xref: /linux/drivers/mmc/core/mmc_test.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2007-2008 Pierre Ossman
4  */
5 
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11 
12 #include <linux/scatterlist.h>
13 #include <linux/list.h>
14 
15 #include <linux/debugfs.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/module.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 
26 #define RESULT_OK		0
27 #define RESULT_FAIL		1
28 #define RESULT_UNSUP_HOST	2
29 #define RESULT_UNSUP_CARD	3
30 
31 #define BUFFER_ORDER		2
32 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
33 
34 #define TEST_ALIGN_END		8
35 
36 /*
37  * Limit the test area size to the maximum MMC HC erase group size.  Note that
38  * the maximum SD allocation unit size is just 4MiB.
39  */
40 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41 
42 /**
43  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
44  * @page: first page in the allocation
45  * @order: order of the number of pages allocated
46  */
47 struct mmc_test_pages {
48 	struct page *page;
49 	unsigned int order;
50 };
51 
52 /**
53  * struct mmc_test_mem - allocated memory.
54  * @arr: array of allocations
55  * @cnt: number of allocations
56  */
57 struct mmc_test_mem {
58 	struct mmc_test_pages *arr;
59 	unsigned int cnt;
60 };
61 
62 /**
63  * struct mmc_test_area - information for performance tests.
64  * @max_sz: test area size (in bytes)
65  * @dev_addr: address on card at which to do performance tests
66  * @max_tfr: maximum transfer size allowed by driver (in bytes)
67  * @max_segs: maximum segments allowed by driver in scatterlist @sg
68  * @max_seg_sz: maximum segment size allowed by driver
69  * @blocks: number of (512 byte) blocks currently mapped by @sg
70  * @sg_len: length of currently mapped scatterlist @sg
71  * @mem: allocated memory
72  * @sg: scatterlist
73  * @sg_areq: scatterlist for non-blocking request
74  */
75 struct mmc_test_area {
76 	unsigned long max_sz;
77 	unsigned int dev_addr;
78 	unsigned int max_tfr;
79 	unsigned int max_segs;
80 	unsigned int max_seg_sz;
81 	unsigned int blocks;
82 	unsigned int sg_len;
83 	struct mmc_test_mem *mem;
84 	struct scatterlist *sg;
85 	struct scatterlist *sg_areq;
86 };
87 
88 /**
89  * struct mmc_test_transfer_result - transfer results for performance tests.
90  * @link: double-linked list
91  * @count: amount of group of sectors to check
92  * @sectors: amount of sectors to check in one group
93  * @ts: time values of transfer
94  * @rate: calculated transfer rate
95  * @iops: I/O operations per second (times 100)
96  */
97 struct mmc_test_transfer_result {
98 	struct list_head link;
99 	unsigned int count;
100 	unsigned int sectors;
101 	struct timespec64 ts;
102 	unsigned int rate;
103 	unsigned int iops;
104 };
105 
106 /**
107  * struct mmc_test_general_result - results for tests.
108  * @link: double-linked list
109  * @card: card under test
110  * @testcase: number of test case
111  * @result: result of test run
112  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
113  */
114 struct mmc_test_general_result {
115 	struct list_head link;
116 	struct mmc_card *card;
117 	int testcase;
118 	int result;
119 	struct list_head tr_lst;
120 };
121 
122 /**
123  * struct mmc_test_dbgfs_file - debugfs related file.
124  * @link: double-linked list
125  * @card: card under test
126  * @file: file created under debugfs
127  */
128 struct mmc_test_dbgfs_file {
129 	struct list_head link;
130 	struct mmc_card *card;
131 	struct dentry *file;
132 };
133 
134 /**
135  * struct mmc_test_card - test information.
136  * @card: card under test
137  * @scratch: transfer buffer
138  * @buffer: transfer buffer
139  * @highmem: buffer for highmem tests
140  * @area: information for performance tests
141  * @gr: pointer to results of current testcase
142  */
143 struct mmc_test_card {
144 	struct mmc_card	*card;
145 
146 	u8		scratch[BUFFER_SIZE];
147 	u8		*buffer;
148 #ifdef CONFIG_HIGHMEM
149 	struct page	*highmem;
150 #endif
151 	struct mmc_test_area		area;
152 	struct mmc_test_general_result	*gr;
153 };
154 
155 enum mmc_test_prep_media {
156 	MMC_TEST_PREP_NONE = 0,
157 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
158 	MMC_TEST_PREP_ERASE = 1 << 1,
159 };
160 
161 struct mmc_test_multiple_rw {
162 	unsigned int *sg_len;
163 	unsigned int *bs;
164 	unsigned int len;
165 	unsigned int size;
166 	bool do_write;
167 	bool do_nonblock_req;
168 	enum mmc_test_prep_media prepare;
169 };
170 
171 /*******************************************************************/
172 /*  General helper functions                                       */
173 /*******************************************************************/
174 
175 /*
176  * Configure correct block size in card
177  */
178 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
179 {
180 	return mmc_set_blocklen(test->card, size);
181 }
182 
183 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
184 				 struct mmc_request *mrq, unsigned int blocks)
185 {
186 	struct mmc_card *card = test->card;
187 
188 	if (!mrq->sbc || !mmc_host_can_cmd23(card->host) ||
189 	    !mmc_card_can_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
190 	    mmc_card_blk_no_cmd23(card)) {
191 		mrq->sbc = NULL;
192 		return;
193 	}
194 
195 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
196 	mrq->sbc->arg = blocks;
197 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
198 }
199 
200 /*
201  * Fill in the mmc_request structure given a set of transfer parameters.
202  */
203 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
204 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
205 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
206 {
207 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
208 		return;
209 
210 	if (blocks > 1) {
211 		mrq->cmd->opcode = write ?
212 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
213 	} else {
214 		mrq->cmd->opcode = write ?
215 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
216 	}
217 
218 	mrq->cmd->arg = dev_addr;
219 	if (!mmc_card_blockaddr(test->card))
220 		mrq->cmd->arg <<= 9;
221 
222 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
223 
224 	if (blocks == 1)
225 		mrq->stop = NULL;
226 	else {
227 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
228 		mrq->stop->arg = 0;
229 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
230 	}
231 
232 	mrq->data->blksz = blksz;
233 	mrq->data->blocks = blocks;
234 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
235 	mrq->data->sg = sg;
236 	mrq->data->sg_len = sg_len;
237 
238 	mmc_test_prepare_sbc(test, mrq, blocks);
239 
240 	mmc_set_data_timeout(mrq->data, test->card);
241 }
242 
243 static int mmc_test_busy(struct mmc_command *cmd)
244 {
245 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
246 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
247 }
248 
249 /*
250  * Wait for the card to finish the busy state
251  */
252 static int mmc_test_wait_busy(struct mmc_test_card *test)
253 {
254 	int ret, busy;
255 	struct mmc_command cmd = {};
256 
257 	busy = 0;
258 	do {
259 		memset(&cmd, 0, sizeof(struct mmc_command));
260 
261 		cmd.opcode = MMC_SEND_STATUS;
262 		cmd.arg = test->card->rca << 16;
263 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
264 
265 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
266 		if (ret)
267 			break;
268 
269 		if (!busy && mmc_test_busy(&cmd)) {
270 			busy = 1;
271 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
272 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
273 					mmc_hostname(test->card->host));
274 		}
275 	} while (mmc_test_busy(&cmd));
276 
277 	return ret;
278 }
279 
280 /*
281  * Transfer a single sector of kernel addressable data
282  */
283 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
284 	u8 *buffer, unsigned addr, unsigned blksz, int write)
285 {
286 	struct mmc_request mrq = {};
287 	struct mmc_command cmd = {};
288 	struct mmc_command stop = {};
289 	struct mmc_data data = {};
290 
291 	struct scatterlist sg;
292 
293 	mrq.cmd = &cmd;
294 	mrq.data = &data;
295 	mrq.stop = &stop;
296 
297 	sg_init_one(&sg, buffer, blksz);
298 
299 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
300 
301 	mmc_wait_for_req(test->card->host, &mrq);
302 
303 	if (cmd.error)
304 		return cmd.error;
305 	if (data.error)
306 		return data.error;
307 
308 	return mmc_test_wait_busy(test);
309 }
310 
311 static void mmc_test_free_mem(struct mmc_test_mem *mem)
312 {
313 	if (!mem)
314 		return;
315 	while (mem->cnt--)
316 		__free_pages(mem->arr[mem->cnt].page,
317 			     mem->arr[mem->cnt].order);
318 	kfree(mem->arr);
319 	kfree(mem);
320 }
321 
322 /*
323  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
324  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
325  * not exceed a maximum number of segments and try not to make segments much
326  * bigger than maximum segment size.
327  */
328 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
329 					       unsigned long max_sz,
330 					       unsigned int max_segs,
331 					       unsigned int max_seg_sz)
332 {
333 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
334 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
335 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
336 	unsigned long page_cnt = 0;
337 	unsigned long limit = nr_free_buffer_pages() >> 4;
338 	struct mmc_test_mem *mem;
339 
340 	if (max_page_cnt > limit)
341 		max_page_cnt = limit;
342 	if (min_page_cnt > max_page_cnt)
343 		min_page_cnt = max_page_cnt;
344 
345 	if (max_seg_page_cnt > max_page_cnt)
346 		max_seg_page_cnt = max_page_cnt;
347 
348 	if (max_segs > max_page_cnt)
349 		max_segs = max_page_cnt;
350 
351 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
352 	if (!mem)
353 		return NULL;
354 
355 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
356 	if (!mem->arr)
357 		goto out_free;
358 
359 	while (max_page_cnt) {
360 		struct page *page;
361 		unsigned int order;
362 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
363 				__GFP_NORETRY;
364 
365 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
366 		while (1) {
367 			page = alloc_pages(flags, order);
368 			if (page || !order)
369 				break;
370 			order -= 1;
371 		}
372 		if (!page) {
373 			if (page_cnt < min_page_cnt)
374 				goto out_free;
375 			break;
376 		}
377 		mem->arr[mem->cnt].page = page;
378 		mem->arr[mem->cnt].order = order;
379 		mem->cnt += 1;
380 		if (max_page_cnt <= (1UL << order))
381 			break;
382 		max_page_cnt -= 1UL << order;
383 		page_cnt += 1UL << order;
384 		if (mem->cnt >= max_segs) {
385 			if (page_cnt < min_page_cnt)
386 				goto out_free;
387 			break;
388 		}
389 	}
390 
391 	return mem;
392 
393 out_free:
394 	mmc_test_free_mem(mem);
395 	return NULL;
396 }
397 
398 /*
399  * Map memory into a scatterlist.  Optionally allow the same memory to be
400  * mapped more than once.
401  */
402 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
403 			   struct scatterlist *sglist, int repeat,
404 			   unsigned int max_segs, unsigned int max_seg_sz,
405 			   unsigned int *sg_len, int min_sg_len)
406 {
407 	struct scatterlist *sg = NULL;
408 	unsigned int i;
409 	unsigned long sz = size;
410 
411 	sg_init_table(sglist, max_segs);
412 	if (min_sg_len > max_segs)
413 		min_sg_len = max_segs;
414 
415 	*sg_len = 0;
416 	do {
417 		for (i = 0; i < mem->cnt; i++) {
418 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
419 
420 			if (min_sg_len && (size / min_sg_len < len))
421 				len = ALIGN(size / min_sg_len, 512);
422 			if (len > sz)
423 				len = sz;
424 			if (len > max_seg_sz)
425 				len = max_seg_sz;
426 			if (sg)
427 				sg = sg_next(sg);
428 			else
429 				sg = sglist;
430 			if (!sg)
431 				return -EINVAL;
432 			sg_set_page(sg, mem->arr[i].page, len, 0);
433 			sz -= len;
434 			*sg_len += 1;
435 			if (!sz)
436 				break;
437 		}
438 	} while (sz && repeat);
439 
440 	if (sz)
441 		return -EINVAL;
442 
443 	if (sg)
444 		sg_mark_end(sg);
445 
446 	return 0;
447 }
448 
449 /*
450  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
451  * same memory to be mapped more than once.
