xref: /linux/drivers/mmc/core/mmc.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 #include "quirks.h"
26 #include "sd_ops.h"
27 #include "pwrseq.h"
28 
29 #define DEFAULT_CMD6_TIMEOUT_MS	500
30 #define MIN_CACHE_EN_TIMEOUT_MS 1600
31 
32 static const unsigned int tran_exp[] = {
33 	10000,		100000,		1000000,	10000000,
34 	0,		0,		0,		0
35 };
36 
37 static const unsigned char tran_mant[] = {
38 	0,	10,	12,	13,	15,	20,	25,	30,
39 	35,	40,	45,	50,	55,	60,	70,	80,
40 };
41 
42 static const unsigned int taac_exp[] = {
43 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
44 };
45 
46 static const unsigned int taac_mant[] = {
47 	0,	10,	12,	13,	15,	20,	25,	30,
48 	35,	40,	45,	50,	55,	60,	70,	80,
49 };
50 
51 #define UNSTUFF_BITS(resp,start,size)					\
52 	({								\
53 		const int __size = size;				\
54 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
55 		const int __off = 3 - ((start) / 32);			\
56 		const int __shft = (start) & 31;			\
57 		u32 __res;						\
58 									\
59 		__res = resp[__off] >> __shft;				\
60 		if (__size + __shft > 32)				\
61 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
62 		__res & __mask;						\
63 	})
64 
65 /*
66  * Given the decoded CSD structure, decode the raw CID to our CID structure.
67  */
68 static int mmc_decode_cid(struct mmc_card *card)
69 {
70 	u32 *resp = card->raw_cid;
71 
72 	/*
73 	 * The selection of the format here is based upon published
74 	 * specs from sandisk and from what people have reported.
75 	 */
76 	switch (card->csd.mmca_vsn) {
77 	case 0: /* MMC v1.0 - v1.2 */
78 	case 1: /* MMC v1.4 */
79 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
80 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
81 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
82 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
83 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
84 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
85 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
86 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
87 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
88 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
89 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
90 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
91 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
92 		break;
93 
94 	case 2: /* MMC v2.0 - v2.2 */
95 	case 3: /* MMC v3.1 - v3.3 */
96 	case 4: /* MMC v4 */
97 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
98 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
99 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
100 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
101 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
102 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
103 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
104 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
105 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
106 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
107 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
108 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
109 		break;
110 
111 	default:
112 		pr_err("%s: card has unknown MMCA version %d\n",
113 			mmc_hostname(card->host), card->csd.mmca_vsn);
114 		return -EINVAL;
115 	}
116 
117 	return 0;
118 }
119 
120 static void mmc_set_erase_size(struct mmc_card *card)
121 {
122 	if (card->ext_csd.erase_group_def & 1)
123 		card->erase_size = card->ext_csd.hc_erase_size;
124 	else
125 		card->erase_size = card->csd.erase_size;
126 
127 	mmc_init_erase(card);
128 }
129 
130 /*
131  * Given a 128-bit response, decode to our card CSD structure.
132  */
133 static int mmc_decode_csd(struct mmc_card *card)
134 {
135 	struct mmc_csd *csd = &card->csd;
136 	unsigned int e, m, a, b;
137 	u32 *resp = card->raw_csd;
138 
139 	/*
140 	 * We only understand CSD structure v1.1 and v1.2.
141 	 * v1.2 has extra information in bits 15, 11 and 10.
142 	 * We also support eMMC v4.4 & v4.41.
