xref: /linux/drivers/mmc/core/mmc_test.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  *  Copyright 2007-2008 Pierre Ossman
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or (at
7  * your option) any later version.
8  */
9 
10 #include <linux/mmc/core.h>
11 #include <linux/mmc/card.h>
12 #include <linux/mmc/host.h>
13 #include <linux/mmc/mmc.h>
14 #include <linux/slab.h>
15 
16 #include <linux/scatterlist.h>
17 #include <linux/swap.h>		/* For nr_free_buffer_pages() */
18 #include <linux/list.h>
19 
20 #include <linux/debugfs.h>
21 #include <linux/uaccess.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 
25 #include "core.h"
26 #include "card.h"
27 #include "host.h"
28 #include "bus.h"
29 
30 #define RESULT_OK		0
31 #define RESULT_FAIL		1
32 #define RESULT_UNSUP_HOST	2
33 #define RESULT_UNSUP_CARD	3
34 
35 #define BUFFER_ORDER		2
36 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
37 
38 #define TEST_ALIGN_END		8
39 
40 /*
41  * Limit the test area size to the maximum MMC HC erase group size.  Note that
42  * the maximum SD allocation unit size is just 4MiB.
43  */
44 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
45 
46 /**
47  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
48  * @page: first page in the allocation
49  * @order: order of the number of pages allocated
50  */
51 struct mmc_test_pages {
52 	struct page *page;
53 	unsigned int order;
54 };
55 
56 /**
57  * struct mmc_test_mem - allocated memory.
58  * @arr: array of allocations
59  * @cnt: number of allocations
60  */
61 struct mmc_test_mem {
62 	struct mmc_test_pages *arr;
63 	unsigned int cnt;
64 };
65 
66 /**
67  * struct mmc_test_area - information for performance tests.
68  * @max_sz: test area size (in bytes)
69  * @dev_addr: address on card at which to do performance tests
70  * @max_tfr: maximum transfer size allowed by driver (in bytes)
71  * @max_segs: maximum segments allowed by driver in scatterlist @sg
72  * @max_seg_sz: maximum segment size allowed by driver
73  * @blocks: number of (512 byte) blocks currently mapped by @sg
74  * @sg_len: length of currently mapped scatterlist @sg
75  * @mem: allocated memory
76  * @sg: scatterlist
77  */
78 struct mmc_test_area {
79 	unsigned long max_sz;
80 	unsigned int dev_addr;
81 	unsigned int max_tfr;
82 	unsigned int max_segs;
83 	unsigned int max_seg_sz;
84 	unsigned int blocks;
85 	unsigned int sg_len;
86 	struct mmc_test_mem *mem;
87 	struct scatterlist *sg;
88 };
89 
90 /**
91  * struct mmc_test_transfer_result - transfer results for performance tests.
92  * @link: double-linked list
93  * @count: amount of group of sectors to check
94  * @sectors: amount of sectors to check in one group
95  * @ts: time values of transfer
96  * @rate: calculated transfer rate
97  * @iops: I/O operations per second (times 100)
98  */
99 struct mmc_test_transfer_result {
100 	struct list_head link;
101 	unsigned int count;
102 	unsigned int sectors;
103 	struct timespec ts;
104 	unsigned int rate;
105 	unsigned int iops;
106 };
107 
108 /**
109  * struct mmc_test_general_result - results for tests.
110  * @link: double-linked list
111  * @card: card under test
112  * @testcase: number of test case
113  * @result: result of test run
114  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
115  */
116 struct mmc_test_general_result {
117 	struct list_head link;
118 	struct mmc_card *card;
119 	int testcase;
120 	int result;
121 	struct list_head tr_lst;
122 };
123 
124 /**
125  * struct mmc_test_dbgfs_file - debugfs related file.
126  * @link: double-linked list
127  * @card: card under test
128  * @file: file created under debugfs
129  */
130 struct mmc_test_dbgfs_file {
131 	struct list_head link;
132 	struct mmc_card *card;
133 	struct dentry *file;
134 };
135 
136 /**
137  * struct mmc_test_card - test information.
138  * @card: card under test
139  * @scratch: transfer buffer
140  * @buffer: transfer buffer
141  * @highmem: buffer for highmem tests
142  * @area: information for performance tests
143  * @gr: pointer to results of current testcase
144  */
145 struct mmc_test_card {
146 	struct mmc_card	*card;
147 
148 	u8		scratch[BUFFER_SIZE];
149 	u8		*buffer;
150 #ifdef CONFIG_HIGHMEM
151 	struct page	*highmem;
152 #endif
153 	struct mmc_test_area		area;
154 	struct mmc_test_general_result	*gr;
155 };
156 
157 enum mmc_test_prep_media {
158 	MMC_TEST_PREP_NONE = 0,
159 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
160 	MMC_TEST_PREP_ERASE = 1 << 1,
161 };
162 
163 struct mmc_test_multiple_rw {
164 	unsigned int *sg_len;
165 	unsigned int *bs;
166 	unsigned int len;
167 	unsigned int size;
168 	bool do_write;
169 	bool do_nonblock_req;
170 	enum mmc_test_prep_media prepare;
171 };
172 
173 struct mmc_test_async_req {
174 	struct mmc_async_req areq;
175 	struct mmc_test_card *test;
176 };
177 
178 /*******************************************************************/
179 /*  General helper functions                                       */
180 /*******************************************************************/
181 
182 /*
183  * Configure correct block size in card
184  */
185 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
186 {
187 	return mmc_set_blocklen(test->card, size);
188 }
189 
190 static bool mmc_test_card_cmd23(struct mmc_card *card)
191 {
192 	return mmc_card_mmc(card) ||
193 	       (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
194 }
195 
196 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
197 				 struct mmc_request *mrq, unsigned int blocks)
198 {
199 	struct mmc_card *card = test->card;
200 
201 	if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
202 	    !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
203 	    (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
204 		mrq->sbc = NULL;
205 		return;
206 	}
207 
208 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
209 	mrq->sbc->arg = blocks;
210 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
211 }
212 
213 /*
214  * Fill in the mmc_request structure given a set of transfer parameters.
215  */
216 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
217 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
218 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
219 {
220 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
221 		return;
222 
223 	if (blocks > 1) {
224 		mrq->cmd->opcode = write ?
225 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
226 	} else {
227 		mrq->cmd->opcode = write ?
228 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
229 	}
230 
231 	mrq->cmd->arg = dev_addr;
232 	if (!mmc_card_blockaddr(test->card))
233 		mrq->cmd->arg <<= 9;
234 
235 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
236 
237 	if (blocks == 1)
238 		mrq->stop = NULL;
239 	else {
240 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
241 		mrq->stop->arg = 0;
242 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
243 	}
244 
245 	mrq->data->blksz = blksz;
246 	mrq->data->blocks = blocks;
247 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
248 	mrq->data->sg = sg;
249 	mrq->data->sg_len = sg_len;
250 
251 	mmc_test_prepare_sbc(test, mrq, blocks);
252 
253 	mmc_set_data_timeout(mrq->data, test->card);
254 }
255 
256 static int mmc_test_busy(struct mmc_command *cmd)
257 {
258 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
259 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
260 }
261 
262 /*
263  * Wait for the card to finish the busy state
264  */
265 static int mmc_test_wait_busy(struct mmc_test_card *test)
266 {
267 	int ret, busy;
268 	struct mmc_command cmd = {};
269 
270 	busy = 0;
271 	do {
272 		memset(&cmd, 0, sizeof(struct mmc_command));
273 
274 		cmd.opcode = MMC_SEND_STATUS;
275 		cmd.arg = test->card->rca << 16;
276 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
277 
278 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
279 		if (ret)
280 			break;
281 
282 		if (!busy && mmc_test_busy(&cmd)) {
283 			busy = 1;
284 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
285 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
286 					mmc_hostname(test->card->host));
287 		}
288 	} while (mmc_test_busy(&cmd));
289 
290 	return ret;
291 }
292 
293 /*
294  * Transfer a single sector of kernel addressable data
295  */
296 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
297 	u8 *buffer, unsigned addr, unsigned blksz, int write)
298 {
299 	struct mmc_request mrq = {};
300 	struct mmc_command cmd = {};
301 	struct mmc_command stop = {};
302 	struct mmc_data data = {};
303 
304 	struct scatterlist sg;
305 
306 	mrq.cmd = &cmd;
307 	mrq.data = &data;
308 	mrq.stop = &stop;
309 
310 	sg_init_one(&sg, buffer, blksz);
311 
312 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
313 
314 	mmc_wait_for_req(test->card->host, &mrq);
315 
316 	if (cmd.error)
317 		return cmd.error;
318 	if (data.error)
319 		return data.error;
320 
321 	return mmc_test_wait_busy(test);
322 }
323 
324 static void mmc_test_free_mem(struct mmc_test_mem *mem)
325 {
326 	if (!mem)
327 		return;
328 	while (mem->cnt--)
329 		__free_pages(mem->arr[mem->cnt].page,
330 			     mem->arr[mem->cnt].order);
331 	kfree(mem->arr);
332 	kfree(mem);
333 }
334 
335 /*
336  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
337  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
338  * not exceed a maximum number of segments and try not to make segments much
339  * bigger than maximum segment size.
340  */
341 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
342 					       unsigned long max_sz,
343 					       unsigned int max_segs,
344 					       unsigned int max_seg_sz)
345 {
346 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
347 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
348 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
349 	unsigned long page_cnt = 0;
350 	unsigned long limit = nr_free_buffer_pages() >> 4;
351 	struct mmc_test_mem *mem;
352 
353 	if (max_page_cnt > limit)
354 		max_page_cnt = limit;
355 	if (min_page_cnt > max_page_cnt)
356 		min_page_cnt = max_page_cnt;
357 
358 	if (max_seg_page_cnt > max_page_cnt)
359 		max_seg_page_cnt = max_page_cnt;
360 
361 	if (max_segs > max_page_cnt)
362 		max_segs = max_page_cnt;
363 
364 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
365 	if (!mem)
366 		return NULL;
367 
368 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
369 	if (!mem->arr)
370 		goto out_free;
371 
372 	while (max_page_cnt) {
373 		struct page *page;
374 		unsigned int order;
375 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
376 				__GFP_NORETRY;
377 
378 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
379 		while (1) {
380 			page = alloc_pages(flags, order);
381 			if (page || !order)
382 				break;
383 			order -= 1;
384 		}
385 		if (!page) {
386 			if (page_cnt < min_page_cnt)
387 				goto out_free;
388 			break;
389 		}
390 		mem->arr[mem->cnt].page = page;
391 		mem->arr[mem->cnt].order = order;
392 		mem->cnt += 1;
393 		if (max_page_cnt <= (1UL << order))
394 			break;
395 		max_page_cnt -= 1UL << order;
396 		page_cnt += 1UL << order;
397 		if (mem->cnt >= max_segs) {
398 			if (page_cnt < min_page_cnt)
399 				goto out_free;
400 			break;
401 		}
402 	}
403 
404 	return mem;
405 
406 out_free:
407 	mmc_test_free_mem(mem);
408 	return NULL;
409 }
410 
411 /*
412  * Map memory into a scatterlist.  Optionally allow the same memory to be
413  * mapped more than once.
414  */
415 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
416 			   struct scatterlist *sglist, int repeat,
417 			   unsigned int max_segs, unsigned int max_seg_sz,
418 			   unsigned int *sg_len, int min_sg_len)
419 {
420 	struct scatterlist *sg = NULL;
421 	unsigned int i;
422 	unsigned long sz = size;
423 
424 	sg_init_table(sglist, max_segs);
425 	if (min_sg_len > max_segs)
426 		min_sg_len = max_segs;
427 
428 	*sg_len = 0;
429 	do {
430 		for (i = 0; i < mem->cnt; i++) {
431 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
432 
433 			if (min_sg_len && (size / min_sg_len < len))
434 				len = ALIGN(size / min_sg_len, 512);
435 			if (len > sz)
436 				len = sz;
437 			if (len > max_seg_sz)
438 				len = max_seg_sz;
439 			if (sg)
440 				sg = sg_next(sg);
441 			else
442 				sg = sglist;
443 			if (!sg)
444 				return -EINVAL;
445 			sg_set_page(sg, mem->arr[i].page, len, 0);
446 			sz -= len;
447 			*sg_len += 1;
448 			if (!sz)
449 				break;
450 		}
451 	} while (sz && repeat);
452 
453 	if (sz)
454 		return -EINVAL;
455 
456 	if (sg)
457 		sg_mark_end(sg);
458 
459 	return 0;
460 }
461 
462 /*
463  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
464  * same memory to be mapped more than once.