452  */
453 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
454 				       unsigned long sz,
455 				       struct scatterlist *sglist,
456 				       unsigned int max_segs,
457 				       unsigned int max_seg_sz,
458 				       unsigned int *sg_len)
459 {
460 	struct scatterlist *sg = NULL;
461 	unsigned int i = mem->cnt, cnt;
462 	unsigned long len;
463 	void *base, *addr, *last_addr = NULL;
464 
465 	sg_init_table(sglist, max_segs);
466 
467 	*sg_len = 0;
468 	while (sz) {
469 		base = page_address(mem->arr[--i].page);
470 		cnt = 1 << mem->arr[i].order;
471 		while (sz && cnt) {
472 			addr = base + PAGE_SIZE * --cnt;
473 			if (last_addr && last_addr + PAGE_SIZE == addr)
474 				continue;
475 			last_addr = addr;
476 			len = PAGE_SIZE;
477 			if (len > max_seg_sz)
478 				len = max_seg_sz;
479 			if (len > sz)
480 				len = sz;
481 			if (sg)
482 				sg = sg_next(sg);
483 			else
484 				sg = sglist;
485 			if (!sg)
486 				return -EINVAL;
487 			sg_set_page(sg, virt_to_page(addr), len, 0);
488 			sz -= len;
489 			*sg_len += 1;
490 		}
491 		if (i == 0)
492 			i = mem->cnt;
493 	}
494 
495 	if (sg)
496 		sg_mark_end(sg);
497 
498 	return 0;
499 }
500 
501 /*
502  * Calculate transfer rate in bytes per second.
503  */
504 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
505 {
506 	uint64_t ns;
507 
508 	ns = timespec64_to_ns(ts);
509 	bytes *= 1000000000;
510 
511 	while (ns > UINT_MAX) {
512 		bytes >>= 1;
513 		ns >>= 1;
514 	}
515 
516 	if (!ns)
517 		return 0;
518 
519 	do_div(bytes, (uint32_t)ns);
520 
521 	return bytes;
522 }
523 
524 /*
525  * Save transfer results for future usage
526  */
527 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
528 	unsigned int count, unsigned int sectors, struct timespec64 ts,
529 	unsigned int rate, unsigned int iops)
530 {
531 	struct mmc_test_transfer_result *tr;
532 
533 	if (!test->gr)
534 		return;
535 
536 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
537 	if (!tr)
538 		return;
539 
540 	tr->count = count;
541 	tr->sectors = sectors;
542 	tr->ts = ts;
543 	tr->rate = rate;
544 	tr->iops = iops;
545 
546 	list_add_tail(&tr->link, &test->gr->tr_lst);
547 }
548 
549 /*
550  * Print the transfer rate.
551  */
552 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
553 				struct timespec64 *ts1, struct timespec64 *ts2)
554 {
555 	unsigned int rate, iops, sectors = bytes >> 9;
556 	struct timespec64 ts;
557 
558 	ts = timespec64_sub(*ts2, *ts1);
559 
560 	rate = mmc_test_rate(bytes, &ts);
561 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
562 
563 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
564 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
565 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
566 			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
567 			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
568 			 iops / 100, iops % 100);
569 
570 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
571 }
572 
573 /*
574  * Print the average transfer rate.
575  */
576 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
577 				    unsigned int count, struct timespec64 *ts1,
578 				    struct timespec64 *ts2)
579 {
580 	unsigned int rate, iops, sectors = bytes >> 9;
581 	uint64_t tot = bytes * count;
582 	struct timespec64 ts;
583 
584 	ts = timespec64_sub(*ts2, *ts1);
585 
586 	rate = mmc_test_rate(tot, &ts);
587 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
588 
589 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
590 			 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
591 			 "%u.%02u IOPS, sg_len %d)\n",
592 			 mmc_hostname(test->card->host), count, sectors, count,
593 			 sectors >> 1, (sectors & 1 ? ".5" : ""),
594 			 (u64)ts.tv_sec, (u32)ts.tv_nsec,
595 			 rate / 1000, rate / 1024, iops / 100, iops % 100,
596 			 test->area.sg_len);
597 
598 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
599 }
600 
601 /*
602  * Return the card size in sectors.
603  */
604 static unsigned int mmc_test_capacity(struct mmc_card *card)
605 {
606 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
607 		return card->ext_csd.sectors;
608 	else
609 		return card->csd.capacity << (card->csd.read_blkbits - 9);
610 }
611 
612 /*******************************************************************/
613 /*  Test preparation and cleanup                                   */
614 /*******************************************************************/
615 
616 /*
617  * Fill the first couple of sectors of the card with known data
618  * so that bad reads/writes can be detected
619  */
620 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
621 {
622 	int ret, i;
623 
624 	ret = mmc_test_set_blksize(test, 512);
625 	if (ret)
626 		return ret;
627 
628 	if (write)
629 		memset(test->buffer, val, 512);
630 	else {
631 		for (i = 0; i < 512; i++)
632 			test->buffer[i] = i;
633 	}
634 
635 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
636 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
637 		if (ret)
638 			return ret;
639 	}
640 
641 	return 0;
642 }
643 
644 static int mmc_test_prepare_write(struct mmc_test_card *test)
645 {
646 	return __mmc_test_prepare(test, 1, 0xDF);
647 }
648 
649 static int mmc_test_prepare_read(struct mmc_test_card *test)
650 {
651 	return __mmc_test_prepare(test, 0, 0);
652 }
653 
654 static int mmc_test_cleanup(struct mmc_test_card *test)
655 {
656 	return __mmc_test_prepare(test, 1, 0);
657 }
658 
659 /*******************************************************************/
660 /*  Test execution helpers                                         */
661 /*******************************************************************/
662 
663 /*
664  * Modifies the mmc_request to perform the "short transfer" tests
665  */
666 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
667 	struct mmc_request *mrq, int write)
668 {
669 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
670 		return;
671 
672 	if (mrq->data->blocks > 1) {
673 		mrq->cmd->opcode = write ?
674 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
675 		mrq->stop = NULL;
676 	} else {
677 		mrq->cmd->opcode = MMC_SEND_STATUS;
678 		mrq->cmd->arg = test->card->rca << 16;
679 	}
680 }
681 
682 /*
683  * Checks that a normal transfer didn't have any errors
684  */
685 static int mmc_test_check_result(struct mmc_test_card *test,
686 				 struct mmc_request *mrq)
687 {
688 	int ret;
689 
690 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
691 		return -EINVAL;
692 
693 	ret = 0;
694 
695 	if (mrq->sbc && mrq->sbc->error)
696 		ret = mrq->sbc->error;
697 	if (!ret && mrq->cmd->error)
698 		ret = mrq->cmd->error;
699 	if (!ret && mrq->data->error)
700 		ret = mrq->data->error;
701 	if (!ret && mrq->stop && mrq->stop->error)
702 		ret = mrq->stop->error;
703 	if (!ret && mrq->data->bytes_xfered !=
704 		mrq->data->blocks * mrq->data->blksz)
705 		ret = RESULT_FAIL;
706 
707 	if (ret == -EINVAL)
708 		ret = RESULT_UNSUP_HOST;
709 
710 	return ret;
711 }
712 
713 /*
714  * Checks that a "short transfer" behaved as expected
715  */
716 static int mmc_test_check_broken_result(struct mmc_test_card *test,
717 	struct mmc_request *mrq)
718 {
719 	int ret;
720 
721 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
722 		return -EINVAL;
723 
724 	ret = 0;
725 
726 	if (!ret && mrq->cmd->error)
727 		ret = mrq->cmd->error;
728 	if (!ret && mrq->data->error == 0)
729 		ret = RESULT_FAIL;
730 	if (!ret && mrq->data->error != -ETIMEDOUT)
731 		ret = mrq->data->error;
732 	if (!ret && mrq->stop && mrq->stop->error)
733 		ret = mrq->stop->error;
734 	if (mrq->data->blocks > 1) {
735 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
736 			ret = RESULT_FAIL;
737 	} else {
738 		if (!ret && mrq->data->bytes_xfered > 0)
739 			ret = RESULT_FAIL;
740 	}
741 
742 	if (ret == -EINVAL)
743 		ret = RESULT_UNSUP_HOST;
744 
745 	return ret;
746 }
747 
748 struct mmc_test_req {
749 	struct mmc_request mrq;
750 	struct mmc_command sbc;
751 	struct mmc_command cmd;
752 	struct mmc_command stop;
753 	struct mmc_command status;
754 	struct mmc_data data;
755 };
756 
757 /*
758  * Tests nonblock transfer with certain parameters
759  */
760 static void mmc_test_req_reset(struct mmc_test_req *rq)
761 {
762 	memset(rq, 0, sizeof(struct mmc_test_req));
763 
764 	rq->mrq.cmd = &rq->cmd;
765 	rq->mrq.data = &rq->data;
766 	rq->mrq.stop = &rq->stop;
767 }
768 
769 static struct mmc_test_req *mmc_test_req_alloc(void)
770 {
771 	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
772 
773 	if (rq)
774 		mmc_test_req_reset(rq);
775 
776 	return rq;
777 }
778 
779 static void mmc_test_wait_done(struct mmc_request *mrq)
780 {
781 	complete(&mrq->completion);
782 }
783 
784 static int mmc_test_start_areq(struct mmc_test_card *test,
785 			       struct mmc_request *mrq,
786 			       struct mmc_request *prev_mrq)
787 {
788 	struct mmc_host *host = test->card->host;
789 	int err = 0;
790 
791 	if (mrq) {
792 		init_completion(&mrq->completion);
793 		mrq->done = mmc_test_wait_done;
794 		mmc_pre_req(host, mrq);
795 	}
796 
797 	if (prev_mrq) {
798 		wait_for_completion(&prev_mrq->completion);
799 		err = mmc_test_wait_busy(test);
800 		if (!err)
801 			err = mmc_test_check_result(test, prev_mrq);
802 	}
803 
804 	if (!err && mrq) {
805 		err = mmc_start_request(host, mrq);
806 		if (err)
807 			mmc_retune_release(host);
808 	}
809 
810 	if (prev_mrq)
811 		mmc_post_req(host, prev_mrq, 0);
812 
813 	if (err && mrq)
814 		mmc_post_req(host, mrq, err);
815 
816 	return err;
817 }
818 
819 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
820 				      unsigned int dev_addr, int write,
821 				      int count)
822 {
823 	struct mmc_test_req *rq1, *rq2;
824 	struct mmc_request *mrq, *prev_mrq;
825 	int i;
826 	int ret = RESULT_OK;
827 	struct mmc_test_area *t = &test->area;
828 	struct scatterlist *sg = t->sg;
829 	struct scatterlist *sg_areq = t->sg_areq;
830 
831 	rq1 = mmc_test_req_alloc();
832 	rq2 = mmc_test_req_alloc();
833 	if (!rq1 || !rq2) {
834 		ret = RESULT_FAIL;
835 		goto err;
836 	}
837 
838 	mrq = &rq1->mrq;
839 	prev_mrq = NULL;
840 
841 	for (i = 0; i < count; i++) {
842 		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
843 		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
844 				     t->blocks, 512, write);
845 		ret = mmc_test_start_areq(test, mrq, prev_mrq);
846 		if (ret)
847 			goto err;
848 
849 		if (!prev_mrq)
850 			prev_mrq = &rq2->mrq;
851 
852 		swap(mrq, prev_mrq);
853 		swap(sg, sg_areq);
854 		dev_addr += t->blocks;
855 	}
856 
857 	ret = mmc_test_start_areq(test, NULL, prev_mrq);
858 err:
859 	kfree(rq1);
860 	kfree(rq2);
861 	return ret;
862 }
863 
864 /*
865  * Tests a basic transfer with certain parameters
866  */
867 static int mmc_test_simple_transfer(struct mmc_test_card *test,
868 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
869 	unsigned blocks, unsigned blksz, int write)
870 {
871 	struct mmc_request mrq = {};
872 	struct mmc_command cmd = {};
873 	struct mmc_command stop = {};
874 	struct mmc_data data = {};
875 
876 	mrq.cmd = &cmd;
877 	mrq.data = &data;
878 	mrq.stop = &stop;
879 
880 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
881 		blocks, blksz, write);
882 
883 	mmc_wait_for_req(test->card->host, &mrq);
884 
885 	mmc_test_wait_busy(test);
886 
887 	return mmc_test_check_result(test, &mrq);
888 }
889 
890 /*
891  * Tests a transfer where the card will fail completely or partly
892  */
893 static int mmc_test_broken_transfer(struct mmc_test_card *test,
894 	unsigned blocks, unsigned blksz, int write)
895 {
896 	struct mmc_request mrq = {};
897 	struct mmc_command cmd = {};
898 	struct mmc_command stop = {};
899 	struct mmc_data data = {};
900 
901 	struct scatterlist sg;
902 
903 	mrq.cmd = &cmd;
904 	mrq.data = &data;
905 	mrq.stop = &stop;