143 	 */
144 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 	if (csd->structure == 0) {
146 		pr_err("%s: unrecognised CSD structure version %d\n",
147 			mmc_hostname(card->host), csd->structure);
148 		return -EINVAL;
149 	}
150 
151 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
152 	m = UNSTUFF_BITS(resp, 115, 4);
153 	e = UNSTUFF_BITS(resp, 112, 3);
154 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
156 
157 	m = UNSTUFF_BITS(resp, 99, 4);
158 	e = UNSTUFF_BITS(resp, 96, 3);
159 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
160 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
161 
162 	e = UNSTUFF_BITS(resp, 47, 3);
163 	m = UNSTUFF_BITS(resp, 62, 12);
164 	csd->capacity	  = (1 + m) << (e + 2);
165 
166 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174 
175 	if (csd->write_blkbits >= 9) {
176 		a = UNSTUFF_BITS(resp, 42, 5);
177 		b = UNSTUFF_BITS(resp, 37, 5);
178 		csd->erase_size = (a + 1) * (b + 1);
179 		csd->erase_size <<= csd->write_blkbits - 9;
180 	}
181 
182 	return 0;
183 }
184 
185 static void mmc_select_card_type(struct mmc_card *card)
186 {
187 	struct mmc_host *host = card->host;
188 	u8 card_type = card->ext_csd.raw_card_type;
189 	u32 caps = host->caps, caps2 = host->caps2;
190 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 	unsigned int avail_type = 0;
192 
193 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 	}
198 
199 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 	}
204 
205 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 	}
210 
211 	if (caps & MMC_CAP_1_2V_DDR &&
212 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 	}
216 
217 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 		hs200_max_dtr = MMC_HS200_MAX_DTR;
220 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 	}
222 
223 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 		hs200_max_dtr = MMC_HS200_MAX_DTR;
226 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 	}
228 
229 	if (caps2 & MMC_CAP2_HS400_1_8V &&
230 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 		hs200_max_dtr = MMC_HS200_MAX_DTR;
232 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 	}
234 
235 	if (caps2 & MMC_CAP2_HS400_1_2V &&
236 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 		hs200_max_dtr = MMC_HS200_MAX_DTR;
238 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 	}
240 
241 	if ((caps2 & MMC_CAP2_HS400_ES) &&
242 	    card->ext_csd.strobe_support &&
243 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245 
246 	card->ext_csd.hs_max_dtr = hs_max_dtr;
247 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 	card->mmc_avail_type = avail_type;
249 }
250 
251 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252 {
253 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
254 
255 	/*
256 	 * Disable these attributes by default
257 	 */
258 	card->ext_csd.enhanced_area_offset = -EINVAL;
259 	card->ext_csd.enhanced_area_size = -EINVAL;
260 
261 	/*
262 	 * Enhanced area feature support -- check whether the eMMC
263 	 * card has the Enhanced area enabled.  If so, export enhanced
264 	 * area offset and size to user by adding sysfs interface.
265 	 */
266 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 		if (card->ext_csd.partition_setting_completed) {
269 			hc_erase_grp_sz =
270 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 			hc_wp_grp_sz =
272 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273 
274 			/*
275 			 * calculate the enhanced data area offset, in bytes
276 			 */
277 			card->ext_csd.enhanced_area_offset =
278 				(((unsigned long long)ext_csd[139]) << 24) +
279 				(((unsigned long long)ext_csd[138]) << 16) +
280 				(((unsigned long long)ext_csd[137]) << 8) +
281 				(((unsigned long long)ext_csd[136]));
282 			if (mmc_card_blockaddr(card))
283 				card->ext_csd.enhanced_area_offset <<= 9;
284 			/*
285 			 * calculate the enhanced data area size, in kilobytes
286 			 */
287 			card->ext_csd.enhanced_area_size =
288 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 				ext_csd[140];
290 			card->ext_csd.enhanced_area_size *=
291 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 			card->ext_csd.enhanced_area_size <<= 9;
293 		} else {
294 			pr_warn("%s: defines enhanced area without partition setting complete\n",
295 				mmc_hostname(card->host));
296 		}
297 	}
298 }
299 
300 static void mmc_part_add(struct mmc_card *card, unsigned int size,
301 			 unsigned int part_cfg, char *name, int idx, bool ro,
302 			 int area_type)
303 {
304 	card->part[card->nr_parts].size = size;
305 	card->part[card->nr_parts].part_cfg = part_cfg;
306 	sprintf(card->part[card->nr_parts].name, name, idx);
307 	card->part[card->nr_parts].force_ro = ro;
308 	card->part[card->nr_parts].area_type = area_type;
309 	card->nr_parts++;
310 }
311 
312 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313 {
314 	int idx;
315 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 	unsigned int part_size;
317 
318 	/*
319 	 * General purpose partition feature support --
320 	 * If ext_csd has the size of general purpose partitions,
321 	 * set size, part_cfg, partition name in mmc_part.
