;
1902 	r = (rnd_next >> 16) & 0x7fff;
1903 	return (r * rnd_cnt) >> 15;
1904 }
1905 
1906 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1907 			     unsigned long sz, int secs, int force_retuning)
1908 {
1909 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1910 	unsigned int ssz;
1911 	struct timespec64 ts1, ts2, ts;
1912 	int ret;
1913 
1914 	ssz = sz >> 9;
1915 
1916 	rnd_addr = mmc_test_capacity(test->card) / 4;
1917 	range1 = rnd_addr / test->card->pref_erase;
1918 	range2 = range1 / ssz;
1919 
1920 	ktime_get_ts64(&ts1);
1921 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1922 		ktime_get_ts64(&ts2);
1923 		ts = timespec64_sub(ts2, ts1);
1924 		if (ts.tv_sec >= secs)
1925 			break;
1926 		ea = mmc_test_rnd_num(range1);
1927 		if (ea == last_ea)
1928 			ea -= 1;
1929 		last_ea = ea;
1930 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1931 			   ssz * mmc_test_rnd_num(range2);
1932 		if (force_retuning)
1933 			mmc_retune_needed(test->card->host);
1934 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1935 		if (ret)
1936 			return ret;
1937 	}
1938 	if (print)
1939 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1940 	return 0;
1941 }
1942 
1943 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1944 {
1945 	struct mmc_test_area *t = &test->area;
1946 	unsigned int next;
1947 	unsigned long sz;
1948 	int ret;
1949 
1950 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1951 		/*
1952 		 * When writing, try to get more consistent results by running
1953 		 * the test twice with exactly the same I/O but outputting the
1954 		 * results only for the 2nd run.
1955 		 */
1956 		if (write) {
1957 			next = rnd_next;
1958 			ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1959 			if (ret)
1960 				return ret;
1961 			rnd_next = next;
1962 		}
1963 		ret = mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1964 		if (ret)
1965 			return ret;
1966 	}
1967 	sz = t->max_tfr;
1968 	if (write) {
1969 		next = rnd_next;
1970 		ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1971 		if (ret)
1972 			return ret;
1973 		rnd_next = next;
1974 	}
1975 	return mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1976 }
1977 
1978 static int mmc_test_retuning(struct mmc_test_card *test)
1979 {
1980 	if (!mmc_can_retune(test->card->host)) {
1981 		pr_info("%s: No retuning - test skipped\n",
1982 			mmc_hostname(test->card->host));
1983 		return RESULT_UNSUP_HOST;
1984 	}
1985 
1986 	return mmc_test_rnd_perf(test, 0, 0, 8192, 30, 1);
1987 }
1988 
1989 /*
1990  * Random read performance by transfer size.
1991  */
1992 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1993 {
1994 	return mmc_test_random_perf(test, 0);
1995 }
1996 
1997 /*
1998  * Random write performance by transfer size.
1999  */
2000 static int mmc_test_random_write_perf(struct mmc_test_card *test)
2001 {
2002 	return mmc_test_random_perf(test, 1);
2003 }
2004 
2005 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2006 			     unsigned int tot_sz, int max_scatter)
2007 {
2008 	struct mmc_test_area *t = &test->area;
2009 	unsigned int dev_addr, i, cnt, sz, ssz;
2010 	struct timespec64 ts1, ts2;
2011 	int ret;
2012 
2013 	sz = t->max_tfr;
2014 
2015 	/*
2016 	 * In the case of a maximally scattered transfer, the maximum transfer
2017 	 * size is further limited by using PAGE_SIZE segments.
2018 	 */
2019 	if (max_scatter) {
2020 		unsigned long max_tfr;
2021 
2022 		if (t->max_seg_sz >= PAGE_SIZE)
2023 			max_tfr = t->max_segs * PAGE_SIZE;
2024 		else
2025 			max_tfr = t->max_segs * t->max_seg_sz;
2026 		if (sz > max_tfr)
2027 			sz = max_tfr;
2028 	}
2029 
2030 	ssz = sz >> 9;
2031 	dev_addr = mmc_test_capacity(test->card) / 4;
2032 	if (tot_sz > dev_addr << 9)
2033 		tot_sz = dev_addr << 9;
2034 	cnt = tot_sz / sz;
2035 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2036 
2037 	ktime_get_ts64(&ts1);
2038 	for (i = 0; i < cnt; i++) {
2039 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2040 				       max_scatter, 0);
2041 		if (ret)
2042 			return ret;
2043 		dev_addr += ssz;
2044 	}
2045 	ktime_get_ts64(&ts2);
2046 
2047 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2048 
2049 	return 0;
2050 }
2051 
2052 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2053 {
2054 	int ret, i;
2055 
2056 	for (i = 0; i < 10; i++) {
2057 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2058 		if (ret)
2059 			return ret;
2060 	}
2061 	for (i = 0; i < 5; i++) {
2062 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2063 		if (ret)
2064 			return ret;
2065 	}
2066 	for (i = 0; i < 3; i++) {
2067 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2068 		if (ret)
2069 			return ret;
2070 	}
2071 
2072 	return ret;
2073 }
2074 
2075 /*
2076  * Large sequential read performance.
2077  */
2078 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2079 {
2080 	return mmc_test_large_seq_perf(test, 0);
2081 }
2082 
2083 /*
2084  * Large sequential write performance.
