xref: /linux/drivers/mmc/core/mmc_ops.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  linux/drivers/mmc/core/mmc_ops.h
4  *
5  *  Copyright 2006-2007 Pierre Ossman
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
12 
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
16 
17 #include "core.h"
18 #include "card.h"
19 #include "host.h"
20 #include "mmc_ops.h"
21 
22 #define MMC_OPS_TIMEOUT_MS		(10 * 60 * 1000) /* 10min*/
23 #define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
24 #define MMC_CACHE_FLUSH_TIMEOUT_MS	(30 * 1000) /* 30s */
25 
26 static const u8 tuning_blk_pattern_4bit[] = {
27 	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35 };
36 
37 static const u8 tuning_blk_pattern_8bit[] = {
38 	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54 };
55 
56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57 {
58 	int err;
59 	struct mmc_command cmd = {};
60 
61 	cmd.opcode = MMC_SEND_STATUS;
62 	if (!mmc_host_is_spi(card->host))
63 		cmd.arg = card->rca << 16;
64 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65 
66 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 	if (err)
68 		return err;
69 
70 	/* NOTE: callers are required to understand the difference
71 	 * between "native" and SPI format status words!
72 	 */
73 	if (status)
74 		*status = cmd.resp[0];
75 
76 	return 0;
77 }
78 EXPORT_SYMBOL_GPL(__mmc_send_status);
79 
80 int mmc_send_status(struct mmc_card *card, u32 *status)
81 {
82 	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83 }
84 EXPORT_SYMBOL_GPL(mmc_send_status);
85 
86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87 {
88 	struct mmc_command cmd = {};
89 
90 	cmd.opcode = MMC_SELECT_CARD;
91 
92 	if (card) {
93 		cmd.arg = card->rca << 16;
94 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 	} else {
96 		cmd.arg = 0;
97 		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 	}
99 
100 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101 }
102 
103 int mmc_select_card(struct mmc_card *card)
104 {
105 
106 	return _mmc_select_card(card->host, card);
107 }
108 
109 int mmc_deselect_cards(struct mmc_host *host)
110 {
111 	return _mmc_select_card(host, NULL);
112 }
113 
114 /*
115  * Write the value specified in the device tree or board code into the optional
116  * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117  * drive strength of the DAT and CMD outputs. The actual meaning of a given
118  * value is hardware dependant.
119  * The presence of the DSR register can be determined from the CSD register,
120  * bit 76.
121  */
122 int mmc_set_dsr(struct mmc_host *host)
123 {
124 	struct mmc_command cmd = {};
125 
126 	cmd.opcode = MMC_SET_DSR;
127 
128 	cmd.arg = (host->dsr << 16) | 0xffff;
129 	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130 
131 	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132 }
133 
134 int mmc_go_idle(struct mmc_host *host)
135 {
136 	int err;
137 	struct mmc_command cmd = {};
138 
139 	/*
140 	 * Non-SPI hosts need to prevent chipselect going active during
141 	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
142 	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 	 *
144 	 * SPI hosts ignore ios.chip_select; it's managed according to
145 	 * rules that must accommodate non-MMC slaves which this layer
146 	 * won't even know about.