322 	 */
323 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 	    EXT_CSD_PART_SUPPORT_PART_EN) {
325 		hc_erase_grp_sz =
326 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 		hc_wp_grp_sz =
328 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329 
330 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 				continue;
335 			if (card->ext_csd.partition_setting_completed == 0) {
336 				pr_warn("%s: has partition size defined without partition complete\n",
337 					mmc_hostname(card->host));
338 				break;
339 			}
340 			part_size =
341 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 				<< 16) +
343 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 				<< 8) +
345 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 			part_size *= (size_t)(hc_erase_grp_sz *
347 				hc_wp_grp_sz);
348 			mmc_part_add(card, part_size << 19,
349 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
350 				"gp%d", idx, false,
351 				MMC_BLK_DATA_AREA_GP);
352 		}
353 	}
354 }
355 
356 /* Minimum partition switch timeout in milliseconds */
357 #define MMC_MIN_PART_SWITCH_TIME	300
358 
359 /*
360  * Decode extended CSD.
361  */
362 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
363 {
364 	int err = 0, idx;
365 	unsigned int part_size;
366 	struct device_node *np;
367 	bool broken_hpi = false;
368 
369 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
370 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
371 	if (card->csd.structure == 3) {
372 		if (card->ext_csd.raw_ext_csd_structure > 2) {
373 			pr_err("%s: unrecognised EXT_CSD structure "
374 				"version %d\n", mmc_hostname(card->host),
375 					card->ext_csd.raw_ext_csd_structure);
376 			err = -EINVAL;
377 			goto out;
378 		}
379 	}
380 
381 	np = mmc_of_find_child_device(card->host, 0);
382 	if (np && of_device_is_compatible(np, "mmc-card"))
383 		broken_hpi = of_property_read_bool(np, "broken-hpi");
384 	of_node_put(np);
385 
386 	/*
387 	 * The EXT_CSD format is meant to be forward compatible. As long
388 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
389 	 * are authorized, see JEDEC JESD84-B50 section B.8.
390 	 */
391 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
392 
393 	/* fixup device after ext_csd revision field is updated */
394 	mmc_fixup_device(card, mmc_ext_csd_fixups);
395 
396 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
397 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
398 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
399 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
400 	if (card->ext_csd.rev >= 2) {
401 		card->ext_csd.sectors =
402 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
403 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
404 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
405 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
406 
407 		/* Cards with density > 2GiB are sector addressed */
408 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
409 			mmc_card_set_blockaddr(card);
410 	}
411 
412 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
413 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
414 	mmc_select_card_type(card);
415 
416 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
417 	card->ext_csd.raw_erase_timeout_mult =
418 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
419 	card->ext_csd.raw_hc_erase_grp_size =
420 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
421 	if (card->ext_csd.rev >= 3) {
422 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
423 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
424 
425 		/* EXT_CSD value is in units of 10ms, but we store in ms */
426 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
427 		/* Some eMMC set the value too low so set a minimum */
428 		if (card->ext_csd.part_time &&
429 		    card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
430 			card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
431 
432 		/* Sleep / awake timeout in 100ns units */
433 		if (sa_shift > 0 && sa_shift <= 0x17)
434 			card->ext_csd.sa_timeout =
435 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
436 		card->ext_csd.erase_group_def =
437 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
438 		card->ext_csd.hc_erase_timeout = 300 *
439 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
440 		card->ext_csd.hc_erase_size =
441 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
442 
443 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
444 
445 		/*
446 		 * There are two boot regions of equal size, defined in
447 		 * multiples of 128K.
448 		 */
449 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
450 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
451 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
452 				mmc_part_add(card, part_size,
453 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
454 					"boot%d", idx, true,
455 					MMC_BLK_DATA_AREA_BOOT);
456 			}
457 		}
458 	}
459 
460 	card->ext_csd.raw_hc_erase_gap_size =
461 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
462 	card->ext_csd.raw_sec_trim_mult =
463 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
464 	card->ext_csd.raw_sec_erase_mult =
465 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
466 	card->ext_csd.raw_sec_feature_support =
467 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
468 	card->ext_csd.raw_trim_mult =
469 		ext_csd[EXT_CSD_TRIM_MULT];
470 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
471 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
472 	if (card->ext_csd.rev >= 4) {
473 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
474 		    EXT_CSD_PART_SETTING_COMPLETED)
475 			card->ext_csd.partition_setting_completed = 1;
476 		else
477 			card->ext_csd.partition_setting_completed = 0;
478 
479 		mmc_manage_enhanced_area(card, ext_csd);
480 
481 		mmc_manage_gp_partitions(card, ext_csd);
482 
483 		card->ext_csd.sec_trim_mult =
484 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
485 		card->ext_csd.sec_erase_mult =
486 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
487 		card->ext_csd.sec_feature_support =
488 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
489 		card->ext_csd.trim_timeout = 300 *
490 			ext_csd[EXT_CSD_TRIM_MULT];
491 
492 		/*
493 		 * Note that the call to mmc_part_add above defaults to read
494 		 * only. If this default assumption is changed, the call must
495 		 * take into account the value of boot_locked below.
