1 /* 2 * linux/drivers/mmc/core/mmc_ops.h 3 * 4 * Copyright 2006-2007 Pierre Ossman 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or (at 9 * your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/export.h> 14 #include <linux/types.h> 15 #include <linux/scatterlist.h> 16 17 #include <linux/mmc/host.h> 18 #include <linux/mmc/card.h> 19 #include <linux/mmc/mmc.h> 20 21 #include "core.h" 22 #include "host.h" 23 #include "mmc_ops.h" 24 25 #define MMC_OPS_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 26 27 static const u8 tuning_blk_pattern_4bit[] = { 28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, 36 }; 37 38 static const u8 tuning_blk_pattern_8bit[] = { 39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 55 }; 56 57 int mmc_send_status(struct mmc_card *card, u32 *status) 58 { 59 int err; 60 struct mmc_command cmd = {0}; 61 62 cmd.opcode = MMC_SEND_STATUS; 63 if (!mmc_host_is_spi(card->host)) 64 cmd.arg = card->rca << 16; 65 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 66 67 err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); 68 if (err) 69 return err; 70 71 /* NOTE: callers are required to understand the difference 72 * between "native" and SPI format status words! 73 */ 74 if (status) 75 *status = cmd.resp[0]; 76 77 return 0; 78 } 79 80 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) 81 { 82 struct mmc_command cmd = {0}; 83 84 cmd.opcode = MMC_SELECT_CARD; 85 86 if (card) { 87 cmd.arg = card->rca << 16; 88 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 89 } else { 90 cmd.arg = 0; 91 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 92 } 93 94 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 95 } 96 97 int mmc_select_card(struct mmc_card *card) 98 { 99 100 return _mmc_select_card(card->host, card); 101 } 102 103 int mmc_deselect_cards(struct mmc_host *host) 104 { 105 return _mmc_select_card(host, NULL); 106 } 107 108 /* 109 * Write the value specified in the device tree or board code into the optional 110 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and 111 * drive strength of the DAT and CMD outputs. The actual meaning of a given 112 * value is hardware dependant. 113 * The presence of the DSR register can be determined from the CSD register, 114 * bit 76. 115 */ 116 int mmc_set_dsr(struct mmc_host *host) 117 { 118 struct mmc_command cmd = {0}; 119 120 cmd.opcode = MMC_SET_DSR; 121 122 cmd.arg = (host->dsr << 16) | 0xffff; 123 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; 124 125 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 126 } 127 128 int mmc_go_idle(struct mmc_host *host) 129 { 130 int err; 131 struct mmc_command cmd = {0}; 132 133 /* 134 * Non-SPI hosts need to prevent chipselect going active during 135 * GO_IDLE; that would put chips into SPI mode. Remind them of 136 * that in case of hardware that won't pull up DAT3/nCS otherwise. 137 * 138 * SPI hosts ignore ios.chip_select; it's managed according to 139 * rules that must accommodate non-MMC slaves which this layer 140 * won't even know about. 141 */ 142 if (!mmc_host_is_spi(host)) { 143 mmc_set_chip_select(host, MMC_CS_HIGH); 144 mmc_delay(1); 145 } 146 147 cmd.opcode = MMC_GO_IDLE_STATE; 148 cmd.arg = 0; 149 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; 150 151 err = mmc_wait_for_cmd(host, &cmd, 0); 152 153 mmc_delay(1); 154 155 if (!mmc_host_is_spi(host)) { 156 mmc_set_chip_select(host, MMC_CS_DONTCARE); 157 mmc_delay(1); 158 } 159 160 host->use_spi_crc = 0; 161 162 return err; 163 } 164 165 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) 166 { 167 struct mmc_command cmd = {0}; 168 int i, err = 0; 169 170 cmd.opcode = MMC_SEND_OP_COND; 171 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; 172 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; 173 174 for (i = 100; i; i--) { 175 err = mmc_wait_for_cmd(host, &cmd, 0); 176 if (err) 177 break; 178 179 /* if we're just probing, do a single pass */ 180 if (ocr == 0) 181 break; 182 183 /* otherwise wait until reset completes */ 184 if (mmc_host_is_spi(host)) { 185 if (!