906 
907 	sg_init_one(&sg, test->buffer, blocks * blksz);
908 
909 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
910 	mmc_test_prepare_broken_mrq(test, &mrq, write);
911 
912 	mmc_wait_for_req(test->card->host, &mrq);
913 
914 	mmc_test_wait_busy(test);
915 
916 	return mmc_test_check_broken_result(test, &mrq);
917 }
918 
919 /*
920  * Does a complete transfer test where data is also validated
921  *
922  * Note: mmc_test_prepare() must have been done before this call
923  */
924 static int mmc_test_transfer(struct mmc_test_card *test,
925 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
926 	unsigned blocks, unsigned blksz, int write)
927 {
928 	int ret, i;
929 
930 	if (write) {
931 		for (i = 0; i < blocks * blksz; i++)
932 			test->scratch[i] = i;
933 	} else {
934 		memset(test->scratch, 0, BUFFER_SIZE);
935 	}
936 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
937 
938 	ret = mmc_test_set_blksize(test, blksz);
939 	if (ret)
940 		return ret;
941 
942 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
943 		blocks, blksz, write);
944 	if (ret)
945 		return ret;
946 
947 	if (write) {
948 		int sectors;
949 
950 		ret = mmc_test_set_blksize(test, 512);
951 		if (ret)
952 			return ret;
953 
954 		sectors = (blocks * blksz + 511) / 512;
955 		if ((sectors * 512) == (blocks * blksz))
956 			sectors++;
957 
958 		if ((sectors * 512) > BUFFER_SIZE)
959 			return -EINVAL;
960 
961 		memset(test->buffer, 0, sectors * 512);
962 
963 		for (i = 0; i < sectors; i++) {
964 			ret = mmc_test_buffer_transfer(test,
965 				test->buffer + i * 512,
966 				dev_addr + i, 512, 0);
967 			if (ret)
968 				return ret;
969 		}
970 
971 		for (i = 0; i < blocks * blksz; i++) {
972 			if (test->buffer[i] != (u8)i)
973 				return RESULT_FAIL;
974 		}
975 
976 		for (; i < sectors * 512; i++) {
977 			if (test->buffer[i] != 0xDF)
978 				return RESULT_FAIL;
979 		}
980 	} else {
981 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
982 		for (i = 0; i < blocks * blksz; i++) {
983 			if (test->scratch[i] != (u8)i)
984 				return RESULT_FAIL;
985 		}
986 	}
987 
988 	return 0;
989 }
990 
991 /*******************************************************************/
992 /*  Tests                                                          */
993 /*******************************************************************/
994 
995 struct mmc_test_case {
996 	const char *name;
997 
998 	int (*prepare)(struct mmc_test_card *);
999 	int (*run)(struct mmc_test_card *);
1000 	int (*cleanup)(struct mmc_test_card *);
1001 };
1002 
1003 static int mmc_test_basic_write(struct mmc_test_card *test)
1004 {
1005 	int ret;
1006 	struct scatterlist sg;
1007 
1008 	ret = mmc_test_set_blksize(test, 512);
1009 	if (ret)
1010 		return ret;
1011 
1012 	sg_init_one(&sg, test->buffer, 512);
1013 
1014 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1015 }
1016 
1017 static int mmc_test_basic_read(struct mmc_test_card *test)
1018 {
1019 	int ret;
1020 	struct scatterlist sg;
1021 
1022 	ret = mmc_test_set_blksize(test, 512);
1023 	if (ret)
1024 		return ret;
1025 
1026 	sg_init_one(&sg, test->buffer, 512);
1027 
1028 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1029 }
1030 
1031 static int mmc_test_verify_write(struct mmc_test_card *test)
1032 {
1033 	struct scatterlist sg;
1034 
1035 	sg_init_one(&sg, test->buffer, 512);
1036 
1037 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1038 }
1039 
1040 static int mmc_test_verify_read(struct mmc_test_card *test)
1041 {
1042 	struct scatterlist sg;
1043 
1044 	sg_init_one(&sg, test->buffer, 512);
1045 
1046 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1047 }
1048 
1049 static int mmc_test_multi_write(struct mmc_test_card *test)
1050 {
1051 	unsigned int size;
1052 	struct scatterlist sg;
1053 
1054 	if (test->card->host->max_blk_count == 1)
1055 		return RESULT_UNSUP_HOST;
1056 
1057 	size = PAGE_SIZE * 2;
1058 	size = min(size, test->card->host->max_req_size);
1059 	size = min(size, test->card->host->max_seg_size);
1060 	size = min(size, test->card->host->max_blk_count * 512);
1061 
1062 	if (size < 1024)
1063 		return RESULT_UNSUP_HOST;
1064 
1065 	sg_init_one(&sg, test->buffer, size);
1066 
1067 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1068 }
1069 
1070 static int mmc_test_multi_read(struct mmc_test_card *test)
1071 {
1072 	unsigned int size;
1073 	struct scatterlist sg;
1074 
1075 	if (test->card->host->max_blk_count == 1)
1076 		return RESULT_UNSUP_HOST;
1077 
1078 	size = PAGE_SIZE * 2;
1079 	size = min(size, test->card->host->max_req_size);
1080 	size = min(size, test->card->host->max_seg_size);
1081 	size = min(size, test->card->host->max_blk_count * 512);
1082 
1083 	if (size < 1024)
1084 		return RESULT_UNSUP_HOST;
1085 
1086 	sg_init_one(&sg, test->buffer, size);
1087 
1088 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1089 }
1090 
1091 static int mmc_test_pow2_write(struct mmc_test_card *test)
1092 {
1093 	int ret, i;
1094 	struct scatterlist sg;
1095 
1096 	if (!test->card->csd.write_partial)
1097 		return RESULT_UNSUP_CARD;
1098 
1099 	for (i = 1; i < 512; i <<= 1) {
1100 		sg_init_one(&sg, test->buffer, i);
1101 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1102 		if (ret)
1103 			return ret;
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 static int mmc_test_pow2_read(struct mmc_test_card *test)
1110 {
1111 	int ret, i;
1112 	struct scatterlist sg;
1113 
1114 	if (!test->card->csd.read_partial)
1115 		return RESULT_UNSUP_CARD;
1116 
1117 	for (i = 1; i < 512; i <<= 1) {
1118 		sg_init_one(&sg, test->buffer, i);
1119 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1120 		if (ret)
1121 			return ret;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static int mmc_test_weird_write(struct mmc_test_card *test)
1128 {
1129 	int ret, i;
1130 	struct scatterlist sg;
1131 
1132 	if (!test->card->csd.write_partial)
1133 		return RESULT_UNSUP_CARD;
1134 
1135 	for (i = 3; i < 512; i += 7) {
1136 		sg_init_one(&sg, test->buffer, i);
1137 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1138 		if (ret)
1139 			return ret;
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static int mmc_test_weird_read(struct mmc_test_card *test)
1146 {
1147 	int ret, i;
1148 	struct scatterlist sg;
1149 
1150 	if (!test->card->csd.read_partial)
1151 		return RESULT_UNSUP_CARD;
1152 
1153 	for (i = 3; i < 512; i += 7) {
1154 		sg_init_one(&sg, test->buffer, i);
1155 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1156 		if (ret)
1157 			return ret;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 static int mmc_test_align_write(struct mmc_test_card *test)
1164 {
1165 	int ret, i;
1166 	struct scatterlist sg;
1167 
1168 	for (i = 1; i < TEST_ALIGN_END; i++) {
1169 		sg_init_one(&sg, test->buffer + i, 512);
1170 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1171 		if (ret)
1172 			return ret;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 static int mmc_test_align_read(struct mmc_test_card *test)
1179 {
1180 	int ret, i;
1181 	struct scatterlist sg;
1182 
1183 	for (i = 1; i < TEST_ALIGN_END; i++) {
1184 		sg_init_one(&sg, test->buffer + i, 512);
1185 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1186 		if (ret)
1187 			return ret;
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1194 {
1195 	int ret, i;
1196 	unsigned int size;
1197 	struct scatterlist sg;
1198 
1199 	if (test->card->host->max_blk_count == 1)
1200 		return RESULT_UNSUP_HOST;
1201 
1202 	size = PAGE_SIZE * 2;
1203 	size = min(size, test->card->host->max_req_size);
1204 	size = min(size, test->card->host->max_seg_size);
1205 	size = min(size, test->card->host->max_blk_count * 512);
1206 
1207 	if (size < 1024)
1208 		return RESULT_UNSUP_HOST;
1209 
1210 	for (i = 1; i < TEST_ALIGN_END; i++) {
1211 		sg_init_one(&sg, test->buffer + i, size);
1212 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1221 {
1222 	int ret, i;
1223 	unsigned int size;
1224 	struct scatterlist sg;
1225 
1226 	if (test->card->host->max_blk_count == 1)
1227 		return RESULT_UNSUP_HOST;
1228 
1229 	size = PAGE_SIZE * 2;
1230 	size = min(size, test->card->host->max_req_size);
1231 	size = min(size, test->card->host->max_seg_size);
1232 	size = min(size, test->card->host->max_blk_count * 512);
1233 
1234 	if (size < 1024)
1235 		return RESULT_UNSUP_HOST;
1236 
1237 	for (i = 1; i < TEST_ALIGN_END; i++) {
1238 		sg_init_one(&sg, test->buffer + i, size);
1239 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1240 		if (ret)
1241 			return ret;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1248 {
1249 	int ret;
1250 
1251 	ret = mmc_test_set_blksize(test, 512);
1252 	if (ret)
1253 		return ret;
1254 
1255 	return mmc_test_broken_transfer(test, 1, 512, 1);
1256 }
1257 
1258 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1259 {
1260 	int ret;
1261 
1262 	ret = mmc_test_set_blksize(test, 512);
1263 	if (ret)
1264 		return ret;
1265 
1266 	return mmc_test_broken_transfer(test, 1, 512, 0);
1267 }
1268 
1269 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1270 {
1271 	int ret;
1272 
1273 	if (test->card->host->max_blk_count == 1)
1274 		return RESULT_UNSUP_HOST;
1275 
1276 	ret = mmc_test_set_blksize(test, 512);
1277 	if (ret)
1278 		return ret;
1279 
1280 	return mmc_test_broken_transfer(test, 2, 512, 1);
1281 }
1282 
1283 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1284 {
1285 	int ret;
1286 
1287 	if (test->card->host->max_blk_count == 1)
1288 		return RESULT_UNSUP_HOST;
1289 
1290 	ret = mmc_test_set_blksize(test, 512);
1291 	if (ret)
1292 		return ret;
1293 
1294 	return mmc_test_broken_transfer(test, 2, 512, 0);
1295 }
1296 
1297 #ifdef CONFIG_HIGHMEM
1298 
1299 static int mmc_test_write_high(struct mmc_test_card *test)
1300 {
1301 	struct scatterlist sg;
1302 
1303 	sg_init_table(&sg, 1);
1304 	sg_set_page(&sg, test->highmem, 512, 0);
1305 
1306 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1307 }
1308 
1309 static int mmc_test_read_high(struct mmc_test_card *test)
1310 {
1311 	struct scatterlist sg;
1312 
1313 	sg_init_table(&sg, 1);
1314 	sg_set_page(&sg, test->highmem, 512, 0);
1315 
1316 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1317 }
1318 
1319 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1320 {
1321 	unsigned int size;
1322 	struct scatterlist sg;
1323 
1324 	if (test->card->host->max_blk_count == 1)
1325 		return RESULT_UNSUP_HOST;
1326 
1327 	size = PAGE_SIZE * 2;
1328 	size = min(size, test->card->host->max_req_size);
1329 	size = min(size, test->card->host->max_seg_size);
1330 	size = min(size, test->card->host->max_blk_count * 512);
1331 
1332 	if (size < 1024)
1333 		return RESULT_UNSUP_HOST;
1334 
1335 	sg_init_table(&sg, 1);
1336 	sg_set_page(&sg, test->highmem, size, 0);
1337 
1338 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1339 }
1340 
1341 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1342 {
1343 	unsigned int size;
1344 	struct scatterlist sg;
1345 
1346 	if (test->card->host->max_blk_count == 1)
1347 		return RESULT_UNSUP_HOST;
1348 
1349 	size = PAGE_SIZE * 2;
1350 	size = min(size, test->card->host->max_req_size);
1351 	size = min(size, test->card->host->max_seg_size);
1352 	size = min(size, test->card->host->max_blk_count * 512);
1353 
1354 	if (size < 1024)
1355 		return RESULT_UNSUP_HOST;
1356 
1357 	sg_init_table(&sg, 1);
1358 	sg_set_page(&sg, test->highmem, size, 0);
1359 
1360 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1361 }
1362 
1363 #else
1364 
1365 static int mmc_test_no_highmem(struct mmc_test_card *test)
1366 {
1367 	pr_info("%s: Highmem not configured - test skipped\n",
1368 	       mmc_hostname(test->card->host));
1369 	return 0;
1370 }
1371 
1372 #endif /* CONFIG_HIGHMEM */
1373 
1374 /*
1375  * Map sz bytes so that it can be transferred.