496 		 */
497 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
498 		card->ext_csd.boot_ro_lockable = true;
499 
500 		/* Save power class values */
501 		card->ext_csd.raw_pwr_cl_52_195 =
502 			ext_csd[EXT_CSD_PWR_CL_52_195];
503 		card->ext_csd.raw_pwr_cl_26_195 =
504 			ext_csd[EXT_CSD_PWR_CL_26_195];
505 		card->ext_csd.raw_pwr_cl_52_360 =
506 			ext_csd[EXT_CSD_PWR_CL_52_360];
507 		card->ext_csd.raw_pwr_cl_26_360 =
508 			ext_csd[EXT_CSD_PWR_CL_26_360];
509 		card->ext_csd.raw_pwr_cl_200_195 =
510 			ext_csd[EXT_CSD_PWR_CL_200_195];
511 		card->ext_csd.raw_pwr_cl_200_360 =
512 			ext_csd[EXT_CSD_PWR_CL_200_360];
513 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
514 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
515 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
516 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
517 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
518 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
519 	}
520 
521 	if (card->ext_csd.rev >= 5) {
522 		/* Adjust production date as per JEDEC JESD84-B451 */
523 		if (card->cid.year < 2010)
524 			card->cid.year += 16;
525 
526 		/* check whether the eMMC card supports BKOPS */
527 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
528 			card->ext_csd.bkops = 1;
529 			card->ext_csd.man_bkops_en =
530 					(ext_csd[EXT_CSD_BKOPS_EN] &
531 						EXT_CSD_MANUAL_BKOPS_MASK);
532 			card->ext_csd.raw_bkops_status =
533 				ext_csd[EXT_CSD_BKOPS_STATUS];
534 			if (card->ext_csd.man_bkops_en)
535 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
536 					mmc_hostname(card->host));
537 			card->ext_csd.auto_bkops_en =
538 					(ext_csd[EXT_CSD_BKOPS_EN] &
539 						EXT_CSD_AUTO_BKOPS_MASK);
540 			if (card->ext_csd.auto_bkops_en)
541 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
542 					mmc_hostname(card->host));
543 		}
544 
545 		/* check whether the eMMC card supports HPI */
546 		if (!mmc_card_broken_hpi(card) &&
547 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
548 			card->ext_csd.hpi = 1;
549 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
550 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
551 			else
552 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
553 			/*
554 			 * Indicate the maximum timeout to close
555 			 * a command interrupted by HPI
556 			 */
557 			card->ext_csd.out_of_int_time =
558 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
559 		}
560 
561 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
562 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
563 
564 		/*
565 		 * RPMB regions are defined in multiples of 128K.
