1 /* 2 * linux/drivers/mmc/core/mmc.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 23 #include "core.h" 24 #include "card.h" 25 #include "host.h" 26 #include "bus.h" 27 #include "mmc_ops.h" 28 #include "quirks.h" 29 #include "sd_ops.h" 30 #include "pwrseq.h" 31 32 #define DEFAULT_CMD6_TIMEOUT_MS 500 33 34 static const unsigned int tran_exp[] = { 35 10000, 100000, 1000000, 10000000, 36 0, 0, 0, 0 37 }; 38 39 static const unsigned char tran_mant[] = { 40 0, 10, 12, 13, 15, 20, 25, 30, 41 35, 40, 45, 50, 55, 60, 70, 80, 42 }; 43 44 static const unsigned int tacc_exp[] = { 45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 46 }; 47 48 static const unsigned int tacc_mant[] = { 49 0, 10, 12, 13, 15, 20, 25, 30, 50 35, 40, 45, 50, 55, 60, 70, 80, 51 }; 52 53 #define UNSTUFF_BITS(resp,start,size) \ 54 ({ \ 55 const int __size = size; \ 56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 57 const int __off = 3 - ((start) / 32); \ 58 const int __shft = (start) & 31; \ 59 u32 __res; \ 60 \ 61 __res = resp[__off] >> __shft; \ 62 if (__size + __shft > 32) \ 63 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 64 __res & __mask; \ 65 }) 66 67 /* 68 * Given the decoded CSD structure, decode the raw CID to our CID structure. 69 */ 70 static int mmc_decode_cid(struct mmc_card *card) 71 { 72 u32 *resp = card->raw_cid; 73 74 /* 75 * The selection of the format here is based upon published 76 * specs from sandisk and from what people have reported. 77 */ 78 switch (card->csd.mmca_vsn) { 79 case 0: /* MMC v1.0 - v1.2 */ 80 case 1: /* MMC v1.4 */ 81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 92 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 94 break; 95 96 case 2: /* MMC v2.0 - v2.2 */ 97 case 3: /* MMC v3.1 - v3.3 */ 98 case 4: /* MMC v4 */ 99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 109 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 111 break; 112 113 default: 114 pr_err("%s: card has unknown MMCA version %d\n", 115 mmc_hostname(card->host), card->csd.mmca_vsn); 116 return -EINVAL; 117 } 118 119 return 0; 120 } 121 122 static void mmc_set_erase_size(struct mmc_card *card) 123 { 124 if (card->ext_csd.erase_group_def & 1) 125 card->erase_size = card->ext_csd.hc_erase_size; 126 else 127 card->erase_size = card->csd.erase_size; 128 129 mmc_init_erase(card); 130 } 131 132 /* 133 * Given a 128-bit response, decode to our card CSD structure. 134 */ 135 static int mmc_decode_csd(struct mmc_card *card) 136 { 137 struct mmc_csd *csd = &card->csd; 138 unsigned int e, m, a, b; 139 u32 *resp = card->raw_csd; 140 141 /* 142 * We only understand CSD structure v1.1 and v1.2. 143 * v1.2 has extra information in bits 15, 11 and 10. 144 * We also support eMMC v4.4 & v4.41. 145 */ 146 csd->structure = UNSTUFF_BITS(resp, 126, 2); 147 if (csd->structure == 0) { 148 pr_err("%s: unrecognised CSD structure version %d\n", 149 mmc_hostname(card->host), csd->structure); 150 return -EINVAL; 151 } 152 153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 154 m = UNSTUFF_BITS(resp, 115, 4); 155 e = UNSTUFF_BITS(resp, 112, 3); 156 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; 157 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 158 159 m = UNSTUFF_BITS(resp, 99, 4); 160 e = UNSTUFF_BITS(resp, 96, 3); 161 csd->max_dtr = tran_exp[e] * tran_mant[m]; 162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 163 164 e = UNSTUFF_BITS(resp, 47, 3); 165 m = UNSTUFF_BITS(resp, 62, 12); 166 csd->capacity = (1 + m) << (e + 2); 167 168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 176 177 if (csd->write_blkbits >= 9) { 178 a = UNSTUFF_BITS(resp, 42, 5); 179 b = UNSTUFF_BITS(resp, 37, 5); 180 csd->erase_size = (a + 1) * (b + 1); 181 csd->erase_size <<= csd->write_blkbits - 9; 182 } 183 184 return 0; 185 } 186 187 static void mmc_select_card_type(struct mmc_card *card) 188 { 189 struct mmc_host *host = card->host; 190 u8 card_type = card->ext_csd.raw_card_type; 191 u32 caps = host->caps, caps2 = host->caps2; 192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 193 unsigned int avail_type = 0; 194 195 if (caps & MMC_CAP_MMC_HIGHSPEED && 196 card_type & EXT_CSD_CARD_TYPE_HS_26) { 197 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 198 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 199 } 200 201 if (caps & MMC_CAP_MMC_HIGHSPEED && 202 card_type & EXT_CSD_CARD_TYPE_HS_52) { 203 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 204 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 205 } 206 207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 211 } 212 213 if (caps & MMC_CAP_1_2V_DDR && 214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 217 } 218 219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 221 hs200_max_dtr = MMC_HS200_MAX_DTR; 222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 223 } 224 225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 227 hs200_max_dtr = MMC_HS200_MAX_DTR; 228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 229 } 230 231 if (caps2 & MMC_CAP2_HS400_1_8V && 232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 233 hs200_max_dtr = MMC_HS200_MAX_DTR; 234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 235 } 236 237 if (caps2 & MMC_CAP2_HS400_1_2V && 238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 239 hs200_max_dtr = MMC_HS200_MAX_DTR; 240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 241 } 242 243 if ((caps2 & MMC_CAP2_HS400_ES) && 244 card->ext_csd.strobe_support && 245 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 247 248 card->ext_csd.hs_max_dtr = hs_max_dtr; 249 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 250 card->mmc_avail_type = avail_type; 251 } 252 253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 254 { 255 u8 hc_erase_grp_sz, hc_wp_grp_sz; 256 257 /* 258 * Disable these attributes by default 259 */ 260 card->ext_csd.enhanced_area_offset = -EINVAL; 261 card->ext_csd.enhanced_area_size = -EINVAL; 262 263 /* 264 * Enhanced area feature support -- check whether the eMMC 265 * card has the Enhanced area enabled. If so, export enhanced 266 * area offset and size to user by adding sysfs interface. 267 */ 268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 270 if (card->ext_csd.partition_setting_completed) { 271 hc_erase_grp_sz = 272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 273 hc_wp_grp_sz = 274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 275 276 /* 277 * calculate the enhanced data area offset, in bytes 278 */ 279 card->ext_csd.enhanced_area_offset = 280 (((unsigned long long)ext_csd[139]) << 24) + 281 (((unsigned long long)ext_csd[138]) << 16) + 282 (((unsigned long long)ext_csd[137]) << 8) + 283 (((unsigned long long)ext_csd[136])); 284 if (mmc_card_blockaddr(card)) 285 card->ext_csd.enhanced_area_offset <<= 9; 286 /* 287 * calculate the enhanced data area size, in kilobytes 288 */ 289 card->ext_csd.enhanced_area_size = 290 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 291 ext_csd[140]; 292 card->ext_csd.enhanced_area_size *= 293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 294 card->ext_csd.enhanced_area_size <<= 9; 295 } else { 296 pr_warn("%s: defines enhanced area without partition setting complete\n", 297 mmc_hostname(card->host)); 298 } 299 } 300 } 301 302 static void mmc_part_add(struct mmc_card *card, unsigned int size, 303 unsigned int part_cfg, char *name, int idx, bool ro, 304 int area_type) 305 { 306 card->part[card->nr_parts].size = size; 307 card->part[card->nr_parts].part_cfg = part_cfg; 308 sprintf(card->part[card->nr_parts].name, name, idx); 309 card->part[card->nr_parts].force_ro = ro; 310 card->part[card->nr_parts].area_type = area_type; 311 card->nr_parts++; 312 } 313 314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 315 { 316 int idx; 317 u8 hc_erase_grp_sz, hc_wp_grp_sz; 318 unsigned int part_size; 319 320 /* 321 * General purpose partition feature support -- 322 * If ext_csd has the size of general purpose partitions, 323 * set size, part_cfg, partition name in mmc_part. 324 */ 325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 326 EXT_CSD_PART_SUPPORT_PART_EN) { 327 hc_erase_grp_sz = 328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 329 hc_wp_grp_sz = 330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 331 332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 336 continue; 337 if (card->ext_csd.partition_setting_completed == 0) { 338 pr_warn("%s: has partition size defined without partition complete\n", 339 mmc_hostname(card->host)); 340 break; 341 } 342 part_size = 343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 344 << 16) + 345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 346 << 8) + 347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 348 part_size *= (size_t)(hc_erase_grp_sz * 349 hc_wp_grp_sz); 350 mmc_part_add(card, part_size << 19, 351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 352 "gp%d", idx, false, 353 MMC_BLK_DATA_AREA_GP); 354 } 355 } 356 } 357 358 /* Minimum partition switch timeout in milliseconds */ 359 #define MMC_MIN_PART_SWITCH_TIME 300 360 361 /* 362 * Decode extended CSD. 363 */ 364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 365 { 366 int err = 0, idx; 367 unsigned int part_size; 368 struct device_node *np; 369 bool broken_hpi = false; 370 371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 373 if (card->csd.structure == 3) { 374 if (card->ext_csd.raw_ext_csd_structure > 2) { 375 pr_err("%s: unrecognised EXT_CSD structure " 376 "version %d\n", mmc_hostname(card->host), 377 card->ext_csd.raw_ext_csd_structure); 378 err = -EINVAL; 379 goto out; 380 } 381 } 382 383 np = mmc_of_find_child_device(card->host, 0); 384 if (np && of_device_is_compatible(np, "mmc-card")) 385 broken_hpi = of_property_read_bool(np, "broken-hpi"); 386 of_node_put(np); 387 388 /* 389 * The EXT_CSD format is meant to be forward compatible. As long 390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 391 * are authorized, see JEDEC JESD84-B50 section B.8. 392 */ 393 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 394 395 /* fixup device after ext_csd revision field is updated */ 396 mmc_fixup_device(card, mmc_ext_csd_fixups); 397 398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 402 if (card->ext_csd.rev >= 2) { 403 card->ext_csd.sectors = 404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 408 409 /* Cards with density > 2GiB are sector addressed */ 410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 411 mmc_card_set_blockaddr(card); 412 } 413 414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 416 mmc_select_card_type(card); 417 418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 419 card->ext_csd.raw_erase_timeout_mult = 420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 421 card->ext_csd.raw_hc_erase_grp_size = 422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 423 if (card->ext_csd.rev >= 3) { 424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 426 427 /* EXT_CSD value is in units of 10ms, but we store in ms */ 428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 429 /* Some eMMC set the value too low so set a minimum */ 430 if (card->ext_csd.part_time && 431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 433 434 /* Sleep / awake timeout in 100ns units */ 435 if (sa_shift > 0 && sa_shift <= 0x17) 436 card->ext_csd.sa_timeout = 437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 438 card->ext_csd.erase_group_def = 439 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 440 card->ext_csd.hc_erase_timeout = 300 * 441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 442 card->ext_csd.hc_erase_size = 443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 444 445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 446 447 /* 448 * There are two boot regions of equal size, defined in 449 * multiples of 128K. 450 */ 451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 454 mmc_part_add(card, part_size, 455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 456 "boot%d", idx, true, 457 MMC_BLK_DATA_AREA_BOOT); 458 } 459 } 460 } 461 462 card->ext_csd.raw_hc_erase_gap_size = 463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 464 card->ext_csd.raw_sec_trim_mult = 465 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 466 card->ext_csd.raw_sec_erase_mult = 467 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 468 card->ext_csd.raw_sec_feature_support = 469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 470 card->ext_csd.raw_trim_mult = 471 ext_csd[EXT_CSD_TRIM_MULT]; 472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 474 if (card->ext_csd.rev >= 4) { 475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 476 EXT_CSD_PART_SETTING_COMPLETED) 477 card->ext_csd.partition_setting_completed = 1; 478 else 479 card->ext_csd.partition_setting_completed = 0; 480 481 mmc_manage_enhanced_area(card, ext_csd); 482 483 mmc_manage_gp_partitions(card, ext_csd); 484 485 card->ext_csd.sec_trim_mult = 486 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 487 card->ext_csd.sec_erase_mult = 488 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 489 card->ext_csd.sec_feature_support = 490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 491 card->ext_csd.trim_timeout = 300 * 492 ext_csd[EXT_CSD_TRIM_MULT]; 493 494 /* 495 * Note that the call to mmc_part_add above defaults to read 496 * only. If this default assumption is changed, the call must 497 * take into account the value of boot_locked below. 498 */ 499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 500 card->ext_csd.boot_ro_lockable = true; 501 502 /* Save power class values */ 503 card->ext_csd.raw_pwr_cl_52_195 = 504 ext_csd[EXT_CSD_PWR_CL_52_195]; 505 card->ext_csd.raw_pwr_cl_26_195 = 506 ext_csd[EXT_CSD_PWR_CL_26_195]; 507 card->ext_csd.raw_pwr_cl_52_360 = 508 ext_csd[EXT_CSD_PWR_CL_52_360]; 509 card->ext_csd.raw_pwr_cl_26_360 = 510 ext_csd[EXT_CSD_PWR_CL_26_360]; 511 card->ext_csd.raw_pwr_cl_200_195 = 512 ext_csd[EXT_CSD_PWR_CL_200_195]; 513 card->ext_csd.raw_pwr_cl_200_360 = 514 ext_csd[EXT_CSD_PWR_CL_200_360]; 515 card->ext_csd.raw_pwr_cl_ddr_52_195 = 516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 517 card->ext_csd.raw_pwr_cl_ddr_52_360 = 518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 519 card->ext_csd.raw_pwr_cl_ddr_200_360 = 520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 521 } 522 523 if (card->ext_csd.rev >= 5) { 524 /* Adjust production date as per JEDEC JESD84-B451 */ 525 if (card->cid.year < 2010) 526 card->cid.year += 16; 527 528 /* check whether the eMMC card supports BKOPS */ 529 if (!mmc_card_broken_hpi(card) && 530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 531 card->ext_csd.bkops = 1; 532 card->ext_csd.man_bkops_en = 533 (ext_csd[EXT_CSD_BKOPS_EN] & 534 EXT_CSD_MANUAL_BKOPS_MASK); 535 card->ext_csd.raw_bkops_status = 536 ext_csd[EXT_CSD_BKOPS_STATUS]; 537 if (card->ext_csd.man_bkops_en) 538 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 539 mmc_hostname(card->host)); 540 card->ext_csd.auto_bkops_en = 541 (ext_csd[EXT_CSD_BKOPS_EN] & 542 EXT_CSD_AUTO_BKOPS_MASK); 543 if (card->ext_csd.auto_bkops_en) 544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 545 mmc_hostname(card->host)); 546 } 547 548 /* check whether the eMMC card