1376  */
1377 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1378 			     int max_scatter, int min_sg_len, bool nonblock)
1379 {
1380 	struct mmc_test_area *t = &test->area;
1381 	int err;
1382 	unsigned int sg_len = 0;
1383 
1384 	t->blocks = sz >> 9;
1385 
1386 	if (max_scatter) {
1387 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1388 						  t->max_segs, t->max_seg_sz,
1389 				       &t->sg_len);
1390 	} else {
1391 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1392 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1393 	}
1394 
1395 	if (err || !nonblock)
1396 		goto err;
1397 
1398 	if (max_scatter) {
1399 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1400 						  t->max_segs, t->max_seg_sz,
1401 						  &sg_len);
1402 	} else {
1403 		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1404 				      t->max_seg_sz, &sg_len, min_sg_len);
1405 	}
1406 	if (!err && sg_len != t->sg_len)
1407 		err = -EINVAL;
1408 
1409 err:
1410 	if (err)
1411 		pr_info("%s: Failed to map sg list\n",
1412 		       mmc_hostname(test->card->host));
1413 	return err;
1414 }
1415 
1416 /*
1417  * Transfer bytes mapped by mmc_test_area_map().
1418  */
1419 static int mmc_test_area_transfer(struct mmc_test_card *test,
1420 				  unsigned int dev_addr, int write)
1421 {
1422 	struct mmc_test_area *t = &test->area;
1423 
1424 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1425 					t->blocks, 512, write);
1426 }
1427 
1428 /*
1429  * Map and transfer bytes for multiple transfers.
1430  */
1431 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1432 				unsigned int dev_addr, int write,
1433 				int max_scatter, int timed, int count,
1434 				bool nonblock, int min_sg_len)
1435 {
1436 	struct timespec64 ts1, ts2;
1437 	int ret = 0;
1438 	int i;
1439 
1440 	/*
1441 	 * In the case of a maximally scattered transfer, the maximum transfer
1442 	 * size is further limited by using PAGE_SIZE segments.
1443 	 */
1444 	if (max_scatter) {
1445 		struct mmc_test_area *t = &test->area;
1446 		unsigned long max_tfr;
1447 
1448 		if (t->max_seg_sz >= PAGE_SIZE)
1449 			max_tfr = t->max_segs * PAGE_SIZE;
1450 		else
1451 			max_tfr = t->max_segs * t->max_seg_sz;
1452 		if (sz > max_tfr)
1453 			sz = max_tfr;
1454 	}
1455 
1456 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1457 	if (ret)
1458 		return ret;
1459 
1460 	if (timed)
1461 		ktime_get_ts64(&ts1);
1462 	if (nonblock)
1463 		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1464 	else
1465 		for (i = 0; i < count && ret == 0; i++) {
1466 			ret = mmc_test_area_transfer(test, dev_addr, write);
1467 			dev_addr += sz >> 9;
1468 		}
1469 
1470 	if (ret)
1471 		return ret;
1472 
1473 	if (timed)
1474 		ktime_get_ts64(&ts2);
1475 
1476 	if (timed)
1477 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1478 
1479 	return 0;
1480 }
1481 
1482 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1483 			    unsigned int dev_addr, int write, int max_scatter,
1484 			    int timed)
1485 {
1486 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1487 				    timed, 1, false, 0);
1488 }
1489 
1490 /*
1491  * Write the test area entirely.
1492  */
1493 static int mmc_test_area_fill(struct mmc_test_card *test)
1494 {
1495 	struct mmc_test_area *t = &test->area;
1496 
1497 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1498 }
1499 
1500 /*
1501  * Erase the test area entirely.
1502  */
1503 static int mmc_test_area_erase(struct mmc_test_card *test)
1504 {
1505 	struct mmc_test_area *t = &test->area;
1506 
1507 	if (!mmc_card_can_erase(test->card))
1508 		return 0;
1509 
1510 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1511 			 MMC_ERASE_ARG);
1512 }
1513 
1514 /*
1515  * Cleanup struct mmc_test_area.
1516  */
1517 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1518 {
1519 	struct mmc_test_area *t = &test->area;
1520 
1521 	kfree(t->sg);
1522 	kfree(t->sg_areq);
1523 	mmc_test_free_mem(t->mem);
1524 
1525 	return 0;
1526 }
1527 
1528 /*
1529  * Initialize an area for testing large transfers.  The test area is set to the
1530  * middle of the card because cards may have different characteristics at the
1531  * front (for FAT file system optimization).  Optionally, the area is erased
1532  * (if the card supports it) which may improve write performance.  Optionally,
1533  * the area is filled with data for subsequent read tests.
1534  */
1535 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1536 {
1537 	struct mmc_test_area *t = &test->area;
1538 	unsigned long min_sz = 64 * 1024, sz;
1539 	int ret;
1540 
1541 	ret = mmc_test_set_blksize(test, 512);
1542 	if (ret)
1543 		return ret;
1544 
1545 	/* Make the test area size about 4MiB */
1546 	sz = (unsigned long)test->card->pref_erase << 9;
1547 	t->max_sz = sz;
1548 	while (t->max_sz < 4 * 1024 * 1024)
1549 		t->max_sz += sz;
1550 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1551 		t->max_sz -= sz;
1552 
1553 	t->max_segs = test->card->host->max_segs;
1554 	t->max_seg_sz = test->card->host->max_seg_size;
1555 	t->max_seg_sz -= t->max_seg_sz % 512;
1556 
1557 	t->max_tfr = t->max_sz;
1558 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1559 		t->max_tfr = test->card->host->max_blk_count << 9;
1560 	if (t->max_tfr > test->card->host->max_req_size)
1561 		t->max_tfr = test->card->host->max_req_size;
1562 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1563 		t->max_tfr = t->max_segs * t->max_seg_sz;
1564 
1565 	/*
1566 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1567 	 * because the same memory can be mapped into the scatterlist more than
1568 	 * once.  Also, take into account the limits imposed on scatterlist
1569 	 * segments by the host driver.
1570 	 */
1571 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1572 				    t->max_seg_sz);
1573 	if (!t->mem)
1574 		return -ENOMEM;
1575 
1576 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1577 	if (!t->sg) {
1578 		ret = -ENOMEM;
1579 		goto out_free;
1580 	}
1581 
1582 	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1583 				   GFP_KERNEL);
1584 	if (!t->sg_areq) {
1585 		ret = -ENOMEM;
1586 		goto out_free;
1587 	}
1588 
1589 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1590 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1591 
1592 	if (erase) {
1593 		ret = mmc_test_area_erase(test);
1594 		if (ret)
1595 			goto out_free;
1596 	}
1597 
1598 	if (fill) {
1599 		ret = mmc_test_area_fill(test);
1600 		if (ret)
1601 			goto out_free;
1602 	}
1603 
1604 	return 0;
1605 
1606 out_free:
1607 	mmc_test_area_cleanup(test);
1608 	return ret;
1609 }
1610 
1611 /*
1612  * Prepare for large transfers.  Do not erase the test area.
1613  */
1614 static int mmc_test_area_prepare(struct mmc_test_card *test)
1615 {
1616 	return mmc_test_area_init(test, 0, 0);
1617 }
1618 
1619 /*
1620  * Prepare for large transfers.  Do erase the test area.
1621  */
1622 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1623 {
1624 	return mmc_test_area_init(test, 1, 0);
1625 }
1626 
1627 /*
1628  * Prepare for large transfers.  Erase and fill the test area.
1629  */
1630 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1631 {
1632 	return mmc_test_area_init(test, 1, 1);
1633 }
1634 
1635 /*
1636  * Test best-case performance.  Best-case performance is expected from
1637  * a single large transfer.
1638  *
1639  * An additional option (max_scatter) allows the measurement of the same
1640  * transfer but with no contiguous pages in the scatter list.  This tests
1641  * the efficiency of DMA to handle scattered pages.
1642  */
1643 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1644 				     int max_scatter)
1645 {
1646 	struct mmc_test_area *t = &test->area;
1647 
1648 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1649 				max_scatter, 1);
1650 }
1651 
1652 /*
1653  * Best-case read performance.
1654  */
1655 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1656 {
1657 	return mmc_test_best_performance(test, 0, 0);
1658 }
1659 
1660 /*
1661  * Best-case write performance.
1662  */
1663 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1664 {
1665 	return mmc_test_best_performance(test, 1, 0);
1666 }
1667 
1668 /*
1669  * Best-case read performance into scattered pages.
1670  */
1671 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1672 {
1673 	return mmc_test_best_performance(test, 0, 1);
1674 }
1675 
1676 /*
1677  * Best-case write performance from scattered pages.
1678  */
1679 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1680 {
1681 	return mmc_test_best_performance(test, 1, 1);
1682 }
1683 
1684 /*
1685  * Single read performance by transfer size.
1686  */
1687 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1688 {
1689 	struct mmc_test_area *t = &test->area;
1690 	unsigned long sz;
1691 	unsigned int dev_addr;
1692 	int ret;
1693 
1694 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1695 		dev_addr = t->dev_addr + (sz >> 9);
1696 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1697 		if (ret)
1698 			return ret;
1699 	}
1700 	sz = t->max_tfr;
1701 	dev_addr = t->dev_addr;
1702 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1703 }
1704 
1705 /*
1706  * Single write performance by transfer size.