566 		 */
567 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
568 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
569 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
570 				EXT_CSD_PART_CONFIG_ACC_RPMB,
571 				"rpmb", 0, false,
572 				MMC_BLK_DATA_AREA_RPMB);
573 		}
574 	}
575 
576 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
577 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
578 		card->erased_byte = 0xFF;
579 	else
580 		card->erased_byte = 0x0;
581 
582 	/* eMMC v4.5 or later */
583 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
584 	if (card->ext_csd.rev >= 6) {
585 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
586 
587 		card->ext_csd.generic_cmd6_time = 10 *
588 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
589 		card->ext_csd.power_off_longtime = 10 *
590 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
591 
592 		card->ext_csd.cache_size =
593 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
595 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
596 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
597 
598 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
599 			card->ext_csd.data_sector_size = 4096;
600 		else
601 			card->ext_csd.data_sector_size = 512;
602 
603 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
604 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
605 			card->ext_csd.data_tag_unit_size =
606 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
607 			(card->ext_csd.data_sector_size);
608 		} else {
609 			card->ext_csd.data_tag_unit_size = 0;
610 		}
611 
612 		card->ext_csd.max_packed_writes =
613 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
614 		card->ext_csd.max_packed_reads =
615 			ext_csd[EXT_CSD_MAX_PACKED_READS];
616 	} else {
617 		card->ext_csd.data_sector_size = 512;
618 	}
619 
620 	/* eMMC v5 or later */
621 	if (card->ext_csd.rev >= 7) {
622 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
623 		       MMC_FIRMWARE_LEN);
624 		card->ext_csd.ffu_capable =
625 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
626 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
627 
628 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
629 		card->ext_csd.device_life_time_est_typ_a =
630 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
631 		card->ext_csd.device_life_time_est_typ_b =
632 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
633 	}
634 
635 	/* eMMC v5.1 or later */
636 	if (card->ext_csd.rev >= 8) {
637 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
638 					     EXT_CSD_CMDQ_SUPPORTED;
639 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
640 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
641 		/* Exclude inefficiently small queue depths */
642 		if (card->ext_csd.cmdq_depth <= 2) {
643 			card->ext_csd.cmdq_support = false;
644 			card->ext_csd.cmdq_depth = 0;
645 		}
646 		if (card->ext_csd.cmdq_support) {
647 			pr_debug("%s: Command Queue supported depth %u\n",
648 				 mmc_hostname(card->host),
649 				 card->ext_csd.cmdq_depth);
650 		}
651 	}
652 out:
653 	return err;
654 }
655 
656 static int mmc_read_ext_csd(struct mmc_card *card)
657 {
658 	u8 *ext_csd;
659 	int err;
660 
661 	if (!mmc_can_ext_csd(card))
662 		return 0;
663 
664 	err = mmc_get_ext_csd(card, &ext_csd);
665 	if (err) {
666 		/* If the host or the card can't do the switch,
667 		 * fail more gracefully. */
668 		if ((err != -EINVAL)
669 		 && (err != -ENOSYS)
670 		 && (err != -EFAULT))
671 			return err;
672 
673 		/*
674 		 * High capacity cards should have this "magic" size
675 		 * stored in their CSD.
676 		 */
677 		if (card->csd.capacity == (4096 * 512)) {
678 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
679 				mmc_hostname(card->host));
680 		} else {
681 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
682 				mmc_hostname(card->host));
683 			err = 0;
684 		}
685 
686 		return err;
687 	}
688 
689 	err = mmc_decode_ext_csd(card, ext_csd);
690 	kfree(ext_csd);
691 	return err;
692 }
693 
694 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
695 {
696 	u8 *bw_ext_csd;
697 	int err;
698 
699 	if (bus_width == MMC_BUS_WIDTH_1)
700 		return 0;
701 
702 	err = mmc_get_ext_csd(card, &bw_ext_csd);
703 	if (err)
704 		return err;
705 
706 	/* only compare read only fields */
707 	err = !((card->ext_csd.raw_partition_support ==
708 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
709 		(card->ext_csd.raw_erased_mem_count ==
710 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
711 		(card->ext_csd.rev ==
712 			bw_ext_csd[EXT_CSD_REV]) &&
713 		(card->ext_csd.raw_ext_csd_structure ==
714 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
715 		(card->ext_csd.raw_card_type ==
716 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
717 		(card->ext_csd.raw_s_a_timeout ==
718 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
719 		(card->ext_csd.raw_hc_erase_gap_size ==
720 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
721 		(card->ext_csd.raw_erase_timeout_mult ==
722 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
723 		(card->ext_csd.raw_hc_erase_grp_size ==
724 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