465  */
466 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
467 				       unsigned long sz,
468 				       struct scatterlist *sglist,
469 				       unsigned int max_segs,
470 				       unsigned int max_seg_sz,
471 				       unsigned int *sg_len)
472 {
473 	struct scatterlist *sg = NULL;
474 	unsigned int i = mem->cnt, cnt;
475 	unsigned long len;
476 	void *base, *addr, *last_addr = NULL;
477 
478 	sg_init_table(sglist, max_segs);
479 
480 	*sg_len = 0;
481 	while (sz) {
482 		base = page_address(mem->arr[--i].page);
483 		cnt = 1 << mem->arr[i].order;
484 		while (sz && cnt) {
485 			addr = base + PAGE_SIZE * --cnt;
486 			if (last_addr && last_addr + PAGE_SIZE == addr)
487 				continue;
488 			last_addr = addr;
489 			len = PAGE_SIZE;
490 			if (len > max_seg_sz)
491 				len = max_seg_sz;
492 			if (len > sz)
493 				len = sz;
494 			if (sg)
495 				sg = sg_next(sg);
496 			else
497 				sg = sglist;
498 			if (!sg)
499 				return -EINVAL;
500 			sg_set_page(sg, virt_to_page(addr), len, 0);
501 			sz -= len;
502 			*sg_len += 1;
503 		}
504 		if (i == 0)
505 			i = mem->cnt;
506 	}
507 
508 	if (sg)
509 		sg_mark_end(sg);
510 
511 	return 0;
512 }
513 
514 /*
515  * Calculate transfer rate in bytes per second.
516  */
517 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
518 {
519 	uint64_t ns;
520 
521 	ns = ts->tv_sec;
522 	ns *= 1000000000;
523 	ns += ts->tv_nsec;
524 
525 	bytes *= 1000000000;
526 
527 	while (ns > UINT_MAX) {
528 		bytes >>= 1;
529 		ns >>= 1;
530 	}
531 
532 	if (!ns)
533 		return 0;
534 
535 	do_div(bytes, (uint32_t)ns);
536 
537 	return bytes;
538 }
539 
540 /*
541  * Save transfer results for future usage
542  */
543 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
544 	unsigned int count, unsigned int sectors, struct timespec ts,
545 	unsigned int rate, unsigned int iops)
546 {
547 	struct mmc_test_transfer_result *tr;
548 
549 	if (!test->gr)
550 		return;
551 
552 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
553 	if (!tr)
554 		return;
555 
556 	tr->count = count;
557 	tr->sectors = sectors;
558 	tr->ts = ts;
559 	tr->rate = rate;
560 	tr->iops = iops;
561 
562 	list_add_tail(&tr->link, &test->gr->tr_lst);
563 }
564 
565 /*
566  * Print the transfer rate.
567  */
568 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
569 				struct timespec *ts1, struct timespec *ts2)
570 {
571 	unsigned int rate, iops, sectors = bytes >> 9;
572 	struct timespec ts;
573 
574 	ts = timespec_sub(*ts2, *ts1);
575 
576 	rate = mmc_test_rate(bytes, &ts);
577 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
578 
579 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
580 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
581 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
582 			 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
583 			 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
584 			 iops / 100, iops % 100);
585 
586 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
587 }
588 
589 /*
590  * Print the average transfer rate.
591  */
592 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
593 				    unsigned int count, struct timespec *ts1,
594 				    struct timespec *ts2)
595 {
596 	unsigned int rate, iops, sectors = bytes >> 9;
597 	uint64_t tot = bytes * count;
598 	struct timespec ts;
599 
600 	ts = timespec_sub(*ts2, *ts1);
601 
602 	rate = mmc_test_rate(tot, &ts);
603 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
604 
605 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
606 			 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
607 			 "%u.%02u IOPS, sg_len %d)\n",
608 			 mmc_hostname(test->card->host), count, sectors, count,
609 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
610 			 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
611 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
612 			 test->area.sg_len);
613 
614 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
615 }
616 
617 /*
618  * Return the card size in sectors.
619  */
620 static unsigned int mmc_test_capacity(struct mmc_card *card)
621 {
622 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
623 		return card->ext_csd.sectors;
624 	else
625 		return card->csd.capacity << (card->csd.read_blkbits - 9);
626 }
627 
628 /*******************************************************************/
629 /*  Test preparation and cleanup                                   */
630 /*******************************************************************/
631 
632 /*
633  * Fill the first couple of sectors of the card with known data
634  * so that bad reads/writes can be detected
635  */
636 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
637 {
638 	int ret, i;
639 
640 	ret = mmc_test_set_blksize(test, 512);
641 	if (ret)
642 		return ret;
643 
644 	if (write)
645 		memset(test->buffer, 0xDF, 512);
646 	else {
647 		for (i = 0; i < 512; i++)
648 			test->buffer[i] = i;
649 	}
650 
651 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
652 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
653 		if (ret)
654 			return ret;
655 	}
656 
657 	return 0;
658 }
659 
660 static int mmc_test_prepare_write(struct mmc_test_card *test)
661 {
662 	return __mmc_test_prepare(test, 1);
663 }
664 
665 static int mmc_test_prepare_read(struct mmc_test_card *test)
666 {
667 	return __mmc_test_prepare(test, 0);
668 }
669 
670 static int mmc_test_cleanup(struct mmc_test_card *test)
671 {
672 	int ret, i;
673 
674 	ret = mmc_test_set_blksize(test, 512);
675 	if (ret)
676 		return ret;
677 
678 	memset(test->buffer, 0, 512);
679 
680 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
681 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
682 		if (ret)
683 			return ret;
684 	}
685 
686 	return 0;
687 }
688 
689 /*******************************************************************/
690 /*  Test execution helpers                                         */
691 /*******************************************************************/
692 
693 /*
694  * Modifies the mmc_request to perform the "short transfer" tests
695  */
696 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
697 	struct mmc_request *mrq, int write)
698 {
699 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
700 		return;
701 
702 	if (mrq->data->blocks > 1) {
703 		mrq->cmd->opcode = write ?
704 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
705 		mrq->stop = NULL;
706 	} else {
707 		mrq->cmd->opcode = MMC_SEND_STATUS;
708 		mrq->cmd->arg = test->card->rca << 16;
709 	}
710 }
711 
712 /*
713  * Checks that a normal transfer didn't have any errors
714  */
715 static int mmc_test_check_result(struct mmc_test_card *test,
716 				 struct mmc_request *mrq)
717 {
718 	int ret;
719 
720 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
721 		return -EINVAL;
722 
723 	ret = 0;
724 
725 	if (mrq->sbc && mrq->sbc->error)
726 		ret = mrq->sbc->error;
727 	if (!ret && mrq->cmd->error)
728 		ret = mrq->cmd->error;
729 	if (!ret && mrq->data->error)
730 		ret = mrq->data->error;
731 	if (!ret && mrq->stop && mrq->stop->error)
732 		ret = mrq->stop->error;
733 	if (!ret && mrq->data->bytes_xfered !=
734 		mrq->data->blocks * mrq->data->blksz)
735 		ret = RESULT_FAIL;
736 
737 	if (ret == -EINVAL)
738 		ret = RESULT_UNSUP_HOST;
739 
740 	return ret;
741 }
742 
743 static enum mmc_blk_status mmc_test_check_result_async(struct mmc_card *card,
744 				       struct mmc_async_req *areq)
745 {
746 	struct mmc_test_async_req *test_async =
747 		container_of(areq, struct mmc_test_async_req, areq);
748 	int ret;
749 
750 	mmc_test_wait_busy(test_async->test);
751 
752 	/*
753 	 * FIXME: this would earlier just casts a regular error code,
754 	 * either of the kernel type -ERRORCODE or the local test framework
755 	 * RESULT_* errorcode, into an enum mmc_blk_status and return as
756 	 * result check. Instead, convert it to some reasonable type by just
757 	 * returning either MMC_BLK_SUCCESS or MMC_BLK_CMD_ERR.
758 	 * If possible, a reasonable error code should be returned.
