xref: /linux/drivers/mmc/core/mmc_ops.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
24 #define MMC_OP_COND_PERIOD_US		(4 * 1000) /* 4ms */
25 #define MMC_OP_COND_TIMEOUT_MS		1000 /* 1s */
26 
27 static const u8 tuning_blk_pattern_4bit[] = {
28 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36 };
37 
38 static const u8 tuning_blk_pattern_8bit[] = {
39 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55 };
56 
57 struct mmc_busy_data {
58 	struct mmc_card *card;
59 	bool retry_crc_err;
60 	enum mmc_busy_cmd busy_cmd;
61 };
62 
63 struct mmc_op_cond_busy_data {
64 	struct mmc_host *host;
65 	u32 ocr;
66 	struct mmc_command *cmd;
67 };
68 
69 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70 {
71 	int err;
72 	struct mmc_command cmd = {};
73 
74 	cmd.opcode = MMC_SEND_STATUS;
75 	if (!mmc_host_is_spi(card->host))
76 		cmd.arg = card->rca << 16;
77 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78 
79 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
80 	if (err)
81 		return err;
82 
83 	/* NOTE: callers are required to understand the difference
84 	 * between "native" and SPI format status words!
85 	 */
86 	if (status)
87 		*status = cmd.resp[0];
88 
89 	return 0;
90 }
91 EXPORT_SYMBOL_GPL(__mmc_send_status);
92 
93 int mmc_send_status(struct mmc_card *card, u32 *status)
94 {
95 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96 }
97 EXPORT_SYMBOL_GPL(mmc_send_status);
98 
99 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100 {
101 	struct mmc_command cmd = {};
102 
103 	cmd.opcode = MMC_SELECT_CARD;
104 
105 	if (card) {
106 		cmd.arg = card->rca << 16;
107 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 	} else {
109 		cmd.arg = 0;
110 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 	}
112 
113 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
114 }
115 
116 int mmc_select_card(struct mmc_card *card)
117 {
118 
119 	return _mmc_select_card(card->host, card);
120 }
121 
122 int mmc_deselect_cards(struct mmc_host *host)
123 {
124 	return _mmc_select_card(host, NULL);
125 }
126 
127 /*
128  * Write the value specified in the device tree or board code into the optional
129  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130  * drive strength of the DAT and CMD outputs. The actual meaning of a given
131  * value is hardware dependant.
132  * The presence of the DSR register can be determined from the CSD register,
133  * bit 76.
134  */
135 int mmc_set_dsr(struct mmc_host *host)
136 {
137 	struct mmc_command cmd = {};
138 
139 	cmd.opcode = MMC_SET_DSR;
140 
141 	cmd.arg = (host->dsr << 16) | 0xffff;
142 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
143 
144 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
145 }
146 
147 int __mmc_go_idle(struct mmc_host *host)
148 {
149 	struct mmc_command cmd = {};
150 	int err;
151 
152 	cmd.opcode = MMC_GO_IDLE_STATE;
153 	cmd.arg = 0;
154 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
155 
156 	err = mmc_wait_for_cmd(host, &cmd, 0);
157 	mmc_delay(1);
158 
159 	return err;
160 }
161 
162 int mmc_go_idle(struct mmc_host *host)
163 {
164 	int err;
165 
166 	/*
167 	 * Non-SPI hosts need to prevent chipselect going active during
168 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
169 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
170 	 *
171 	 * SPI hosts ignore ios.chip_select; it's managed according to
172 	 * rules that must accommodate non-MMC slaves which this layer
173 	 * won't even know about.