725 		(card->ext_csd.raw_sec_trim_mult ==
726 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
727 		(card->ext_csd.raw_sec_erase_mult ==
728 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
729 		(card->ext_csd.raw_sec_feature_support ==
730 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
731 		(card->ext_csd.raw_trim_mult ==
732 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
733 		(card->ext_csd.raw_sectors[0] ==
734 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
735 		(card->ext_csd.raw_sectors[1] ==
736 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
737 		(card->ext_csd.raw_sectors[2] ==
738 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
739 		(card->ext_csd.raw_sectors[3] ==
740 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
741 		(card->ext_csd.raw_pwr_cl_52_195 ==
742 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
743 		(card->ext_csd.raw_pwr_cl_26_195 ==
744 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
745 		(card->ext_csd.raw_pwr_cl_52_360 ==
746 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
747 		(card->ext_csd.raw_pwr_cl_26_360 ==
748 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
749 		(card->ext_csd.raw_pwr_cl_200_195 ==
750 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
751 		(card->ext_csd.raw_pwr_cl_200_360 ==
752 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
753 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
755 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
757 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
759 
760 	if (err)
761 		err = -EINVAL;
762 
763 	kfree(bw_ext_csd);
764 	return err;
765 }
766 
767 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
768 	card->raw_cid[2], card->raw_cid[3]);
769 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
770 	card->raw_csd[2], card->raw_csd[3]);
771 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
772 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
773 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
774 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
775 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
776 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
777 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
778 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
779 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
780 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
781 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
782 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
783 	card->ext_csd.device_life_time_est_typ_a,
784 	card->ext_csd.device_life_time_est_typ_b);
785 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
786 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
787 		card->ext_csd.enhanced_area_offset);
788 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
789 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
790 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
791 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
792 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
793 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
794 
795 static ssize_t mmc_fwrev_show(struct device *dev,
796 			      struct device_attribute *attr,
797 			      char *buf)
798 {
799 	struct mmc_card *card = mmc_dev_to_card(dev);
800 
801 	if (card->ext_csd.rev < 7) {
802 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
803 	} else {
804 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
805 			       card->ext_csd.fwrev);
806 	}
807 }
808 
809 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
810 
811 static ssize_t mmc_dsr_show(struct device *dev,
812 			    struct device_attribute *attr,
813 			    char *buf)
814 {
815 	struct mmc_card *card = mmc_dev_to_card(dev);
816 	struct mmc_host *host = card->host;
817 
818 	if (card->csd.dsr_imp && host->dsr_req)
819 		return sprintf(buf, "0x%x\n", host->dsr);
820 	else
821 		/* return default DSR value */
822 		return sprintf(buf, "0x%x\n", 0x404);
823 }
824 
825 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
826 
827 static struct attribute *mmc_std_attrs[] = {
828 	&dev_attr_cid.attr,
829 	&dev_attr_csd.attr,
830 	&dev_attr_date.attr,
831 	&dev_attr_erase_size.attr,
832 	&dev_attr_preferred_erase_size.attr,
833 	&dev_attr_fwrev.attr,
834 	&dev_attr_ffu_capable.attr,
835 	&dev_attr_hwrev.attr,
836 	&dev_attr_manfid.attr,
837 	&dev_attr_name.attr,
838 	&dev_attr_oemid.attr,
839 	&dev_attr_prv.attr,
840 	&dev_attr_rev.attr,
841 	&dev_attr_pre_eol_info.attr,
842 	&dev_attr_life_time.attr,
843 	&dev_attr_serial.attr,
844 	&dev_attr_enhanced_area_offset.attr,
845 	&dev_attr_enhanced_area_size.attr,
846 	&dev_attr_raw_rpmb_size_mult.attr,
847 	&dev_attr_rel_sectors.attr,
848 	&dev_attr_ocr.attr,
849 	&dev_attr_rca.attr,
850 	&dev_attr_dsr.attr,
851 	&dev_attr_cmdq_en.attr,
852 	NULL,
853 };
854 ATTRIBUTE_GROUPS(mmc_std);
855 
856 static struct device_type mmc_type = {
857 	.groups = mmc_std_groups,
858 };
859 
860 /*
861  * Select the PowerClass for the current bus width
862  * If power class is defined for 4/8 bit bus in the
863  * extended CSD register, select it by executing the
864  * mmc_switch command.