2085  */
2086 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2087 {
2088 	return mmc_test_large_seq_perf(test, 1);
2089 }
2090 
2091 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2092 				struct mmc_test_multiple_rw *tdata,
2093 				unsigned int reqsize, unsigned int size,
2094 				int min_sg_len)
2095 {
2096 	unsigned int dev_addr;
2097 	struct mmc_test_area *t = &test->area;
2098 	int ret = 0;
2099 
2100 	/* Set up test area */
2101 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2102 		size = mmc_test_capacity(test->card) / 2 * 512;
2103 	if (reqsize > t->max_tfr)
2104 		reqsize = t->max_tfr;
2105 	dev_addr = mmc_test_capacity(test->card) / 4;
2106 	if ((dev_addr & 0xffff0000))
2107 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2108 	else
2109 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2110 	if (!dev_addr)
2111 		goto err;
2112 
2113 	if (reqsize > size)
2114 		return 0;
2115 
2116 	/* prepare test area */
2117 	if (mmc_can_erase(test->card) &&
2118 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2119 		ret = mmc_erase(test->card, dev_addr,
2120 				size / 512, test->card->erase_arg);
2121 		if (ret)
2122 			ret = mmc_erase(test->card, dev_addr,
2123 					size / 512, MMC_ERASE_ARG);
2124 		if (ret)
2125 			goto err;
2126 	}
2127 
2128 	/* Run test */
2129 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2130 				   tdata->do_write, 0, 1, size / reqsize,
2131 				   tdata->do_nonblock_req, min_sg_len);
2132 	if (ret)
2133 		goto err;
2134 
2135 	return ret;
2136  err:
2137 	pr_info("[%s] error\n", __func__);
2138 	return ret;
2139 }
2140 
2141 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2142 				     struct mmc_test_multiple_rw *rw)
2143 {
2144 	int ret = 0;
2145 	int i;
2146 	void *pre_req = test->card->host->ops->pre_req;
2147 	void *post_req = test->card->host->ops->post_req;
2148 
2149 	if (rw->do_nonblock_req &&
2150 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2151 		pr_info("error: only one of pre/post is defined\n");
2152 		return -EINVAL;
2153 	}
2154 
2155 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2156 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2157 		if (ret)
2158 			break;
2159 	}
2160 	return ret;
2161 }
2162 
2163 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2164 				       struct mmc_test_multiple_rw *rw)
2165 {
2166 	int ret = 0;
2167 	int i;
2168 
2169 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2170 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2171 					   rw->sg_len[i]);
2172 		if (ret)
2173 			break;
2174 	}
2175 	return ret;
2176 }
2177 
2178 /*
2179  * Multiple blocking write 4k to 4 MB chunks
2180  */
2181 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2182 {
2183 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2184 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2185 	struct mmc_test_multiple_rw test_data = {
2186 		.bs = bs,
2187 		.size = TEST_AREA_MAX_SIZE,
2188 		.len = ARRAY_SIZE(bs),
2189 		.do_write = true,
2190 		.do_nonblock_req = false,
2191 		.prepare = MMC_TEST_PREP_ERASE,
2192 	};
2193 
2194 	return mmc_test_rw_multiple_size(test, &test_data);
2195 };
2196 
2197 /*
2198  * Multiple non-blocking write 4k to 4 MB chunks
2199  */
2200 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2201 {
2202 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2203 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2204 	struct mmc_test_multiple_rw test_data = {
2205 		.bs = bs,
2206 		.size = TEST_AREA_MAX_SIZE,
2207 		.len = ARRAY_SIZE(bs),
2208 		.do_write = true,
2209 		.do_nonblock_req = true,
2210 		.prepare = MMC_TEST_PREP_ERASE,
2211 	};
2212 
2213 	return mmc_test_rw_multiple_size(test, &test_data);
2214 }
2215 
2216 /*
2217  * Multiple blocking read 4k to 4 MB chunks
2218  */
2219 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2220 {
2221 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2222 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2223 	struct mmc_test_multiple_rw test_data = {
2224 		.bs = bs,
2225 		.size = TEST_AREA_MAX_SIZE,
2226 		.len = ARRAY_SIZE(bs),
2227 		.do_write = false,
2228 		.do_nonblock_req = false,
2229 		.prepare = MMC_TEST_PREP_NONE,
2230 	};
2231 
2232 	return mmc_test_rw_multiple_size(test, &test_data);
2233 }
2234 
2235 /*
2236  * Multiple non-blocking read 4k to 4 MB chunks
2237  */
2238 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2239 {
2240 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2241 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2242 	struct mmc_test_multiple_rw test_data = {
2243 		.bs = bs,
2244 		.size = TEST_AREA_MAX_SIZE,
2245 		.len = ARRAY_SIZE(bs),
2246 		.do_write = false,
2247 		.do_nonblock_req = true,
2248 		.prepare = MMC_TEST_PREP_NONE,
2249 	};
2250 
2251 	return mmc_test_rw_multiple_size(test, &test_data);
2252 }
2253 
2254 /*
2255  * Multiple blocking write 1 to 512 sg elements
2256  */
2257 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2258 {
2259 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2260 				 1 << 7, 1 << 8, 1 << 9};