174 	 */
175 	if (!mmc_host_is_spi(host)) {
176 		mmc_set_chip_select(host, MMC_CS_HIGH);
177 		mmc_delay(1);
178 	}
179 
180 	err = __mmc_go_idle(host);
181 
182 	if (!mmc_host_is_spi(host)) {
183 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
184 		mmc_delay(1);
185 	}
186 
187 	host->use_spi_crc = 0;
188 
189 	return err;
190 }
191 
192 static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
193 {
194 	struct mmc_op_cond_busy_data *data = cb_data;
195 	struct mmc_host *host = data->host;
196 	struct mmc_command *cmd = data->cmd;
197 	u32 ocr = data->ocr;
198 	int err = 0;
199 
200 	err = mmc_wait_for_cmd(host, cmd, 0);
201 	if (err)
202 		return err;
203 
204 	if (mmc_host_is_spi(host)) {
205 		if (!(cmd->resp[0] & R1_SPI_IDLE)) {
206 			*busy = false;
207 			return 0;
208 		}
209 	} else {
210 		if (cmd->resp[0] & MMC_CARD_BUSY) {
211 			*busy = false;
212 			return 0;
213 		}
214 	}
215 
216 	*busy = true;
217 
218 	/*
219 	 * According to eMMC specification v5.1 section 6.4.3, we
220 	 * should issue CMD1 repeatedly in the idle state until
221 	 * the eMMC is ready. Otherwise some eMMC devices seem to enter
222 	 * the inactive mode after mmc_init_card() issued CMD0 when
223 	 * the eMMC device is busy.
224 	 */
225 	if (!ocr && !mmc_host_is_spi(host))
226 		cmd->arg = cmd->resp[0] | BIT(30);
227 
228 	return 0;
229 }
230 
231 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
232 {
233 	struct mmc_command cmd = {};
234 	int err = 0;
235 	struct mmc_op_cond_busy_data cb_data = {
236 		.host = host,
237 		.ocr = ocr,
238 		.cmd = &cmd
239 	};
240 
241 	cmd.opcode = MMC_SEND_OP_COND;
242 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
243 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
244 
245 	err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
246 				  MMC_OP_COND_TIMEOUT_MS,
247 				  &__mmc_send_op_cond_cb, &cb_data);
248 	if (err)
249 		return err;
250 
251 	if (rocr && !mmc_host_is_spi(host))
252 		*rocr = cmd.resp[0];
253 
254 	return err;
255 }
256 
257 int mmc_set_relative_addr(struct mmc_card *card)
258 {
259 	struct mmc_command cmd = {};
260 
261 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
262 	cmd.arg = card->rca << 16;
263 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
264 
265 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
266 }
267 
268 static int
269 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
270 {
271 	int err;
272 	struct mmc_command cmd = {};
273 
274 	cmd.opcode = opcode;
275 	cmd.arg = arg;
276 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
277 
278 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
279 	if (err)
280 		return err;
281 
282 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
283 
284 	return 0;
285 }
286 
287 /*
288  * NOTE: void *buf, caller for the buf is required to use DMA-capable
289  * buffer or on-stack buffer (with some overhead in callee).
290  */
291 int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
292 		       u32 args, void *buf, unsigned len)
293 {
294 	struct mmc_request mrq = {};
295 	struct mmc_command cmd = {};
296 	struct mmc_data data = {};
297 	struct scatterlist sg;
298 
299 	mrq.cmd = &cmd;
300 	mrq.data = &data;
301 
302 	cmd.opcode = opcode;
303 	cmd.arg = args;
304 
305 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
306 	 * rely on callers to never use this with "native" calls for reading
307 	 * CSD or CID.  Native versions of those commands use the R2 type,
308 	 * not R1 plus a data block.
309 	 */
310 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
311 
312 	data.blksz = len;
313 	data.blocks = 1;
314 	data.flags = MMC_DATA_READ;
315 	data.sg = &sg;
316 	data.sg_len = 1;
317 
318 	sg_init_one(&sg, buf, len);
319 
320 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
321 		/*
322 		 * The spec states that CSR and CID accesses have a timeout
323 		 * of 64 clock cycles.