supports HPI */ 549 if (!mmc_card_broken_hpi(card) && 550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 551 card->ext_csd.hpi = 1; 552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 554 else 555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 556 /* 557 * Indicate the maximum timeout to close 558 * a command interrupted by HPI 559 */ 560 card->ext_csd.out_of_int_time = 561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 562 } 563 564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 566 567 /* 568 * RPMB regions are defined in multiples of 128K. 569 */ 570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 573 EXT_CSD_PART_CONFIG_ACC_RPMB, 574 "rpmb", 0, false, 575 MMC_BLK_DATA_AREA_RPMB); 576 } 577 } 578 579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 581 card->erased_byte = 0xFF; 582 else 583 card->erased_byte = 0x0; 584 585 /* eMMC v4.5 or later */ 586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 587 if (card->ext_csd.rev >= 6) { 588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 589 590 card->ext_csd.generic_cmd6_time = 10 * 591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 592 card->ext_csd.power_off_longtime = 10 * 593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 594 595 card->ext_csd.cache_size = 596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 600 601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 602 card->ext_csd.data_sector_size = 4096; 603 else 604 card->ext_csd.data_sector_size = 512; 605 606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 608 card->ext_csd.data_tag_unit_size = 609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 610 (card->ext_csd.data_sector_size); 611 } else { 612 card->ext_csd.data_tag_unit_size = 0; 613 } 614 615 card->ext_csd.max_packed_writes = 616 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 617 card->ext_csd.max_packed_reads = 618 ext_csd[EXT_CSD_MAX_PACKED_READS]; 619 } else { 620 card->ext_csd.data_sector_size = 512; 621 } 622 623 /* eMMC v5 or later */ 624 if (card->ext_csd.rev >= 7) { 625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 626 MMC_FIRMWARE_LEN); 627 card->ext_csd.ffu_capable = 628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 630 631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 632 card->ext_csd.device_life_time_est_typ_a = 633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 634 card->ext_csd.device_life_time_est_typ_b = 635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 636 } 637 638 /* eMMC v5.1 or later */ 639 if (card->ext_csd.rev >= 8) { 640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 641 EXT_CSD_CMDQ_SUPPORTED; 642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 643 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 644 /* Exclude inefficiently small queue depths */ 645 if (card->ext_csd.cmdq_depth <= 2) { 646 card->ext_csd.cmdq_support = false; 647 card->ext_csd.cmdq_depth = 0; 648 } 649 if (card->ext_csd.cmdq_support) { 650 pr_debug("%s: Command Queue supported depth %u\n", 651 mmc_hostname(card->host), 652 card->ext_csd.cmdq_depth); 653 } 654 } 655 out: 656 return err; 657 } 658 659 static int mmc_read_ext_csd(struct mmc_card *card) 660 { 661 u8 *ext_csd; 662 int err; 663 664 if (!mmc_can_ext_csd(card)) 665 return 0; 666 667 err = mmc_get_ext_csd(card, &ext_csd); 668 if (err) { 669 /* If the host or the card can't do the switch, 670 * fail more gracefully. */ 671 if ((err != -EINVAL) 672 && (err != -ENOSYS) 673 && (err != -EFAULT)) 674 return err; 675 676 /* 677 * High capacity cards should have this "magic" size 678 * stored in their CSD. 679 */ 680 if (card->csd.capacity == (4096 * 512)) { 681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 682 mmc_hostname(card->host)); 683 } else { 684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 685 mmc_hostname(card->host)); 686 err = 0; 687 } 688 689 return err; 690 } 691 692 err = mmc_decode_ext_csd(card, ext_csd); 693 kfree(ext_csd); 694 return err; 695 } 696 697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 698 { 699 u8 *bw_ext_csd; 700 int err; 701 702 if (bus_width == MMC_BUS_WIDTH_1) 703 return 0; 704 705 err = mmc_get_ext_csd(card, &bw_ext_csd); 706 if (err) 707 return err; 708 709 /* only compare read only fields */ 710 err = !((card->ext_csd.raw_partition_support == 711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 712 (card->ext_csd.raw_erased_mem_count == 713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 714 (card->ext_csd.rev == 715 bw_ext_csd[EXT_CSD_REV]) && 716 (card->ext_csd.raw_ext_csd_structure == 717 bw_ext_csd[EXT_CSD_STRUCTURE]) && 718 (card->ext_csd.raw_card_type == 719 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 720 (card->ext_csd.raw_s_a_timeout == 721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 722 (card->ext_csd.raw_hc_erase_gap_size == 723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 724 (card->ext_csd.raw_erase_timeout_mult == 725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 726 (card->ext_csd.raw_hc_erase_grp_size == 727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 728 (card->ext_csd.raw_sec_trim_mult == 729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 730 (card->ext_csd.raw_sec_erase_mult == 731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 732 (card->ext_csd.raw_sec_feature_support == 733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 734 (card->ext_csd.raw_trim_mult == 735 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 736 (card->ext_csd.raw_sectors[0] == 737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 738 (card->ext_csd.raw_sectors[1] == 739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 740 (card->ext_csd.raw_sectors[2] == 741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 742 (card->ext_csd.raw_sectors[3] == 743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 744 (card->ext_csd.raw_pwr_cl_52_195 == 745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 746 (card->ext_csd.raw_pwr_cl_26_195 == 747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 748 (card->ext_csd.raw_pwr_cl_52_360 == 749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 750 (card->ext_csd.raw_pwr_cl_26_360 == 751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 752 (card->ext_csd.raw_pwr_cl_200_195 == 753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 754 (card->ext_csd.raw_pwr_cl_200_360 == 755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 756 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 758 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 760 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 762 763 if (err) 764 err = -EINVAL; 765 766 kfree(bw_ext_csd); 767 return err; 768 } 769 770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 771 card->raw_cid[2], card->raw_cid[3]); 772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 773 card->raw_csd[2], card->raw_csd[3]); 774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 783 MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info); 784 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 785 card->ext_csd.device_life_time_est_typ_a, 786 card->ext_csd.device_life_time_est_typ_b); 787 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 788 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 789 card->ext_csd.enhanced_area_offset); 790 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 791 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 792 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 793 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr); 794 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 795 796 static