147 	 */
148 	if (!mmc_host_is_spi(host)) {
149 		mmc_set_chip_select(host, MMC_CS_HIGH);
150 		mmc_delay(1);
151 	}
152 
153 	cmd.opcode = MMC_GO_IDLE_STATE;
154 	cmd.arg = 0;
155 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156 
157 	err = mmc_wait_for_cmd(host, &cmd, 0);
158 
159 	mmc_delay(1);
160 
161 	if (!mmc_host_is_spi(host)) {
162 		mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 		mmc_delay(1);
164 	}
165 
166 	host->use_spi_crc = 0;
167 
168 	return err;
169 }
170 
171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172 {
173 	struct mmc_command cmd = {};
174 	int i, err = 0;
175 
176 	cmd.opcode = MMC_SEND_OP_COND;
177 	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179 
180 	for (i = 100; i; i--) {
181 		err = mmc_wait_for_cmd(host, &cmd, 0);
182 		if (err)
183 			break;
184 
185 		/* wait until reset completes */
186 		if (mmc_host_is_spi(host)) {
187 			if (!(cmd.resp[0] & R1_SPI_IDLE))
188 				break;
189 		} else {
190 			if (cmd.resp[0] & MMC_CARD_BUSY)
191 				break;
192 		}
193 
194 		err = -ETIMEDOUT;
195 
196 		mmc_delay(10);
197 
198 		/*
199 		 * According to eMMC specification v5.1 section 6.4.3, we
200 		 * should issue CMD1 repeatedly in the idle state until
201 		 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 		 * the inactive mode after mmc_init_card() issued CMD0 when
203 		 * the eMMC device is busy.
204 		 */
205 		if (!ocr && !mmc_host_is_spi(host))
206 			cmd.arg = cmd.resp[0] | BIT(30);
207 	}
208 
209 	if (rocr && !mmc_host_is_spi(host))
210 		*rocr = cmd.resp[0];
211 
212 	return err;
213 }
214 
215 int mmc_set_relative_addr(struct mmc_card *card)
216 {
217 	struct mmc_command cmd = {};
218 
219 	cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 	cmd.arg = card->rca << 16;
221 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222 
223 	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224 }
225 
226 static int
227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228 {
229 	int err;
230 	struct mmc_command cmd = {};
231 
232 	cmd.opcode = opcode;
233 	cmd.arg = arg;
234 	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235 
236 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 	if (err)
238 		return err;
239 
240 	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241 
242 	return 0;
243 }
244 
245 /*
246  * NOTE: void *buf, caller for the buf is required to use DMA-capable
247  * buffer or on-stack buffer (with some overhead in callee).
248  */
249 static int
250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 		u32 opcode, void *buf, unsigned len)
252 {
253 	struct mmc_request mrq = {};
254 	struct mmc_command cmd = {};
255 	struct mmc_data data = {};
256 	struct scatterlist sg;
257 
258 	mrq.cmd = &cmd;
259 	mrq.data = &data;
260 
261 	cmd.opcode = opcode;
262 	cmd.arg = 0;
263 
264 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
265 	 * rely on callers to never use this with "native" calls for reading
266 	 * CSD or CID.  Native versions of those commands use the R2 type,
267 	 * not R1 plus a data block.
268 	 */
269 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270 
271 	data.blksz = len;
272 	data.blocks = 1;
273 	data.flags = MMC_DATA_READ;
274 	data.sg = &sg;
275 	data.sg_len = 1;
276 
277 	sg_init_one(&sg, buf, len);
278 
279 	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 		/*
281 		 * The spec states that CSR and CID accesses have a timeout
282 		 * of 64 clock cycles.