759 	 */
760 	ret = mmc_test_check_result(test_async->test, areq->mrq);
761 	if (ret)
762 		return MMC_BLK_CMD_ERR;
763 
764 	return MMC_BLK_SUCCESS;
765 }
766 
767 /*
768  * Checks that a "short transfer" behaved as expected
769  */
770 static int mmc_test_check_broken_result(struct mmc_test_card *test,
771 	struct mmc_request *mrq)
772 {
773 	int ret;
774 
775 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
776 		return -EINVAL;
777 
778 	ret = 0;
779 
780 	if (!ret && mrq->cmd->error)
781 		ret = mrq->cmd->error;
782 	if (!ret && mrq->data->error == 0)
783 		ret = RESULT_FAIL;
784 	if (!ret && mrq->data->error != -ETIMEDOUT)
785 		ret = mrq->data->error;
786 	if (!ret && mrq->stop && mrq->stop->error)
787 		ret = mrq->stop->error;
788 	if (mrq->data->blocks > 1) {
789 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
790 			ret = RESULT_FAIL;
791 	} else {
792 		if (!ret && mrq->data->bytes_xfered > 0)
793 			ret = RESULT_FAIL;
794 	}
795 
796 	if (ret == -EINVAL)
797 		ret = RESULT_UNSUP_HOST;
798 
799 	return ret;
800 }
801 
802 /*
803  * Tests nonblock transfer with certain parameters
804  */
805 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
806 				    struct mmc_command *cmd,
807 				    struct mmc_command *stop,
808 				    struct mmc_data *data)
809 {
810 	memset(mrq, 0, sizeof(struct mmc_request));
811 	memset(cmd, 0, sizeof(struct mmc_command));
812 	memset(data, 0, sizeof(struct mmc_data));
813 	memset(stop, 0, sizeof(struct mmc_command));
814 
815 	mrq->cmd = cmd;
816 	mrq->data = data;
817 	mrq->stop = stop;
818 }
819 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
820 				      struct scatterlist *sg, unsigned sg_len,
821 				      unsigned dev_addr, unsigned blocks,
822 				      unsigned blksz, int write, int count)
823 {
824 	struct mmc_request mrq1;
825 	struct mmc_command cmd1;
826 	struct mmc_command stop1;
827 	struct mmc_data data1;
828 
829 	struct mmc_request mrq2;
830 	struct mmc_command cmd2;
831 	struct mmc_command stop2;
832 	struct mmc_data data2;
833 
834 	struct mmc_test_async_req test_areq[2];
835 	struct mmc_async_req *done_areq;
836 	struct mmc_async_req *cur_areq = &test_areq[0].areq;
837 	struct mmc_async_req *other_areq = &test_areq[1].areq;
838 	enum mmc_blk_status status;
839 	int i;
840 	int ret = RESULT_OK;
841 
842 	test_areq[0].test = test;
843 	test_areq[1].test = test;
844 
845 	mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
846 	mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
847 
848 	cur_areq->mrq = &mrq1;
849 	cur_areq->err_check = mmc_test_check_result_async;
850 	other_areq->mrq = &mrq2;
851 	other_areq->err_check = mmc_test_check_result_async;
852 
853 	for (i = 0; i < count; i++) {
854 		mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
855 				     blocks, blksz, write);
856 		done_areq = mmc_start_areq(test->card->host, cur_areq, &status);
857 
858 		if (status != MMC_BLK_SUCCESS || (!done_areq && i > 0)) {
859 			ret = RESULT_FAIL;
860 			goto err;
861 		}
862 
863 		if (done_areq) {
864 			if (done_areq->mrq == &mrq2)
865 				mmc_test_nonblock_reset(&mrq2, &cmd2,
866 							&stop2, &data2);
867 			else
868 				mmc_test_nonblock_reset(&mrq1, &cmd1,
869 							&stop1, &data1);
870 		}
871 		swap(cur_areq, other_areq);
872 		dev_addr += blocks;
873 	}
874 
875 	done_areq = mmc_start_areq(test->card->host, NULL, &status);
876 	if (status != MMC_BLK_SUCCESS)
877 		ret = RESULT_FAIL;
878 
879 	return ret;
880 err:
881 	return ret;
882 }
883 
884 /*
885  * Tests a basic transfer with certain parameters
886  */
887 static int mmc_test_simple_transfer(struct mmc_test_card *test,
888 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
889 	unsigned blocks, unsigned blksz, int write)
890 {
891 	struct mmc_request mrq = {};
892 	struct mmc_command cmd = {};
893 	struct mmc_command stop = {};
894 	struct mmc_data data = {};
895 
896 	mrq.cmd = &cmd;
897 	mrq.data = &data;
898 	mrq.stop = &stop;
899 
900 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
901 		blocks, blksz, write);
902 
903 	mmc_wait_for_req(test->card->host, &mrq);
904 
905 	mmc_test_wait_busy(test);
906 
907 	return mmc_test_check_result(test, &mrq);
908 }
909 
910 /*
911  * Tests a transfer where the card will fail completely or partly
912  */
913 static int mmc_test_broken_transfer(struct mmc_test_card *test,
914 	unsigned blocks, unsigned blksz, int write)
915 {
916 	struct mmc_request mrq = {};
917 	struct mmc_command cmd = {};
918 	struct mmc_command stop = {};
919 	struct mmc_data data = {};
920 
921 	struct scatterlist sg;
922 
923 	mrq.cmd = &cmd;
924 	mrq.data = &data;
925 	mrq.stop = &stop;
926 
927 	sg_init_one(&sg, test->buffer, blocks * blksz);
928 
929 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
930 	mmc_test_prepare_broken_mrq(test, &mrq, write);
931 
932 	mmc_wait_for_req(test->card->host, &mrq);
933 
934 	mmc_test_wait_busy(test);
935 
936 	return mmc_test_check_broken_result(test, &mrq);
937 }
938 
939 /*
940  * Does a complete transfer test where data is also validated
941  *
942  * Note: mmc_test_prepare() must have been done before this call
943  */
944 static int mmc_test_transfer(struct mmc_test_card *test,
945 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
946 	unsigned blocks, unsigned blksz, int write)
947 {
948 	int ret, i;
949 	unsigned long flags;
950 
951 	if (write) {
952 		for (i = 0; i < blocks * blksz; i++)
953 			test->scratch[i] = i;
954 	} else {
955 		memset(test->scratch, 0, BUFFER_SIZE);
956 	}
957 	local_irq_save(flags);
958 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
959 	local_irq_restore(flags);
960 
961 	ret = mmc_test_set_blksize(test, blksz);
962 	if (ret)
963 		return ret;
964 
965 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
966 		blocks, blksz, write);
967 	if (ret)
968 		return ret;
969 
970 	if (write) {
971 		int sectors;
972 
973 		ret = mmc_test_set_blksize(test, 512);
974 		if (ret)
975 			return ret;
976 
977 		sectors = (blocks * blksz + 511) / 512;
978 		if ((sectors * 512) == (blocks * blksz))
979 			sectors++;
980 
981 		if ((sectors * 512) > BUFFER_SIZE)
982 			return -EINVAL;
983 
984 		memset(test->buffer, 0, sectors * 512);
985 
986 		for (i = 0; i < sectors; i++) {
987 			ret = mmc_test_buffer_transfer(test,
988 				test->buffer + i * 512,
989 				dev_addr + i, 512, 0);
990 			if (ret)
991 				return ret;
992 		}
993 
994 		for (i = 0; i < blocks * blksz; i++) {
995 			if (test->buffer[i] != (u8)i)
996 				return RESULT_FAIL;
997 		}
998 
999 		for (; i < sectors * 512; i++) {
1000 			if (test->buffer[i] != 0xDF)
1001 				return RESULT_FAIL;
1002 		}
1003 	} else {
1004 		local_irq_save(flags);
1005 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1006 		local_irq_restore(flags);
1007 		for (i = 0; i < blocks * blksz; i++) {
1008 			if (test->scratch[i] != (u8)i)
1009 				return RESULT_FAIL;
1010 		}
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 /*******************************************************************/
1017 /*  Tests                                                          */
1018 /*******************************************************************/
1019 
1020 struct mmc_test_case {
1021 	const char *name;
1022 
1023 	int (*prepare)(struct mmc_test_card *);
1024 	int (*run)(struct mmc_test_card *);
1025 	int (*cleanup)(struct mmc_test_card *);
1026 };
1027 
1028 static int mmc_test_basic_write(struct mmc_test_card *test)
1029 {
1030 	int ret;
1031 	struct scatterlist sg;
1032 
1033 	ret = mmc_test_set_blksize(test, 512);
1034 	if (ret)
1035 		return ret;
1036 
1037 	sg_init_one(&sg, test->buffer, 512);
1038 
1039 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1040 }
1041 
1042 static int mmc_test_basic_read(struct mmc_test_card *test)
1043 {
1044 	int ret;
1045 	struct scatterlist sg;
1046 
1047 	ret = mmc_test_set_blksize(test, 512);
1048 	if (ret)
1049 		return ret;
1050 
1051 	sg_init_one(&sg, test->buffer, 512);
1052 
1053 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1054 }
1055 
1056 static int mmc_test_verify_write(struct mmc_test_card *test)
1057 {
1058 	struct scatterlist sg;
1059 
1060 	sg_init_one(&sg, test->buffer, 512);
1061 
1062 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1063 }
1064 
1065 static int mmc_test_verify_read(struct mmc_test_card *test)
1066 {
1067 	struct scatterlist sg;
1068 
1069 	sg_init_one(&sg, test->buffer, 512);
1070 
1071 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1072 }
1073 
1074 static int mmc_test_multi_write(struct mmc_test_card *test)
1075 {
1076 	unsigned int size;
1077 	struct scatterlist sg;
1078 
1079 	if (test->card->host->max_blk_count == 1)
1080 		return RESULT_UNSUP_HOST;
1081 
1082 	size = PAGE_SIZE * 2;
1083 	size = min(size, test->card->host->max_req_size);
1084 	size = min(size, test->card->host->max_seg_size);
1085 	size = min(size, test->card->host->max_blk_count * 512);
1086 
1087 	if (size < 1024)
1088 		return RESULT_UNSUP_HOST;
1089 
1090 	sg_init_one(&sg, test->buffer, size);
1091 
1092 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1093 }
1094 
1095 static int mmc_test_multi_read(struct mmc_test_card *test)
1096 {
1097 	unsigned int size;
1098 	struct scatterlist sg;
1099 
1100 	if (test->card->host->max_blk_count == 1)
1101 		return RESULT_UNSUP_HOST;
1102 
1103 	size = PAGE_SIZE * 2;
1104 	size = min(size, test->card->host->max_req_size);
1105 	size = min(size, test->card->host->max_seg_size);
1106 	size = min(size, test->card->host->max_blk_count * 512);
1107 
1108 	if (size < 1024)
1109 		return RESULT_UNSUP_HOST;
1110 
1111 	sg_init_one(&sg, test->buffer, size);
1112 
1113 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1114 }
1115 
1116 static int mmc_test_pow2_write(struct mmc_test_card *test)
1117 {
1118 	int ret, i;
1119 	struct scatterlist sg;
1120 
1121 	if (!test->card->csd.write_partial)
1122 		return RESULT_UNSUP_CARD;
1123 
1124 	for (i = 1; i < 512; i <<= 1) {
1125 		sg_init_one(&sg, test->buffer, i);
1126 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1127 		if (ret)
1128 			return ret;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static int mmc_test_pow2_read(struct mmc_test_card *test)
1135 {
1136 	int ret, i;
1137 	struct scatterlist sg;
1138 
1139 	if (!test->card->csd.read_partial)
1140 		return RESULT_UNSUP_CARD;
1141 
1142 	for (i = 1; i < 512; i <<= 1) {
1143 		sg_init_one(&sg, test->buffer, i);
1144 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1145 		if (ret)
1146 			return ret;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static int mmc_test_weird_write(struct mmc_test_card *test)
1153 {
1154 	int ret, i;
1155 	struct scatterlist sg;
1156 
1157 	if (!test->card->csd.write_partial)
1158 		return RESULT_UNSUP_CARD;
1159 
1160 	for (i = 3; i < 512; i += 7) {
1161 		sg_init_one(&sg, test->buffer, i);
1162 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 static int mmc_test_weird_read(struct mmc_test_card *test)
1171 {
1172 	int ret, i;
1173 	struct scatterlist sg;
1174 
1175 	if (!test->card->csd.read_partial)
1176 		return RESULT_UNSUP_CARD;
1177 
1178 	for (i = 3; i < 512; i += 7) {
1179 		sg_init_one(&sg, test->buffer, i);
1180 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1181 		if (ret)
1182 			return ret;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int mmc_test_align_write(struct mmc_test_card *test)
1189 {
1190 	int ret, i;
1191 	struct scatterlist sg;
1192 
1193 	for (i = 1; i < TEST_ALIGN_END; i++) {
1194 		sg_init_one(&sg, test->buffer + i, 512);
1195 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1196 		if (ret)
1197 			return ret;
1198 	}
1199 
1200 	return 0;
1201 }
1202 
1203 static int mmc_test_align_read(struct mmc_test_card *test)
1204 {
1205 	int ret, i;
1206 	struct scatterlist sg;
1207 
1208 	for (i = 1; i < TEST_ALIGN_END; i++) {
1209 		sg_init_one(&sg, test->buffer + i, 512);
1210 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1211 		if (ret)
1212 			return ret;
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1219 {
1220 	int ret, i;
1221 	unsigned int size;
1222 	struct scatterlist sg;
1223 
1224 	if (test->card->host->max_blk_count == 1)
1225 		return RESULT_UNSUP_HOST;
1226 
1227 	size = PAGE_SIZE * 2;
1228 	size = min(size, test->card->host->max_req_size);
1229 	size = min(size, test->card->host->max_seg_size);
1230 	size = min(size, test->card->host->max_blk_count * 512);
1231 
1232 	if (size < 1024)
1233 		return RESULT_UNSUP_HOST;
1234 
1235 	for (i = 1; i < TEST_ALIGN_END; i++) {
1236 		sg_init_one(&sg, test->buffer + i, size);
1237 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1238 		if (ret)
1239 			return ret;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1246 {
1247 	int ret, i;
1248 	unsigned int size;
1249 	struct scatterlist sg;
1250 
1251 	if (test->card->host->max_blk_count == 1)
1252 		return RESULT_UNSUP_HOST;
1253 
1254 	size = PAGE_SIZE * 2;
1255 	size = min(size, test->card->host->max_req_size);
1256 	size = min(size, test->card->host->max_seg_size);
1257 	size = min(size, test->card->host->max_blk_count * 512);
1258 
1259 	if (size < 1024)
1260 		return RESULT_UNSUP_HOST;
1261 
1262 	for (i = 1; i < TEST_ALIGN_END; i++) {
1263 		sg_init_one(&sg, test->buffer + i, size);
1264 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1265 		if (ret)
1266 			return ret;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1273 {
1274 	int ret;
1275 
1276 	ret = mmc_test_set_blksize(test, 512);
1277 	if (ret)
1278 		return ret;
1279 
1280 	return mmc_test_broken_transfer(test, 1, 512, 1);
1281 }
1282 
1283 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1284 {
1285 	int ret;
1286 
1287 	ret = mmc_test_set_blksize(test, 512);
1288 	if (ret)
1289 		return ret;
1290 
1291 	return mmc_test_broken_transfer(test, 1, 512, 0);
1292 }
1293 
1294 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1295 {
1296 	int ret;
1297 
1298 	if (test->card->host->max_blk_count == 1)
1299 		return RESULT_UNSUP_HOST;
1300 
1301 	ret = mmc_test_set_blksize(test, 512);
1302 	if (ret)
1303 		return ret;
1304 
1305 	return mmc_test_broken_transfer(test, 2, 512, 1);
1306 }
1307 
1308 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1309 {
1310 	int ret;
1311 
1312 	if (test->card->host->max_blk_count == 1)
1313 		return RESULT_UNSUP_HOST;
1314 
1315 	ret = mmc_test_set_blksize(test, 512);
1316 	if (ret)
1317 		return ret;
1318 
1319 	return mmc_test_broken_transfer(test, 2, 512, 0);
1320 }
1321 
1322 #ifdef CONFIG_HIGHMEM
1323 
1324 static int mmc_test_write_high(struct mmc_test_card *test)
1325 {
1326 	struct scatterlist sg;
1327 
1328 	sg_init_table(&sg, 1);
1329 	sg_set_page(&sg, test->highmem, 512, 0);
1330 
1331 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1332 }
1333 
1334 static int mmc_test_read_high(struct mmc_test_card *test)
1335 {
1336 	struct scatterlist sg;
1337 
1338 	sg_init_table(&sg, 1);
1339 	sg_set_page(&sg, test->highmem, 512, 0);
1340 
1341 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1342 }
1343 
1344 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1345 {
1346 	unsigned int size;
1347 	struct scatterlist sg;
1348 
1349 	if (test->card->host->max_blk_count == 1)
1350 		return RESULT_UNSUP_HOST;
1351 
1352 	size = PAGE_SIZE * 2;
1353 	size = min(size, test->card->host->max_req_size);
1354 	size = min(size, test->card->host->max_seg_size);
1355 	size = min(size, test->card->host->max_blk_count * 512);
1356 
1357 	if (size < 1024)
1358 		return RESULT_UNSUP_HOST;
1359 
1360 	sg_init_table(&sg, 1);
1361 	sg_set_page(&sg, test->highmem, size, 0);
1362 
1363 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1364 }
1365 
1366 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1367 {
1368 	unsigned int size;
1369 	struct scatterlist sg;
1370 
1371 	if (test->card->host->max_blk_count == 1)
1372 		return RESULT_UNSUP_HOST;
1373 
1374 	size = PAGE_SIZE * 2;
1375 	size = min(size, test->card->host->max_req_size);
1376 	size = min(size, test->card->host->max_seg_size);
1377 	size = min(size, test->card->host->max_blk_count * 512);
1378 
1379 	if (size < 1024)
1380 		return RESULT_UNSUP_HOST;
1381 
1382 	sg_init_table(&sg, 1);
1383 	sg_set_page(&sg, test->highmem, size, 0);
1384 
1385 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1386 }
1387 
1388 #else
1389 
1390 static int mmc_test_no_highmem(struct mmc_test_card *test)
1391 {
1392 	pr_info("%s: Highmem not configured - test skipped\n",
1393 	       mmc_hostname(test->card->host));
1394 	return 0;
1395 }
1396 
1397 #endif /* CONFIG_HIGHMEM */
1398 
1399 /*
1400  * Map sz bytes so that it can be transferred.