ssize_t mmc_fwrev_show(struct device *dev, 797 struct device_attribute *attr, 798 char *buf) 799 { 800 struct mmc_card *card = mmc_dev_to_card(dev); 801 802 if (card->ext_csd.rev < 7) { 803 return sprintf(buf, "0x%x\n", card->cid.fwrev); 804 } else { 805 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 806 card->ext_csd.fwrev); 807 } 808 } 809 810 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 811 812 static ssize_t mmc_dsr_show(struct device *dev, 813 struct device_attribute *attr, 814 char *buf) 815 { 816 struct mmc_card *card = mmc_dev_to_card(dev); 817 struct mmc_host *host = card->host; 818 819 if (card->csd.dsr_imp && host->dsr_req) 820 return sprintf(buf, "0x%x\n", host->dsr); 821 else 822 /* return default DSR value */ 823 return sprintf(buf, "0x%x\n", 0x404); 824 } 825 826 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 827 828 static struct attribute *mmc_std_attrs[] = { 829 &dev_attr_cid.attr, 830 &dev_attr_csd.attr, 831 &dev_attr_date.attr, 832 &dev_attr_erase_size.attr, 833 &dev_attr_preferred_erase_size.attr, 834 &dev_attr_fwrev.attr, 835 &dev_attr_ffu_capable.attr, 836 &dev_attr_hwrev.attr, 837 &dev_attr_manfid.attr, 838 &dev_attr_name.attr, 839 &dev_attr_oemid.attr, 840 &dev_attr_prv.attr, 841 &dev_attr_pre_eol_info.attr, 842 &dev_attr_life_time.attr, 843 &dev_attr_serial.attr, 844 &dev_attr_enhanced_area_offset.attr, 845 &dev_attr_enhanced_area_size.attr, 846 &dev_attr_raw_rpmb_size_mult.attr, 847 &dev_attr_rel_sectors.attr, 848 &dev_attr_ocr.attr, 849 &dev_attr_dsr.attr, 850 &dev_attr_cmdq_en.attr, 851 NULL, 852 }; 853 ATTRIBUTE_GROUPS(mmc_std); 854 855 static struct device_type mmc_type = { 856 .groups = mmc_std_groups, 857 }; 858 859 /* 860 * Select the PowerClass for the current bus width 861 * If power class is defined for 4/8 bit bus in the 862 * extended CSD register, select it by executing the 863 * mmc_switch command. 864 */ 865 static int __mmc_select_powerclass(struct mmc_card *card, 866 unsigned int bus_width) 867 { 868 struct mmc_host *host = card->host; 869 struct mmc_ext_csd *ext_csd = &card->ext_csd; 870 unsigned int pwrclass_val = 0; 871 int err = 0; 872 873 switch (1 << host->ios.vdd) { 874 case MMC_VDD_165_195: 875 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 876 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 877 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 878 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 879 ext_csd->raw_pwr_cl_52_195 : 880 ext_csd->raw_pwr_cl_ddr_52_195; 881 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 882 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 883 break; 884 case MMC_VDD_27_28: 885 case MMC_VDD_28_29: 886 case MMC_VDD_29_30: 887 case MMC_VDD_30_31: 888 case MMC_VDD_31_32: 889 case MMC_VDD_32_33: 890 case MMC_VDD_33_34: 891 case MMC_VDD_34_35: 892 case MMC_VDD_35_36: 893 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 894 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 895 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 896 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 897 ext_csd->raw_pwr_cl_52_360 : 898 ext_csd->raw_pwr_cl_ddr_52_360; 899 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 900 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 901 ext_csd->raw_pwr_cl_ddr_200_360 : 902 ext_csd->raw_pwr_cl_200_360; 903 break; 904 default: 905 pr_warn("%s: Voltage range not supported for power class\n", 906 mmc_hostname(host)); 907 return -EINVAL; 908 } 909 910 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 911 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 912 EXT_CSD_PWR_CL_8BIT_SHIFT; 913 else 914 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 915 EXT_CSD_PWR_CL_4BIT_SHIFT; 916 917 /* If the power class is different from the default value */ 918 if (pwrclass_val > 0) { 919 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 920 EXT_CSD_POWER_CLASS, 921 pwrclass_val, 922 card->ext_csd.generic_cmd6_time); 923 } 924 925 return err; 926 } 927 928 static int mmc_select_powerclass(struct mmc_card *card) 929 { 930 struct mmc_host *host = card->host; 931 u32 bus_width, ext_csd_bits; 932 int err, ddr; 933 934 /* Power class selection is supported for versions >= 4.0 */ 935 if (!mmc_can_ext_csd(card)) 936 return 0; 937 938 bus_width = host->ios.bus_width; 939 /* Power class values are defined only for 4/8 bit bus */ 940 if (bus_width == MMC_BUS_WIDTH_1) 941 return 0; 942 943 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 944 if (ddr) 945 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 946 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 947 else 948 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 949 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 950 951 err = __mmc_select_powerclass(card, ext_csd_bits); 952 if (err) 953 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 954 mmc_hostname(host), 1 << bus_width, ddr); 955 956 return err; 957 } 958 959 /* 960 * Set the bus speed for the selected speed mode. 961 */ 962 static void mmc_set_bus_speed(struct mmc_card *card) 963 { 964 unsigned int max_dtr = (unsigned int)-1; 965 966 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 967 max_dtr > card->ext_csd.hs200_max_dtr) 968 max_dtr = card->ext_csd.hs200_max_dtr; 969 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 970 max_dtr = card->ext_csd.hs_max_dtr; 971 else if (max_dtr > card->csd.max_dtr) 972 max_dtr = card->csd.max_dtr; 973 974 mmc_set_clock(card->host, max_dtr); 975 } 976 977 /* 978 * Select the bus width amoung 4-bit and 8-bit(SDR). 979 * If the bus width is changed successfully, return the selected width value. 980 * Zero is returned instead of error value if the wide width is not supported. 981 */ 982 static int mmc_select_bus_width(struct mmc_card *card) 983 { 984 static unsigned ext_csd_bits[] = { 985 EXT_CSD_BUS_WIDTH_8, 986 EXT_CSD_BUS_WIDTH_4, 987 }; 988 static unsigned bus_widths[] = { 989 MMC_BUS_WIDTH_8, 990 MMC_BUS_WIDTH_4, 991 }; 992 struct mmc_host *host = card->host; 993 unsigned idx, bus_width = 0; 994 int err = 0; 995 996 if (!mmc_can_ext_csd(card) || 997 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 998 return 0; 999 1000 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1001 1002 /* 1003 * Unlike SD, MMC cards dont have a configuration register to notify 1004 * supported bus width. So bus test command should be run to identify 1005 * the supported bus width or compare the ext csd values of current 1006 * bus width and ext csd values of 1 bit mode read earlier. 1007 */ 1008 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1009 /* 1010 * Host is capable of 8bit transfer, then switch 1011 * the device to work in 8bit transfer mode. If the 1012 * mmc switch command returns error then switch to 1013 * 4bit transfer mode. On success set the corresponding 1014 * bus width on the host. 1015 */ 1016 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1017 EXT_CSD_BUS_WIDTH, 1018 ext_csd_bits[idx], 1019 card->ext_csd.generic_cmd6_time); 1020 if (err) 1021 continue; 1022 1023 bus_width = bus_widths[idx]; 1024 mmc_set_bus_width(host, bus_width); 1025 1026 /* 1027 * If controller can't handle bus width test, 1028 * compare ext_csd previously read in 1 bit mode 1029 * against ext_csd at new bus width 1030 */ 1031 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1032 err = mmc_compare_ext_csds(card, bus_width); 1033 else 1034 err = mmc_bus_test(card, bus_width); 1035 1036 if (!err) { 1037 err = bus_width; 1038 break; 1039 } else { 1040 pr_warn("%s: switch to bus width %d failed\n", 1041 mmc_hostname(host), 1 << bus_width); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /* 1049 * Switch to the high-speed mode 1050 */ 1051 static int mmc_select_hs(struct mmc_card *card) 1052 { 1053 int err; 1054 1055 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1056 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1057 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1058 true, true, true); 1059 if (err) 1060 pr_warn("%s: switch to high-speed failed, err:%d\n", 1061 mmc_hostname(card->host), err); 1062 1063 return err; 1064 } 1065 1066 /* 1067 * Activate wide bus and DDR if supported. 