283 		 */
284 		data.timeout_ns = 0;
285 		data.timeout_clks = 64;
286 	} else
287 		mmc_set_data_timeout(&data, card);
288 
289 	mmc_wait_for_req(host, &mrq);
290 
291 	if (cmd.error)
292 		return cmd.error;
293 	if (data.error)
294 		return data.error;
295 
296 	return 0;
297 }
298 
299 static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
300 {
301 	int ret, i;
302 	__be32 *csd_tmp;
303 
304 	csd_tmp = kzalloc(16, GFP_KERNEL);
305 	if (!csd_tmp)
306 		return -ENOMEM;
307 
308 	ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
309 	if (ret)
310 		goto err;
311 
312 	for (i = 0; i < 4; i++)
313 		csd[i] = be32_to_cpu(csd_tmp[i]);
314 
315 err:
316 	kfree(csd_tmp);
317 	return ret;
318 }
319 
320 int mmc_send_csd(struct mmc_card *card, u32 *csd)
321 {
322 	if (mmc_host_is_spi(card->host))
323 		return mmc_spi_send_csd(card, csd);
324 
325 	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
326 				MMC_SEND_CSD);
327 }
328 
329 static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
330 {
331 	int ret, i;
332 	__be32 *cid_tmp;
333 
334 	cid_tmp = kzalloc(16, GFP_KERNEL);
335 	if (!cid_tmp)
336 		return -ENOMEM;
337 
338 	ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
339 	if (ret)
340 		goto err;
341 
342 	for (i = 0; i < 4; i++)
343 		cid[i] = be32_to_cpu(cid_tmp[i]);
344 
345 err:
346 	kfree(cid_tmp);
347 	return ret;
348 }
349 
350 int mmc_send_cid(struct mmc_host *host, u32 *cid)
351 {
352 	if (mmc_host_is_spi(host))
353 		return mmc_spi_send_cid(host, cid);
354 
355 	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
356 }
357 
358 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
359 {
360 	int err;
361 	u8 *ext_csd;
362 
363 	if (!card || !new_ext_csd)
364 		return -EINVAL;
365 
366 	if (!mmc_can_ext_csd(card))
367 		return -EOPNOTSUPP;
368 
369 	/*
370 	 * As the ext_csd is so large and mostly unused, we don't store the
371 	 * raw block in mmc_card.
372 	 */
373 	ext_csd = kzalloc(512, GFP_KERNEL);
374 	if (!ext_csd)
375 		return -ENOMEM;
376 
377 	err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
378 				512);
379 	if (err)
380 		kfree(ext_csd);
381 	else
382 		*new_ext_csd = ext_csd;
383 
384 	return err;
385 }
386 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
387 
388 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
389 {
390 	struct mmc_command cmd = {};
391 	int err;
392 
393 	cmd.opcode = MMC_SPI_READ_OCR;
394 	cmd.arg = highcap ? (1 << 30) : 0;
395 	cmd.flags = MMC_RSP_SPI_R3;
396 
397 	err = mmc_wait_for_cmd(host, &cmd, 0);
398 
399 	*ocrp = cmd.resp[1];
400 	return err;
401 }
402 
403 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
404 {
405 	struct mmc_command cmd = {};
406 	int err;
407 
408 	cmd.opcode = MMC_SPI_CRC_ON_OFF;
409 	cmd.flags = MMC_RSP_SPI_R1;
410 	cmd.arg = use_crc;
411 
412 	err = mmc_wait_for_cmd(host, &cmd, 0);
413 	if (!err)
414 		host->use_spi_crc = use_crc;
415 	return err;
416 }
417 
418 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
419 {
420 	if (mmc_host_is_spi(host)) {
421 		if (status & R1_SPI_ILLEGAL_COMMAND)
422 			return -EBADMSG;
423 	} else {
424 		if (R1_STATUS(status))
425 			pr_warn("%s: unexpected status %#x after switch\n",
426 				mmc_hostname(host), status);
427 		if (status & R1_SWITCH_ERROR)
428 			return -EBADMSG;
429 	}
430 	return 0;
431 }
432 
433 /* Caller must hold re-tuning */
434 int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
435 {
436 	u32 status;
437 	int err;
438 
439 	err = mmc_send_status(card, &status);
440 	if (!crc_err_fatal && err == -EILSEQ)
441 		return 0;
442 	if (err)
443 		return err;
444 
445 	return mmc_switch_status_error(card->host, status);
446 }
447 
448 int mmc_switch_status(struct mmc_card *card)
449 {
450 	return __mmc_switch_status(card, true);
451 }
452 
453 static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
454 			bool send_status, bool retry_crc_err)
455 {
456 	struct mmc_host *host = card->host;
457 	int err;
458 	unsigned long timeout;
459 	u32 status = 0;
460 	bool expired = false;
461 	bool busy = false;
462 
463 	/*
464 	 * In cases when not allowed to poll by using CMD13 or because we aren't
465 	 * capable of polling by using ->card_busy(), then rely on waiting the
466 	 * stated timeout to be sufficient.