1401  */
1402 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1403 			     int max_scatter, int min_sg_len)
1404 {
1405 	struct mmc_test_area *t = &test->area;
1406 	int err;
1407 
1408 	t->blocks = sz >> 9;
1409 
1410 	if (max_scatter) {
1411 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1412 						  t->max_segs, t->max_seg_sz,
1413 				       &t->sg_len);
1414 	} else {
1415 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1416 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1417 	}
1418 	if (err)
1419 		pr_info("%s: Failed to map sg list\n",
1420 		       mmc_hostname(test->card->host));
1421 	return err;
1422 }
1423 
1424 /*
1425  * Transfer bytes mapped by mmc_test_area_map().
1426  */
1427 static int mmc_test_area_transfer(struct mmc_test_card *test,
1428 				  unsigned int dev_addr, int write)
1429 {
1430 	struct mmc_test_area *t = &test->area;
1431 
1432 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1433 					t->blocks, 512, write);
1434 }
1435 
1436 /*
1437  * Map and transfer bytes for multiple transfers.
1438  */
1439 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1440 				unsigned int dev_addr, int write,
1441 				int max_scatter, int timed, int count,
1442 				bool nonblock, int min_sg_len)
1443 {
1444 	struct timespec ts1, ts2;
1445 	int ret = 0;
1446 	int i;
1447 	struct mmc_test_area *t = &test->area;
1448 
1449 	/*
1450 	 * In the case of a maximally scattered transfer, the maximum transfer
1451 	 * size is further limited by using PAGE_SIZE segments.
1452 	 */
1453 	if (max_scatter) {
1454 		struct mmc_test_area *t = &test->area;
1455 		unsigned long max_tfr;
1456 
1457 		if (t->max_seg_sz >= PAGE_SIZE)
1458 			max_tfr = t->max_segs * PAGE_SIZE;
1459 		else
1460 			max_tfr = t->max_segs * t->max_seg_sz;
1461 		if (sz > max_tfr)
1462 			sz = max_tfr;
1463 	}
1464 
1465 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1466 	if (ret)
1467 		return ret;
1468 
1469 	if (timed)
1470 		getnstimeofday(&ts1);
1471 	if (nonblock)
1472 		ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1473 				 dev_addr, t->blocks, 512, write, count);
1474 	else
1475 		for (i = 0; i < count && ret == 0; i++) {
1476 			ret = mmc_test_area_transfer(test, dev_addr, write);
1477 			dev_addr += sz >> 9;
1478 		}
1479 
1480 	if (ret)
1481 		return ret;
1482 
1483 	if (timed)
1484 		getnstimeofday(&ts2);
1485 
1486 	if (timed)
1487 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1488 
1489 	return 0;
1490 }
1491 
1492 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1493 			    unsigned int dev_addr, int write, int max_scatter,
1494 			    int timed)
1495 {
1496 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1497 				    timed, 1, false, 0);
1498 }
1499 
1500 /*
1501  * Write the test area entirely.
1502  */
1503 static int mmc_test_area_fill(struct mmc_test_card *test)
1504 {
1505 	struct mmc_test_area *t = &test->area;
1506 
1507 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1508 }
1509 
1510 /*
1511  * Erase the test area entirely.
1512  */
1513 static int mmc_test_area_erase(struct mmc_test_card *test)
1514 {
1515 	struct mmc_test_area *t = &test->area;
1516 
1517 	if (!mmc_can_erase(test->card))
1518 		return 0;
1519 
1520 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1521 			 MMC_ERASE_ARG);
1522 }
1523 
1524 /*
1525  * Cleanup struct mmc_test_area.
1526  */
1527 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1528 {
1529 	struct mmc_test_area *t = &test->area;
1530 
1531 	kfree(t->sg);
1532 	mmc_test_free_mem(t->mem);
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Initialize an area for testing large transfers.  The test area is set to the
1539  * middle of the card because cards may have different characteristics at the
1540  * front (for FAT file system optimization).  Optionally, the area is erased
1541  * (if the card supports it) which may improve write performance.  Optionally,
1542  * the area is filled with data for subsequent read tests.
1543  */
1544 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1545 {
1546 	struct mmc_test_area *t = &test->area;
1547 	unsigned long min_sz = 64 * 1024, sz;
1548 	int ret;
1549 
1550 	ret = mmc_test_set_blksize(test, 512);
1551 	if (ret)
1552 		return ret;
1553 
1554 	/* Make the test area size about 4MiB */
1555 	sz = (unsigned long)test->card->pref_erase << 9;
1556 	t->max_sz = sz;
1557 	while (t->max_sz < 4 * 1024 * 1024)
1558 		t->max_sz += sz;
1559 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1560 		t->max_sz -= sz;
1561 
1562 	t->max_segs = test->card->host->max_segs;
1563 	t->max_seg_sz = test->card->host->max_seg_size;
1564 	t->max_seg_sz -= t->max_seg_sz % 512;
1565 
1566 	t->max_tfr = t->max_sz;
1567 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1568 		t->max_tfr = test->card->host->max_blk_count << 9;
1569 	if (t->max_tfr > test->card->host->max_req_size)
1570 		t->max_tfr = test->card->host->max_req_size;
1571 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1572 		t->max_tfr = t->max_segs * t->max_seg_sz;
1573 
1574 	/*
1575 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1576 	 * because the same memory can be mapped into the scatterlist more than
1577 	 * once.  Also, take into account the limits imposed on scatterlist
1578 	 * segments by the host driver.
1579 	 */
1580 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1581 				    t->max_seg_sz);
1582 	if (!t->mem)
1583 		return -ENOMEM;
1584 
1585 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1586 	if (!t->sg) {
1587 		ret = -ENOMEM;
1588 		goto out_free;
1589 	}
1590 
1591 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1592 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1593 
1594 	if (erase) {
1595 		ret = mmc_test_area_erase(test);
1596 		if (ret)
1597 			goto out_free;
1598 	}
1599 
1600 	if (fill) {
1601 		ret = mmc_test_area_fill(test);
1602 		if (ret)
1603 			goto out_free;
1604 	}
1605 
1606 	return 0;
1607 
1608 out_free:
1609 	mmc_test_area_cleanup(test);
1610 	return ret;
1611 }
1612 
1613 /*
1614  * Prepare for large transfers.  Do not erase the test area.
1615  */
1616 static int mmc_test_area_prepare(struct mmc_test_card *test)
1617 {
1618 	return mmc_test_area_init(test, 0, 0);
1619 }
1620 
1621 /*
1622  * Prepare for large transfers.  Do erase the test area.
1623  */
1624 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1625 {
1626 	return mmc_test_area_init(test, 1, 0);
1627 }
1628 
1629 /*
1630  * Prepare for large transfers.  Erase and fill the test area.
1631  */
1632 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1633 {
1634 	return mmc_test_area_init(test, 1, 1);
1635 }
1636 
1637 /*
1638  * Test best-case performance.  Best-case performance is expected from
1639  * a single large transfer.
1640  *
1641  * An additional option (max_scatter) allows the measurement of the same
1642  * transfer but with no contiguous pages in the scatter list.  This tests
1643  * the efficiency of DMA to handle scattered pages.
1644  */
1645 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1646 				     int max_scatter)
1647 {
1648 	struct mmc_test_area *t = &test->area;
1649 
1650 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1651 				max_scatter, 1);
1652 }
1653 
1654 /*
1655  * Best-case read performance.
1656  */
1657 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1658 {
1659 	return mmc_test_best_performance(test, 0, 0);
1660 }
1661 
1662 /*
1663  * Best-case write performance.
1664  */
1665 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1666 {
1667 	return mmc_test_best_performance(test, 1, 0);
1668 }
1669 
1670 /*
1671  * Best-case read performance into scattered pages.
1672  */
1673 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1674 {
1675 	return mmc_test_best_performance(test, 0, 1);
1676 }
1677 
1678 /*
1679  * Best-case write performance from scattered pages.
1680  */
1681 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1682 {
1683 	return mmc_test_best_performance(test, 1, 1);
1684 }
1685 
1686 /*
1687  * Single read performance by transfer size.
1688  */
1689 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1690 {
1691 	struct mmc_test_area *t = &test->area;
1692 	unsigned long sz;
1693 	unsigned int dev_addr;
1694 	int ret;
1695 
1696 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1697 		dev_addr = t->dev_addr + (sz >> 9);
1698 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1699 		if (ret)
1700 			return ret;
1701 	}
1702 	sz = t->max_tfr;
1703 	dev_addr = t->dev_addr;
1704 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1705 }
1706 
1707 /*
1708  * Single write performance by transfer size.