324 		 */
325 		data.timeout_ns = 0;
326 		data.timeout_clks = 64;
327 	} else
328 		mmc_set_data_timeout(&data, card);
329 
330 	mmc_wait_for_req(host, &mrq);
331 
332 	if (cmd.error)
333 		return cmd.error;
334 	if (data.error)
335 		return data.error;
336 
337 	return 0;
338 }
339 
340 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
341 {
342 	int ret, i;
343 	__be32 *cxd_tmp;
344 
345 	cxd_tmp = kzalloc(16, GFP_KERNEL);
346 	if (!cxd_tmp)
347 		return -ENOMEM;
348 
349 	ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
350 	if (ret)
351 		goto err;
352 
353 	for (i = 0; i < 4; i++)
354 		cxd[i] = be32_to_cpu(cxd_tmp[i]);
355 
356 err:
357 	kfree(cxd_tmp);
358 	return ret;
359 }
360 
361 int mmc_send_csd(struct mmc_card *card, u32 *csd)
362 {
363 	if (mmc_host_is_spi(card->host))
364 		return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
365 
366 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
367 				MMC_SEND_CSD);
368 }
369 
370 int mmc_send_cid(struct mmc_host *host, u32 *cid)
371 {
372 	if (mmc_host_is_spi(host))
373 		return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
374 
375 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
376 }
377 
378 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
379 {
380 	int err;
381 	u8 *ext_csd;
382 
383 	if (!card || !new_ext_csd)
384 		return -EINVAL;
385 
386 	if (!mmc_can_ext_csd(card))
387 		return -EOPNOTSUPP;
388 
389 	/*
390 	 * As the ext_csd is so large and mostly unused, we don't store the
391 	 * raw block in mmc_card.
392 	 */
393 	ext_csd = kzalloc(512, GFP_KERNEL);
394 	if (!ext_csd)
395 		return -ENOMEM;
396 
397 	err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
398 				512);
399 	if (err)
400 		kfree(ext_csd);
401 	else
402 		*new_ext_csd = ext_csd;
403 
404 	return err;
405 }
406 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
407 
408 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
409 {
410 	struct mmc_command cmd = {};
411 	int err;
412 
413 	cmd.opcode = MMC_SPI_READ_OCR;
414 	cmd.arg = highcap ? (1 << 30) : 0;
415 	cmd.flags = MMC_RSP_SPI_R3;
416 
417 	err = mmc_wait_for_cmd(host, &cmd, 0);
418 
419 	*ocrp = cmd.resp[1];
420 	return err;
421 }
422 
423 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
424 {
425 	struct mmc_command cmd = {};
426 	int err;
427 
428 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
429 	cmd.flags = MMC_RSP_SPI_R1;
430 	cmd.arg = use_crc;
431 
432 	err = mmc_wait_for_cmd(host, &cmd, 0);
433 	if (!err)
434 		host->use_spi_crc = use_crc;
435 	return err;
436 }
437 
438 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
439 {
440 	if (mmc_host_is_spi(host)) {
441 		if (status & R1_SPI_ILLEGAL_COMMAND)
442 			return -EBADMSG;
443 	} else {
444 		if (R1_STATUS(status))
445 			pr_warn("%s: unexpected status %#x after switch\n",
446 				mmc_hostname(host), status);
447 		if (status & R1_SWITCH_ERROR)
448 			return -EBADMSG;
449 	}
450 	return 0;
451 }
452 
453 /* Caller must hold re-tuning */
454 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
455 {
456 	u32 status;
457 	int err;
458 
459 	err = mmc_send_status(card, &status);
460 	if (!crc_err_fatal && err == -EILSEQ)
461 		return 0;
462 	if (err)
463 		return err;
464 
465 	return mmc_switch_status_error(card->host, status);
466 }
467 
468 static int mmc_busy_cb(void *cb_data, bool *busy)
469 {
470 	struct mmc_busy_data *data = cb_data;
471 	struct mmc_host *host = data->card->host;
472 	u32 status = 0;
473 	int err;
474 
475 	if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
476 		*busy = host->ops->card_busy(host);
477 		return 0;
478 	}
479 
480 	err = mmc_send_status(data->card, &status);
481 	if (data->retry_crc_err && err == -EILSEQ) {
482 		*busy = true;
483 		return 0;
484 	}
485 	if (err)
486 		return err;
487 
488 	switch (data->busy_cmd) {
489 	case MMC_BUSY_CMD6:
490 		err = mmc_switch_status_error(host, status);
491 		break;
492 	case MMC_BUSY_ERASE:
493 		err = R1_STATUS(status) ? -EIO : 0;
494 		break;
495 	case MMC_BUSY_HPI:
496 	case MMC_BUSY_EXTR_SINGLE:
497 	case MMC_BUSY_IO:
498 		break;
499 	default:
500 		err = -EINVAL;
501 	}
502 
503 	if (err)
504 		return err;
505 
506 	*busy = !mmc_ready_for_data(status);
507 	return 0;
508 }
509 
510 int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
511 			unsigned int timeout_ms,
512 			int (*busy_cb)(void *cb_data, bool *busy),
513 			void *cb_data)
514 {
515 	int err;
516 	unsigned long timeout;
517 	unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
518 	bool expired = false;
519 	bool busy = false;
520 
521 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
522 	do {
523 		/*
524 		 * Due to the possibility of being preempted while polling,
525 		 * check the expiration time first.