1707  */
1708 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1709 {
1710 	struct mmc_test_area *t = &test->area;
1711 	unsigned long sz;
1712 	unsigned int dev_addr;
1713 	int ret;
1714 
1715 	ret = mmc_test_area_erase(test);
1716 	if (ret)
1717 		return ret;
1718 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1719 		dev_addr = t->dev_addr + (sz >> 9);
1720 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1721 		if (ret)
1722 			return ret;
1723 	}
1724 	ret = mmc_test_area_erase(test);
1725 	if (ret)
1726 		return ret;
1727 	sz = t->max_tfr;
1728 	dev_addr = t->dev_addr;
1729 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1730 }
1731 
1732 /*
1733  * Single trim performance by transfer size.
1734  */
1735 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1736 {
1737 	struct mmc_test_area *t = &test->area;
1738 	unsigned long sz;
1739 	unsigned int dev_addr;
1740 	struct timespec64 ts1, ts2;
1741 	int ret;
1742 
1743 	if (!mmc_card_can_trim(test->card))
1744 		return RESULT_UNSUP_CARD;
1745 
1746 	if (!mmc_card_can_erase(test->card))
1747 		return RESULT_UNSUP_HOST;
1748 
1749 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1750 		dev_addr = t->dev_addr + (sz >> 9);
1751 		ktime_get_ts64(&ts1);
1752 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1753 		if (ret)
1754 			return ret;
1755 		ktime_get_ts64(&ts2);
1756 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1757 	}
1758 	dev_addr = t->dev_addr;
1759 	ktime_get_ts64(&ts1);
1760 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1761 	if (ret)
1762 		return ret;
1763 	ktime_get_ts64(&ts2);
1764 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1765 	return 0;
1766 }
1767 
1768 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1769 {
1770 	struct mmc_test_area *t = &test->area;
1771 	unsigned int dev_addr, i, cnt;
1772 	struct timespec64 ts1, ts2;
1773 	int ret;
1774 
1775 	cnt = t->max_sz / sz;
1776 	dev_addr = t->dev_addr;
1777 	ktime_get_ts64(&ts1);
1778 	for (i = 0; i < cnt; i++) {
1779 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1780 		if (ret)
1781 			return ret;
1782 		dev_addr += (sz >> 9);
1783 	}
1784 	ktime_get_ts64(&ts2);
1785 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Consecutive read performance by transfer size.
1791  */
1792 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1793 {
1794 	struct mmc_test_area *t = &test->area;
1795 	unsigned long sz;
1796 	int ret;
1797 
1798 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1799 		ret = mmc_test_seq_read_perf(test, sz);
1800 		if (ret)
1801 			return ret;
1802 	}
1803 	sz = t->max_tfr;
1804 	return mmc_test_seq_read_perf(test, sz);
1805 }
1806 
1807 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1808 {
1809 	struct mmc_test_area *t = &test->area;
1810 	unsigned int dev_addr, i, cnt;
1811 	struct timespec64 ts1, ts2;
1812 	int ret;
1813 
1814 	ret = mmc_test_area_erase(test);
1815 	if (ret)
1816 		return ret;
1817 	cnt = t->max_sz / sz;
1818 	dev_addr = t->dev_addr;
1819 	ktime_get_ts64(&ts1);
1820 	for (i = 0; i < cnt; i++) {
1821 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1822 		if (ret)
1823 			return ret;
1824 		dev_addr += (sz >> 9);
1825 	}
1826 	ktime_get_ts64(&ts2);
1827 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1828 	return 0;
1829 }
1830 
1831 /*
1832  * Consecutive write performance by transfer size.
1833  */
1834 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1835 {
1836 	struct mmc_test_area *t = &test->area;
1837 	unsigned long sz;
1838 	int ret;
1839 
1840 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1841 		ret = mmc_test_seq_write_perf(test, sz);
1842 		if (ret)
1843 			return ret;
1844 	}
1845 	sz = t->max_tfr;
1846 	return mmc_test_seq_write_perf(test, sz);
1847 }
1848 
1849 /*
1850  * Consecutive trim performance by transfer size.
1851  */
1852 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1853 {
1854 	struct mmc_test_area *t = &test->area;
1855 	unsigned long sz;
1856 	unsigned int dev_addr, i, cnt;
1857 	struct timespec64 ts1, ts2;
1858 	int ret;
1859 
1860 	if (!mmc_card_can_trim(test->card))
1861 		return RESULT_UNSUP_CARD;
1862 
1863 	if (!mmc_card_can_erase(test->card))
1864 		return RESULT_UNSUP_HOST;
1865 
1866 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1867 		ret = mmc_test_area_erase(test);
1868 		if (ret)
1869 			return ret;
1870 		ret = mmc_test_area_fill(test);
1871 		if (ret)
1872 			return ret;
1873 		cnt = t->max_sz / sz;
1874 		dev_addr = t->dev_addr;
1875 		ktime_get_ts64(&ts1);
1876 		for (i = 0; i < cnt; i++) {
1877 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1878 					MMC_TRIM_ARG);
1879 			if (ret)
1880 				return ret;
1881 			dev_addr += (sz >> 9);
1882 		}
1883 		ktime_get_ts64(&ts2);
1884 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1885 	}
1886 	return 0;
1887 }
1888 
1889 static unsigned int rnd_next = 1;
1890 
1891 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1892 {
1893 	uint64_t r;
1894 
1895 	rnd_next = rnd_next * 1103515245 + 12345;
1896 	r = (rnd_next >> 16) & 0x7fff;
1897 	return (r * rnd_cnt) >> 15;
1898 }
1899 
1900 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1901 			     unsigned long sz, int secs, int force_retuning)
1902 {
1903 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1904 	unsigned int ssz;
1905 	struct timespec64 ts1, ts2, ts;
1906 	int ret;
1907 
1908 	ssz = sz >> 9;
1909 
1910 	rnd_addr = mmc_test_capacity(test->card) / 4;
1911 	range1 = rnd_addr / test->card->pref_erase;
1912 	range2 = range1 / ssz;
1913 
1914 	ktime_get_ts64(&ts1);
1915 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1916 		ktime_get_ts64(&ts2);
1917 		ts = timespec64_sub(ts2, ts1);
1918 		if (ts.tv_sec >= secs)
1919 			break;
1920 		ea = mmc_test_rnd_num(range1);
1921 		if (ea == last_ea)
1922 			ea -= 1;
1923 		last_ea = ea;
1924 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1925 			   ssz * mmc_test_rnd_num(range2);
1926 		if (force_retuning)
1927 			mmc_retune_needed(test->card->host);
1928 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1929 		if (ret)
1930 			return ret;
1931 	}
1932 	if (print)
1933 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1934 	return 0;
1935 }
1936 
1937 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1938 {
1939 	struct mmc_test_area *t = &test->area;
1940 	unsigned int next;
1941 	unsigned long sz;
1942 	int ret;
1943 
1944 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1945 		/*
1946 		 * When writing, try to get more consistent results by running
1947 		 * the test twice with exactly the same I/O but outputting the
1948 		 * results only for the 2nd run.
1949 		 */
1950 		if (write) {
1951 			next = rnd_next;
1952 			ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1953 			if (ret)
1954 				return ret;
1955 			rnd_next = next;
1956 		}
1957 		ret = mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1958 		if (ret)
1959 			return ret;
1960 	}
1961 	sz = t->max_tfr;
1962 	if (write) {
1963 		next = rnd_next;
1964 		ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1965 		if (ret)
1966 			return ret;
1967 		rnd_next = next;
1968 	}
1969 	return mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1970 }
1971 
1972 static int mmc_test_retuning(struct mmc_test_card *test)
1973 {
1974 	if (!mmc_can_retune(test->card->host)) {
1975 		pr_info("%s: No retuning - test skipped\n",
1976 			mmc_hostname(test->card->host));
1977 		return RESULT_UNSUP_HOST;
1978 	}
1979 
1980 	return mmc_test_rnd_perf(test, 0, 0, 8192, 30, 1);
1981 }
1982 
1983 /*
1984  * Random read performance by transfer size.
1985  */
1986 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1987 {
1988 	return mmc_test_random_perf(test, 0);
1989 }
1990 
1991 /*
1992  * Random write performance by transfer size.
1993  */
1994 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1995 {
1996 	return mmc_test_random_perf(test, 1);
1997 }
1998 
1999 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2000 			     unsigned int tot_sz, int max_scatter)
2001 {
2002 	struct mmc_test_area *t = &test->area;
2003 	unsigned int dev_addr, i, cnt, sz, ssz;
2004 	struct timespec64 ts1, ts2;
2005 	int ret;
2006 
2007 	sz = t->max_tfr;
2008 
2009 	/*
2010 	 * In the case of a maximally scattered transfer, the maximum transfer
2011 	 * size is further limited by using PAGE_SIZE segments.
2012 	 */
2013 	if (max_scatter) {
2014 		unsigned long max_tfr;
2015 
2016 		if (t->max_seg_sz >= PAGE_SIZE)
2017 			max_tfr = t->max_segs * PAGE_SIZE;
2018 		else
2019 			max_tfr = t->max_segs * t->max_seg_sz;
2020 		if (sz > max_tfr)
2021 			sz = max_tfr;
2022 	}
2023 
2024 	ssz = sz >> 9;
2025 	dev_addr = mmc_test_capacity(test->card) / 4;
2026 	if (tot_sz > dev_addr << 9)
2027 		tot_sz = dev_addr << 9;
2028 	cnt = tot_sz / sz;
2029 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2030 
2031 	ktime_get_ts64(&ts1);
2032 	for (i = 0; i < cnt; i++) {
2033 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2034 				       max_scatter, 0);
2035 		if (ret)
2036 			return ret;
2037 		dev_addr += ssz;
2038 	}
2039 	ktime_get_ts64(&ts2);
2040 
2041 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2042 
2043 	return 0;
2044 }
2045 
2046 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2047 {
2048 	int ret, i;
2049 
2050 	for (i = 0; i < 10; i++) {
2051 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2052 		if (ret)
2053 			return ret;
2054 	}
2055 	for (i = 0; i < 5; i++) {
2056 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2057 		if (ret)
2058 			return ret;
2059 	}
2060 	for (i = 0; i < 3; i++) {
2061 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2062 		if (ret)
2063 			return ret;
2064 	}
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * Large sequential read performance.
2071  */
2072 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2073 {
2074 	return mmc_test_large_seq_perf(test, 0);
2075 }
2076 
2077 /*
2078  * Large sequential write performance.