2261 	struct mmc_test_multiple_rw test_data = {
2262 		.sg_len = sg_len,
2263 		.size = TEST_AREA_MAX_SIZE,
2264 		.len = ARRAY_SIZE(sg_len),
2265 		.do_write = true,
2266 		.do_nonblock_req = false,
2267 		.prepare = MMC_TEST_PREP_ERASE,
2268 	};
2269 
2270 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2271 };
2272 
2273 /*
2274  * Multiple non-blocking write 1 to 512 sg elements
2275  */
2276 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2277 {
2278 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2279 				 1 << 7, 1 << 8, 1 << 9};
2280 	struct mmc_test_multiple_rw test_data = {
2281 		.sg_len = sg_len,
2282 		.size = TEST_AREA_MAX_SIZE,
2283 		.len = ARRAY_SIZE(sg_len),
2284 		.do_write = true,
2285 		.do_nonblock_req = true,
2286 		.prepare = MMC_TEST_PREP_ERASE,
2287 	};
2288 
2289 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2290 }
2291 
2292 /*
2293  * Multiple blocking read 1 to 512 sg elements
2294  */
2295 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2296 {
2297 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2298 				 1 << 7, 1 << 8, 1 << 9};
2299 	struct mmc_test_multiple_rw test_data = {
2300 		.sg_len = sg_len,
2301 		.size = TEST_AREA_MAX_SIZE,
2302 		.len = ARRAY_SIZE(sg_len),
2303 		.do_write = false,
2304 		.do_nonblock_req = false,
2305 		.prepare = MMC_TEST_PREP_NONE,
2306 	};
2307 
2308 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2309 }
2310 
2311 /*
2312  * Multiple non-blocking read 1 to 512 sg elements
2313  */
2314 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2315 {
2316 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2317 				 1 << 7, 1 << 8, 1 << 9};
2318 	struct mmc_test_multiple_rw test_data = {
2319 		.sg_len = sg_len,
2320 		.size = TEST_AREA_MAX_SIZE,
2321 		.len = ARRAY_SIZE(sg_len),
2322 		.do_write = false,
2323 		.do_nonblock_req = true,
2324 		.prepare = MMC_TEST_PREP_NONE,
2325 	};
2326 
2327 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2328 }
2329 
2330 /*
2331  * eMMC hardware reset.
2332  */
2333 static int mmc_test_reset(struct mmc_test_card *test)
2334 {
2335 	struct mmc_card *card = test->card;
2336 	int err;
2337 
2338 	err = mmc_hw_reset(card);
2339 	if (!err) {
2340 		/*
2341 		 * Reset will re-enable the card's command queue, but tests
2342 		 * expect it to be disabled.
2343 		 */
2344 		if (card->ext_csd.cmdq_en)
2345 			mmc_cmdq_disable(card);
2346 		return RESULT_OK;
2347 	} else if (err == -EOPNOTSUPP) {
2348 		return RESULT_UNSUP_HOST;
2349 	}
2350 
2351 	return RESULT_FAIL;
2352 }
2353 
2354 static int mmc_test_send_status(struct mmc_test_card *test,
2355 				struct mmc_command *cmd)
2356 {
2357 	memset(cmd, 0, sizeof(*cmd));
2358 
2359 	cmd->opcode = MMC_SEND_STATUS;
2360 	if (!mmc_host_is_spi(test->card->host))
2361 		cmd->arg = test->card->rca << 16;
2362 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2363 
2364 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2365 }
2366 
2367 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2368 				     unsigned int dev_addr, int use_sbc,
2369 				     int repeat_cmd, int write, int use_areq)
2370 {
2371 	struct mmc_test_req *rq = mmc_test_req_alloc();
2372 	struct mmc_host *host = test->card->host;
2373 	struct mmc_test_area *t = &test->area;
2374 	struct mmc_request *mrq;
2375 	unsigned long timeout;
2376 	bool expired = false;
2377 	int ret = 0, cmd_ret;
2378 	u32 status = 0;
2379 	int count = 0;
2380 
2381 	if (!rq)
2382 		return -ENOMEM;
2383 
2384 	mrq = &rq->mrq;
2385 	if (use_sbc)
2386 		mrq->sbc = &rq->sbc;
2387 	mrq->cap_cmd_during_tfr = true;
2388 
2389 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2390 			     512, write);
2391 
2392 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2393 		ret =  mmc_host_cmd23(host) ?
2394 		       RESULT_UNSUP_CARD :
2395 		       RESULT_UNSUP_HOST;
2396 		goto out_free;
2397 	}
2398 
2399 	/* Start ongoing data request */
2400 	if (use_areq) {
2401 		ret = mmc_test_start_areq(test, mrq, NULL);
2402 		if (ret)
2403 			goto out_free;
2404 	} else {
2405 		mmc_wait_for_req(host, mrq);
2406 	}
2407 
2408 	timeout = jiffies + msecs_to_jiffies(3000);
2409 	do {
2410 		count += 1;
2411 
2412 		/* Send status command while data transfer in progress */
2413 		cmd_ret = mmc_test_send_status(test, &rq->status);
2414 		if (cmd_ret)
2415 			break;
2416 
2417 		status = rq->status.resp[0];
2418 		if (status & R1_ERROR) {
2419 			cmd_ret = -EIO;
2420 			break;
2421 		}
2422 
2423 		if (mmc_is_req_done(host, mrq))
2424 			break;
2425 
2426 		expired = time_after(jiffies, timeout);
2427 		if (expired) {
2428 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2429 				mmc_hostname(host), status);
2430 			cmd_ret = -ETIMEDOUT;
2431 			break;
2432 		}
2433 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2434 
2435 	/* Wait for data request to complete */
2436 	if (use_areq) {
2437 		ret = mmc_test_start_areq(test, NULL, mrq);
2438 	} else {
2439 		mmc_wait_for_req_done(test->card->host, mrq);
2440 	}
2441 
2442 	/*
2443 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2444 	 * required.