1709  */
1710 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1711 {
1712 	struct mmc_test_area *t = &test->area;
1713 	unsigned long sz;
1714 	unsigned int dev_addr;
1715 	int ret;
1716 
1717 	ret = mmc_test_area_erase(test);
1718 	if (ret)
1719 		return ret;
1720 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1721 		dev_addr = t->dev_addr + (sz >> 9);
1722 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1723 		if (ret)
1724 			return ret;
1725 	}
1726 	ret = mmc_test_area_erase(test);
1727 	if (ret)
1728 		return ret;
1729 	sz = t->max_tfr;
1730 	dev_addr = t->dev_addr;
1731 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1732 }
1733 
1734 /*
1735  * Single trim performance by transfer size.
1736  */
1737 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1738 {
1739 	struct mmc_test_area *t = &test->area;
1740 	unsigned long sz;
1741 	unsigned int dev_addr;
1742 	struct timespec ts1, ts2;
1743 	int ret;
1744 
1745 	if (!mmc_can_trim(test->card))
1746 		return RESULT_UNSUP_CARD;
1747 
1748 	if (!mmc_can_erase(test->card))
1749 		return RESULT_UNSUP_HOST;
1750 
1751 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1752 		dev_addr = t->dev_addr + (sz >> 9);
1753 		getnstimeofday(&ts1);
1754 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1755 		if (ret)
1756 			return ret;
1757 		getnstimeofday(&ts2);
1758 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1759 	}
1760 	dev_addr = t->dev_addr;
1761 	getnstimeofday(&ts1);
1762 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1763 	if (ret)
1764 		return ret;
1765 	getnstimeofday(&ts2);
1766 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1767 	return 0;
1768 }
1769 
1770 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1771 {
1772 	struct mmc_test_area *t = &test->area;
1773 	unsigned int dev_addr, i, cnt;
1774 	struct timespec ts1, ts2;
1775 	int ret;
1776 
1777 	cnt = t->max_sz / sz;
1778 	dev_addr = t->dev_addr;
1779 	getnstimeofday(&ts1);
1780 	for (i = 0; i < cnt; i++) {
1781 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1782 		if (ret)
1783 			return ret;
1784 		dev_addr += (sz >> 9);
1785 	}
1786 	getnstimeofday(&ts2);
1787 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1788 	return 0;
1789 }
1790 
1791 /*
1792  * Consecutive read performance by transfer size.
1793  */
1794 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1795 {
1796 	struct mmc_test_area *t = &test->area;
1797 	unsigned long sz;
1798 	int ret;
1799 
1800 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1801 		ret = mmc_test_seq_read_perf(test, sz);
1802 		if (ret)
1803 			return ret;
1804 	}
1805 	sz = t->max_tfr;
1806 	return mmc_test_seq_read_perf(test, sz);
1807 }
1808 
1809 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1810 {
1811 	struct mmc_test_area *t = &test->area;
1812 	unsigned int dev_addr, i, cnt;
1813 	struct timespec ts1, ts2;
1814 	int ret;
1815 
1816 	ret = mmc_test_area_erase(test);
1817 	if (ret)
1818 		return ret;
1819 	cnt = t->max_sz / sz;
1820 	dev_addr = t->dev_addr;
1821 	getnstimeofday(&ts1);
1822 	for (i = 0; i < cnt; i++) {
1823 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1824 		if (ret)
1825 			return ret;
1826 		dev_addr += (sz >> 9);
1827 	}
1828 	getnstimeofday(&ts2);
1829 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1830 	return 0;
1831 }
1832 
1833 /*
1834  * Consecutive write performance by transfer size.
1835  */
1836 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1837 {
1838 	struct mmc_test_area *t = &test->area;
1839 	unsigned long sz;
1840 	int ret;
1841 
1842 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1843 		ret = mmc_test_seq_write_perf(test, sz);
1844 		if (ret)
1845 			return ret;
1846 	}
1847 	sz = t->max_tfr;
1848 	return mmc_test_seq_write_perf(test, sz);
1849 }
1850 
1851 /*
1852  * Consecutive trim performance by transfer size.
1853  */
1854 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1855 {
1856 	struct mmc_test_area *t = &test->area;
1857 	unsigned long sz;
1858 	unsigned int dev_addr, i, cnt;
1859 	struct timespec ts1, ts2;
1860 	int ret;
1861 
1862 	if (!mmc_can_trim(test->card))
1863 		return RESULT_UNSUP_CARD;
1864 
1865 	if (!mmc_can_erase(test->card))
1866 		return RESULT_UNSUP_HOST;
1867 
1868 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1869 		ret = mmc_test_area_erase(test);
1870 		if (ret)
1871 			return ret;
1872 		ret = mmc_test_area_fill(test);
1873 		if (ret)
1874 			return ret;
1875 		cnt = t->max_sz / sz;
1876 		dev_addr = t->dev_addr;
1877 		getnstimeofday(&ts1);
1878 		for (i = 0; i < cnt; i++) {
1879 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1880 					MMC_TRIM_ARG);
1881 			if (ret)
1882 				return ret;
1883 			dev_addr += (sz >> 9);
1884 		}
1885 		getnstimeofday(&ts2);
1886 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1887 	}
1888 	return 0;
1889 }
1890 
1891 static unsigned int rnd_next = 1;
1892 
1893 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1894 {
1895 	uint64_t r;
1896 
1897 	rnd_next = rnd_next * 1103515245 + 12345;
1898 	r = (rnd_next >> 16) & 0x7fff;
1899 	return (r * rnd_cnt) >> 15;
1900 }
1901 
1902 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1903 			     unsigned long sz)
1904 {
1905 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1906 	unsigned int ssz;
1907 	struct timespec ts1, ts2, ts;
1908 	int ret;
1909 
1910 	ssz = sz >> 9;
1911 
1912 	rnd_addr = mmc_test_capacity(test->card) / 4;
1913 	range1 = rnd_addr / test->card->pref_erase;
1914 	range2 = range1 / ssz;
1915 
1916 	getnstimeofday(&ts1);
1917 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1918 		getnstimeofday(&ts2);
1919 		ts = timespec_sub(ts2, ts1);
1920 		if (ts.tv_sec >= 10)
1921 			break;
1922 		ea = mmc_test_rnd_num(range1);
1923 		if (ea == last_ea)
1924 			ea -= 1;
1925 		last_ea = ea;
1926 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1927 			   ssz * mmc_test_rnd_num(range2);
1928 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1929 		if (ret)
1930 			return ret;
1931 	}
1932 	if (print)
1933 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1934 	return 0;
1935 }
1936 
1937 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1938 {
1939 	struct mmc_test_area *t = &test->area;
1940 	unsigned int next;
1941 	unsigned long sz;
1942 	int ret;
1943 
1944 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1945 		/*
1946 		 * When writing, try to get more consistent results by running
1947 		 * the test twice with exactly the same I/O but outputting the
1948 		 * results only for the 2nd run.
1949 		 */
1950 		if (write) {
1951 			next = rnd_next;
1952 			ret = mmc_test_rnd_perf(test, write, 0, sz);
1953 			if (ret)
1954 				return ret;
1955 			rnd_next = next;
1956 		}
1957 		ret = mmc_test_rnd_perf(test, write, 1, sz);
1958 		if (ret)
1959 			return ret;
1960 	}
1961 	sz = t->max_tfr;
1962 	if (write) {
1963 		next = rnd_next;
1964 		ret = mmc_test_rnd_perf(test, write, 0, sz);
1965 		if (ret)
1966 			return ret;
1967 		rnd_next = next;
1968 	}
1969 	return mmc_test_rnd_perf(test, write, 1, sz);
1970 }
1971 
1972 /*
1973  * Random read performance by transfer size.
1974  */
1975 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1976 {
1977 	return mmc_test_random_perf(test, 0);
1978 }
1979 
1980 /*
1981  * Random write performance by transfer size.
1982  */
1983 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1984 {
1985 	return mmc_test_random_perf(test, 1);
1986 }
1987 
1988 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1989 			     unsigned int tot_sz, int max_scatter)
1990 {
1991 	struct mmc_test_area *t = &test->area;
1992 	unsigned int dev_addr, i, cnt, sz, ssz;
1993 	struct timespec ts1, ts2;
1994 	int ret;
1995 
1996 	sz = t->max_tfr;
1997 
1998 	/*
1999 	 * In the case of a maximally scattered transfer, the maximum transfer
2000 	 * size is further limited by using PAGE_SIZE segments.
2001 	 */
2002 	if (max_scatter) {
2003 		unsigned long max_tfr;
2004 
2005 		if (t->max_seg_sz >= PAGE_SIZE)
2006 			max_tfr = t->max_segs * PAGE_SIZE;
2007 		else
2008 			max_tfr = t->max_segs * t->max_seg_sz;
2009 		if (sz > max_tfr)
2010 			sz = max_tfr;
2011 	}
2012 
2013 	ssz = sz >> 9;
2014 	dev_addr = mmc_test_capacity(test->card) / 4;
2015 	if (tot_sz > dev_addr << 9)
2016 		tot_sz = dev_addr << 9;
2017 	cnt = tot_sz / sz;
2018 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2019 
2020 	getnstimeofday(&ts1);
2021 	for (i = 0; i < cnt; i++) {
2022 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2023 				       max_scatter, 0);
2024 		if (ret)
2025 			return ret;
2026 		dev_addr += ssz;
2027 	}
2028 	getnstimeofday(&ts2);
2029 
2030 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2031 
2032 	return 0;
2033 }
2034 
2035 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2036 {
2037 	int ret, i;
2038 
2039 	for (i = 0; i < 10; i++) {
2040 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2041 		if (ret)
2042 			return ret;
2043 	}
2044 	for (i = 0; i < 5; i++) {
2045 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2046 		if (ret)
2047 			return ret;
2048 	}
2049 	for (i = 0; i < 3; i++) {
2050 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2051 		if (ret)
2052 			return ret;
2053 	}
2054 
2055 	return ret;
2056 }
2057 
2058 /*
2059  * Large sequential read performance.
2060  */
2061 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2062 {
2063 	return mmc_test_large_seq_perf(test, 0);
2064 }
2065 
2066 /*
2067  * Large sequential write performance.