2079  */
2080 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2081 {
2082 	return mmc_test_large_seq_perf(test, 1);
2083 }
2084 
2085 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2086 				struct mmc_test_multiple_rw *tdata,
2087 				unsigned int reqsize, unsigned int size,
2088 				int min_sg_len)
2089 {
2090 	unsigned int dev_addr;
2091 	struct mmc_test_area *t = &test->area;
2092 	int ret = 0;
2093 
2094 	/* Set up test area */
2095 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2096 		size = mmc_test_capacity(test->card) / 2 * 512;
2097 	if (reqsize > t->max_tfr)
2098 		reqsize = t->max_tfr;
2099 	dev_addr = mmc_test_capacity(test->card) / 4;
2100 	if ((dev_addr & 0xffff0000))
2101 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2102 	else
2103 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2104 	if (!dev_addr)
2105 		goto err;
2106 
2107 	if (reqsize > size)
2108 		return 0;
2109 
2110 	/* prepare test area */
2111 	if (mmc_card_can_erase(test->card) &&
2112 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2113 		ret = mmc_erase(test->card, dev_addr,
2114 				size / 512, test->card->erase_arg);
2115 		if (ret)
2116 			ret = mmc_erase(test->card, dev_addr,
2117 					size / 512, MMC_ERASE_ARG);
2118 		if (ret)
2119 			goto err;
2120 	}
2121 
2122 	/* Run test */
2123 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2124 				   tdata->do_write, 0, 1, size / reqsize,
2125 				   tdata->do_nonblock_req, min_sg_len);
2126 	if (ret)
2127 		goto err;
2128 
2129 	return ret;
2130  err:
2131 	pr_info("[%s] error\n", __func__);
2132 	return ret;
2133 }
2134 
2135 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2136 				     struct mmc_test_multiple_rw *rw)
2137 {
2138 	int ret = 0;
2139 	int i;
2140 	void *pre_req = test->card->host->ops->pre_req;
2141 	void *post_req = test->card->host->ops->post_req;
2142 
2143 	if (rw->do_nonblock_req &&
2144 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2145 		pr_info("error: only one of pre/post is defined\n");
2146 		return -EINVAL;
2147 	}
2148 
2149 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2150 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2151 		if (ret)
2152 			break;
2153 	}
2154 	return ret;
2155 }
2156 
2157 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2158 				       struct mmc_test_multiple_rw *rw)
2159 {
2160 	int ret = 0;
2161 	int i;
2162 
2163 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2164 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2165 					   rw->sg_len[i]);
2166 		if (ret)
2167 			break;
2168 	}
2169 	return ret;
2170 }
2171 
2172 /*
2173  * Multiple blocking write 4k to 4 MB chunks
2174  */
2175 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2176 {
2177 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2178 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2179 	struct mmc_test_multiple_rw test_data = {
2180 		.bs = bs,
2181 		.size = TEST_AREA_MAX_SIZE,
2182 		.len = ARRAY_SIZE(bs),
2183 		.do_write = true,
2184 		.do_nonblock_req = false,
2185 		.prepare = MMC_TEST_PREP_ERASE,
2186 	};
2187 
2188 	return mmc_test_rw_multiple_size(test, &test_data);
2189 };
2190 
2191 /*
2192  * Multiple non-blocking write 4k to 4 MB chunks
2193  */
2194 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2195 {
2196 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2197 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2198 	struct mmc_test_multiple_rw test_data = {
2199 		.bs = bs,
2200 		.size = TEST_AREA_MAX_SIZE,
2201 		.len = ARRAY_SIZE(bs),
2202 		.do_write = true,
2203 		.do_nonblock_req = true,
2204 		.prepare = MMC_TEST_PREP_ERASE,
2205 	};
2206 
2207 	return mmc_test_rw_multiple_size(test, &test_data);
2208 }
2209 
2210 /*
2211  * Multiple blocking read 4k to 4 MB chunks
2212  */
2213 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2214 {
2215 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2216 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2217 	struct mmc_test_multiple_rw test_data = {
2218 		.bs = bs,
2219 		.size = TEST_AREA_MAX_SIZE,
2220 		.len = ARRAY_SIZE(bs),
2221 		.do_write = false,
2222 		.do_nonblock_req = false,
2223 		.prepare = MMC_TEST_PREP_NONE,
2224 	};
2225 
2226 	return mmc_test_rw_multiple_size(test, &test_data);
2227 }
2228 
2229 /*
2230  * Multiple non-blocking read 4k to 4 MB chunks
2231  */
2232 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2233 {
2234 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2235 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2236 	struct mmc_test_multiple_rw test_data = {
2237 		.bs = bs,
2238 		.size = TEST_AREA_MAX_SIZE,
2239 		.len = ARRAY_SIZE(bs),
2240 		.do_write = false,
2241 		.do_nonblock_req = true,
2242 		.prepare = MMC_TEST_PREP_NONE,
2243 	};
2244 
2245 	return mmc_test_rw_multiple_size(test, &test_data);
2246 }
2247 
2248 /*
2249  * Multiple blocking write 1 to 512 sg elements
2250  */
2251 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2252 {
2253 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2254 				 1 << 7, 1 << 8, 1 << 9};
2255 	struct mmc_test_multiple_rw test_data = {
2256 		.sg_len = sg_len,
2257 		.size = TEST_AREA_MAX_SIZE,
2258 		.len = ARRAY_SIZE(sg_len),
2259 		.do_write = true,
2260 		.do_nonblock_req = false,
2261 		.prepare = MMC_TEST_PREP_ERASE,
2262 	};
2263 
2264 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2265 };
2266 
2267 /*
2268  * Multiple non-blocking write 1 to 512 sg elements
2269  */
2270 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2271 {
2272 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2273 				 1 << 7, 1 << 8, 1 << 9};
2274 	struct mmc_test_multiple_rw test_data = {
2275 		.sg_len = sg_len,
2276 		.size = TEST_AREA_MAX_SIZE,
2277 		.len = ARRAY_SIZE(sg_len),
2278 		.do_write = true,
2279 		.do_nonblock_req = true,
2280 		.prepare = MMC_TEST_PREP_ERASE,
2281 	};
2282 
2283 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2284 }
2285 
2286 /*
2287  * Multiple blocking read 1 to 512 sg elements
2288  */
2289 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2290 {
2291 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2292 				 1 << 7, 1 << 8, 1 << 9};
2293 	struct mmc_test_multiple_rw test_data = {
2294 		.sg_len = sg_len,
2295 		.size = TEST_AREA_MAX_SIZE,
2296 		.len = ARRAY_SIZE(sg_len),
2297 		.do_write = false,
2298 		.do_nonblock_req = false,
2299 		.prepare = MMC_TEST_PREP_NONE,
2300 	};
2301 
2302 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2303 }
2304 
2305 /*
2306  * Multiple non-blocking read 1 to 512 sg elements
2307  */
2308 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2309 {
2310 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2311 				 1 << 7, 1 << 8, 1 << 9};
2312 	struct mmc_test_multiple_rw test_data = {
2313 		.sg_len = sg_len,
2314 		.size = TEST_AREA_MAX_SIZE,
2315 		.len = ARRAY_SIZE(sg_len),
2316 		.do_write = false,
2317 		.do_nonblock_req = true,
2318 		.prepare = MMC_TEST_PREP_NONE,
2319 	};
2320 
2321 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2322 }
2323 
2324 /*
2325  * eMMC hardware reset.
2326  */
2327 static int mmc_test_reset(struct mmc_test_card *test)
2328 {
2329 	struct mmc_card *card = test->card;
2330 	int err;
2331 
2332 	err = mmc_hw_reset(card);
2333 	if (!err) {
2334 		/*
2335 		 * Reset will re-enable the card's command queue, but tests
2336 		 * expect it to be disabled.
2337 		 */
2338 		if (card->ext_csd.cmdq_en)
2339 			mmc_cmdq_disable(card);
2340 		return RESULT_OK;
2341 	} else if (err == -EOPNOTSUPP) {
2342 		return RESULT_UNSUP_HOST;
2343 	}
2344 
2345 	return RESULT_FAIL;
2346 }
2347 
2348 static int mmc_test_send_status(struct mmc_test_card *test,
2349 				struct mmc_command *cmd)
2350 {
2351 	memset(cmd, 0, sizeof(*cmd));
2352 
2353 	cmd->opcode = MMC_SEND_STATUS;
2354 	if (!mmc_host_is_spi(test->card->host))
2355 		cmd->arg = test->card->rca << 16;
2356 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2357 
2358 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2359 }
2360 
2361 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2362 				     unsigned int dev_addr, int use_sbc,
2363 				     int repeat_cmd, int write, int use_areq)
2364 {
2365 	struct mmc_test_req *rq = mmc_test_req_alloc();
2366 	struct mmc_host *host = test->card->host;
2367 	struct mmc_test_area *t = &test->area;
2368 	struct mmc_request *mrq;
2369 	unsigned long timeout;
2370 	bool expired = false;
2371 	int ret = 0, cmd_ret;
2372 	u32 status = 0;
2373 	int count = 0;
2374 
2375 	if (!rq)
2376 		return -ENOMEM;
2377 
2378 	mrq = &rq->mrq;
2379 	if (use_sbc)
2380 		mrq->sbc = &rq->sbc;
2381 	mrq->cap_cmd_during_tfr = true;
2382 
2383 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2384 			     512, write);
2385 
2386 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2387 		ret =  mmc_host_can_cmd23(host) ?
2388 		       RESULT_UNSUP_CARD :
2389 		       RESULT_UNSUP_HOST;
2390 		goto out_free;
2391 	}
2392 
2393 	/* Start ongoing data request */
2394 	if (use_areq) {
2395 		ret = mmc_test_start_areq(test, mrq, NULL);
2396 		if (ret)
2397 			goto out_free;
2398 	} else {
2399 		mmc_wait_for_req(host, mrq);
2400 	}
2401 
2402 	timeout = jiffies + msecs_to_jiffies(3000);
2403 	do {
2404 		count += 1;
2405 
2406 		/* Send status command while data transfer in progress */
2407 		cmd_ret = mmc_test_send_status(test, &rq->status);
2408 		if (cmd_ret)
2409 			break;
2410 
2411 		status = rq->status.resp[0];
2412 		if (status & R1_ERROR) {
2413 			cmd_ret = -EIO;
2414 			break;
2415 		}
2416 
2417 		if (mmc_is_req_done(host, mrq))
2418 			break;
2419 
2420 		expired = time_after(jiffies, timeout);
2421 		if (expired) {
2422 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2423 				mmc_hostname(host), status);
2424 			cmd_ret = -ETIMEDOUT;
2425 			break;
2426 		}
2427 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2428 
2429 	/* Wait for data request to complete */
2430 	if (use_areq) {
2431 		ret = mmc_test_start_areq(test, NULL, mrq);
2432 	} else {
2433 		mmc_wait_for_req_done(test->card->host, mrq);
2434 	}
2435 
2436 	/*
2437 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2438 	 * required.
2439 	 */
2440 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2441 		if (ret)
2442 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2443 		else
2444 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2445 	}
2446 
2447 	if (ret)
2448 		goto out_free;
2449 
2450 	if (cmd_ret) {
2451 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2452 			mmc_hostname(test->card->host), status, cmd_ret);
2453 	}
2454 
2455 	ret = mmc_test_check_result(test, mrq);
2456 	if (ret)
2457 		goto out_free;
2458 
2459 	ret = mmc_test_wait_busy(test);
2460 	if (ret)
2461 		goto out_free;
2462 
2463 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2464 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2465 			mmc_hostname(test->card->host), count, t->blocks);
2466 
2467 	if (cmd_ret)
2468 		ret = cmd_ret;
2469 out_free:
2470 	kfree(rq);
2471 
2472 	return ret;
2473 }
2474 
2475 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2476 				      unsigned long sz, int use_sbc, int write,
2477 				      int use_areq)
2478 {
2479 	struct mmc_test_area *t = &test->area;
2480 	int ret;
2481 
2482 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2483 		return RESULT_UNSUP_HOST;
2484 
2485 	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2486 	if (ret)
2487 		return ret;
2488 
2489 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2490 					use_areq);
2491 	if (ret)
2492 		return ret;
2493 
2494 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2495 					 use_areq);
2496 }
2497 
2498 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2499 				    int write, int use_areq)
2500 {
2501 	struct mmc_test_area *t = &test->area;
2502 	unsigned long sz;
2503 	int ret;
2504 
2505 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2506 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2507 						 use_areq);
2508 		if (ret)
2509 			return ret;
2510 	}
2511 	return 0;
2512 }
2513 
2514 /*
2515  * Commands during read - no Set Block Count (CMD23).
2516  */
2517 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2518 {
2519 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2520 }
2521 
2522 /*
2523  * Commands during write - no Set Block Count (CMD23).
2524  */
2525 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2526 {
2527 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2528 }
2529 
2530 /*
2531  * Commands during read - use Set Block Count (CMD23).
2532  */
2533 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2534 {
2535 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2536 }
2537 
2538 /*
2539  * Commands during write - use Set Block Count (CMD23).
2540  */
2541 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2542 {
2543 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2544 }
2545 
2546 /*
2547  * Commands during non-blocking read - use Set Block Count (CMD23).