(cmd.resp[0] & R1_SPI_IDLE)) 186 break; 187 } else { 188 if (cmd.resp[0] & MMC_CARD_BUSY) 189 break; 190 } 191 192 err = -ETIMEDOUT; 193 194 mmc_delay(10); 195 } 196 197 if (rocr && !mmc_host_is_spi(host)) 198 *rocr = cmd.resp[0]; 199 200 return err; 201 } 202 203 int mmc_all_send_cid(struct mmc_host *host, u32 *cid) 204 { 205 int err; 206 struct mmc_command cmd = {0}; 207 208 cmd.opcode = MMC_ALL_SEND_CID; 209 cmd.arg = 0; 210 cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR; 211 212 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 213 if (err) 214 return err; 215 216 memcpy(cid, cmd.resp, sizeof(u32) * 4); 217 218 return 0; 219 } 220 221 int mmc_set_relative_addr(struct mmc_card *card) 222 { 223 struct mmc_command cmd = {0}; 224 225 cmd.opcode = MMC_SET_RELATIVE_ADDR; 226 cmd.arg = card->rca << 16; 227 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 228 229 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); 230 } 231 232 static int 233 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) 234 { 235 int err; 236 struct mmc_command cmd = {0}; 237 238 cmd.opcode = opcode; 239 cmd.arg = arg; 240 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; 241 242 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 243 if (err) 244 return err; 245 246 memcpy(cxd, cmd.resp, sizeof(u32) * 4); 247 248 return 0; 249 } 250 251 /* 252 * NOTE: void *buf, caller for the buf is required to use DMA-capable 253 * buffer or on-stack buffer (with some overhead in callee). 254 */ 255 static int 256 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host, 257 u32 opcode, void *buf, unsigned len) 258 { 259 struct mmc_request mrq = {NULL}; 260 struct mmc_command cmd = {0}; 261 struct mmc_data data = {0}; 262 struct scatterlist sg; 263 264 mrq.cmd = &cmd; 265 mrq.data = &data; 266 267 cmd.opcode = opcode; 268 cmd.arg = 0; 269 270 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 271 * rely on callers to never use this with "native" calls for reading 272 * CSD or CID. Native versions of those commands use the R2 type, 273 * not R1 plus a data block. 274 */ 275 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 276 277 data.blksz = len; 278 data.blocks = 1; 279 data.flags = MMC_DATA_READ; 280 data.sg = &sg; 281 data.sg_len = 1; 282 283 sg_init_one(&sg, buf, len); 284 285 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { 286 /* 287 * The spec states that CSR and CID accesses have a timeout 288 * of 64 clock cycles. 289 */ 290 data.timeout_ns = 0; 291 data.timeout_clks = 64; 292 } else 293 mmc_set_data_timeout(&data, card); 294 295 mmc_wait_for_req(host, &mrq); 296 297 if (cmd.error) 298 return cmd.error; 299 if (data.error) 300 return data.error; 301 302 return 0; 303 } 304 305 int mmc_send_csd(struct mmc_card *card, u32 *csd) 306 { 307 int ret, i; 308 u32 *csd_tmp; 309 310 if (!mmc_host_is_spi(card->host)) 311 return mmc_send_cxd_native(card->host, card->rca << 16, 312 csd, MMC_SEND_CSD); 313 314 csd_tmp = kzalloc(16, GFP_KERNEL); 315 if (!csd_tmp) 316 return -ENOMEM; 317 318 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16); 319 if (ret) 320 goto err; 321 322 for (i = 0;i < 4;i++) 323 csd[i] = be32_to_cpu(csd_tmp[i]); 324 325 err: 326 kfree(csd_tmp); 327 return ret; 328 } 329 330 int mmc_send_cid(struct mmc_host *host, u32 *cid) 331 { 332 int ret, i; 333 u32 *cid_tmp; 334 335 if (!mmc_host_is_spi(host)) { 336 if (!host->card) 337 return -EINVAL; 338 return mmc_send_cxd_native(host, host->card->rca << 16, 339 cid, MMC_SEND_CID); 340 } 341 342 cid_tmp = kzalloc(16, GFP_KERNEL); 343 if (!cid_tmp) 344 return -ENOMEM; 345 346 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16); 347 if (ret) 348 goto err; 349 350 for (i = 0;i < 4;i++) 351 cid[i] = be32_to_cpu(cid_tmp[i]); 352 353 err: 354 kfree(cid_tmp); 355 return ret; 356 } 357 358 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd) 359 { 360 int err; 361 u8 *ext_csd; 362 363 if (!card || !new_ext_csd) 364 return -EINVAL; 365 366 if (!mmc_can_ext_csd(card)) 367 return -EOPNOTSUPP; 368 369 /* 370 * As the ext_csd is so large and mostly unused, we don't store the 371 * raw block in mmc_card. 372 */ 373 ext_csd = kzalloc(512, GFP_KERNEL); 374 if (!ext_csd) 375 return -ENOMEM; 376 377 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd, 378 512); 379 if (err) 380 kfree(ext_csd); 381 else 382 *new_ext_csd = ext_csd; 383 384 return err; 385 } 386 EXPORT_SYMBOL_GPL(mmc_get_ext_csd); 387 388 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) 389 { 390 struct mmc_command cmd = {0}; 391 int err; 392 393 cmd.opcode = MMC_SPI_READ_OCR; 394 cmd.arg = highcap ? (1 << 30) : 0; 395 cmd.flags = MMC_RSP_SPI_R3; 396 397 err = mmc_wait_for_cmd(host, &cmd, 0); 398 399 *ocrp = cmd.resp[1]; 400 return err; 401 } 402 403 int mmc_spi_set_crc(struct mmc_host *host, int use_crc) 404 { 405 struct mmc_command cmd = {0}; 406 int err; 407 408 cmd.opcode = MMC_SPI_CRC_ON_OFF; 409 cmd.flags = MMC_RSP_SPI_R1; 410 cmd.arg = use_crc; 411 412 err = mmc_wait_for_cmd(host, &cmd, 0); 413 if (!err) 414 host->use_spi_crc = use_crc; 415 return err; 416 } 417 418 static int mmc_switch_status_error(struct mmc_host *host, u32 status) 419 { 420 if (mmc_host_is_spi(host)) { 421 if (status & R1_SPI_ILLEGAL_COMMAND) 422 return -EBADMSG; 423 } else { 424 if (status & 0xFDFFA000) 425 pr_warn("%s: unexpected status %#x after switch\n", 426 mmc_hostname(host), status); 427 if (status & R1_SWITCH_ERROR) 428 return -EBADMSG; 429 } 430 return 0; 431 } 432 433 /* Caller must hold re-tuning */ 434 int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal) 435 { 436 u32 status; 437 int err; 438 439 err = mmc_send_status(card, &status); 440 if (!crc_err_fatal && err == -EILSEQ) 441 return 0; 442 if (err) 443 return err; 444 445 return mmc_switch_status_error(card->host, status); 446 } 447 448 int mmc_switch_status(struct mmc_card *card) 449 { 450 return __mmc_switch_status(card, true); 451 } 452 453 static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms, 454 bool send_status, bool retry_crc_err) 455 { 456 struct mmc_host *host = card->host; 457 int err; 458 unsigned long timeout; 459 u32 status = 0; 460 bool expired = false; 461 bool busy = false; 462 463 /* We have an unspecified cmd timeout, use the fallback value. */ 464 if (!timeout_ms) 465 timeout_ms = MMC_OPS_TIMEOUT_MS; 466 467 /* 468 * In cases when not allowed to poll by using CMD13 or because we aren't 469 * capable of polling by using ->card_busy(), then rely on waiting the 470 * stated timeout to be sufficient. 471 */ 472 if (!send_status && !host->ops->card_busy) { 473 mmc_delay(timeout_ms); 474 return 0; 475 } 476 477 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1; 478 do { 479 /* 480 * Due to the possibility of being preempted while polling, 481 * check the expiration time first. 482 */ 483 expired = time_after(jiffies, timeout); 484 485 if (host->ops->card_busy) { 486 busy = host->ops->card_busy(host); 487 } else { 488 err = mmc_send_status(card, &status); 489 if (retry_crc_err && err == -EILSEQ) { 490 busy = true; 491 } else if (err) { 492 return err; 493 } else { 494 err = mmc_switch_status_error(host, status); 495 if (err) 496 return err; 497 busy = R1_CURRENT_STATE(status) == R1_STATE_PRG; 498 } 499 } 500 501 /* Timeout if the device still remains busy. */ 502 if (expired && busy) { 503 pr_err("%s: Card stuck being busy! %s\n", 504 mmc_hostname(host), __func__); 505 return -ETIMEDOUT; 506 } 507 } while (busy); 508 509 if (host->ops->card_busy && send_status) 510 return mmc_switch_status(card); 511 512 return 0; 513 } 514 515 /** 516 * __mmc_switch - modify EXT_CSD register 517 * @card: the MMC card associated with the data transfer 518 * @set: cmd set values 519 * @index: EXT_CSD register index 520 * @value: value to program into EXT_CSD register 521 * @timeout_ms: timeout (ms) for operation performed by register write, 522 * timeout of zero implies maximum possible timeout 523 * @timing: new timing to change to 524 * @use_busy_signal: use the busy signal as response type 525 * @send_status: send status cmd to poll for busy 526 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy 527 * 528 * Modifies the EXT_CSD register for selected card. 529 */ 530 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 