467 	 */
468 	if (!send_status && !host->ops->card_busy) {
469 		mmc_delay(timeout_ms);
470 		return 0;
471 	}
472 
473 	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
474 	do {
475 		/*
476 		 * Due to the possibility of being preempted while polling,
477 		 * check the expiration time first.
478 		 */
479 		expired = time_after(jiffies, timeout);
480 
481 		if (host->ops->card_busy) {
482 			busy = host->ops->card_busy(host);
483 		} else {
484 			err = mmc_send_status(card, &status);
485 			if (retry_crc_err && err == -EILSEQ) {
486 				busy = true;
487 			} else if (err) {
488 				return err;
489 			} else {
490 				err = mmc_switch_status_error(host, status);
491 				if (err)
492 					return err;
493 				busy = R1_CURRENT_STATE(status) == R1_STATE_PRG;
494 			}
495 		}
496 
497 		/* Timeout if the device still remains busy. */
498 		if (expired && busy) {
499 			pr_err("%s: Card stuck being busy! %s\n",
500 				mmc_hostname(host), __func__);
501 			return -ETIMEDOUT;
502 		}
503 	} while (busy);
504 
505 	return 0;
506 }
507 
508 /**
509  *	__mmc_switch - modify EXT_CSD register
510  *	@card: the MMC card associated with the data transfer
511  *	@set: cmd set values
512  *	@index: EXT_CSD register index
513  *	@value: value to program into EXT_CSD register
514  *	@timeout_ms: timeout (ms) for operation performed by register write,
515  *                   timeout of zero implies maximum possible timeout
516  *	@timing: new timing to change to
517  *	@use_busy_signal: use the busy signal as response type
518  *	@send_status: send status cmd to poll for busy
519  *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
520  *
521  *	Modifies the EXT_CSD register for selected card.
522  */
523 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
524 		unsigned int timeout_ms, unsigned char timing,
525 		bool use_busy_signal, bool send_status,	bool retry_crc_err)
526 {
527 	struct mmc_host *host = card->host;
528 	int err;
529 	struct mmc_command cmd = {};
530 	bool use_r1b_resp = use_busy_signal;
531 	unsigned char old_timing = host->ios.timing;
532 
533 	mmc_retune_hold(host);
534 
535 	if (!timeout_ms) {
536 		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
537 			mmc_hostname(host));
538 		timeout_ms = card->ext_csd.generic_cmd6_time;
539 	}
540 
541 	/*
542 	 * If the max_busy_timeout of the host is specified, make sure it's
543 	 * enough to fit the used timeout_ms. In case it's not, let's instruct
544 	 * the host to avoid HW busy detection, by converting to a R1 response
545 	 * instead of a R1B.
546 	 */
547 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
548 		use_r1b_resp = false;
549 
550 	cmd.opcode = MMC_SWITCH;
551 	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
552 		  (index << 16) |
553 		  (value << 8) |
554 		  set;
555 	cmd.flags = MMC_CMD_AC;
556 	if (use_r1b_resp) {
557 		cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
558 		cmd.busy_timeout = timeout_ms;
559 	} else {
560 		cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
561 	}
562 
563 	if (index == EXT_CSD_SANITIZE_START)
564 		cmd.sanitize_busy = true;
565 
566 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
567 	if (err)
568 		goto out;
569 
570 	/* No need to check card status in case of unblocking command */
571 	if (!use_busy_signal)
572 		goto out;
573 
574 	/*If SPI or used HW busy detection above, then we don't need to poll. */
575 	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
576 		mmc_host_is_spi(host))
577 		goto out_tim;
578 
579 	/* Let's try to poll to find out when the command is completed. */