2548  */
2549 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2550 {
2551 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2552 }
2553 
2554 /*
2555  * Commands during non-blocking write - use Set Block Count (CMD23).
2556  */
2557 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2558 {
2559 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2560 }
2561 
2562 static const struct mmc_test_case mmc_test_cases[] = {
2563 	{
2564 		.name = "Basic write (no data verification)",
2565 		.run = mmc_test_basic_write,
2566 	},
2567 
2568 	{
2569 		.name = "Basic read (no data verification)",
2570 		.run = mmc_test_basic_read,
2571 	},
2572 
2573 	{
2574 		.name = "Basic write (with data verification)",
2575 		.prepare = mmc_test_prepare_write,
2576 		.run = mmc_test_verify_write,
2577 		.cleanup = mmc_test_cleanup,
2578 	},
2579 
2580 	{
2581 		.name = "Basic read (with data verification)",
2582 		.prepare = mmc_test_prepare_read,
2583 		.run = mmc_test_verify_read,
2584 		.cleanup = mmc_test_cleanup,
2585 	},
2586 
2587 	{
2588 		.name = "Multi-block write",
2589 		.prepare = mmc_test_prepare_write,
2590 		.run = mmc_test_multi_write,
2591 		.cleanup = mmc_test_cleanup,
2592 	},
2593 
2594 	{
2595 		.name = "Multi-block read",
2596 		.prepare = mmc_test_prepare_read,
2597 		.run = mmc_test_multi_read,
2598 		.cleanup = mmc_test_cleanup,
2599 	},
2600 
2601 	{
2602 		.name = "Power of two block writes",
2603 		.prepare = mmc_test_prepare_write,
2604 		.run = mmc_test_pow2_write,
2605 		.cleanup = mmc_test_cleanup,
2606 	},
2607 
2608 	{
2609 		.name = "Power of two block reads",
2610 		.prepare = mmc_test_prepare_read,
2611 		.run = mmc_test_pow2_read,
2612 		.cleanup = mmc_test_cleanup,
2613 	},
2614 
2615 	{
2616 		.name = "Weird sized block writes",
2617 		.prepare = mmc_test_prepare_write,
2618 		.run = mmc_test_weird_write,
2619 		.cleanup = mmc_test_cleanup,
2620 	},
2621 
2622 	{
2623 		.name = "Weird sized block reads",
2624 		.prepare = mmc_test_prepare_read,
2625 		.run = mmc_test_weird_read,
2626 		.cleanup = mmc_test_cleanup,
2627 	},
2628 
2629 	{
2630 		.name = "Badly aligned write",
2631 		.prepare = mmc_test_prepare_write,
2632 		.run = mmc_test_align_write,
2633 		.cleanup = mmc_test_cleanup,
2634 	},
2635 
2636 	{
2637 		.name = "Badly aligned read",
2638 		.prepare = mmc_test_prepare_read,
2639 		.run = mmc_test_align_read,
2640 		.cleanup = mmc_test_cleanup,
2641 	},
2642 
2643 	{
2644 		.name = "Badly aligned multi-block write",
2645 		.prepare = mmc_test_prepare_write,
2646 		.run = mmc_test_align_multi_write,
2647 		.cleanup = mmc_test_cleanup,
2648 	},
2649 
2650 	{
2651 		.name = "Badly aligned multi-block read",
2652 		.prepare = mmc_test_prepare_read,
2653 		.run = mmc_test_align_multi_read,
2654 		.cleanup = mmc_test_cleanup,
2655 	},
2656 
2657 	{
2658 		.name = "Proper xfer_size at write (start failure)",
2659 		.run = mmc_test_xfersize_write,
2660 	},
2661 
2662 	{
2663 		.name = "Proper xfer_size at read (start failure)",
2664 		.run = mmc_test_xfersize_read,
2665 	},
2666 
2667 	{
2668 		.name = "Proper xfer_size at write (midway failure)",
2669 		.run = mmc_test_multi_xfersize_write,
2670 	},
2671 
2672 	{
2673 		.name = "Proper xfer_size at read (midway failure)",
2674 		.run = mmc_test_multi_xfersize_read,
2675 	},
2676 
2677 #ifdef CONFIG_HIGHMEM
2678 
2679 	{
2680 		.name = "Highmem write",
2681 		.prepare = mmc_test_prepare_write,
2682 		.run = mmc_test_write_high,
2683 		.cleanup = mmc_test_cleanup,
2684 	},
2685 
2686 	{
2687 		.name = "Highmem read",
2688 		.prepare = mmc_test_prepare_read,
2689 		.run = mmc_test_read_high,
2690 		.cleanup = mmc_test_cleanup,
2691 	},
2692 
2693 	{
2694 		.name = "Multi-block highmem write",
2695 		.prepare = mmc_test_prepare_write,
2696 		.run = mmc_test_multi_write_high,
2697 		.cleanup = mmc_test_cleanup,
2698 	},
2699 
2700 	{
2701 		.name = "Multi-block highmem read",
2702 		.prepare = mmc_test_prepare_read,
2703 		.run = mmc_test_multi_read_high,
2704 		.cleanup = mmc_test_cleanup,
2705 	},
2706 
2707 #else
2708 
2709 	{
2710 		.name = "Highmem write",
2711 		.run = mmc_test_no_highmem,
2712 	},
2713 
2714 	{
2715 		.name = "Highmem read",
2716 		.run = mmc_test_no_highmem,
2717 	},
2718 
2719 	{
2720 		.name = "Multi-block highmem write",
2721 		.run = mmc_test_no_highmem,
2722 	},
2723 
2724 	{
2725 		.name = "Multi-block highmem read",
2726 		.run = mmc_test_no_highmem,
2727 	},
2728 
2729 #endif /* CONFIG_HIGHMEM */
2730 
2731 	{
2732 		.name = "Best-case read performance",
2733 		.prepare = mmc_test_area_prepare_fill,
2734 		.run = mmc_test_best_read_performance,
2735 		.cleanup = mmc_test_area_cleanup,
2736 	},
2737 
2738 	{
2739 		.name = "Best-case write performance",
2740 		.prepare = mmc_test_area_prepare_erase,
2741 		.run = mmc_test_best_write_performance,
2742 		.cleanup = mmc_test_area_cleanup,
2743 	},
2744 
2745 	{
2746 		.name = "Best-case read performance into scattered pages",
2747 		.prepare = mmc_test_area_prepare_fill,
2748 		.run = mmc_test_best_read_perf_max_scatter,
2749 		.cleanup = mmc_test_area_cleanup,
2750 	},
2751 
2752 	{
2753 		.name = "Best-case write performance from scattered pages",
2754 		.prepare = mmc_test_area_prepare_erase,
2755 		.run = mmc_test_best_write_perf_max_scatter,
2756 		.cleanup = mmc_test_area_cleanup,
2757 	},
2758 
2759 	{
2760 		.name = "Single read performance by transfer size",
2761 		.prepare = mmc_test_area_prepare_fill,
2762 		.run = mmc_test_profile_read_perf,
2763 		.cleanup = mmc_test_area_cleanup,
2764 	},
2765 
2766 	{
2767 		.name = "Single write performance by transfer size",
2768 		.prepare = mmc_test_area_prepare,
2769 		.run = mmc_test_profile_write_perf,
2770 		.cleanup = mmc_test_area_cleanup,
2771 	},
2772 
2773 	{
2774 		.name = "Single trim performance by transfer size",
2775 		.prepare = mmc_test_area_prepare_fill,
2776 		.run = mmc_test_profile_trim_perf,
2777 		.cleanup = mmc_test_area_cleanup,
2778 	},
2779 
2780 	{
2781 		.name = "Consecutive read performance by transfer size",
2782 		.prepare = mmc_test_area_prepare_fill,
2783 		.run = mmc_test_profile_seq_read_perf,
2784 		.cleanup = mmc_test_area_cleanup,
2785 	},
2786 
2787 	{
2788 		.name = "Consecutive write performance by transfer size",
2789 		.prepare = mmc_test_area_prepare,
2790 		.run = mmc_test_profile_seq_write_perf,
2791 		.cleanup = mmc_test_area_cleanup,
2792 	},
2793 
2794 	{
2795 		.name = "Consecutive trim performance by transfer size",
2796 		.prepare = mmc_test_area_prepare,
2797 		.run = mmc_test_profile_seq_trim_perf,
2798 		.cleanup = mmc_test_area_cleanup,
2799 	},
2800 
2801 	{
2802 		.name = "Random read performance by transfer size",
2803 		.prepare = mmc_test_area_prepare,
2804 		.run = mmc_test_random_read_perf,
2805 		.cleanup = mmc_test_area_cleanup,
2806 	},
2807 
2808 	{
2809 		.name = "Random write performance by transfer size",
2810 		.prepare = mmc_test_area_prepare,
2811 		.run = mmc_test_random_write_perf,
2812 		.cleanup = mmc_test_area_cleanup,
2813 	},
2814 
2815 	{
2816 		.name = "Large sequential read into scattered pages",
2817 		.prepare = mmc_test_area_prepare,
2818 		.run = mmc_test_large_seq_read_perf,
2819 		.cleanup = mmc_test_area_cleanup,
2820 	},
2821 
2822 	{
2823 		.name = "Large sequential write from scattered pages",
2824 		.prepare = mmc_test_area_prepare,
2825 		.run = mmc_test_large_seq_write_perf,
2826 		.cleanup = mmc_test_area_cleanup,
2827 	},
2828 
2829 	{
2830 		.name = "Write performance with blocking req 4k to 4MB",
2831 		.prepare = mmc_test_area_prepare,
2832 		.run = mmc_test_profile_mult_write_blocking_perf,
2833 		.cleanup = mmc_test_area_cleanup,
2834 	},
2835 
2836 	{
2837 		.name = "Write performance with non-blocking req 4k to 4MB",
2838 		.prepare = mmc_test_area_prepare,
2839 		.run = mmc_test_profile_mult_write_nonblock_perf,
2840 		.cleanup = mmc_test_area_cleanup,
2841 	},
2842 
2843 	{
2844 		.name = "Read performance with blocking req 4k to 4MB",
2845 		.prepare = mmc_test_area_prepare,
2846 		.run = mmc_test_profile_mult_read_blocking_perf,
2847 		.cleanup = mmc_test_area_cleanup,
2848 	},
2849 
2850 	{
2851 		.name = "Read performance with non-blocking req 4k to 4MB",
2852 		.prepare = mmc_test_area_prepare,
2853 		.run = mmc_test_profile_mult_read_nonblock_perf,
2854 		.cleanup = mmc_test_area_cleanup,
2855 	},
2856 
2857 	{
2858 		.name = "Write performance blocking req 1 to 512 sg elems",
2859 		.prepare = mmc_test_area_prepare,
2860 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2861 		.cleanup = mmc_test_area_cleanup,
2862 	},
2863 
2864 	{
2865 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2866 		.prepare = mmc_test_area_prepare,
2867 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2868 		.cleanup = mmc_test_area_cleanup,
2869 	},
2870 
2871 	{
2872 		.name = "Read performance blocking req 1 to 512 sg elems",
2873 		.prepare = mmc_test_area_prepare,
2874 		.run = mmc_test_profile_sglen_r_blocking_perf,
2875 		.cleanup = mmc_test_area_cleanup,
2876 	},
2877 
2878 	{
2879 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2880 		.prepare = mmc_test_area_prepare,
2881 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2882 		.cleanup = mmc_test_area_cleanup,
2883 	},
2884 
2885 	{
2886 		.name = "Reset test",
2887 		.run = mmc_test_reset,
2888 	},
2889 
2890 	{
2891 		.name = "Commands during read - no Set Block Count (CMD23)",
2892 		.prepare = mmc_test_area_prepare,
2893 		.run = mmc_test_cmds_during_read,
2894 		.cleanup = mmc_test_area_cleanup,
2895 	},
2896 
2897 	{
2898 		.name = "Commands during write - no Set Block Count (CMD23)",
2899 		.prepare = mmc_test_area_prepare,
2900 		.run = mmc_test_cmds_during_write,
2901 		.cleanup = mmc_test_area_cleanup,
2902 	},
2903 
2904 	{
2905 		.name = "Commands during read - use Set Block Count (CMD23)",
2906 		.prepare = mmc_test_area_prepare,
2907 		.run = mmc_test_cmds_during_read_cmd23,
2908 		.cleanup = mmc_test_area_cleanup,
2909 	},
2910 
2911 	{
2912 		.name = "Commands during write - use Set Block Count (CMD23)",
2913 		.prepare = mmc_test_area_prepare,
2914 		.run = mmc_test_cmds_during_write_cmd23,
2915 		.cleanup = mmc_test_area_cleanup,
2916 	},
2917 
2918 	{
2919 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2920 		.prepare = mmc_test_area_prepare,
2921 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2922 		.cleanup = mmc_test_area_cleanup,
2923 	},
2924 
2925 	{
2926 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2927 		.prepare = mmc_test_area_prepare,
2928 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2929 		.cleanup = mmc_test_area_cleanup,
2930 	},
2931 
2932 	{
2933 		.name = "Re-tuning reliability",
2934 		.prepare = mmc_test_area_prepare,
2935 		.run = mmc_test_retuning,
2936 		.cleanup = mmc_test_area_cleanup,
2937 	},
2938 
2939 };
2940 
2941 static DEFINE_MUTEX(mmc_test_lock);
2942 
2943 static LIST_HEAD(mmc_test_result);
2944 
2945 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2946 {
2947 	int i, ret;
2948 
2949 	pr_info("%s: Starting tests of card %s...\n",
2950 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2951 
2952 	mmc_claim_host(test->card->host);
2953 
2954 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2955 		struct mmc_test_general_result *gr;
2956 
2957 		if (testcase && ((i + 1) != testcase))
2958 			continue;
2959 
2960 		pr_info("%s: Test case %d. %s...\n",
2961 			mmc_hostname(test->card->host), i + 1,
2962 			mmc_test_cases[i].name);
2963 
2964 		if (mmc_test_cases[i].prepare) {
2965 			ret = mmc_test_cases[i].prepare(test);
2966 			if (ret) {
2967 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2968 					mmc_hostname(test->card->host),
2969 					ret);
2970 				continue;
2971 			}
2972 		}
2973 
2974 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2975 		if (gr) {
2976 			INIT_LIST_HEAD(&gr->tr_lst);
2977 
2978 			/* Assign data what we know already */
2979 			gr->card = test->card;
2980 			gr->testcase = i;
2981 
2982 			/* Append container to global one */
2983 			list_add_tail(&gr->link, &mmc_test_result);
2984 
2985 			/*
2986 			 * Save the pointer to created container in our private
2987 			 * structure.