2068  */
2069 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2070 {
2071 	return mmc_test_large_seq_perf(test, 1);
2072 }
2073 
2074 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2075 				struct mmc_test_multiple_rw *tdata,
2076 				unsigned int reqsize, unsigned int size,
2077 				int min_sg_len)
2078 {
2079 	unsigned int dev_addr;
2080 	struct mmc_test_area *t = &test->area;
2081 	int ret = 0;
2082 
2083 	/* Set up test area */
2084 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2085 		size = mmc_test_capacity(test->card) / 2 * 512;
2086 	if (reqsize > t->max_tfr)
2087 		reqsize = t->max_tfr;
2088 	dev_addr = mmc_test_capacity(test->card) / 4;
2089 	if ((dev_addr & 0xffff0000))
2090 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2091 	else
2092 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2093 	if (!dev_addr)
2094 		goto err;
2095 
2096 	if (reqsize > size)
2097 		return 0;
2098 
2099 	/* prepare test area */
2100 	if (mmc_can_erase(test->card) &&
2101 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2102 		ret = mmc_erase(test->card, dev_addr,
2103 				size / 512, MMC_SECURE_ERASE_ARG);
2104 		if (ret)
2105 			ret = mmc_erase(test->card, dev_addr,
2106 					size / 512, MMC_ERASE_ARG);
2107 		if (ret)
2108 			goto err;
2109 	}
2110 
2111 	/* Run test */
2112 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2113 				   tdata->do_write, 0, 1, size / reqsize,
2114 				   tdata->do_nonblock_req, min_sg_len);
2115 	if (ret)
2116 		goto err;
2117 
2118 	return ret;
2119  err:
2120 	pr_info("[%s] error\n", __func__);
2121 	return ret;
2122 }
2123 
2124 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2125 				     struct mmc_test_multiple_rw *rw)
2126 {
2127 	int ret = 0;
2128 	int i;
2129 	void *pre_req = test->card->host->ops->pre_req;
2130 	void *post_req = test->card->host->ops->post_req;
2131 
2132 	if (rw->do_nonblock_req &&
2133 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2134 		pr_info("error: only one of pre/post is defined\n");
2135 		return -EINVAL;
2136 	}
2137 
2138 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2139 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2140 		if (ret)
2141 			break;
2142 	}
2143 	return ret;
2144 }
2145 
2146 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2147 				       struct mmc_test_multiple_rw *rw)
2148 {
2149 	int ret = 0;
2150 	int i;
2151 
2152 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2153 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2154 					   rw->sg_len[i]);
2155 		if (ret)
2156 			break;
2157 	}
2158 	return ret;
2159 }
2160 
2161 /*
2162  * Multiple blocking write 4k to 4 MB chunks
2163  */
2164 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2165 {
2166 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2167 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2168 	struct mmc_test_multiple_rw test_data = {
2169 		.bs = bs,
2170 		.size = TEST_AREA_MAX_SIZE,
2171 		.len = ARRAY_SIZE(bs),
2172 		.do_write = true,
2173 		.do_nonblock_req = false,
2174 		.prepare = MMC_TEST_PREP_ERASE,
2175 	};
2176 
2177 	return mmc_test_rw_multiple_size(test, &test_data);
2178 };
2179 
2180 /*
2181  * Multiple non-blocking write 4k to 4 MB chunks
2182  */
2183 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2184 {
2185 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2186 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2187 	struct mmc_test_multiple_rw test_data = {
2188 		.bs = bs,
2189 		.size = TEST_AREA_MAX_SIZE,
2190 		.len = ARRAY_SIZE(bs),
2191 		.do_write = true,
2192 		.do_nonblock_req = true,
2193 		.prepare = MMC_TEST_PREP_ERASE,
2194 	};
2195 
2196 	return mmc_test_rw_multiple_size(test, &test_data);
2197 }
2198 
2199 /*
2200  * Multiple blocking read 4k to 4 MB chunks
2201  */
2202 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2203 {
2204 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2205 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2206 	struct mmc_test_multiple_rw test_data = {
2207 		.bs = bs,
2208 		.size = TEST_AREA_MAX_SIZE,
2209 		.len = ARRAY_SIZE(bs),
2210 		.do_write = false,
2211 		.do_nonblock_req = false,
2212 		.prepare = MMC_TEST_PREP_NONE,
2213 	};
2214 
2215 	return mmc_test_rw_multiple_size(test, &test_data);
2216 }
2217 
2218 /*
2219  * Multiple non-blocking read 4k to 4 MB chunks
2220  */
2221 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2222 {
2223 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2224 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2225 	struct mmc_test_multiple_rw test_data = {
2226 		.bs = bs,
2227 		.size = TEST_AREA_MAX_SIZE,
2228 		.len = ARRAY_SIZE(bs),
2229 		.do_write = false,
2230 		.do_nonblock_req = true,
2231 		.prepare = MMC_TEST_PREP_NONE,
2232 	};
2233 
2234 	return mmc_test_rw_multiple_size(test, &test_data);
2235 }
2236 
2237 /*
2238  * Multiple blocking write 1 to 512 sg elements
2239  */
2240 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2241 {
2242 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2243 				 1 << 7, 1 << 8, 1 << 9};
2244 	struct mmc_test_multiple_rw test_data = {
2245 		.sg_len = sg_len,
2246 		.size = TEST_AREA_MAX_SIZE,
2247 		.len = ARRAY_SIZE(sg_len),
2248 		.do_write = true,
2249 		.do_nonblock_req = false,
2250 		.prepare = MMC_TEST_PREP_ERASE,
2251 	};
2252 
2253 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2254 };
2255 
2256 /*
2257  * Multiple non-blocking write 1 to 512 sg elements
2258  */
2259 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2260 {
2261 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2262 				 1 << 7, 1 << 8, 1 << 9};
2263 	struct mmc_test_multiple_rw test_data = {
2264 		.sg_len = sg_len,
2265 		.size = TEST_AREA_MAX_SIZE,
2266 		.len = ARRAY_SIZE(sg_len),
2267 		.do_write = true,
2268 		.do_nonblock_req = true,
2269 		.prepare = MMC_TEST_PREP_ERASE,
2270 	};
2271 
2272 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2273 }
2274 
2275 /*
2276  * Multiple blocking read 1 to 512 sg elements
2277  */
2278 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2279 {
2280 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2281 				 1 << 7, 1 << 8, 1 << 9};
2282 	struct mmc_test_multiple_rw test_data = {
2283 		.sg_len = sg_len,
2284 		.size = TEST_AREA_MAX_SIZE,
2285 		.len = ARRAY_SIZE(sg_len),
2286 		.do_write = false,
2287 		.do_nonblock_req = false,
2288 		.prepare = MMC_TEST_PREP_NONE,
2289 	};
2290 
2291 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2292 }
2293 
2294 /*
2295  * Multiple non-blocking read 1 to 512 sg elements
2296  */
2297 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2298 {
2299 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2300 				 1 << 7, 1 << 8, 1 << 9};
2301 	struct mmc_test_multiple_rw test_data = {
2302 		.sg_len = sg_len,
2303 		.size = TEST_AREA_MAX_SIZE,
2304 		.len = ARRAY_SIZE(sg_len),
2305 		.do_write = false,
2306 		.do_nonblock_req = true,
2307 		.prepare = MMC_TEST_PREP_NONE,
2308 	};
2309 
2310 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2311 }
2312 
2313 /*
2314  * eMMC hardware reset.
2315  */
2316 static int mmc_test_reset(struct mmc_test_card *test)
2317 {
2318 	struct mmc_card *card = test->card;
2319 	struct mmc_host *host = card->host;
2320 	int err;
2321 
2322 	err = mmc_hw_reset(host);
2323 	if (!err)
2324 		return RESULT_OK;
2325 	else if (err == -EOPNOTSUPP)
2326 		return RESULT_UNSUP_HOST;
2327 
2328 	return RESULT_FAIL;
2329 }
2330 
2331 struct mmc_test_req {
2332 	struct mmc_request mrq;
2333 	struct mmc_command sbc;
2334 	struct mmc_command cmd;
2335 	struct mmc_command stop;
2336 	struct mmc_command status;
2337 	struct mmc_data data;
2338 };
2339 
2340 static struct mmc_test_req *mmc_test_req_alloc(void)
2341 {
2342 	struct mmc_test_req *rq = kzalloc(sizeof(*rq), GFP_KERNEL);
2343 
2344 	if (rq) {
2345 		rq->mrq.cmd = &rq->cmd;
2346 		rq->mrq.data = &rq->data;
2347 		rq->mrq.stop = &rq->stop;
2348 	}
2349 
2350 	return rq;
2351 }
2352 
2353 static int mmc_test_send_status(struct mmc_test_card *test,
2354 				struct mmc_command *cmd)
2355 {
2356 	memset(cmd, 0, sizeof(*cmd));
2357 
2358 	cmd->opcode = MMC_SEND_STATUS;
2359 	if (!mmc_host_is_spi(test->card->host))
2360 		cmd->arg = test->card->rca << 16;
2361 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2362 
2363 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2364 }
2365 
2366 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2367 				     unsigned int dev_addr, int use_sbc,
2368 				     int repeat_cmd, int write, int use_areq)
2369 {
2370 	struct mmc_test_req *rq = mmc_test_req_alloc();
2371 	struct mmc_host *host = test->card->host;
2372 	struct mmc_test_area *t = &test->area;
2373 	struct mmc_test_async_req test_areq = { .test = test };
2374 	struct mmc_request *mrq;
2375 	unsigned long timeout;
2376 	bool expired = false;
2377 	enum mmc_blk_status blkstat = MMC_BLK_SUCCESS;
2378 	int ret = 0, cmd_ret;
2379 	u32 status = 0;
2380 	int count = 0;
2381 
2382 	if (!rq)
2383 		return -ENOMEM;
2384 
2385 	mrq = &rq->mrq;
2386 	if (use_sbc)
2387 		mrq->sbc = &rq->sbc;
2388 	mrq->cap_cmd_during_tfr = true;
2389 
2390 	test_areq.areq.mrq = mrq;
2391 	test_areq.areq.err_check = mmc_test_check_result_async;
2392 
2393 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2394 			     512, write);
2395 
2396 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2397 		ret =  mmc_host_cmd23(host) ?
2398 		       RESULT_UNSUP_CARD :
2399 		       RESULT_UNSUP_HOST;
2400 		goto out_free;
2401 	}
2402 
2403 	/* Start ongoing data request */
2404 	if (use_areq) {
2405 		mmc_start_areq(host, &test_areq.areq, &blkstat);
2406 		if (blkstat != MMC_BLK_SUCCESS) {
2407 			ret = RESULT_FAIL;
2408 			goto out_free;
2409 		}
2410 	} else {
2411 		mmc_wait_for_req(host, mrq);
2412 	}
2413 
2414 	timeout = jiffies + msecs_to_jiffies(3000);
2415 	do {
2416 		count += 1;
2417 
2418 		/* Send status command while data transfer in progress */
2419 		cmd_ret = mmc_test_send_status(test, &rq->status);
2420 		if (cmd_ret)
2421 			break;
2422 
2423 		status = rq->status.resp[0];
2424 		if (status & R1_ERROR) {
2425 			cmd_ret = -EIO;
2426 			break;
2427 		}
2428 
2429 		if (mmc_is_req_done(host, mrq))
2430 			break;
2431 
2432 		expired = time_after(jiffies, timeout);
2433 		if (expired) {
2434 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2435 				mmc_hostname(host), status);
2436 			cmd_ret = -ETIMEDOUT;
2437 			break;
2438 		}
2439 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2440 
2441 	/* Wait for data request to complete */
2442 	if (use_areq) {
2443 		mmc_start_areq(host, NULL, &blkstat);
2444 		if (blkstat != MMC_BLK_SUCCESS)
2445 			ret = RESULT_FAIL;
2446 	} else {
2447 		mmc_wait_for_req_done(test->card->host, mrq);
2448 	}
2449 
2450 	/*
2451 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2452 	 * required.
2453 	 */
2454 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2455 		if (ret)
2456 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2457 		else
2458 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2459 	}
2460 
2461 	if (ret)
2462 		goto out_free;
2463 
2464 	if (cmd_ret) {
2465 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2466 			mmc_hostname(test->card->host), status, cmd_ret);
2467 	}
2468 
2469 	ret = mmc_test_check_result(test, mrq);
2470 	if (ret)
2471 		goto out_free;
2472 
2473 	ret = mmc_test_wait_busy(test);
2474 	if (ret)
2475 		goto out_free;
2476 
2477 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2478 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2479 			mmc_hostname(test->card->host), count, t->blocks);
2480 
2481 	if (cmd_ret)
2482 		ret = cmd_ret;
2483 out_free:
2484 	kfree(rq);
2485 
2486 	return ret;
2487 }
2488 
2489 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2490 				      unsigned long sz, int use_sbc, int write,
2491 				      int use_areq)
2492 {
2493 	struct mmc_test_area *t = &test->area;
2494 	int ret;
2495 
2496 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2497 		return RESULT_UNSUP_HOST;
2498 
2499 	ret = mmc_test_area_map(test, sz, 0, 0);
2500 	if (ret)
2501 		return ret;
2502 
2503 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2504 					use_areq);
2505 	if (ret)
2506 		return ret;
2507 
2508 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2509 					 use_areq);
2510 }
2511 
2512 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2513 				    int write, int use_areq)
2514 {
2515 	struct mmc_test_area *t = &test->area;
2516 	unsigned long sz;
2517 	int ret;
2518 
2519 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2520 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2521 						 use_areq);
2522 		if (ret)
2523 			return ret;
2524 	}
2525 	return 0;
2526 }
2527 
2528 /*
2529  * Commands during read - no Set Block Count (CMD23).
2530  */
2531 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2532 {
2533 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2534 }
2535 
2536 /*
2537  * Commands during write - no Set Block Count (CMD23).
2538  */
2539 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2540 {
2541 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2542 }
2543 
2544 /*
2545  * Commands during read - use Set Block Count (CMD23).