2445 	 */
2446 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2447 		if (ret)
2448 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2449 		else
2450 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2451 	}
2452 
2453 	if (ret)
2454 		goto out_free;
2455 
2456 	if (cmd_ret) {
2457 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2458 			mmc_hostname(test->card->host), status, cmd_ret);
2459 	}
2460 
2461 	ret = mmc_test_check_result(test, mrq);
2462 	if (ret)
2463 		goto out_free;
2464 
2465 	ret = mmc_test_wait_busy(test);
2466 	if (ret)
2467 		goto out_free;
2468 
2469 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2470 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2471 			mmc_hostname(test->card->host), count, t->blocks);
2472 
2473 	if (cmd_ret)
2474 		ret = cmd_ret;
2475 out_free:
2476 	kfree(rq);
2477 
2478 	return ret;
2479 }
2480 
2481 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2482 				      unsigned long sz, int use_sbc, int write,
2483 				      int use_areq)
2484 {
2485 	struct mmc_test_area *t = &test->area;
2486 	int ret;
2487 
2488 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2489 		return RESULT_UNSUP_HOST;
2490 
2491 	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2492 	if (ret)
2493 		return ret;
2494 
2495 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2496 					use_areq);
2497 	if (ret)
2498 		return ret;
2499 
2500 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2501 					 use_areq);
2502 }
2503 
2504 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2505 				    int write, int use_areq)
2506 {
2507 	struct mmc_test_area *t = &test->area;
2508 	unsigned long sz;
2509 	int ret;
2510 
2511 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2512 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2513 						 use_areq);
2514 		if (ret)
2515 			return ret;
2516 	}
2517 	return 0;
2518 }
2519 
2520 /*
2521  * Commands during read - no Set Block Count (CMD23).
2522  */
2523 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2524 {
2525 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2526 }
2527 
2528 /*
2529  * Commands during write - no Set Block Count (CMD23).
2530  */
2531 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2532 {
2533 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2534 }
2535 
2536 /*
2537  * Commands during read - use Set Block Count (CMD23).
2538  */
2539 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2540 {
2541 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2542 }
2543 
2544 /*
2545  * Commands during write - use Set Block Count (CMD23).
2546  */
2547 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2548 {
2549 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2550 }
2551 
2552 /*
2553  * Commands during non-blocking read - use Set Block Count (CMD23).
2554  */
2555 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2556 {
2557 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2558 }
2559 
2560 /*
2561  * Commands during non-blocking write - use Set Block Count (CMD23).
2562  */
2563 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2564 {
2565 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2566 }
2567 
2568 static const struct mmc_test_case mmc_test_cases[] = {
2569 	{
2570 		.name = "Basic write (no data verification)",
2571 		.run = mmc_test_basic_write,
2572 	},
2573 
2574 	{
2575 		.name = "Basic read (no data verification)",
2576 		.run = mmc_test_basic_read,
2577 	},
2578 
2579 	{
2580 		.name = "Basic write (with data verification)",
2581 		.prepare = mmc_test_prepare_write,
2582 		.run = mmc_test_verify_write,
2583 		.cleanup = mmc_test_cleanup,
2584 	},
2585 
2586 	{
2587 		.name = "Basic read (with data verification)",
2588 		.prepare = mmc_test_prepare_read,
2589 		.run = mmc_test_verify_read,
2590 		.cleanup = mmc_test_cleanup,
2591 	},
2592 
2593 	{
2594 		.name = "Multi-block write",
2595 		.prepare = mmc_test_prepare_write,
2596 		.run = mmc_test_multi_write,
2597 		.cleanup = mmc_test_cleanup,
2598 	},
2599 
2600 	{
2601 		.name = "Multi-block read",
2602 		.prepare = mmc_test_prepare_read,
2603 		.run = mmc_test_multi_read,
2604 		.cleanup = mmc_test_cleanup,
2605 	},
2606 
2607 	{
2608 		.name = "Power of two block writes",
2609 		.prepare = mmc_test_prepare_write,
2610 		.run = mmc_test_pow2_write,
2611 		.cleanup = mmc_test_cleanup,
2612 	},
2613 
2614 	{
2615 		.name = "Power of two block reads",
2616 		.prepare = mmc_test_prepare_read,
2617 		.run = mmc_test_pow2_read,
2618 		.cleanup = mmc_test_cleanup,
2619 	},
2620 
2621 	{