580 	err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err);
581 	if (err)
582 		goto out;
583 
584 out_tim:
585 	/* Switch to new timing before check switch status. */
586 	if (timing)
587 		mmc_set_timing(host, timing);
588 
589 	if (send_status) {
590 		err = mmc_switch_status(card);
591 		if (err && timing)
592 			mmc_set_timing(host, old_timing);
593 	}
594 out:
595 	mmc_retune_release(host);
596 
597 	return err;
598 }
599 
600 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
601 		unsigned int timeout_ms)
602 {
603 	return __mmc_switch(card, set, index, value, timeout_ms, 0,
604 			true, true, false);
605 }
606 EXPORT_SYMBOL_GPL(mmc_switch);
607 
608 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
609 {
610 	struct mmc_request mrq = {};
611 	struct mmc_command cmd = {};
612 	struct mmc_data data = {};
613 	struct scatterlist sg;
614 	struct mmc_ios *ios = &host->ios;
615 	const u8 *tuning_block_pattern;
616 	int size, err = 0;
617 	u8 *data_buf;
618 
619 	if (ios->bus_width == MMC_BUS_WIDTH_8) {
620 		tuning_block_pattern = tuning_blk_pattern_8bit;
621 		size = sizeof(tuning_blk_pattern_8bit);
622 	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
623 		tuning_block_pattern = tuning_blk_pattern_4bit;
624 		size = sizeof(tuning_blk_pattern_4bit);
625 	} else
626 		return -EINVAL;
627 
628 	data_buf = kzalloc(size, GFP_KERNEL);
629 	if (!data_buf)
630 		return -ENOMEM;
631 
632 	mrq.cmd = &cmd;
633 	mrq.data = &data;
634 
635 	cmd.opcode = opcode;
636 	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
637 
638 	data.blksz = size;
639 	data.blocks = 1;
640 	data.flags = MMC_DATA_READ;
641 
642 	/*
643 	 * According to the tuning specs, Tuning process
644 	 * is normally shorter 40 executions of CMD19,
645 	 * and timeout value should be shorter than 150 ms
646 	 */
647 	data.timeout_ns = 150 * NSEC_PER_MSEC;
648 
649 	data.sg = &sg;
650 	data.sg_len = 1;
651 	sg_init_one(&sg, data_buf, size);
652 
653 	mmc_wait_for_req(host, &mrq);
654 
655 	if (cmd_error)
656 		*cmd_error = cmd.error;
657 
658 	if (cmd.error) {
659 		err = cmd.error;
660 		goto out;
661 	}
662 
663 	if (data.error) {
664 		err = data.error;
665 		goto out;
666 	}
667 
668 	if (memcmp(data_buf, tuning_block_pattern, size))
669 		err = -EIO;
670 
671 out:
672 	kfree(data_buf);
673 	return err;
674 }
675 EXPORT_SYMBOL_GPL(mmc_send_tuning);
676 
677 int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
678 {
679 	struct mmc_command cmd = {};
680 
681 	/*
682 	 * eMMC specification specifies that CMD12 can be used to stop a tuning
683 	 * command, but SD specification does not, so do nothing unless it is
684 	 * eMMC.
685 	 */
686 	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
687 		return 0;
688 
689 	cmd.opcode = MMC_STOP_TRANSMISSION;
690 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
691 
692 	/*
693 	 * For drivers that override R1 to R1b, set an arbitrary timeout based
694 	 * on the tuning timeout i.e. 150ms.
695 	 */
696 	cmd.busy_timeout = 150;
697 
698 	return mmc_wait_for_cmd(host, &cmd, 0);
699 }
700 EXPORT_SYMBOL_GPL(mmc_abort_tuning);
701 
702 static int
703 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
704 		  u8 len)
705 {
706 	struct mmc_request mrq = {};
707 	struct mmc_command cmd = {};
708 	struct mmc_data data = {};
709 	struct scatterlist sg;
710 	u8 *data_buf;
711 	u8 *test_buf;
712 	int i, err;
713 	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
714 	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
715 
716 	/* dma onto stack is unsafe/nonportable, but callers to this
717 	 * routine normally provide temporary on-stack buffers ...