2546  */
2547 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2548 {
2549 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2550 }
2551 
2552 /*
2553  * Commands during write - use Set Block Count (CMD23).
2554  */
2555 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2556 {
2557 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2558 }
2559 
2560 /*
2561  * Commands during non-blocking read - use Set Block Count (CMD23).
2562  */
2563 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2564 {
2565 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2566 }
2567 
2568 /*
2569  * Commands during non-blocking write - use Set Block Count (CMD23).
2570  */
2571 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2572 {
2573 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2574 }
2575 
2576 static const struct mmc_test_case mmc_test_cases[] = {
2577 	{
2578 		.name = "Basic write (no data verification)",
2579 		.run = mmc_test_basic_write,
2580 	},
2581 
2582 	{
2583 		.name = "Basic read (no data verification)",
2584 		.run = mmc_test_basic_read,
2585 	},
2586 
2587 	{
2588 		.name = "Basic write (with data verification)",
2589 		.prepare = mmc_test_prepare_write,
2590 		.run = mmc_test_verify_write,
2591 		.cleanup = mmc_test_cleanup,
2592 	},
2593 
2594 	{
2595 		.name = "Basic read (with data verification)",
2596 		.prepare = mmc_test_prepare_read,
2597 		.run = mmc_test_verify_read,
2598 		.cleanup = mmc_test_cleanup,
2599 	},
2600 
2601 	{
2602 		.name = "Multi-block write",
2603 		.prepare = mmc_test_prepare_write,
2604 		.run = mmc_test_multi_write,
2605 		.cleanup = mmc_test_cleanup,
2606 	},
2607 
2608 	{
2609 		.name = "Multi-block read",
2610 		.prepare = mmc_test_prepare_read,
2611 		.run = mmc_test_multi_read,
2612 		.cleanup = mmc_test_cleanup,
2613 	},
2614 
2615 	{
2616 		.name = "Power of two block writes",
2617 		.prepare = mmc_test_prepare_write,
2618 		.run = mmc_test_pow2_write,
2619 		.cleanup = mmc_test_cleanup,
2620 	},
2621 
2622 	{
2623 		.name = "Power of two block reads",
2624 		.prepare = mmc_test_prepare_read,
2625 		.run = mmc_test_pow2_read,
2626 		.cleanup = mmc_test_cleanup,
2627 	},
2628 
2629 	{
2630 		.name = "Weird sized block writes",
2631 		.prepare = mmc_test_prepare_write,
2632 		.run = mmc_test_weird_write,
2633 		.cleanup = mmc_test_cleanup,
2634 	},
2635 
2636 	{
2637 		.name = "Weird sized block reads",
2638 		.prepare = mmc_test_prepare_read,
2639 		.run = mmc_test_weird_read,
2640 		.cleanup = mmc_test_cleanup,
2641 	},
2642 
2643 	{
2644 		.name = "Badly aligned write",
2645 		.prepare = mmc_test_prepare_write,
2646 		.run = mmc_test_align_write,
2647 		.cleanup = mmc_test_cleanup,
2648 	},
2649 
2650 	{
2651 		.name = "Badly aligned read",
2652 		.prepare = mmc_test_prepare_read,
2653 		.run = mmc_test_align_read,
2654 		.cleanup = mmc_test_cleanup,
2655 	},
2656 
2657 	{
2658 		.name = "Badly aligned multi-block write",
2659 		.prepare = mmc_test_prepare_write,
2660 		.run = mmc_test_align_multi_write,
2661 		.cleanup = mmc_test_cleanup,
2662 	},
2663 
2664 	{
2665 		.name = "Badly aligned multi-block read",
2666 		.prepare = mmc_test_prepare_read,
2667 		.run = mmc_test_align_multi_read,
2668 		.cleanup = mmc_test_cleanup,
2669 	},
2670 
2671 	{
2672 		.name = "Correct xfer_size at write (start failure)",
2673 		.run = mmc_test_xfersize_write,
2674 	},
2675 
2676 	{
2677 		.name = "Correct xfer_size at read (start failure)",
2678 		.run = mmc_test_xfersize_read,
2679 	},
2680 
2681 	{
2682 		.name = "Correct xfer_size at write (midway failure)",
2683 		.run = mmc_test_multi_xfersize_write,
2684 	},
2685 
2686 	{
2687 		.name = "Correct xfer_size at read (midway failure)",
2688 		.run = mmc_test_multi_xfersize_read,
2689 	},
2690 
2691 #ifdef CONFIG_HIGHMEM
2692 
2693 	{
2694 		.name = "Highmem write",
2695 		.prepare = mmc_test_prepare_write,
2696 		.run = mmc_test_write_high,
2697 		.cleanup = mmc_test_cleanup,
2698 	},
2699 
2700 	{
2701 		.name = "Highmem read",
2702 		.prepare = mmc_test_prepare_read,
2703 		.run = mmc_test_read_high,
2704 		.cleanup = mmc_test_cleanup,
2705 	},
2706 
2707 	{
2708 		.name = "Multi-block highmem write",
2709 		.prepare = mmc_test_prepare_write,
2710 		.run = mmc_test_multi_write_high,
2711 		.cleanup = mmc_test_cleanup,
2712 	},
2713 
2714 	{
2715 		.name = "Multi-block highmem read",
2716 		.prepare = mmc_test_prepare_read,
2717 		.run = mmc_test_multi_read_high,
2718 		.cleanup = mmc_test_cleanup,
2719 	},
2720 
2721 #else
2722 
2723 	{
2724 		.name = "Highmem write",
2725 		.run = mmc_test_no_highmem,
2726 	},
2727 
2728 	{
2729 		.name = "Highmem read",
2730 		.run = mmc_test_no_highmem,
2731 	},
2732 
2733 	{
2734 		.name = "Multi-block highmem write",
2735 		.run = mmc_test_no_highmem,
2736 	},
2737 
2738 	{
2739 		.name = "Multi-block highmem read",
2740 		.run = mmc_test_no_highmem,
2741 	},
2742 
2743 #endif /* CONFIG_HIGHMEM */
2744 
2745 	{
2746 		.name = "Best-case read performance",
2747 		.prepare = mmc_test_area_prepare_fill,
2748 		.run = mmc_test_best_read_performance,
2749 		.cleanup = mmc_test_area_cleanup,
2750 	},
2751 
2752 	{
2753 		.name = "Best-case write performance",
2754 		.prepare = mmc_test_area_prepare_erase,
2755 		.run = mmc_test_best_write_performance,
2756 		.cleanup = mmc_test_area_cleanup,
2757 	},
2758 
2759 	{
2760 		.name = "Best-case read performance into scattered pages",
2761 		.prepare = mmc_test_area_prepare_fill,
2762 		.run = mmc_test_best_read_perf_max_scatter,
2763 		.cleanup = mmc_test_area_cleanup,
2764 	},
2765 
2766 	{
2767 		.name = "Best-case write performance from scattered pages",
2768 		.prepare = mmc_test_area_prepare_erase,
2769 		.run = mmc_test_best_write_perf_max_scatter,
2770 		.cleanup = mmc_test_area_cleanup,
2771 	},
2772 
2773 	{
2774 		.name = "Single read performance by transfer size",
2775 		.prepare = mmc_test_area_prepare_fill,
2776 		.run = mmc_test_profile_read_perf,
2777 		.cleanup = mmc_test_area_cleanup,
2778 	},
2779 
2780 	{
2781 		.name = "Single write performance by transfer size",
2782 		.prepare = mmc_test_area_prepare,
2783 		.run = mmc_test_profile_write_perf,
2784 		.cleanup = mmc_test_area_cleanup,
2785 	},
2786 
2787 	{
2788 		.name = "Single trim performance by transfer size",
2789 		.prepare = mmc_test_area_prepare_fill,
2790 		.run = mmc_test_profile_trim_perf,
2791 		.cleanup = mmc_test_area_cleanup,
2792 	},
2793 
2794 	{
2795 		.name = "Consecutive read performance by transfer size",
2796 		.prepare = mmc_test_area_prepare_fill,
2797 		.run = mmc_test_profile_seq_read_perf,
2798 		.cleanup = mmc_test_area_cleanup,
2799 	},
2800 
2801 	{
2802 		.name = "Consecutive write performance by transfer size",
2803 		.prepare = mmc_test_area_prepare,
2804 		.run = mmc_test_profile_seq_write_perf,
2805 		.cleanup = mmc_test_area_cleanup,
2806 	},
2807 
2808 	{
2809 		.name = "Consecutive trim performance by transfer size",
2810 		.prepare = mmc_test_area_prepare,
2811 		.run = mmc_test_profile_seq_trim_perf,
2812 		.cleanup = mmc_test_area_cleanup,
2813 	},
2814 
2815 	{
2816 		.name = "Random read performance by transfer size",
2817 		.prepare = mmc_test_area_prepare,
2818 		.run = mmc_test_random_read_perf,
2819 		.cleanup = mmc_test_area_cleanup,
2820 	},
2821 
2822 	{
2823 		.name = "Random write performance by transfer size",
2824 		.prepare = mmc_test_area_prepare,
2825 		.run = mmc_test_random_write_perf,
2826 		.cleanup = mmc_test_area_cleanup,
2827 	},
2828 
2829 	{
2830 		.name = "Large sequential read into scattered pages",
2831 		.prepare = mmc_test_area_prepare,
2832 		.run = mmc_test_large_seq_read_perf,
2833 		.cleanup = mmc_test_area_cleanup,
2834 	},
2835 
2836 	{
2837 		.name = "Large sequential write from scattered pages",
2838 		.prepare = mmc_test_area_prepare,
2839 		.run = mmc_test_large_seq_write_perf,
2840 		.cleanup = mmc_test_area_cleanup,
2841 	},
2842 
2843 	{
2844 		.name = "Write performance with blocking req 4k to 4MB",
2845 		.prepare = mmc_test_area_prepare,
2846 		.run = mmc_test_profile_mult_write_blocking_perf,
2847 		.cleanup = mmc_test_area_cleanup,
2848 	},
2849 
2850 	{
2851 		.name = "Write performance with non-blocking req 4k to 4MB",
2852 		.prepare = mmc_test_area_prepare,
2853 		.run = mmc_test_profile_mult_write_nonblock_perf,
2854 		.cleanup = mmc_test_area_cleanup,
2855 	},
2856 
2857 	{
2858 		.name = "Read performance with blocking req 4k to 4MB",
2859 		.prepare = mmc_test_area_prepare,
2860 		.run = mmc_test_profile_mult_read_blocking_perf,
2861 		.cleanup = mmc_test_area_cleanup,
2862 	},
2863 
2864 	{
2865 		.name = "Read performance with non-blocking req 4k to 4MB",
2866 		.prepare = mmc_test_area_prepare,
2867 		.run = mmc_test_profile_mult_read_nonblock_perf,
2868 		.cleanup = mmc_test_area_cleanup,
2869 	},
2870 
2871 	{
2872 		.name = "Write performance blocking req 1 to 512 sg elems",
2873 		.prepare = mmc_test_area_prepare,
2874 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2875 		.cleanup = mmc_test_area_cleanup,
2876 	},
2877 
2878 	{
2879 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2880 		.prepare = mmc_test_area_prepare,
2881 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2882 		.cleanup = mmc_test_area_cleanup,
2883 	},
2884 
2885 	{
2886 		.name = "Read performance blocking req 1 to 512 sg elems",
2887 		.prepare = mmc_test_area_prepare,
2888 		.run = mmc_test_profile_sglen_r_blocking_perf,
2889 		.cleanup = mmc_test_area_cleanup,
2890 	},
2891 
2892 	{
2893 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2894 		.prepare = mmc_test_area_prepare,
2895 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2896 		.cleanup = mmc_test_area_cleanup,
2897 	},
2898 
2899 	{
2900 		.name = "Reset test",
2901 		.run = mmc_test_reset,
2902 	},
2903 
2904 	{
2905 		.name = "Commands during read - no Set Block Count (CMD23)",
2906 		.prepare = mmc_test_area_prepare,
2907 		.run = mmc_test_cmds_during_read,
2908 		.cleanup = mmc_test_area_cleanup,
2909 	},
2910 
2911 	{
2912 		.name = "Commands during write - no Set Block Count (CMD23)",
2913 		.prepare = mmc_test_area_prepare,
2914 		.run = mmc_test_cmds_during_write,
2915 		.cleanup = mmc_test_area_cleanup,
2916 	},
2917 
2918 	{
2919 		.name = "Commands during read - use Set Block Count (CMD23)",
2920 		.prepare = mmc_test_area_prepare,
2921 		.run = mmc_test_cmds_during_read_cmd23,
2922 		.cleanup = mmc_test_area_cleanup,
2923 	},
2924 
2925 	{
2926 		.name = "Commands during write - use Set Block Count (CMD23)",
2927 		.prepare = mmc_test_area_prepare,
2928 		.run = mmc_test_cmds_during_write_cmd23,
2929 		.cleanup = mmc_test_area_cleanup,
2930 	},
2931 
2932 	{
2933 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2934 		.prepare = mmc_test_area_prepare,
2935 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2936 		.cleanup = mmc_test_area_cleanup,
2937 	},
2938 
2939 	{
2940 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2941 		.prepare = mmc_test_area_prepare,
2942 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2943 		.cleanup = mmc_test_area_cleanup,
2944 	},
2945 };
2946 
2947 static DEFINE_MUTEX(mmc_test_lock);
2948 
2949 static LIST_HEAD(mmc_test_result);
2950 
2951 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2952 {
2953 	int i, ret;
2954 
2955 	pr_info("%s: Starting tests of card %s...\n",
2956 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2957 
2958 	mmc_claim_host(test->card->host);
2959 
2960 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2961 		struct mmc_test_general_result *gr;
2962 
2963 		if (testcase && ((i + 1) != testcase))
2964 			continue;
2965 
2966 		pr_info("%s: Test case %d. %s...\n",
2967 			mmc_hostname(test->card->host), i + 1,
2968 			mmc_test_cases[i].name);
2969 
2970 		if (mmc_test_cases[i].prepare) {
2971 			ret = mmc_test_cases[i].prepare(test);
2972 			if (ret) {
2973 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2974 					mmc_hostname(test->card->host),
2975 					ret);
2976 				continue;
2977 			}
2978 		}
2979 
2980 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2981 		if (gr) {
2982 			INIT_LIST_HEAD(&gr->tr_lst);
2983 
2984 			/* Assign data what we know already */
2985 			gr->card = test->card;
2986 			gr->testcase = i;
2987 
2988 			/* Append container to global one */
2989 			list_add_tail(&gr->link, &mmc_test_result);
2990 
2991 			/*
2992 			 * Save the pointer to created container in our private
2993 			 * structure.