1068 */ 1069 static int mmc_select_hs_ddr(struct mmc_card *card) 1070 { 1071 struct mmc_host *host = card->host; 1072 u32 bus_width, ext_csd_bits; 1073 int err = 0; 1074 1075 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1076 return 0; 1077 1078 bus_width = host->ios.bus_width; 1079 if (bus_width == MMC_BUS_WIDTH_1) 1080 return 0; 1081 1082 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1083 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1084 1085 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1086 EXT_CSD_BUS_WIDTH, 1087 ext_csd_bits, 1088 card->ext_csd.generic_cmd6_time, 1089 MMC_TIMING_MMC_DDR52, 1090 true, true, true); 1091 if (err) { 1092 pr_err("%s: switch to bus width %d ddr failed\n", 1093 mmc_hostname(host), 1 << bus_width); 1094 return err; 1095 } 1096 1097 /* 1098 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1099 * signaling. 1100 * 1101 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1102 * 1103 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1104 * in the JEDEC spec for DDR. 1105 * 1106 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1107 * host controller can support this, like some of the SDHCI 1108 * controller which connect to an eMMC device. Some of these 1109 * host controller still needs to use 1.8v vccq for supporting 1110 * DDR mode. 1111 * 1112 * So the sequence will be: 1113 * if (host and device can both support 1.2v IO) 1114 * use 1.2v IO; 1115 * else if (host and device can both support 1.8v IO) 1116 * use 1.8v IO; 1117 * so if host and device can only support 3.3v IO, this is the 1118 * last choice. 1119 * 1120 * WARNING: eMMC rules are NOT the same as SD DDR 1121 */ 1122 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1123 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1124 if (!err) 1125 return 0; 1126 } 1127 1128 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1129 host->caps & MMC_CAP_1_8V_DDR) 1130 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1131 1132 /* make sure vccq is 3.3v after switching disaster */ 1133 if (err) 1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1135 1136 return err; 1137 } 1138 1139 static int mmc_select_hs400(struct mmc_card *card) 1140 { 1141 struct mmc_host *host = card->host; 1142 unsigned int max_dtr; 1143 int err = 0; 1144 u8 val; 1145 1146 /* 1147 * HS400 mode requires 8-bit bus width 1148 */ 1149 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1150 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1151 return 0; 1152 1153 /* Switch card to HS mode */ 1154 val = EXT_CSD_TIMING_HS; 1155 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1156 EXT_CSD_HS_TIMING, val, 1157 card->ext_csd.generic_cmd6_time, 0, 1158 true, false, true); 1159 if (err) { 1160 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1161 mmc_hostname(host), err); 1162 return err; 1163 } 1164 1165 /* Set host controller to HS timing */ 1166 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1167 1168 /* Reduce frequency to HS frequency */ 1169 max_dtr = card->ext_csd.hs_max_dtr; 1170 mmc_set_clock(host, max_dtr); 1171 1172 err = mmc_switch_status(card); 1173 if (err) 1174 goto out_err; 1175 1176 /* Switch card to DDR */ 1177 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1178 EXT_CSD_BUS_WIDTH, 1179 EXT_CSD_DDR_BUS_WIDTH_8, 1180 card->ext_csd.generic_cmd6_time); 1181 if (err) { 1182 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1183 mmc_hostname(host), err); 1184 return err; 1185 } 1186 1187 /* Switch card to HS400 */ 1188 val = EXT_CSD_TIMING_HS400 | 1189 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1190 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1191 EXT_CSD_HS_TIMING, val, 1192 card->ext_csd.generic_cmd6_time, 0, 1193 true, false, true); 1194 if (err) { 1195 pr_err("%s: switch to hs400 failed, err:%d\n", 1196 mmc_hostname(host), err); 1197 return err; 1198 } 1199 1200 /* Set host controller to HS400 timing and frequency */ 1201 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1202 mmc_set_bus_speed(card); 1203 1204 err = mmc_switch_status(card); 1205 if (err) 1206 goto out_err; 1207 1208 return 0; 1209 1210 out_err: 1211 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1212 __func__, err); 1213 return err; 1214 } 1215 1216 int mmc_hs200_to_hs400(struct mmc_card *card) 1217 { 1218 return mmc_select_hs400(card); 1219 } 1220 1221 int mmc_hs400_to_hs200(struct mmc_card *card) 1222 { 1223 struct mmc_host *host = card->host; 1224 unsigned int max_dtr; 1225 int err; 1226 u8 val; 1227 1228 /* Reduce frequency to HS */ 1229 max_dtr = card->ext_csd.hs_max_dtr; 1230 mmc_set_clock(host, max_dtr); 1231 1232 /* Switch HS400 to HS DDR */ 1233 val = EXT_CSD_TIMING_HS; 1234 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1235 val, card->ext_csd.generic_cmd6_time, 0, 1236 true, false, true); 1237 if (err) 1238 goto out_err; 1239 1240 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1241 1242 err = mmc_switch_status(card); 1243 if (err) 1244 goto out_err; 1245 1246 /* Switch HS DDR to HS */ 1247 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1248 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1249 0, true, false, true); 1250 if (err) 1251 goto out_err; 1252 1253 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1254 1255 err = mmc_switch_status(card); 1256 if (err) 1257 goto out_err; 1258 1259 /* Switch HS to HS200 */ 1260 val = EXT_CSD_TIMING_HS200 | 1261 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1262 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1263 val, card->ext_csd.generic_cmd6_time, 0, 1264 true, false, true); 1265 if (err) 1266 goto out_err; 1267 1268 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1269 1270 /* 1271 * For HS200, CRC errors are not a reliable way to know the switch 1272 * failed. If there really is a problem, we would expect tuning will 1273 * fail and the result ends up the same. 1274 */ 1275 err = __mmc_switch_status(card, false); 1276 if (err) 1277 goto out_err; 1278 1279 mmc_set_bus_speed(card); 1280 1281 return 0; 1282 1283 out_err: 1284 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1285 __func__, err); 1286 return err; 1287 } 1288 1289 static int mmc_select_hs400es(struct mmc_card *card) 1290 { 1291 struct mmc_host *host = card->host; 1292 int err = -EINVAL; 1293 u8 val; 1294 1295 if (!