2622 		.name = "Weird sized block writes",
2623 		.prepare = mmc_test_prepare_write,
2624 		.run = mmc_test_weird_write,
2625 		.cleanup = mmc_test_cleanup,
2626 	},
2627 
2628 	{
2629 		.name = "Weird sized block reads",
2630 		.prepare = mmc_test_prepare_read,
2631 		.run = mmc_test_weird_read,
2632 		.cleanup = mmc_test_cleanup,
2633 	},
2634 
2635 	{
2636 		.name = "Badly aligned write",
2637 		.prepare = mmc_test_prepare_write,
2638 		.run = mmc_test_align_write,
2639 		.cleanup = mmc_test_cleanup,
2640 	},
2641 
2642 	{
2643 		.name = "Badly aligned read",
2644 		.prepare = mmc_test_prepare_read,
2645 		.run = mmc_test_align_read,
2646 		.cleanup = mmc_test_cleanup,
2647 	},
2648 
2649 	{
2650 		.name = "Badly aligned multi-block write",
2651 		.prepare = mmc_test_prepare_write,
2652 		.run = mmc_test_align_multi_write,
2653 		.cleanup = mmc_test_cleanup,
2654 	},
2655 
2656 	{
2657 		.name = "Badly aligned multi-block read",
2658 		.prepare = mmc_test_prepare_read,
2659 		.run = mmc_test_align_multi_read,
2660 		.cleanup = mmc_test_cleanup,
2661 	},
2662 
2663 	{
2664 		.name = "Proper xfer_size at write (start failure)",
2665 		.run = mmc_test_xfersize_write,
2666 	},
2667 
2668 	{
2669 		.name = "Proper xfer_size at read (start failure)",
2670 		.run = mmc_test_xfersize_read,
2671 	},
2672 
2673 	{
2674 		.name = "Proper xfer_size at write (midway failure)",
2675 		.run = mmc_test_multi_xfersize_write,
2676 	},
2677 
2678 	{
2679 		.name = "Proper xfer_size at read (midway failure)",
2680 		.run = mmc_test_multi_xfersize_read,
2681 	},
2682 
2683 #ifdef CONFIG_HIGHMEM
2684 
2685 	{
2686 		.name = "Highmem write",
2687 		.prepare = mmc_test_prepare_write,
2688 		.run = mmc_test_write_high,
2689 		.cleanup = mmc_test_cleanup,
2690 	},
2691 
2692 	{
2693 		.name = "Highmem read",
2694 		.prepare = mmc_test_prepare_read,
2695 		.run = mmc_test_read_high,
2696 		.cleanup = mmc_test_cleanup,
2697 	},
2698 
2699 	{
2700 		.name = "Multi-block highmem write",
2701 		.prepare = mmc_test_prepare_write,
2702 		.run = mmc_test_multi_write_high,
2703 		.cleanup = mmc_test_cleanup,
2704 	},
2705 
2706 	{
2707 		.name = "Multi-block highmem read",
2708 		.prepare = mmc_test_prepare_read,
2709 		.run = mmc_test_multi_read_high,
2710 		.cleanup = mmc_test_cleanup,
2711 	},
2712 
2713 #else
2714 
2715 	{
2716 		.name = "Highmem write",
2717 		.run = mmc_test_no_highmem,
2718 	},
2719 
2720 	{
2721 		.name = "Highmem read",
2722 		.run = mmc_test_no_highmem,
2723 	},
2724 
2725 	{
2726 		.name = "Multi-block highmem write",
2727 		.run = mmc_test_no_highmem,
2728 	},
2729 
2730 	{
2731 		.name = "Multi-block highmem read",
2732 		.run = mmc_test_no_highmem,
2733 	},
2734 
2735 #endif /* CONFIG_HIGHMEM */
2736 
2737 	{
2738 		.name = "Best-case read performance",
2739 		.prepare = mmc_test_area_prepare_fill,
2740 		.run = mmc_test_best_read_performance,
2741 		.cleanup = mmc_test_area_cleanup,
2742 	},
2743 
2744 	{
2745 		.name = "Best-case write performance",
2746 		.prepare = mmc_test_area_prepare_erase,
2747 		.run = mmc_test_best_write_performance,
2748 		.cleanup = mmc_test_area_cleanup,
2749 	},
2750 
2751 	{
2752 		.name = "Best-case read performance into scattered pages",
2753 		.prepare = mmc_test_area_prepare_fill,
2754 		.run = mmc_test_best_read_perf_max_scatter,
2755 		.cleanup = mmc_test_area_cleanup,
2756 	},
2757 
2758 	{
2759 		.name = "Best-case write performance from scattered pages",
2760 		.prepare = mmc_test_area_prepare_erase,
2761 		.run = mmc_test_best_write_perf_max_scatter,
2762 		.cleanup = mmc_test_area_cleanup,
2763 	},
2764 
2765 	{
2766 		.name = "Single read performance by transfer size",
2767 		.prepare = mmc_test_area_prepare_fill,
2768 		.run = mmc_test_profile_read_perf,
2769 		.cleanup = mmc_test_area_cleanup,
2770 	},
2771 
2772 	{
2773 		.name = "Single write performance by transfer size",
2774 		.prepare = mmc_test_area_prepare,
2775 		.run = mmc_test_profile_write_perf,
2776 		.cleanup = mmc_test_area_cleanup,
2777 	},
2778 
2779 	{
2780 		.name = "Single trim performance by transfer size",
2781 		.prepare = mmc_test_area_prepare_fill,
2782 		.run = mmc_test_profile_trim_perf,
2783 		.cleanup = mmc_test_area_cleanup,
2784 	},
2785 
2786 	{
2787 		.name = "Consecutive read performance by transfer size",
2788 		.prepare = mmc_test_area_prepare_fill,
2789 		.run = mmc_test_profile_seq_read_perf,
2790 		.cleanup = mmc_test_area_cleanup,
2791 	},
2792 
2793 	{
2794 		.name = "Consecutive write performance by transfer size",
2795 		.prepare = mmc_test_area_prepare,
2796 		.run = mmc_test_profile_seq_write_perf,