2994 			 */
2995 			test->gr = gr;
2996 		}
2997 
2998 		ret = mmc_test_cases[i].run(test);
2999 		switch (ret) {
3000 		case RESULT_OK:
3001 			pr_info("%s: Result: OK\n",
3002 				mmc_hostname(test->card->host));
3003 			break;
3004 		case RESULT_FAIL:
3005 			pr_info("%s: Result: FAILED\n",
3006 				mmc_hostname(test->card->host));
3007 			break;
3008 		case RESULT_UNSUP_HOST:
3009 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
3010 				mmc_hostname(test->card->host));
3011 			break;
3012 		case RESULT_UNSUP_CARD:
3013 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3014 				mmc_hostname(test->card->host));
3015 			break;
3016 		default:
3017 			pr_info("%s: Result: ERROR (%d)\n",
3018 				mmc_hostname(test->card->host), ret);
3019 		}
3020 
3021 		/* Save the result */
3022 		if (gr)
3023 			gr->result = ret;
3024 
3025 		if (mmc_test_cases[i].cleanup) {
3026 			ret = mmc_test_cases[i].cleanup(test);
3027 			if (ret) {
3028 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3029 					mmc_hostname(test->card->host),
3030 					ret);
3031 			}
3032 		}
3033 	}
3034 
3035 	mmc_release_host(test->card->host);
3036 
3037 	pr_info("%s: Tests completed.\n",
3038 		mmc_hostname(test->card->host));
3039 }
3040 
3041 static void mmc_test_free_result(struct mmc_card *card)
3042 {
3043 	struct mmc_test_general_result *gr, *grs;
3044 
3045 	mutex_lock(&mmc_test_lock);
3046 
3047 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3048 		struct mmc_test_transfer_result *tr, *trs;
3049 
3050 		if (card && gr->card != card)
3051 			continue;
3052 
3053 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3054 			list_del(&tr->link);
3055 			kfree(tr);
3056 		}
3057 
3058 		list_del(&gr->link);
3059 		kfree(gr);
3060 	}
3061 
3062 	mutex_unlock(&mmc_test_lock);
3063 }
3064 
3065 static LIST_HEAD(mmc_test_file_test);
3066 
3067 static int mtf_test_show(struct seq_file *sf, void *data)
3068 {
3069 	struct mmc_card *card = (struct mmc_card *)sf->private;
3070 	struct mmc_test_general_result *gr;
3071 
3072 	mutex_lock(&mmc_test_lock);
3073 
3074 	list_for_each_entry(gr, &mmc_test_result, link) {
3075 		struct mmc_test_transfer_result *tr;
3076 
3077 		if (gr->card != card)
3078 			continue;
3079 
3080 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3081 
3082 		list_for_each_entry(tr, &gr->tr_lst, link) {
3083 			seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
3084 				tr->count, tr->sectors,
3085 				(unsigned long)tr->ts.tv_sec,
3086 				(unsigned long)tr->ts.tv_nsec,
3087 				tr->rate, tr->iops / 100, tr->iops % 100);
3088 		}
3089 	}
3090 
3091 	mutex_unlock(&mmc_test_lock);
3092 
3093 	return 0;
3094 }
3095 
3096 static int mtf_test_open(struct inode *inode, struct file *file)
3097 {
3098 	return single_open(file, mtf_test_show, inode->i_private);
3099 }
3100 
3101 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3102 	size_t count, loff_t *pos)
3103 {
3104 	struct seq_file *sf = (struct seq_file *)file->private_data;
3105 	struct mmc_card *card = (struct mmc_card *)sf->private;
3106 	struct mmc_test_card *test;
3107 	long testcase;
3108 	int ret;
3109 
3110 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3111 	if (ret)
3112 		return ret;
3113 
3114 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3115 	if (!test)
3116 		return -ENOMEM;
3117 
3118 	/*
3119 	 * Remove all test cases associated with given card. Thus we have only
3120 	 * actual data of the last run.
3121 	 */
3122 	mmc_test_free_result(card);
3123 
3124 	test->card = card;
3125 
3126 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3127 #ifdef CONFIG_HIGHMEM
3128 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3129 #endif
3130 
3131 #ifdef CONFIG_HIGHMEM
3132 	if (test->buffer && test->highmem) {
3133 #else
3134 	if (test->buffer) {
3135 #endif
3136 		mutex_lock(&mmc_test_lock);
3137 		mmc_test_run(test, testcase);
3138 		mutex_unlock(&mmc_test_lock);
3139 	}
3140 
3141 #ifdef CONFIG_HIGHMEM
3142 	__free_pages(test->highmem, BUFFER_ORDER);
3143 #endif
3144 	kfree(test->buffer);
3145 	kfree(test);
3146 
3147 	return count;
3148 }
3149 
3150 static const struct file_operations mmc_test_fops_test = {
3151 	.open		= mtf_test_open,
3152 	.read		= seq_read,
3153 	.write		= mtf_test_write,
3154 	.llseek		= seq_lseek,
3155 	.release	= single_release,
3156 };
3157 
3158 static int mtf_testlist_show(struct seq_file *sf, void *data)
3159 {
3160 	int i;
3161 
3162 	mutex_lock(&mmc_test_lock);
3163 
3164 	seq_puts(sf, "0:\tRun all tests\n");
3165 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3166 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3167 
3168 	mutex_unlock(&mmc_test_lock);
3169 
3170 	return 0;
3171 }
3172 
3173 static int mtf_testlist_open(struct inode *inode, struct file *file)
3174 {
3175 	return single_open(file, mtf_testlist_show, inode->i_private);
3176 }
3177 
3178 static const struct file_operations mmc_test_fops_testlist = {
3179 	.open		= mtf_testlist_open,
3180 	.read		= seq_read,
3181 	.llseek		= seq_lseek,
3182 	.release	= single_release,
3183 };
3184 
3185 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3186 {
3187 	struct mmc_test_dbgfs_file *df, *dfs;
3188 
3189 	mutex_lock(&mmc_test_lock);
3190 
3191 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3192 		if (card && df->card != card)
3193 			continue;
3194 		debugfs_remove(df->file);
3195 		list_del(&df->link);
3196 		kfree(df);
3197 	}
3198 
3199 	mutex_unlock(&mmc_test_lock);
3200 }
3201 
3202 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3203 	const char *name, umode_t mode, const struct file_operations *fops)
3204 {
3205 	struct dentry *file = NULL;
3206 	struct mmc_test_dbgfs_file *df;
3207 
3208 	if (card->debugfs_root)
3209 		file = debugfs_create_file(name, mode, card->debugfs_root,
3210 			card, fops);
3211 
3212 	if (IS_ERR_OR_NULL(file)) {
3213 		dev_err(&card->dev,
3214 			"Can't create %s. Perhaps debugfs is disabled.\n",
3215 			name);
3216 		return -ENODEV;
3217 	}
3218 
3219 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3220 	if (!df) {
3221 		debugfs_remove(file);
3222 		dev_err(&card->dev,
3223 			"Can't allocate memory for internal usage.\n");
3224 		return -ENOMEM;
3225 	}
3226 
3227 	df->card = card;
3228 	df->file = file;
3229 
3230 	list_add(&df->link, &mmc_test_file_test);
3231 	return 0;
3232 }
3233 
3234 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3235 {
3236 	int ret;
3237 
3238 	mutex_lock(&mmc_test_lock);
3239 
3240 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3241 		&mmc_test_fops_test);
3242 	if (ret)
3243 		goto err;
3244 
3245 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3246 		&mmc_test_fops_testlist);
3247 	if (ret)
3248 		goto err;
3249 
3250 err:
3251 	mutex_unlock(&mmc_test_lock);
3252 
3253 	return ret;
3254 }
3255 
3256 static int mmc_test_probe(struct mmc_card *card)
3257 {
3258 	int ret;
3259 
3260 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3261 		return -ENODEV;
3262 
3263 	ret = mmc_test_register_dbgfs_file(card);
3264 	if (ret)
3265 		return ret;
3266 
3267 	dev_info(&card->dev, "Card claimed for testing.\n");
3268 
3269 	return 0;
3270 }
3271 
3272 static void mmc_test_remove(struct mmc_card *card)
3273 {
3274 	mmc_test_free_result(card);
3275 	mmc_test_free_dbgfs_file(card);
3276 }
3277 
3278 static void mmc_test_shutdown(struct mmc_card *card)
3279 {
3280 }
3281 
3282 static struct mmc_driver mmc_driver = {
3283 	.drv		= {
3284 		.name	= "mmc_test",
3285 	},
3286 	.probe		= mmc_test_probe,
3287 	.remove		= mmc_test_remove,
3288 	.shutdown	= mmc_test_shutdown,
3289 };
3290 
3291 static int __init mmc_test_init(void)
3292 {
3293 	return mmc_register_driver(&mmc_driver);
3294 }
3295 
3296 static void __exit mmc_test_exit(void)
3297 {
3298 	/* Clear stalled data if card is still plugged */
3299 	mmc_test_free_result(NULL);
3300 	mmc_test_free_dbgfs_file(NULL);
3301 
3302 	mmc_unregister_driver(&mmc_driver);
3303 }
3304 
3305 module_init(mmc_test_init);
3306 module_exit(mmc_test_exit);
3307 
3308 MODULE_LICENSE("GPL");
3309 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3310 MODULE_AUTHOR("Pierre Ossman");
3311