526 		 */
527 		expired = time_after(jiffies, timeout);
528 
529 		err = (*busy_cb)(cb_data, &busy);
530 		if (err)
531 			return err;
532 
533 		/* Timeout if the device still remains busy. */
534 		if (expired && busy) {
535 			pr_err("%s: Card stuck being busy! %s\n",
536 				mmc_hostname(host), __func__);
537 			return -ETIMEDOUT;
538 		}
539 
540 		/* Throttle the polling rate to avoid hogging the CPU. */
541 		if (busy) {
542 			usleep_range(udelay, udelay * 2);
543 			if (udelay < udelay_max)
544 				udelay *= 2;
545 		}
546 	} while (busy);
547 
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
551 
552 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
553 		      bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
554 {
555 	struct mmc_host *host = card->host;
556 	struct mmc_busy_data cb_data;
557 
558 	cb_data.card = card;
559 	cb_data.retry_crc_err = retry_crc_err;
560 	cb_data.busy_cmd = busy_cmd;
561 
562 	return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
563 }
564 EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
565 
566 bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
567 			  unsigned int timeout_ms)
568 {
569 	/*
570 	 * If the max_busy_timeout of the host is specified, make sure it's
571 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
572 	 * the host to avoid HW busy detection, by converting to a R1 response
573 	 * instead of a R1B. Note, some hosts requires R1B, which also means
574 	 * they are on their own when it comes to deal with the busy timeout.
575 	 */
576 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
577 	    (timeout_ms > host->max_busy_timeout)) {
578 		cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
579 		return false;
580 	}
581 
582 	cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
583 	cmd->busy_timeout = timeout_ms;
584 	return true;
585 }
586 EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
587 
588 /**
589  *	__mmc_switch - modify EXT_CSD register
590  *	@card: the MMC card associated with the data transfer
591  *	@set: cmd set values
592  *	@index: EXT_CSD register index
593  *	@value: value to program into EXT_CSD register
594  *	@timeout_ms: timeout (ms) for operation performed by register write,
595  *                   timeout of zero implies maximum possible timeout
596  *	@timing: new timing to change to
597  *	@send_status: send status cmd to poll for busy
598  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
599  *	@retries: number of retries
600  *
601  *	Modifies the EXT_CSD register for selected card.
602  */
603 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
604 		unsigned int timeout_ms, unsigned char timing,
605 		bool send_status, bool retry_crc_err, unsigned int retries)
606 {
607 	struct mmc_host *host = card->host;
608 	int err;
609 	struct mmc_command cmd = {};
610 	bool use_r1b_resp;
611 	unsigned char old_timing = host->ios.timing;
612 
613 	mmc_retune_hold(host);
614 
615 	if (!timeout_ms) {
616 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
617 			mmc_hostname(host));
618 		timeout_ms = card->ext_csd.generic_cmd6_time;
619 	}
620 
621 	cmd.opcode = MMC_SWITCH;
622 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
623 		  (index << 16) |
624 		  (value << 8) |
625 		  set;
626 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
627 
628 	err = mmc_wait_for_cmd(host, &cmd, retries);
629 	if (err)
630 		goto out;
631 
632 	/*If SPI or used HW busy detection above, then we don't need to poll. */
633 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
634 		mmc_host_is_spi(host))
635 		goto out_tim;
636 
637 	/*
638 	 * If the host doesn't support HW polling via the ->card_busy() ops and
639 	 * when it's not allowed to poll by using CMD13, then we need to rely on
640 	 * waiting the stated timeout to be sufficient.