(host->caps & MMC_CAP_8_BIT_DATA)) { 1296 err = -ENOTSUPP; 1297 goto out_err; 1298 } 1299 1300 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1301 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1302 1303 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1304 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1305 1306 /* If fails try again during next card power cycle */ 1307 if (err) 1308 goto out_err; 1309 1310 err = mmc_select_bus_width(card); 1311 if (err < 0) 1312 goto out_err; 1313 1314 /* Switch card to HS mode */ 1315 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1316 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1317 card->ext_csd.generic_cmd6_time, 0, 1318 true, false, true); 1319 if (err) { 1320 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1321 mmc_hostname(host), err); 1322 goto out_err; 1323 } 1324 1325 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1326 err = mmc_switch_status(card); 1327 if (err) 1328 goto out_err; 1329 1330 mmc_set_clock(host, card->ext_csd.hs_max_dtr); 1331 1332 /* Switch card to DDR with strobe bit */ 1333 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1334 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1335 EXT_CSD_BUS_WIDTH, 1336 val, 1337 card->ext_csd.generic_cmd6_time); 1338 if (err) { 1339 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1340 mmc_hostname(host), err); 1341 goto out_err; 1342 } 1343 1344 /* Switch card to HS400 */ 1345 val = EXT_CSD_TIMING_HS400 | 1346 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1347 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1348 EXT_CSD_HS_TIMING, val, 1349 card->ext_csd.generic_cmd6_time, 0, 1350 true, false, true); 1351 if (err) { 1352 pr_err("%s: switch to hs400es failed, err:%d\n", 1353 mmc_hostname(host), err); 1354 goto out_err; 1355 } 1356 1357 /* Set host controller to HS400 timing and frequency */ 1358 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1359 1360 /* Controller enable enhanced strobe function */ 1361 host->ios.enhanced_strobe = true; 1362 if (host->ops->hs400_enhanced_strobe) 1363 host->ops->hs400_enhanced_strobe(host, &host->ios); 1364 1365 err = mmc_switch_status(card); 1366 if (err) 1367 goto out_err; 1368 1369 return 0; 1370 1371 out_err: 1372 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1373 __func__, err); 1374 return err; 1375 } 1376 1377 static void mmc_select_driver_type(struct mmc_card *card) 1378 { 1379 int card_drv_type, drive_strength, drv_type; 1380 1381 card_drv_type = card->ext_csd.raw_driver_strength | 1382 mmc_driver_type_mask(0); 1383 1384 drive_strength = mmc_select_drive_strength(card, 1385 card->ext_csd.hs200_max_dtr, 1386 card_drv_type, &drv_type); 1387 1388 card->drive_strength = drive_strength; 1389 1390 if (drv_type) 1391 mmc_set_driver_type(card->host, drv_type); 1392 } 1393 1394 /* 1395 * For device supporting HS200 mode, the following sequence 1396 * should be done before executing the tuning process. 1397 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1398 * 2. switch to HS200 mode 1399 * 3. set the clock to > 52Mhz and <=200MHz 1400 */ 1401 static int mmc_select_hs200(struct mmc_card *card) 1402 { 1403 struct mmc_host *host = card->host; 1404 unsigned int old_timing, old_signal_voltage; 1405 int err = -EINVAL; 1406 u8 val; 1407 1408 old_signal_voltage = host->ios.signal_voltage; 1409 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1410 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1411 1412 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1413 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1414 1415 /* If fails try again during next card power cycle */ 1416 if (err) 1417 return err; 1418 1419 mmc_select_driver_type(card); 1420 1421 /* 1422 * Set the bus width(4 or 8) with host's support and 1423 * switch to HS200 mode if bus width is set successfully. 1424 */ 1425 err = mmc_select_bus_width(card); 1426 if (err > 0) { 1427 val = EXT_CSD_TIMING_HS200 | 1428 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1429 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1430 EXT_CSD_HS_TIMING, val, 1431 card->ext_csd.generic_cmd6_time, 0, 1432 true, false, true); 1433 if (err) 1434 goto err; 1435 old_timing = host->ios.timing; 1436 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1437 1438 /* 1439 * For HS200, CRC errors are not a reliable way to know the 1440 * switch failed. If there really is a problem, we would expect 1441 * tuning will fail and the result ends up the same. 1442 */ 1443 err = __mmc_switch_status(card, false); 1444 1445 /* 1446 * mmc_select_timing() assumes timing has not changed if 1447 * it is a switch error. 1448 */ 1449 if (err == -EBADMSG) 1450 mmc_set_timing(host, old_timing); 1451 } 1452 err: 1453 if (err) { 1454 /* fall back to the old signal voltage, if fails report error */ 1455 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1456 err = -EIO; 1457 1458 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1459 __func__, err); 1460 } 1461 return err; 1462 } 1463 1464 /* 1465 * Activate High Speed, HS200 or HS400ES mode if supported. 1466 */ 1467 static int mmc_select_timing(struct mmc_card *card) 1468 { 1469 int err = 0; 1470 1471 if (!mmc_can_ext_csd(card)) 1472 goto bus_speed; 1473 1474 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) 1475 err = mmc_select_hs400es(card); 1476 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1477 err = mmc_select_hs200(card); 1478 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1479 err = mmc_select_hs(card); 1480 1481 if (err && err != -EBADMSG) 1482 return err; 1483 1484 bus_speed: 1485 /* 1486 * Set the bus speed to the selected bus timing. 1487 * If timing is not selected, backward compatible is the default. 1488 */ 1489 mmc_set_bus_speed(card); 1490 return 0; 1491 } 1492 1493 /* 1494 * Execute tuning sequence to seek the proper bus operating 1495 * conditions for HS200 and HS400, which sends CMD21 to the device. 1496 */ 1497 static int mmc_hs200_tuning(struct mmc_card *card) 1498 { 1499 struct mmc_host *host = card->host; 1500 1501 /* 1502 * Timing should be adjusted to the HS400 target 1503 * operation frequency for tuning process 1504 */ 1505 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1506 host->ios.bus_width == MMC_BUS_WIDTH_8) 1507 if (host->ops->prepare_hs400_tuning) 1508 host->ops->prepare_hs400_tuning(host, &host->ios); 1509 1510 return mmc_execute_tuning(card); 1511 } 1512 1513 /* 1514 * Handle the detection and initialisation of a card. 1515 * 1516 * In the case of a resume, "oldcard" will contain the card 1517 * we're trying to reinitialise. 1518 */ 1519 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1520 struct mmc_card *oldcard) 1521 { 1522 struct mmc_card *card; 1523 int err; 1524 u32 cid[4]; 1525 u32 rocr; 1526 1527 WARN_ON(!host->claimed); 1528 1529 /* Set correct bus mode for MMC before attempting init */ 1530 if (!mmc_host_is_spi(host)) 1531 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1532 1533 /* 1534 * Since we're changing the OCR value, we seem to 1535 * need to tell some cards to go back to the idle 1536 * state. We wait 1ms to give cards time to 1537 * respond. 1538 * mmc_go_idle is needed for eMMC that are asleep 1539 */ 1540 mmc_go_idle(host); 1541 1542 /* The extra bit indicates that we support high capacity */ 1543 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1544 if (err) 1545 goto err; 1546 1547 /* 1548 * For SPI, enable CRC as appropriate. 1549 */ 1550 if (mmc_host_is_spi(host)) { 1551 err = mmc_spi_set_crc(host, use_spi_crc); 1552 if (err) 1553 goto err; 1554 } 1555 1556 /* 1557 * Fetch CID from card. 1558 */ 1559 err = mmc_send_cid(host, cid); 1560 if (err) 1561 goto err; 1562 1563 if (oldcard) { 1564 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1565 err = -ENOENT; 1566 goto err; 1567 } 1568 1569 card = oldcard; 1570 } else { 1571 /* 1572 * Allocate card structure. 1573 */ 1574 card = mmc_alloc_card(host, &mmc_type); 1575 if (IS_ERR(card)) { 1576 err = PTR_ERR(card); 1577 goto err; 1578 } 1579 1580 card->ocr = ocr; 1581 card->type = MMC_TYPE_MMC; 1582 card->rca = 1; 1583 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1584 } 1585 1586 /* 1587 * Call the optional HC's init_card function to handle quirks. 