718 	 */
719 	data_buf = kmalloc(len, GFP_KERNEL);
720 	if (!data_buf)
721 		return -ENOMEM;
722 
723 	if (len == 8)
724 		test_buf = testdata_8bit;
725 	else if (len == 4)
726 		test_buf = testdata_4bit;
727 	else {
728 		pr_err("%s: Invalid bus_width %d\n",
729 		       mmc_hostname(host), len);
730 		kfree(data_buf);
731 		return -EINVAL;
732 	}
733 
734 	if (opcode == MMC_BUS_TEST_W)
735 		memcpy(data_buf, test_buf, len);
736 
737 	mrq.cmd = &cmd;
738 	mrq.data = &data;
739 	cmd.opcode = opcode;
740 	cmd.arg = 0;
741 
742 	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
743 	 * rely on callers to never use this with "native" calls for reading
744 	 * CSD or CID.  Native versions of those commands use the R2 type,
745 	 * not R1 plus a data block.
746 	 */
747 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
748 
749 	data.blksz = len;
750 	data.blocks = 1;
751 	if (opcode == MMC_BUS_TEST_R)
752 		data.flags = MMC_DATA_READ;
753 	else
754 		data.flags = MMC_DATA_WRITE;
755 
756 	data.sg = &sg;
757 	data.sg_len = 1;
758 	mmc_set_data_timeout(&data, card);
759 	sg_init_one(&sg, data_buf, len);
760 	mmc_wait_for_req(host, &mrq);
761 	err = 0;
762 	if (opcode == MMC_BUS_TEST_R) {
763 		for (i = 0; i < len / 4; i++)
764 			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
765 				err = -EIO;
766 				break;
767 			}
768 	}
769 	kfree(data_buf);
770 
771 	if (cmd.error)
772 		return cmd.error;
773 	if (data.error)
774 		return data.error;
775 
776 	return err;
777 }
778 
779 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
780 {
781 	int width;
782 
783 	if (bus_width == MMC_BUS_WIDTH_8)
784 		width = 8;
785 	else if (bus_width == MMC_BUS_WIDTH_4)
786 		width = 4;
787 	else if (bus_width == MMC_BUS_WIDTH_1)
788 		return 0; /* no need for test */
789 	else
790 		return -EINVAL;
791 
792 	/*
793 	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
794 	 * is a problem.  This improves chances that the test will work.
795 	 */
796 	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
797 	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
798 }
799 
800 static int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status)
801 {
802 	struct mmc_command cmd = {};
803 	unsigned int opcode;
804 	int err;
805 
806 	opcode = card->ext_csd.hpi_cmd;
807 	if (opcode == MMC_STOP_TRANSMISSION)
808 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
809 	else if (opcode == MMC_SEND_STATUS)
810 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
811 
812 	cmd.opcode = opcode;
813 	cmd.arg = card->rca << 16 | 1;
814 
815 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
816 	if (err) {
817 		pr_warn("%s: error %d interrupting operation. "
818 			"HPI command response %#x\n", mmc_hostname(card->host),
819 			err, cmd.resp[0]);
820 		return err;
821 	}
822 	if (status)
823 		*status = cmd.resp[0];
824 
825 	return 0;
826 }
827 
828 /**
829  *	mmc_interrupt_hpi - Issue for High priority Interrupt
830  *	@card: the MMC card associated with the HPI transfer
831  *
832  *	Issued High Priority Interrupt, and check for card status
833  *	until out-of prg-state.