641 	 */
642 	if (!send_status && !host->ops->card_busy) {
643 		mmc_delay(timeout_ms);
644 		goto out_tim;
645 	}
646 
647 	/* Let's try to poll to find out when the command is completed. */
648 	err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
649 	if (err)
650 		goto out;
651 
652 out_tim:
653 	/* Switch to new timing before check switch status. */
654 	if (timing)
655 		mmc_set_timing(host, timing);
656 
657 	if (send_status) {
658 		err = mmc_switch_status(card, true);
659 		if (err && timing)
660 			mmc_set_timing(host, old_timing);
661 	}
662 out:
663 	mmc_retune_release(host);
664 
665 	return err;
666 }
667 
668 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
669 		unsigned int timeout_ms)
670 {
671 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
672 			    true, false, MMC_CMD_RETRIES);
673 }
674 EXPORT_SYMBOL_GPL(mmc_switch);
675 
676 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
677 {
678 	struct mmc_request mrq = {};
679 	struct mmc_command cmd = {};
680 	struct mmc_data data = {};
681 	struct scatterlist sg;
682 	struct mmc_ios *ios = &host->ios;
683 	const u8 *tuning_block_pattern;
684 	int size, err = 0;
685 	u8 *data_buf;
686 
687 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
688 		tuning_block_pattern = tuning_blk_pattern_8bit;
689 		size = sizeof(tuning_blk_pattern_8bit);
690 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
691 		tuning_block_pattern = tuning_blk_pattern_4bit;
692 		size = sizeof(tuning_blk_pattern_4bit);
693 	} else
694 		return -EINVAL;
695 
696 	data_buf = kzalloc(size, GFP_KERNEL);
697 	if (!data_buf)
698 		return -ENOMEM;
699 
700 	mrq.cmd = &cmd;
701 	mrq.data = &data;
702 
703 	cmd.opcode = opcode;
704 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
705 
706 	data.blksz = size;
707 	data.blocks = 1;
708 	data.flags = MMC_DATA_READ;
709 
710 	/*
711 	 * According to the tuning specs, Tuning process
712 	 * is normally shorter 40 executions of CMD19,
713 	 * and timeout value should be shorter than 150 ms
714 	 */
715 	data.timeout_ns = 150 * NSEC_PER_MSEC;
716 
717 	data.sg = &sg;
718 	data.sg_len = 1;
719 	sg_init_one(&sg, data_buf, size);
720 
721 	mmc_wait_for_req(host, &mrq);
722 
723 	if (cmd_error)
724 		*cmd_error = cmd.error;
725 
726 	if (cmd.error) {
727 		err = cmd.error;
728 		goto out;
729 	}
730 
731 	if (data.error) {
732 		err = data.error;
733 		goto out;
734 	}
735 
736 	if (memcmp(data_buf, tuning_block_pattern, size))
737 		err = -EIO;
738 
739 out:
740 	kfree(data_buf);
741 	return err;
742 }
743 EXPORT_SYMBOL_GPL(mmc_send_tuning);
744 
745 int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
746 {
747 	struct mmc_command cmd = {};
748 
749 	/*
750 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
751 	 * command, but SD specification does not, so do nothing unless it is
752 	 * eMMC.
753 	 */
754 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
755 		return 0;
756 
757 	cmd.opcode = MMC_STOP_TRANSMISSION;
758 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
759 
760 	/*
761 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
762 	 * on the tuning timeout i.e. 150ms.
763 	 */
764 	cmd.busy_timeout = 150;
765 
766 	return mmc_wait_for_cmd(host, &cmd, 0);
767 }
768 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
769 
770 static int
771 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
772 		  u8 len)
773 {
774 	struct mmc_request mrq = {};
775 	struct mmc_command cmd = {};
776 	struct mmc_data data = {};
777 	struct scatterlist sg;
778 	u8 *data_buf;
779 	u8 *test_buf;
780 	int i, err;
781 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
782 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
783 
784 	/* dma onto stack is unsafe/nonportable, but callers to this
785 	 * routine normally provide temporary on-stack buffers ...