2797 		.cleanup = mmc_test_area_cleanup,
2798 	},
2799 
2800 	{
2801 		.name = "Consecutive trim performance by transfer size",
2802 		.prepare = mmc_test_area_prepare,
2803 		.run = mmc_test_profile_seq_trim_perf,
2804 		.cleanup = mmc_test_area_cleanup,
2805 	},
2806 
2807 	{
2808 		.name = "Random read performance by transfer size",
2809 		.prepare = mmc_test_area_prepare,
2810 		.run = mmc_test_random_read_perf,
2811 		.cleanup = mmc_test_area_cleanup,
2812 	},
2813 
2814 	{
2815 		.name = "Random write performance by transfer size",
2816 		.prepare = mmc_test_area_prepare,
2817 		.run = mmc_test_random_write_perf,
2818 		.cleanup = mmc_test_area_cleanup,
2819 	},
2820 
2821 	{
2822 		.name = "Large sequential read into scattered pages",
2823 		.prepare = mmc_test_area_prepare,
2824 		.run = mmc_test_large_seq_read_perf,
2825 		.cleanup = mmc_test_area_cleanup,
2826 	},
2827 
2828 	{
2829 		.name = "Large sequential write from scattered pages",
2830 		.prepare = mmc_test_area_prepare,
2831 		.run = mmc_test_large_seq_write_perf,
2832 		.cleanup = mmc_test_area_cleanup,
2833 	},
2834 
2835 	{
2836 		.name = "Write performance with blocking req 4k to 4MB",
2837 		.prepare = mmc_test_area_prepare,
2838 		.run = mmc_test_profile_mult_write_blocking_perf,
2839 		.cleanup = mmc_test_area_cleanup,
2840 	},
2841 
2842 	{
2843 		.name = "Write performance with non-blocking req 4k to 4MB",
2844 		.prepare = mmc_test_area_prepare,
2845 		.run = mmc_test_profile_mult_write_nonblock_perf,
2846 		.cleanup = mmc_test_area_cleanup,
2847 	},
2848 
2849 	{
2850 		.name = "Read performance with blocking req 4k to 4MB",
2851 		.prepare = mmc_test_area_prepare,
2852 		.run = mmc_test_profile_mult_read_blocking_perf,
2853 		.cleanup = mmc_test_area_cleanup,
2854 	},
2855 
2856 	{
2857 		.name = "Read performance with non-blocking req 4k to 4MB",
2858 		.prepare = mmc_test_area_prepare,
2859 		.run = mmc_test_profile_mult_read_nonblock_perf,
2860 		.cleanup = mmc_test_area_cleanup,
2861 	},
2862 
2863 	{
2864 		.name = "Write performance blocking req 1 to 512 sg elems",
2865 		.prepare = mmc_test_area_prepare,
2866 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2867 		.cleanup = mmc_test_area_cleanup,
2868 	},
2869 
2870 	{
2871 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2872 		.prepare = mmc_test_area_prepare,
2873 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2874 		.cleanup = mmc_test_area_cleanup,
2875 	},
2876 
2877 	{
2878 		.name = "Read performance blocking req 1 to 512 sg elems",
2879 		.prepare = mmc_test_area_prepare,
2880 		.run = mmc_test_profile_sglen_r_blocking_perf,
2881 		.cleanup = mmc_test_area_cleanup,
2882 	},
2883 
2884 	{
2885 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2886 		.prepare = mmc_test_area_prepare,
2887 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2888 		.cleanup = mmc_test_area_cleanup,
2889 	},
2890 
2891 	{
2892 		.name = "Reset test",
2893 		.run = mmc_test_reset,
2894 	},
2895 
2896 	{
2897 		.name = "Commands during read - no Set Block Count (CMD23)",
2898 		.prepare = mmc_test_area_prepare,
2899 		.run = mmc_test_cmds_during_read,
2900 		.cleanup = mmc_test_area_cleanup,
2901 	},
2902 
2903 	{
2904 		.name = "Commands during write - no Set Block Count (CMD23)",
2905 		.prepare = mmc_test_area_prepare,
2906 		.run = mmc_test_cmds_during_write,
2907 		.cleanup = mmc_test_area_cleanup,
2908 	},
2909 
2910 	{
2911 		.name = "Commands during read - use Set Block Count (CMD23)",
2912 		.prepare = mmc_test_area_prepare,
2913 		.run = mmc_test_cmds_during_read_cmd23,
2914 		.cleanup = mmc_test_area_cleanup,
2915 	},
2916 
2917 	{
2918 		.name = "Commands during write - use Set Block Count (CMD23)",
2919 		.prepare = mmc_test_area_prepare,
2920 		.run = mmc_test_cmds_during_write_cmd23,
2921 		.cleanup = mmc_test_area_cleanup,
2922 	},
2923 
2924 	{
2925 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2926 		.prepare = mmc_test_area_prepare,
2927 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2928 		.cleanup = mmc_test_area_cleanup,
2929 	},
2930 
2931 	{
2932 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2933 		.prepare = mmc_test_area_prepare,
2934 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2935 		.cleanup = mmc_test_area_cleanup,
2936 	},
2937 
2938 	{
2939 		.name = "Re-tuning reliability",
2940 		.prepare = mmc_test_area_prepare,
2941 		.run = mmc_test_retuning,
2942 		.cleanup = mmc_test_area_cleanup,
2943 	},
2944 
2945 };
2946 
2947 static DEFINE_MUTEX(mmc_test_lock);
2948 
2949 static LIST_HEAD(mmc_test_result);
2950 