834  */
835 int mmc_interrupt_hpi(struct mmc_card *card)
836 {
837 	int err;
838 	u32 status;
839 	unsigned long prg_wait;
840 
841 	if (!card->ext_csd.hpi_en) {
842 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
843 		return 1;
844 	}
845 
846 	err = mmc_send_status(card, &status);
847 	if (err) {
848 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
849 		goto out;
850 	}
851 
852 	switch (R1_CURRENT_STATE(status)) {
853 	case R1_STATE_IDLE:
854 	case R1_STATE_READY:
855 	case R1_STATE_STBY:
856 	case R1_STATE_TRAN:
857 		/*
858 		 * In idle and transfer states, HPI is not needed and the caller
859 		 * can issue the next intended command immediately
860 		 */
861 		goto out;
862 	case R1_STATE_PRG:
863 		break;
864 	default:
865 		/* In all other states, it's illegal to issue HPI */
866 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
867 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
868 		err = -EINVAL;
869 		goto out;
870 	}
871 
872 	err = mmc_send_hpi_cmd(card, &status);
873 	if (err)
874 		goto out;
875 
876 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
877 	do {
878 		err = mmc_send_status(card, &status);
879 
880 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
881 			break;
882 		if (time_after(jiffies, prg_wait))
883 			err = -ETIMEDOUT;
884 	} while (!err);
885 
886 out:
887 	return err;
888 }
889 
890 int mmc_can_ext_csd(struct mmc_card *card)
891 {
892 	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
893 }
894 
895 static int mmc_read_bkops_status(struct mmc_card *card)
896 {
897 	int err;
898 	u8 *ext_csd;
899 
900 	err = mmc_get_ext_csd(card, &ext_csd);
901 	if (err)
902 		return err;
903 
904 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
905 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
906 	kfree(ext_csd);
907 	return 0;
908 }
909 
910 /**
911  *	mmc_run_bkops - Run BKOPS for supported cards
912  *	@card: MMC card to run BKOPS for
913  *
914  *	Run background operations synchronously for cards having manual BKOPS
915  *	enabled and in case it reports urgent BKOPS level.
916 */
917 void mmc_run_bkops(struct mmc_card *card)
918 {
919 	int err;
920 
921 	if (!card->ext_csd.man_bkops_en)
922 		return;
923 
924 	err = mmc_read_bkops_status(card);
925 	if (err) {
926 		pr_err("%s: Failed to read bkops status: %d\n",
927 		       mmc_hostname(card->host), err);
928 		return;
929 	}
930 
931 	if (!card->ext_csd.raw_bkops_status ||
932 	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
933 		return;
934 
935 	mmc_retune_hold(card->host);
936 
937 	/*
938 	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
939 	 * synchronously. Future wise, we may consider to start BKOPS, for less
940 	 * urgent levels by using an asynchronous background task, when idle.
941 	 */
942 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
943 			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
944 	if (err)
945 		pr_warn("%s: Error %d starting bkops\n",
946 			mmc_hostname(card->host), err);
947 
948 	mmc_retune_release(card->host);
949 }
950 EXPORT_SYMBOL(mmc_run_bkops);
951 
952 /*
953  * Flush the cache to the non-volatile storage.
954  */
955 int mmc_flush_cache(struct mmc_card *card)
956 {
957 	int err = 0;
958 
959 	if (mmc_card_mmc(card) &&
960 			(card->ext_csd.cache_size > 0) &&
961 			(card->ext_csd.cache_ctrl & 1)) {
962 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
963 				 EXT_CSD_FLUSH_CACHE, 1,
964 				 MMC_CACHE_FLUSH_TIMEOUT_MS);
965 		if (err)
966 			pr_err("%s: cache flush error %d\n",
967 					mmc_hostname(card->host), err);
968 	}
969 
970 	return err;
971 }
972 EXPORT_SYMBOL(mmc_flush_cache);
973 
974 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
975 {
976 	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
977 	int err;
978 
979 	if (!card->ext_csd.cmdq_support)
980 		return -EOPNOTSUPP;
981 
982 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
983 			 val, card->ext_csd.generic_cmd6_time);
984 	if (!err)
985 		card->ext_csd.cmdq_en = enable;
986 
987 	return err;
988 }
989 
990 int mmc_cmdq_enable(struct mmc_card *card)
991 {
992 	return mmc_cmdq_switch(card, true);
993 }
994 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
995 
996 int mmc_cmdq_disable(struct mmc_card *card)
997 {
998 	return mmc_cmdq_switch(card, false);
999 }
1000 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1001