786 	 */
787 	data_buf = kmalloc(len, GFP_KERNEL);
788 	if (!data_buf)
789 		return -ENOMEM;
790 
791 	if (len == 8)
792 		test_buf = testdata_8bit;
793 	else if (len == 4)
794 		test_buf = testdata_4bit;
795 	else {
796 		pr_err("%s: Invalid bus_width %d\n",
797 		       mmc_hostname(host), len);
798 		kfree(data_buf);
799 		return -EINVAL;
800 	}
801 
802 	if (opcode == MMC_BUS_TEST_W)
803 		memcpy(data_buf, test_buf, len);
804 
805 	mrq.cmd = &cmd;
806 	mrq.data = &data;
807 	cmd.opcode = opcode;
808 	cmd.arg = 0;
809 
810 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
811 	 * rely on callers to never use this with "native" calls for reading
812 	 * CSD or CID.  Native versions of those commands use the R2 type,
813 	 * not R1 plus a data block.
814 	 */
815 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
816 
817 	data.blksz = len;
818 	data.blocks = 1;
819 	if (opcode == MMC_BUS_TEST_R)
820 		data.flags = MMC_DATA_READ;
821 	else
822 		data.flags = MMC_DATA_WRITE;
823 
824 	data.sg = &sg;
825 	data.sg_len = 1;
826 	mmc_set_data_timeout(&data, card);
827 	sg_init_one(&sg, data_buf, len);
828 	mmc_wait_for_req(host, &mrq);
829 	err = 0;
830 	if (opcode == MMC_BUS_TEST_R) {
831 		for (i = 0; i < len / 4; i++)
832 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
833 				err = -EIO;
834 				break;
835 			}
836 	}
837 	kfree(data_buf);
838 
839 	if (cmd.error)
840 		return cmd.error;
841 	if (data.error)
842 		return data.error;
843 
844 	return err;
845 }
846 
847 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
848 {
849 	int width;
850 
851 	if (bus_width == MMC_BUS_WIDTH_8)
852 		width = 8;
853 	else if (bus_width == MMC_BUS_WIDTH_4)
854 		width = 4;
855 	else if (bus_width == MMC_BUS_WIDTH_1)
856 		return 0; /* no need for test */
857 	else
858 		return -EINVAL;
859 
860 	/*
861 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
862 	 * is a problem.  This improves chances that the test will work.
863 	 */
864 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
865 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
866 }
867 
868 static int mmc_send_hpi_cmd(struct mmc_card *card)
869 {
870 	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
871 	struct mmc_host *host = card->host;
872 	bool use_r1b_resp = false;
873 	struct mmc_command cmd = {};
874 	int err;
875 
876 	cmd.opcode = card->ext_csd.hpi_cmd;
877 	cmd.arg = card->rca << 16 | 1;
878 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
879 
880 	if (cmd.opcode == MMC_STOP_TRANSMISSION)
881 		use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
882 						    busy_timeout_ms);
883 
884 	err = mmc_wait_for_cmd(host, &cmd, 0);
885 	if (err) {
886 		pr_warn("%s: HPI error %d. Command response %#x\n",
887 			mmc_hostname(host), err, cmd.resp[0]);
888 		return err;
889 	}
890 
891 	/* No need to poll when using HW busy detection. */
892 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
893 		return 0;
894 
895 	/* Let's poll to find out when the HPI request completes. */
896 	return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
897 }
898 
899 /**
900  *	mmc_interrupt_hpi - Issue for High priority Interrupt
901  *	@card: the MMC card associated with the HPI transfer
902  *
903  *	Issued High Priority Interrupt, and check for card status
904  *	until out-of prg-state.