1588 */ 1589 if (host->ops->init_card) 1590 host->ops->init_card(host, card); 1591 1592 /* 1593 * For native busses: set card RCA and quit open drain mode. 1594 */ 1595 if (!mmc_host_is_spi(host)) { 1596 err = mmc_set_relative_addr(card); 1597 if (err) 1598 goto free_card; 1599 1600 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1601 } 1602 1603 if (!oldcard) { 1604 /* 1605 * Fetch CSD from card. 1606 */ 1607 err = mmc_send_csd(card, card->raw_csd); 1608 if (err) 1609 goto free_card; 1610 1611 err = mmc_decode_csd(card); 1612 if (err) 1613 goto free_card; 1614 err = mmc_decode_cid(card); 1615 if (err) 1616 goto free_card; 1617 } 1618 1619 /* 1620 * handling only for cards supporting DSR and hosts requesting 1621 * DSR configuration 1622 */ 1623 if (card->csd.dsr_imp && host->dsr_req) 1624 mmc_set_dsr(host); 1625 1626 /* 1627 * Select card, as all following commands rely on that. 1628 */ 1629 if (!mmc_host_is_spi(host)) { 1630 err = mmc_select_card(card); 1631 if (err) 1632 goto free_card; 1633 } 1634 1635 if (!oldcard) { 1636 /* Read extended CSD. */ 1637 err = mmc_read_ext_csd(card); 1638 if (err) 1639 goto free_card; 1640 1641 /* 1642 * If doing byte addressing, check if required to do sector 1643 * addressing. Handle the case of <2GB cards needing sector 1644 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1645 * ocr register has bit 30 set for sector addressing. 1646 */ 1647 if (rocr & BIT(30)) 1648 mmc_card_set_blockaddr(card); 1649 1650 /* Erase size depends on CSD and Extended CSD */ 1651 mmc_set_erase_size(card); 1652 } 1653 1654 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1655 if (card->ext_csd.rev >= 3) { 1656 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1657 EXT_CSD_ERASE_GROUP_DEF, 1, 1658 card->ext_csd.generic_cmd6_time); 1659 1660 if (err && err != -EBADMSG) 1661 goto free_card; 1662 1663 if (err) { 1664 err = 0; 1665 /* 1666 * Just disable enhanced area off & sz 1667 * will try to enable ERASE_GROUP_DEF 1668 * during next time reinit 1669 */ 1670 card->ext_csd.enhanced_area_offset = -EINVAL; 1671 card->ext_csd.enhanced_area_size = -EINVAL; 1672 } else { 1673 card->ext_csd.erase_group_def = 1; 1674 /* 1675 * enable ERASE_GRP_DEF successfully. 1676 * This will affect the erase size, so 1677 * here need to reset erase size 1678 */ 1679 mmc_set_erase_size(card); 1680 } 1681 } 1682 1683 /* 1684 * Ensure eMMC user default partition is enabled 1685 */ 1686 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1687 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1688 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1689 card->ext_csd.part_config, 1690 card->ext_csd.part_time); 1691 if (err && err != -EBADMSG) 1692 goto free_card; 1693 } 1694 1695 /* 1696 * Enable power_off_notification byte in the ext_csd register 1697 */ 1698 if (card->ext_csd.rev >= 6) { 1699 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1700 EXT_CSD_POWER_OFF_NOTIFICATION, 1701 EXT_CSD_POWER_ON, 1702 card->ext_csd.generic_cmd6_time); 1703 if (err && err != -EBADMSG) 1704 goto free_card; 1705 1706 /* 1707 * The err can be -EBADMSG or 0, 1708 * so check for success and update the flag 1709 */ 1710 if (!err) 1711 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1712 } 1713 1714 /* 1715 * Select timing interface 1716 */ 1717 err = mmc_select_timing(card); 1718 if (err) 1719 goto free_card; 1720 1721 if (mmc_card_hs200(card)) { 1722 err = mmc_hs200_tuning(card); 1723 if (err) 1724 goto free_card; 1725 1726 err = mmc_select_hs400(card); 1727 if (err) 1728 goto free_card; 1729 } else if (!mmc_card_hs400es(card)) { 1730 /* Select the desired bus width optionally */ 1731 err = mmc_select_bus_width(card); 1732 if (err > 0 && mmc_card_hs(card)) { 1733 err = mmc_select_hs_ddr(card); 1734 if (err) 1735 goto free_card; 1736 } 1737 } 1738 1739 /* 1740 * Choose the power class with selected bus interface 1741 */ 1742 mmc_select_powerclass(card); 1743 1744 /* 1745 * Enable HPI feature (if supported) 1746 */ 1747 if (card->ext_csd.hpi) { 1748 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1749 EXT_CSD_HPI_MGMT, 1, 1750 card->ext_csd.generic_cmd6_time); 1751 if (err && err != -EBADMSG) 1752 goto free_card; 1753 if (err) { 1754 pr_warn("%s: Enabling HPI failed\n", 1755 mmc_hostname(card->host)); 1756 err = 0; 1757 } else 1758 card->ext_csd.hpi_en = 1; 1759 } 1760 1761 /* 1762 * If cache size is higher than 0, this indicates 1763 * the existence of cache and it can be turned on. 1764 */ 1765 if (!mmc_card_broken_hpi(card) && 1766 card->ext_csd.cache_size > 0) { 1767 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1768 EXT_CSD_CACHE_CTRL, 1, 1769 card->ext_csd.generic_cmd6_time); 1770 if (err && err != -EBADMSG) 1771 goto free_card; 1772 1773 /* 1774 * Only if no error, cache is turned on successfully. 1775 */ 1776 if (err) { 1777 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1778 mmc_hostname(card->host), err); 1779 card->ext_csd.cache_ctrl = 0; 1780 err = 0; 1781 } else { 1782 card->ext_csd.cache_ctrl = 1; 1783 } 1784 } 1785 1786 /* 1787 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1788 * disabled for a time, so a flag is needed to indicate to re-enable the 1789 * Command Queue. 1790 */ 1791 card->reenable_cmdq = card->ext_csd.cmdq_en; 1792 1793 /* 1794 * The mandatory minimum values are defined for packed command. 1795 * read: 5, write: 3 1796 */ 1797 if (card->ext_csd.max_packed_writes >= 3 && 1798 card->ext_csd.max_packed_reads >= 5 && 1799 host->caps2 & MMC_CAP2_PACKED_CMD) { 1800 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1801 EXT_CSD_EXP_EVENTS_CTRL, 1802 EXT_CSD_PACKED_EVENT_EN, 1803 card->ext_csd.generic_cmd6_time); 1804 if (err && err != -EBADMSG) 1805 goto free_card; 1806 if (err) { 1807 pr_warn("%s: Enabling packed event failed\n", 1808 mmc_hostname(card->host)); 1809 card->ext_csd.packed_event_en = 0; 1810 err = 0; 1811 } else { 1812 card->ext_csd.packed_event_en = 1; 1813 } 1814 } 1815 1816 if (!oldcard) 1817 host->card = card; 1818 1819 return 0; 1820 1821 free_card: 1822 if (!oldcard) 1823 mmc_remove_card(card); 1824 err: 1825 return err; 1826 } 1827 1828 static int mmc_can_sleep(struct mmc_card *card) 1829 { 1830 return (card && card->ext_csd.rev >= 3); 1831 } 1832 1833 static int mmc_sleep(struct mmc_host *host) 1834 { 1835 struct mmc_command cmd = {}; 1836 struct mmc_card *card = host->card; 1837 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1838 int err; 1839 1840 /* Re-tuning can't be done once the card is deselected */ 1841 mmc_retune_hold(host); 1842 1843 err = mmc_deselect_cards(host); 1844 if (err) 1845 goto out_release; 1846 1847 cmd.opcode = MMC_SLEEP_AWAKE; 1848 cmd.arg = card->rca << 16; 1849 cmd.arg |= 1 << 15; 1850 1851 /* 1852 * If the max_busy_timeout of the host is specified, validate it against 1853 * the sleep cmd timeout. A failure means we need to prevent the host 1854 * from doing hw busy detection, which is done by converting to a R1 1855 * response instead of a R1B. 1856 */ 1857 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { 1858 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1859 } else { 1860 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1861 cmd.busy_timeout = timeout_ms; 1862 } 1863 1864 err = mmc_wait_for_cmd(host, &cmd, 0); 1865 if (err) 1866 goto out_release; 1867 1868 /* 1869 * If the host does not wait while the card signals busy, then we will 1870 * will have to wait the sleep/awake timeout. Note, we cannot use the 1871 * SEND_STATUS command to poll the status because that command (and most 1872 * others) is invalid while the card sleeps. 