531 unsigned int timeout_ms, unsigned char timing, 532 bool use_busy_signal, bool send_status, bool retry_crc_err) 533 { 534 struct mmc_host *host = card->host; 535 int err; 536 struct mmc_command cmd = {0}; 537 bool use_r1b_resp = use_busy_signal; 538 unsigned char old_timing = host->ios.timing; 539 540 mmc_retune_hold(host); 541 542 /* 543 * If the cmd timeout and the max_busy_timeout of the host are both 544 * specified, let's validate them. A failure means we need to prevent 545 * the host from doing hw busy detection, which is done by converting 546 * to a R1 response instead of a R1B. 547 */ 548 if (timeout_ms && host->max_busy_timeout && 549 (timeout_ms > host->max_busy_timeout)) 550 use_r1b_resp = false; 551 552 cmd.opcode = MMC_SWITCH; 553 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 554 (index << 16) | 555 (value << 8) | 556 set; 557 cmd.flags = MMC_CMD_AC; 558 if (use_r1b_resp) { 559 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B; 560 /* 561 * A busy_timeout of zero means the host can decide to use 562 * whatever value it finds suitable. 563 */ 564 cmd.busy_timeout = timeout_ms; 565 } else { 566 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1; 567 } 568 569 if (index == EXT_CSD_SANITIZE_START) 570 cmd.sanitize_busy = true; 571 572 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 573 if (err) 574 goto out; 575 576 /* No need to check card status in case of unblocking command */ 577 if (!use_busy_signal) 578 goto out; 579 580 /* Switch to new timing before poll and check switch status. */ 581 if (timing) 582 mmc_set_timing(host, timing); 583 584 /*If SPI or used HW busy detection above, then we don't need to poll. */ 585 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) || 586 mmc_host_is_spi(host)) { 587 if (send_status) 588 err = mmc_switch_status(card); 589 goto out_tim; 590 } 591 592 /* Let's try to poll to find out when the command is completed. */ 593 err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err); 594 595 out_tim: 596 if (err && timing) 597 mmc_set_timing(host, old_timing); 598 out: 599 mmc_retune_release(host); 600 601 return err; 602 } 603 604 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, 605 unsigned int timeout_ms) 606 { 607 return __mmc_switch(card, set, index, value, timeout_ms, 0, 608 true, true, false); 609 } 610 EXPORT_SYMBOL_GPL(mmc_switch); 611 612 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error) 613 { 614 struct mmc_request mrq = {NULL}; 615 struct mmc_command cmd = {0}; 616 struct mmc_data data = {0}; 617 struct scatterlist sg; 618 struct mmc_ios *ios = &host->ios; 619 const u8 *tuning_block_pattern; 620 int size, err = 0; 621 u8 *data_buf; 622 623 if (ios->bus_width == MMC_BUS_WIDTH_8) { 624 tuning_block_pattern = tuning_blk_pattern_8bit; 625 size = sizeof(tuning_blk_pattern_8bit); 626 } else if (ios->bus_width == MMC_BUS_WIDTH_4) { 627 tuning_block_pattern = tuning_blk_pattern_4bit; 628 size = sizeof(tuning_blk_pattern_4bit); 629 } else 630 return -EINVAL; 631 632 data_buf = kzalloc(size, GFP_KERNEL); 633 if (!data_buf) 634 return -ENOMEM; 635 636 mrq.cmd = &cmd; 637 mrq.data = &data; 638 639 cmd.opcode = opcode; 640 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 641 642 data.blksz = size; 643 data.blocks = 1; 644 data.flags = MMC_DATA_READ; 645 646 /* 647 * According to the tuning specs, Tuning process 648 * is normally shorter 40 executions of CMD19, 649 * and timeout value should be shorter than 150 ms 650 */ 651 data.timeout_ns = 150 * NSEC_PER_MSEC; 652 653 data.sg = &sg; 654 data.sg_len = 1; 655 sg_init_one(&sg, data_buf, size); 656 657 mmc_wait_for_req(host, &mrq); 658 659 if (cmd_error) 660 *cmd_error = cmd.error; 661 662 if (cmd.error) { 663 err = cmd.error; 664 goto out; 665 } 666 667 if (data.error) { 668 err = data.error; 669 goto out; 670 } 671 672 if (memcmp(data_buf, tuning_block_pattern, size)) 673 err = -EIO; 674 675 out: 676 kfree(data_buf); 677 return err; 678 } 679 EXPORT_SYMBOL_GPL(mmc_send_tuning); 680 681 int mmc_abort_tuning(struct mmc_host *host, u32 opcode) 682 { 683 struct mmc_command cmd = {0}; 684 685 /* 686 * eMMC specification specifies that CMD12 can be used to stop a tuning 687 * command, but SD specification does not, so do nothing unless it is 688 * eMMC. 689 */ 690 if (opcode != MMC_SEND_TUNING_BLOCK_HS200) 691 return 0; 692 693 cmd.opcode = MMC_STOP_TRANSMISSION; 694 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 695 696 /* 697 * For drivers that override R1 to R1b, set an arbitrary timeout based 698 * on the tuning timeout i.e. 150ms. 699 */ 700 cmd.busy_timeout = 150; 701 702 return mmc_wait_for_cmd(host, &cmd, 0); 703 } 704 EXPORT_SYMBOL_GPL(mmc_abort_tuning); 705 706 static int 707 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, 708 u8 len) 709 { 710 struct mmc_request mrq = {NULL}; 711 struct mmc_command cmd = {0}; 712 struct mmc_data data = {0}; 713 struct scatterlist sg; 714 u8 *data_buf; 715 u8 *test_buf; 716 int i, err; 717 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; 718 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; 719 720 /* dma onto stack is unsafe/nonportable, but callers to this 721 * routine normally provide temporary on-stack buffers ... 722 */ 723 data_buf = kmalloc(len, GFP_KERNEL); 724 if (!data_buf) 725 return -ENOMEM; 726 727 if (len == 8) 728 test_buf = testdata_8bit; 729 else if (len == 4) 730 test_buf = testdata_4bit; 731 else { 732 pr_err("%s: Invalid bus_width %d\n", 733 mmc_hostname(host), len); 734 kfree(data_buf); 735 return -EINVAL; 736 } 737 738 if (opcode == MMC_BUS_TEST_W) 739 memcpy(data_buf, test_buf, len); 740 741 mrq.cmd = &cmd; 742 mrq.data = &data; 743 cmd.opcode = opcode; 744 cmd.arg = 0; 745 746 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we 747 * rely on callers to never use this with "native" calls for reading 748 * CSD or CID. Native versions of those commands use the R2 type, 749 * not R1 plus a data block. 750 */ 751 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 752 753 data.blksz = len; 754 data.blocks = 1; 755 if (opcode == MMC_BUS_TEST_R) 756 data.flags = MMC_DATA_READ; 757 else 758 data.flags = MMC_DATA_WRITE; 759 760 data.sg = &sg; 761 data.sg_len = 1; 762 mmc_set_data_timeout(&data, card); 763 sg_init_one(&sg, data_buf, len); 764 mmc_wait_for_req(host, &mrq); 765 err = 0; 766 if (opcode == MMC_BUS_TEST_R) { 767 for (i = 0; i < len / 4; i++) 768 if ((test_buf[i] ^ data_buf[i]) != 0xff) { 769 err = -EIO; 770 break; 771 } 772 } 773 kfree(data_buf); 774 775 if (cmd.error) 776 return cmd.error; 777 if (data.error) 778 return data.error; 779 780 return err; 781 } 782 783 int mmc_bus_test(struct mmc_card *card, u8 bus_width) 784 { 785 int width; 786 787 if (bus_width == MMC_BUS_WIDTH_8) 788 width = 8; 789 else if (bus_width == MMC_BUS_WIDTH_4) 790 width = 4; 791 else if (bus_width == MMC_BUS_WIDTH_1) 792 return 0; /* no need for test */ 793 else 794 return -EINVAL; 795 796 /* 797 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there 798 * is a problem. This improves chances that the test will work. 799 */ 800 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); 801 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); 802 } 803 804 int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status) 805 { 806 struct mmc_command cmd = {0}; 807 unsigned int opcode; 808 int err; 809 810 if (!card->ext_csd.hpi) { 811 pr_warn("%s: Card didn't support HPI command\n", 812 mmc_hostname(card->host)); 813 return -EINVAL; 814 } 815 816 opcode = card->ext_csd.hpi_cmd; 817 if (opcode == MMC_STOP_TRANSMISSION) 818 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 819 else if (opcode == MMC_SEND_STATUS) 820 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 821 822 cmd.opcode = opcode; 823 cmd.arg = card->rca << 16 | 1; 824 825 err = mmc_wait_for_cmd(card->host, &cmd, 0); 826 if (err) { 827 pr_warn("%s: error %d interrupting operation. " 828 "HPI command response %#x\n", mmc_hostname(card->host), 829 err, cmd.resp[0]); 830 return err; 831 } 832 if (status) 833 *status = cmd.resp[0]; 834 835 return 0; 836 } 837 838 int mmc_can_ext_csd(struct mmc_card *card) 839 { 840 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3); 841 } 842