905  */
906 static int mmc_interrupt_hpi(struct mmc_card *card)
907 {
908 	int err;
909 	u32 status;
910 
911 	if (!card->ext_csd.hpi_en) {
912 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
913 		return 1;
914 	}
915 
916 	err = mmc_send_status(card, &status);
917 	if (err) {
918 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
919 		goto out;
920 	}
921 
922 	switch (R1_CURRENT_STATE(status)) {
923 	case R1_STATE_IDLE:
924 	case R1_STATE_READY:
925 	case R1_STATE_STBY:
926 	case R1_STATE_TRAN:
927 		/*
928 		 * In idle and transfer states, HPI is not needed and the caller
929 		 * can issue the next intended command immediately
930 		 */
931 		goto out;
932 	case R1_STATE_PRG:
933 		break;
934 	default:
935 		/* In all other states, it's illegal to issue HPI */
936 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
937 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
938 		err = -EINVAL;
939 		goto out;
940 	}
941 
942 	err = mmc_send_hpi_cmd(card);
943 out:
944 	return err;
945 }
946 
947 int mmc_can_ext_csd(struct mmc_card *card)
948 {
949 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
950 }
951 
952 static int mmc_read_bkops_status(struct mmc_card *card)
953 {
954 	int err;
955 	u8 *ext_csd;
956 
957 	err = mmc_get_ext_csd(card, &ext_csd);
958 	if (err)
959 		return err;
960 
961 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
962 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
963 	kfree(ext_csd);
964 	return 0;
965 }
966 
967 /**
968  *	mmc_run_bkops - Run BKOPS for supported cards
969  *	@card: MMC card to run BKOPS for
970  *
971  *	Run background operations synchronously for cards having manual BKOPS
972  *	enabled and in case it reports urgent BKOPS level.
973 */
974 void mmc_run_bkops(struct mmc_card *card)
975 {
976 	int err;
977 
978 	if (!card->ext_csd.man_bkops_en)
979 		return;
980 
981 	err = mmc_read_bkops_status(card);
982 	if (err) {
983 		pr_err("%s: Failed to read bkops status: %d\n",
984 		       mmc_hostname(card->host), err);
985 		return;
986 	}
987 
988 	if (!card->ext_csd.raw_bkops_status ||
989 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
990 		return;
991 
992 	mmc_retune_hold(card->host);
993 
994 	/*
995 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
996 	 * synchronously. Future wise, we may consider to start BKOPS, for less
997 	 * urgent levels by using an asynchronous background task, when idle.
998 	 */
999 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1000 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
1001 	/*
1002 	 * If the BKOPS timed out, the card is probably still busy in the
1003 	 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
1004 	 * it with a HPI command to get back into R1_STATE_TRAN.
1005 	 */
1006 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1007 		pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
1008 	else if (err)
1009 		pr_warn("%s: Error %d running bkops\n",
1010 			mmc_hostname(card->host), err);
1011 
1012 	mmc_retune_release(card->host);
1013 }
1014 EXPORT_SYMBOL(mmc_run_bkops);
1015 
1016 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1017 {
1018 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1019 	int err;
1020 
1021 	if (!card->ext_csd.cmdq_support)
1022 		return -EOPNOTSUPP;
1023 
1024 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1025 			 val, card->ext_csd.generic_cmd6_time);
1026 	if (!err)
1027 		card->ext_csd.cmdq_en = enable;
1028 
1029 	return err;
1030 }
1031 
1032 int mmc_cmdq_enable(struct mmc_card *card)
1033 {
1034 	return mmc_cmdq_switch(card, true);
1035 }
1036 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1037 
1038 int mmc_cmdq_disable(struct mmc_card *card)
1039 {
1040 	return mmc_cmdq_switch(card, false);
1041 }
1042 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1043 
1044 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1045 {
1046 	struct mmc_host *host = card->host;
1047 	int err;
1048 
1049 	if (!mmc_can_sanitize(card)) {
1050 		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1051 		return -EOPNOTSUPP;
1052 	}
1053 
1054 	if (!timeout_ms)
1055 		timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1056 
1057 	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1058 
1059 	mmc_retune_hold(host);
1060 
1061 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1062 			   1, timeout_ms, 0, true, false, 0);
1063 	if (err)
1064 		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1065 
1066 	/*
1067 	 * If the sanitize operation timed out, the card is probably still busy
1068 	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1069 	 * it with a HPI command to get back into R1_STATE_TRAN.
1070 	 */
1071 	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1072 		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1073 
1074 	mmc_retune_release(host);
1075 
1076 	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1077 	return err;
1078 }
1079 EXPORT_SYMBOL_GPL(mmc_sanitize);
1080