2988 			 */
2989 			test->gr = gr;
2990 		}
2991 
2992 		ret = mmc_test_cases[i].run(test);
2993 		switch (ret) {
2994 		case RESULT_OK:
2995 			pr_info("%s: Result: OK\n",
2996 				mmc_hostname(test->card->host));
2997 			break;
2998 		case RESULT_FAIL:
2999 			pr_info("%s: Result: FAILED\n",
3000 				mmc_hostname(test->card->host));
3001 			break;
3002 		case RESULT_UNSUP_HOST:
3003 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
3004 				mmc_hostname(test->card->host));
3005 			break;
3006 		case RESULT_UNSUP_CARD:
3007 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3008 				mmc_hostname(test->card->host));
3009 			break;
3010 		default:
3011 			pr_info("%s: Result: ERROR (%d)\n",
3012 				mmc_hostname(test->card->host), ret);
3013 		}
3014 
3015 		/* Save the result */
3016 		if (gr)
3017 			gr->result = ret;
3018 
3019 		if (mmc_test_cases[i].cleanup) {
3020 			ret = mmc_test_cases[i].cleanup(test);
3021 			if (ret) {
3022 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3023 					mmc_hostname(test->card->host),
3024 					ret);
3025 			}
3026 		}
3027 	}
3028 
3029 	mmc_release_host(test->card->host);
3030 
3031 	pr_info("%s: Tests completed.\n",
3032 		mmc_hostname(test->card->host));
3033 }
3034 
3035 static void mmc_test_free_result(struct mmc_card *card)
3036 {
3037 	struct mmc_test_general_result *gr, *grs;
3038 
3039 	mutex_lock(&mmc_test_lock);
3040 
3041 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3042 		struct mmc_test_transfer_result *tr, *trs;
3043 
3044 		if (card && gr->card != card)
3045 			continue;
3046 
3047 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3048 			list_del(&tr->link);
3049 			kfree(tr);
3050 		}
3051 
3052 		list_del(&gr->link);
3053 		kfree(gr);
3054 	}
3055 
3056 	mutex_unlock(&mmc_test_lock);
3057 }
3058 
3059 static LIST_HEAD(mmc_test_file_test);
3060 
3061 static int mtf_test_show(struct seq_file *sf, void *data)
3062 {
3063 	struct mmc_card *card = sf->private;
3064 	struct mmc_test_general_result *gr;
3065 
3066 	mutex_lock(&mmc_test_lock);
3067 
3068 	list_for_each_entry(gr, &mmc_test_result, link) {
3069 		struct mmc_test_transfer_result *tr;
3070 
3071 		if (gr->card != card)
3072 			continue;
3073 
3074 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3075 
3076 		list_for_each_entry(tr, &gr->tr_lst, link) {
3077 			seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3078 				tr->count, tr->sectors,
3079 				(u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3080 				tr->rate, tr->iops / 100, tr->iops % 100);
3081 		}
3082 	}
3083 
3084 	mutex_unlock(&mmc_test_lock);
3085 
3086 	return 0;
3087 }
3088 
3089 static int mtf_test_open(struct inode *inode, struct file *file)
3090 {
3091 	return single_open(file, mtf_test_show, inode->i_private);
3092 }
3093 
3094 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3095 	size_t count, loff_t *pos)
3096 {
3097 	struct seq_file *sf = file->private_data;
3098 	struct mmc_card *card = sf->private;
3099 	struct mmc_test_card *test;
3100 	long testcase;
3101 	int ret;
3102 
3103 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3104 	if (ret)
3105 		return ret;
3106 
3107 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3108 	if (!test)
3109 		return -ENOMEM;
3110 
3111 	/*
3112 	 * Remove all test cases associated with given card. Thus we have only
3113 	 * actual data of the last run.
3114 	 */
3115 	mmc_test_free_result(card);
3116 
3117 	test->card = card;
3118 
3119 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3120 #ifdef CONFIG_HIGHMEM
3121 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3122 	if (!test->highmem) {
3123 		count = -ENOMEM;
3124 		goto free_test_buffer;
3125 	}
3126 #endif
3127 
3128 	if (test->buffer) {
3129 		mutex_lock(&mmc_test_lock);
3130 		mmc_test_run(test, testcase);
3131 		mutex_unlock(&mmc_test_lock);
3132 	}
3133 
3134 #ifdef CONFIG_HIGHMEM
3135 	__free_pages(test->highmem, BUFFER_ORDER);
3136 free_test_buffer:
3137 #endif
3138 	kfree(test->buffer);
3139 	kfree(test);
3140 
3141 	return count;
3142 }
3143 
3144 static const struct file_operations mmc_test_fops_test = {
3145 	.open		= mtf_test_open,
3146 	.read		= seq_read,
3147 	.write		= mtf_test_write,
3148 	.llseek		= seq_lseek,
3149 	.release	= single_release,
3150 };
3151 
3152 static int mtf_testlist_show(struct seq_file *sf, void *data)
3153 {
3154 	int i;
3155 
3156 	mutex_lock(&mmc_test_lock);
3157 
3158 	seq_puts(sf, "0:\tRun all tests\n");
3159 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3160 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3161 
3162 	mutex_unlock(&mmc_test_lock);
3163 
3164 	return 0;
3165 }
3166 
3167 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3168 
3169 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3170 {
3171 	struct mmc_test_dbgfs_file *df, *dfs;
3172 
3173 	mutex_lock(&mmc_test_lock);
3174 
3175 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3176 		if (card && df->card != card)
3177 			continue;
3178 		debugfs_remove(df->file);
3179 		list_del(&df->link);
3180 		kfree(df);
3181 	}
3182 
3183 	mutex_unlock(&mmc_test_lock);
3184 }
3185 
3186 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3187 	const char *name, umode_t mode, const struct file_operations *fops)
3188 {
3189 	struct dentry *file = NULL;
3190 	struct mmc_test_dbgfs_file *df;
3191 
3192 	if (card->debugfs_root)
3193 		file = debugfs_create_file(name, mode, card->debugfs_root,
3194 					   card, fops);
3195 
3196 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3197 	if (!df) {
3198 		debugfs_remove(file);
3199 		return -ENOMEM;
3200 	}
3201 
3202 	df->card = card;
3203 	df->file = file;
3204 
3205 	list_add(&df->link, &mmc_test_file_test);
3206 	return 0;
3207 }
3208 
3209 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3210 {
3211 	int ret;
3212 
3213 	mutex_lock(&mmc_test_lock);
3214 
3215 	ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3216 		&mmc_test_fops_test);
3217 	if (ret)
3218 		goto err;
3219 
3220 	ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3221 		&mtf_testlist_fops);
3222 	if (ret)
3223 		goto err;
3224 
3225 err:
3226 	mutex_unlock(&mmc_test_lock);
3227 
3228 	return ret;
3229 }
3230 
3231 static int mmc_test_probe(struct mmc_card *card)
3232 {
3233 	int ret;
3234 
3235 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3236 		return -ENODEV;
3237 
3238 	if (mmc_card_ult_capacity(card)) {
3239 		pr_info("%s: mmc-test currently UNSUPPORTED for SDUC\n",
3240 			mmc_hostname(card->host));
3241 		return -EOPNOTSUPP;
3242 	}
3243 
3244 	ret = mmc_test_register_dbgfs_file(card);
3245 	if (ret)
3246 		return ret;
3247 
3248 	if (card->ext_csd.cmdq_en) {
3249 		mmc_claim_host(card->host);
3250 		ret = mmc_cmdq_disable(card);
3251 		mmc_release_host(card->host);
3252 		if (ret)
3253 			return ret;
3254 	}
3255 
3256 	dev_info(&card->dev, "Card claimed for testing.\n");
3257 
3258 	return 0;
3259 }
3260 
3261 static void mmc_test_remove(struct mmc_card *card)
3262 {
3263 	if (card->reenable_cmdq) {
3264 		mmc_claim_host(card->host);
3265 		mmc_cmdq_enable(card);
3266 		mmc_release_host(card->host);
3267 	}
3268 	mmc_test_free_result(card);
3269 	mmc_test_free_dbgfs_file(card);
3270 }
3271 
3272 static struct mmc_driver mmc_driver = {
3273 	.drv		= {
3274 		.name	= "mmc_test",
3275 	},
3276 	.probe		= mmc_test_probe,
3277 	.remove		= mmc_test_remove,
3278 };
3279 
3280 static int __init mmc_test_init(void)
3281 {
3282 	return mmc_register_driver(&mmc_driver);
3283 }
3284 
3285 static void __exit mmc_test_exit(void)
3286 {
3287 	/* Clear stalled data if card is still plugged */
3288 	mmc_test_free_result(NULL);
3289 	mmc_test_free_dbgfs_file(NULL);
3290 
3291 	mmc_unregister_driver(&mmc_driver);
3292 }
3293 
3294 module_init(mmc_test_init);
3295 module_exit(mmc_test_exit);
3296 
3297 MODULE_LICENSE("GPL");
3298 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3299 MODULE_AUTHOR("Pierre Ossman");
3300