2951 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2952 {
2953 	int i, ret;
2954 
2955 	pr_info("%s: Starting tests of card %s...\n",
2956 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2957 
2958 	mmc_claim_host(test->card->host);
2959 
2960 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2961 		struct mmc_test_general_result *gr;
2962 
2963 		if (testcase && ((i + 1) != testcase))
2964 			continue;
2965 
2966 		pr_info("%s: Test case %d. %s...\n",
2967 			mmc_hostname(test->card->host), i + 1,
2968 			mmc_test_cases[i].name);
2969 
2970 		if (mmc_test_cases[i].prepare) {
2971 			ret = mmc_test_cases[i].prepare(test);
2972 			if (ret) {
2973 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2974 					mmc_hostname(test->card->host),
2975 					ret);
2976 				continue;
2977 			}
2978 		}
2979 
2980 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2981 		if (gr) {
2982 			INIT_LIST_HEAD(&gr->tr_lst);
2983 
2984 			/* Assign data what we know already */
2985 			gr->card = test->card;
2986 			gr->testcase = i;
2987 
2988 			/* Append container to global one */
2989 			list_add_tail(&gr->link, &mmc_test_result);
2990 
2991 			/*
2992 			 * Save the pointer to created container in our private
2993 			 * structure.
2994 			 */
2995 			test->gr = gr;
2996 		}
2997 
2998 		ret = mmc_test_cases[i].run(test);
2999 		switch (ret) {
3000 		case RESULT_OK:
3001 			pr_info("%s: Result: OK\n",
3002 				mmc_hostname(test->card->host));
3003 			break;
3004 		case RESULT_FAIL:
3005 			pr_info("%s: Result: FAILED\n",
3006 				mmc_hostname(test->card->host));
3007 			break;
3008 		case RESULT_UNSUP_HOST:
3009 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
3010 				mmc_hostname(test->card->host));
3011 			break;
3012 		case RESULT_UNSUP_CARD:
3013 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3014 				mmc_hostname(test->card->host));
3015 			break;
3016 		default:
3017 			pr_info("%s: Result: ERROR (%d)\n",
3018 				mmc_hostname(test->card->host), ret);
3019 		}
3020 
3021 		/* Save the result */
3022 		if (gr)
3023 			gr->result = ret;
3024 
3025 		if (mmc_test_cases[i].cleanup) {
3026 			ret = mmc_test_cases[i].cleanup(test);
3027 			if (ret) {
3028 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3029 					mmc_hostname(test->card->host),
3030 					ret);
3031 			}
3032 		}
3033 	}
3034 
3035 	mmc_release_host(test->card->host);
3036 
3037 	pr_info("%s: Tests completed.\n",
3038 		mmc_hostname(test->card->host));
3039 }
3040 
3041 static void mmc_test_free_result(struct mmc_card *card)
3042 {
3043 	struct mmc_test_general_result *gr, *grs;
3044 
3045 	mutex_lock(&mmc_test_lock);
3046 
3047 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3048 		struct mmc_test_transfer_result *tr, *trs;
3049 
3050 		if (card && gr->card != card)
3051 			continue;
3052 
3053 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3054 			list_del(&tr->link);
3055 			kfree(tr);
3056 		}
3057 
3058 		list_del(&gr->link);
3059 		kfree(gr);
3060 	}
3061 
3062 	mutex_unlock(&mmc_test_lock);
3063 }
3064 
3065 static LIST_HEAD(mmc_test_file_test);
3066 
3067 static int mtf_test_show(struct seq_file *sf, void *data)
3068 {
3069 	struct mmc_card *card = sf->private;
3070 	struct mmc_test_general_result *gr;
3071 
3072 	mutex_lock(&mmc_test_lock);
3073 
3074 	list_for_each_entry(gr, &mmc_test_result, link) {
3075 		struct mmc_test_transfer_result *tr;
3076 
3077 		if (gr->card != card)
3078 			continue;
3079 
3080 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3081 
3082 		list_for_each_entry(tr, &gr->tr_lst, link) {
3083 			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3084 				tr->count, tr->sectors,
3085 				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3086 				tr->rate, tr->iops / 100, tr->iops % 100);
3087 		}
3088 	}
3089 
3090 	mutex_unlock(&mmc_test_lock);
3091 
3092 	return 0;
3093 }
3094 
3095 static int mtf_test_open(struct inode *inode, struct file *file)
3096 {
3097 	return single_open(file, mtf_test_show, inode->i_private);
3098 }
3099 
3100 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3101 	size_t count, loff_t *pos)
3102 {
3103 	struct seq_file *sf = file->private_data;
3104 	struct mmc_card *card = sf->private;
3105 	struct mmc_test_card *test;
3106 	long testcase;
3107 	int ret;
3108 
3109 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3110 	if (ret)
3111 		return ret;
3112 
3113 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3114 	if (!test)
3115 		return -ENOMEM;
3116 
3117 	/*
3118 	 * Remove all test cases associated with given card. Thus we have only
3119 	 * actual data of the last run.