1873 */ 1874 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1875 mmc_delay(timeout_ms); 1876 1877 out_release: 1878 mmc_retune_release(host); 1879 return err; 1880 } 1881 1882 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1883 { 1884 return card && 1885 mmc_card_mmc(card) && 1886 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1887 } 1888 1889 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1890 { 1891 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1892 int err; 1893 1894 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1895 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1896 timeout = card->ext_csd.power_off_longtime; 1897 1898 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1899 EXT_CSD_POWER_OFF_NOTIFICATION, 1900 notify_type, timeout, 0, true, false, false); 1901 if (err) 1902 pr_err("%s: Power Off Notification timed out, %u\n", 1903 mmc_hostname(card->host), timeout); 1904 1905 /* Disable the power off notification after the switch operation. */ 1906 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1907 1908 return err; 1909 } 1910 1911 /* 1912 * Host is being removed. Free up the current card. 1913 */ 1914 static void mmc_remove(struct mmc_host *host) 1915 { 1916 mmc_remove_card(host->card); 1917 host->card = NULL; 1918 } 1919 1920 /* 1921 * Card detection - card is alive. 1922 */ 1923 static int mmc_alive(struct mmc_host *host) 1924 { 1925 return mmc_send_status(host->card, NULL); 1926 } 1927 1928 /* 1929 * Card detection callback from host. 1930 */ 1931 static void mmc_detect(struct mmc_host *host) 1932 { 1933 int err; 1934 1935 mmc_get_card(host->card); 1936 1937 /* 1938 * Just check if our card has been removed. 1939 */ 1940 err = _mmc_detect_card_removed(host); 1941 1942 mmc_put_card(host->card); 1943 1944 if (err) { 1945 mmc_remove(host); 1946 1947 mmc_claim_host(host); 1948 mmc_detach_bus(host); 1949 mmc_power_off(host); 1950 mmc_release_host(host); 1951 } 1952 } 1953 1954 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 1955 { 1956 int err = 0; 1957 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 1958 EXT_CSD_POWER_OFF_LONG; 1959 1960 mmc_claim_host(host); 1961 1962 if (mmc_card_suspended(host->card)) 1963 goto out; 1964 1965 if (mmc_card_doing_bkops(host->card)) { 1966 err = mmc_stop_bkops(host->card); 1967 if (err) 1968 goto out; 1969 } 1970 1971 err = mmc_flush_cache(host->card); 1972 if (err) 1973 goto out; 1974 1975 if (mmc_can_poweroff_notify(host->card) && 1976 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 1977 err = mmc_poweroff_notify(host->card, notify_type); 1978 else if (mmc_can_sleep(host->card)) 1979 err = mmc_sleep(host); 1980 else if (!mmc_host_is_spi(host)) 1981 err = mmc_deselect_cards(host); 1982 1983 if (!err) { 1984 mmc_power_off(host); 1985 mmc_card_set_suspended(host->card); 1986 } 1987 out: 1988 mmc_release_host(host); 1989 return err; 1990 } 1991 1992 /* 1993 * Suspend callback 1994 */ 1995 static int mmc_suspend(struct mmc_host *host) 1996 { 1997 int err; 1998 1999 err = _mmc_suspend(host, true); 2000 if (!err) { 2001 pm_runtime_disable(&host->card->dev); 2002 pm_runtime_set_suspended(&host->card->dev); 2003 } 2004 2005 return err; 2006 } 2007 2008 /* 2009 * This function tries to determine if the same card is still present 2010 * and, if so, restore all state to it. 2011 */ 2012 static int _mmc_resume(struct mmc_host *host) 2013 { 2014 int err = 0; 2015 2016 mmc_claim_host(host); 2017 2018 if (!mmc_card_suspended(host->card)) 2019 goto out; 2020 2021 mmc_power_up(host, host->card->ocr); 2022 err = mmc_init_card(host, host->card->ocr, host->card); 2023 mmc_card_clr_suspended(host->card); 2024 2025 out: 2026 mmc_release_host(host); 2027 return err; 2028 } 2029 2030 /* 2031 * Shutdown callback 2032 */ 2033 static int mmc_shutdown(struct mmc_host *host) 2034 { 2035 int err = 0; 2036 2037 /* 2038 * In a specific case for poweroff notify, we need to resume the card 2039 * before we can shutdown it properly. 2040 */ 2041 if (mmc_can_poweroff_notify(host->card) && 2042 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2043 err = _mmc_resume(host); 2044 2045 if (!err) 2046 err = _mmc_suspend(host, false); 2047 2048 return err; 2049 } 2050 2051 /* 2052 * Callback for resume. 2053 */ 2054 static int mmc_resume(struct mmc_host *host) 2055 { 2056 pm_runtime_enable(&host->card->dev); 2057 return 0; 2058 } 2059 2060 /* 2061 * Callback for runtime_suspend. 2062 */ 2063 static int mmc_runtime_suspend(struct mmc_host *host) 2064 { 2065 int err; 2066 2067 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2068 return 0; 2069 2070 err = _mmc_suspend(host, true); 2071 if (err) 2072 pr_err("%s: error %d doing aggressive suspend\n", 2073 mmc_hostname(host), err); 2074 2075 return err; 2076 } 2077 2078 /* 2079 * Callback for runtime_resume. 2080 */ 2081 static int mmc_runtime_resume(struct mmc_host *host) 2082 { 2083 int err; 2084 2085 err = _mmc_resume(host); 2086 if (err && err != -ENOMEDIUM) 2087 pr_err("%s: error %d doing runtime resume\n", 2088 mmc_hostname(host), err); 2089 2090 return 0; 2091 } 2092 2093 static int mmc_can_reset(struct mmc_card *card) 2094 { 2095 u8 rst_n_function; 2096 2097 rst_n_function = card->ext_csd.rst_n_function; 2098 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2099 return 0; 2100 return 1; 2101 } 2102 2103 static int mmc_reset(struct mmc_host *host) 2104 { 2105 struct mmc_card *card = host->card; 2106 2107 /* 2108 * In the case of recovery, we can't expect flushing the cache to work 2109 * always, but we have a go and ignore errors. 2110 */ 2111 mmc_flush_cache(host->card); 2112 2113 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 2114 mmc_can_reset(card)) { 2115 /* If the card accept RST_n signal, send it. */ 2116 mmc_set_clock(host, host->f_init); 2117 host->ops->hw_reset(host); 2118 /* Set initial state and call mmc_set_ios */ 2119 mmc_set_initial_state(host); 2120 } else { 2121 /* Do a brute force power cycle */ 2122 mmc_power_cycle(host, card->ocr); 2123 mmc_pwrseq_reset(host); 2124 } 2125 return mmc_init_card(host, card->ocr, card); 2126 } 2127 2128 static const struct mmc_bus_ops mmc_ops = { 2129 .remove = mmc_remove, 2130 .detect = mmc_detect, 2131 .suspend = mmc_suspend, 2132 .resume = mmc_resume, 2133 .runtime_suspend = mmc_runtime_suspend, 2134 .runtime_resume = mmc_runtime_resume, 2135 .alive = mmc_alive, 2136 .shutdown = mmc_shutdown, 2137 .reset = mmc_reset, 2138 }; 2139 2140 /* 2141 * Starting point for MMC card init. 2142 */ 2143 int mmc_attach_mmc(struct mmc_host *host) 2144 { 2145 int err; 2146 u32 ocr, rocr; 2147 2148 WARN_ON(!host->claimed); 2149 2150 /* Set correct bus mode for MMC before attempting attach */ 2151 if (!mmc_host_is_spi(host)) 2152 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2153 2154 err = mmc_send_op_cond(host, 0, &ocr); 2155 if (err) 2156 return err; 2157 2158 mmc_attach_bus(host, &mmc_ops); 2159 if (host->ocr_avail_mmc) 2160 host->ocr_avail = host->ocr_avail_mmc; 2161 2162 /* 2163 * We need to get OCR a different way for SPI. 2164 */ 2165 if (mmc_host_is_spi(host)) { 2166 err = mmc_spi_read_ocr(host, 1, &ocr); 2167 if (err) 2168 goto err; 2169 } 2170 2171 rocr = mmc_select_voltage(host, ocr); 2172 2173 /* 2174 * Can we support the voltage of the card? 2175 */ 2176 if (!rocr) { 2177 err = -EINVAL; 2178 goto err; 2179 } 2180 2181 /* 2182 * Detect and init the card. 2183 */ 2184 err = mmc_init_card(host, rocr, NULL); 2185 if (err) 2186 goto err; 2187 2188 mmc_release_host(host); 2189 err = mmc_add_card(host->card); 2190 if (err) 2191 goto remove_card; 2192 2193 mmc_claim_host(host); 2194 return 0; 2195 2196 remove_card: 2197 mmc_remove_card(host->card); 2198 mmc_claim_host(host); 2199 host->card = NULL; 2200 err: 2201 mmc_detach_bus(host); 2202 2203 pr_err("%s: error %d whilst initialising MMC card\n", 2204 mmc_hostname(host), err); 2205 2206 return err; 2207 } 2208