3120 	 */
3121 	mmc_test_free_result(card);
3122 
3123 	test->card = card;
3124 
3125 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3126 #ifdef CONFIG_HIGHMEM
3127 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3128 	if (!test->highmem) {
3129 		count = -ENOMEM;
3130 		goto free_test_buffer;
3131 	}
3132 #endif
3133 
3134 	if (test->buffer) {
3135 		mutex_lock(&mmc_test_lock);
3136 		mmc_test_run(test, testcase);
3137 		mutex_unlock(&mmc_test_lock);
3138 	}
3139 
3140 #ifdef CONFIG_HIGHMEM
3141 	__free_pages(test->highmem, BUFFER_ORDER);
3142 free_test_buffer:
3143 #endif
3144 	kfree(test->buffer);
3145 	kfree(test);
3146 
3147 	return count;
3148 }
3149 
3150 static const struct file_operations mmc_test_fops_test = {
3151 	.open		= mtf_test_open,
3152 	.read		= seq_read,
3153 	.write		= mtf_test_write,
3154 	.llseek		= seq_lseek,
3155 	.release	= single_release,
3156 };
3157 
3158 static int mtf_testlist_show(struct seq_file *sf, void *data)
3159 {
3160 	int i;
3161 
3162 	mutex_lock(&mmc_test_lock);
3163 
3164 	seq_puts(sf, "0:\tRun all tests\n");
3165 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3166 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3167 
3168 	mutex_unlock(&mmc_test_lock);
3169 
3170 	return 0;
3171 }
3172 
3173 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3174 
3175 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3176 {
3177 	struct mmc_test_dbgfs_file *df, *dfs;
3178 
3179 	mutex_lock(&mmc_test_lock);
3180 
3181 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3182 		if (card && df->card != card)
3183 			continue;
3184 		debugfs_remove(df->file);
3185 		list_del(&df->link);
3186 		kfree(df);
3187 	}
3188 
3189 	mutex_unlock(&mmc_test_lock);
3190 }
3191 
3192 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3193 	const char *name, umode_t mode, const struct file_operations *fops)
3194 {
3195 	struct dentry *file = NULL;
3196 	struct mmc_test_dbgfs_file *df;
3197 
3198 	if (card->debugfs_root)
3199 		file = debugfs_create_file(name, mode, card->debugfs_root,
3200 					   card, fops);
3201 
3202 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3203 	if (!df) {
3204 		debugfs_remove(file);
3205 		return -ENOMEM;
3206 	}
3207 
3208 	df->card = card;
3209 	df->file = file;
3210 
3211 	list_add(&df->link, &mmc_test_file_test);
3212 	return 0;
3213 }
3214 
3215 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3216 {
3217 	int ret;
3218 
3219 	mutex_lock(&mmc_test_lock);
3220 
3221 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3222 		&mmc_test_fops_test);
3223 	if (ret)
3224 		goto err;
3225 
3226 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3227 		&mtf_testlist_fops);
3228 	if (ret)
3229 		goto err;
3230 
3231 err:
3232 	mutex_unlock(&mmc_test_lock);
3233 
3234 	return ret;
3235 }
3236 
3237 static int mmc_test_probe(struct mmc_card *card)
3238 {
3239 	int ret;
3240 
3241 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3242 		return -ENODEV;
3243 
3244 	ret = mmc_test_register_dbgfs_file(card);
3245 	if (ret)
3246 		return ret;
3247 
3248 	if (card->ext_csd.cmdq_en) {
3249 		mmc_claim_host(card->host);
3250 		ret = mmc_cmdq_disable(card);
3251 		mmc_release_host(card->host);
3252 		if (ret)
3253 			return ret;
3254 	}
3255 
3256 	dev_info(&card->dev, "Card claimed for testing.\n");
3257 
3258 	return 0;
3259 }
3260 
3261 static void mmc_test_remove(struct mmc_card *card)
3262 {
3263 	if (card->reenable_cmdq) {
3264 		mmc_claim_host(card->host);
3265 		mmc_cmdq_enable(card);
3266 		mmc_release_host(card->host);
3267 	}
3268 	mmc_test_free_result(card);
3269 	mmc_test_free_dbgfs_file(card);
3270 }
3271 
3272 static struct mmc_driver mmc_driver = {
3273 	.drv		= {
3274 		.name	= "mmc_test",
3275 	},
3276 	.probe		= mmc_test_probe,
3277 	.remove		= mmc_test_remove,
3278 };
3279 
3280 static int __init mmc_test_init(void)
3281 {
3282 	return mmc_register_driver(&mmc_driver);
3283 }
3284 
3285 static void __exit mmc_test_exit(void)
3286 {
3287 	/* Clear stalled data if card is still plugged */
3288 	mmc_test_free_result(NULL);
3289 	mmc_test_free_dbgfs_file(NULL);
3290 
3291 	mmc_unregister_driver(&mmc_driver);
3292 }
3293 
3294 module_init(mmc_test_init);
3295 module_exit(mmc_test_exit);
3296 
3297 MODULE_LICENSE("GPL");
3298 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3299 MODULE_AUTHOR("Pierre Ossman");
3300