865  */
866 static int __mmc_select_powerclass(struct mmc_card *card,
867 				   unsigned int bus_width)
868 {
869 	struct mmc_host *host = card->host;
870 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
871 	unsigned int pwrclass_val = 0;
872 	int err = 0;
873 
874 	switch (1 << host->ios.vdd) {
875 	case MMC_VDD_165_195:
876 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
877 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
878 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
879 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
880 				ext_csd->raw_pwr_cl_52_195 :
881 				ext_csd->raw_pwr_cl_ddr_52_195;
882 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
883 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
884 		break;
885 	case MMC_VDD_27_28:
886 	case MMC_VDD_28_29:
887 	case MMC_VDD_29_30:
888 	case MMC_VDD_30_31:
889 	case MMC_VDD_31_32:
890 	case MMC_VDD_32_33:
891 	case MMC_VDD_33_34:
892 	case MMC_VDD_34_35:
893 	case MMC_VDD_35_36:
894 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
895 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
896 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
897 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
898 				ext_csd->raw_pwr_cl_52_360 :
899 				ext_csd->raw_pwr_cl_ddr_52_360;
900 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
901 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
902 				ext_csd->raw_pwr_cl_ddr_200_360 :
903 				ext_csd->raw_pwr_cl_200_360;
904 		break;
905 	default:
906 		pr_warn("%s: Voltage range not supported for power class\n",
907 			mmc_hostname(host));
908 		return -EINVAL;
909 	}
910 
911 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
912 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
913 				EXT_CSD_PWR_CL_8BIT_SHIFT;
914 	else
915 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
916 				EXT_CSD_PWR_CL_4BIT_SHIFT;
917 
918 	/* If the power class is different from the default value */
919 	if (pwrclass_val > 0) {
920 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
921 				 EXT_CSD_POWER_CLASS,
922 				 pwrclass_val,
923 				 card->ext_csd.generic_cmd6_time);
924 	}
925 
926 	return err;
927 }
928 
929 static int mmc_select_powerclass(struct mmc_card *card)
930 {
931 	struct mmc_host *host = card->host;
932 	u32 bus_width, ext_csd_bits;
933 	int err, ddr;
934 
935 	/* Power class selection is supported for versions >= 4.0 */
936 	if (!mmc_can_ext_csd(card))
937 		return 0;
938 
939 	bus_width = host->ios.bus_width;
940 	/* Power class values are defined only for 4/8 bit bus */
941 	if (bus_width == MMC_BUS_WIDTH_1)
942 		return 0;
943 
944 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
945 	if (ddr)
946 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
947 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
948 	else
949 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
951 
952 	err = __mmc_select_powerclass(card, ext_csd_bits);
953 	if (err)
954 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
955 			mmc_hostname(host), 1 << bus_width, ddr);
956 
957 	return err;
958 }
959 
960 /*
961  * Set the bus speed for the selected speed mode.
962  */
963 static void mmc_set_bus_speed(struct mmc_card *card)
964 {
965 	unsigned int max_dtr = (unsigned int)-1;
966 
967 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
968 	     max_dtr > card->ext_csd.hs200_max_dtr)
969 		max_dtr = card->ext_csd.hs200_max_dtr;
970 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
971 		max_dtr = card->ext_csd.hs_max_dtr;
972 	else if (max_dtr > card->csd.max_dtr)
973 		max_dtr = card->csd.max_dtr;
974 
975 	mmc_set_clock(card->host, max_dtr);
976 }
977 
978 /*
979  * Select the bus width amoung 4-bit and 8-bit(SDR).
980  * If the bus width is changed successfully, return the selected width value.
981  * Zero is returned instead of error value if the wide width is not supported.
982  */
983 static int mmc_select_bus_width(struct mmc_card *card)
984 {
985 	static unsigned ext_csd_bits[] = {
986 		EXT_CSD_BUS_WIDTH_8,
987 		EXT_CSD_BUS_WIDTH_4,
988 	};
989 	static unsigned bus_widths[] = {
990 		MMC_BUS_WIDTH_8,
991 		MMC_BUS_WIDTH_4,
992 	};
993 	struct mmc_host *host = card->host;
994 	unsigned idx, bus_width = 0;
995 	int err = 0;
996 
997 	if (!mmc_can_ext_csd(card) ||
998 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
999 		return 0;
1000 
1001 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1002 
1003 	/*
1004 	 * Unlike SD, MMC cards dont have a configuration register to notify
1005 	 * supported bus width. So bus test command should be run to identify
1006 	 * the supported bus width or compare the ext csd values of current
1007 	 * bus width and ext csd values of 1 bit mode read earlier.
1008 	 */
1009 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1010 		/*
1011 		 * Host is capable of 8bit transfer, then switch
1012 		 * the device to work in 8bit transfer mode. If the
1013 		 * mmc switch command returns error then switch to
1014 		 * 4bit transfer mode. On success set the corresponding
1015 		 * bus width on the host.
1016 		 */
1017 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1018 				 EXT_CSD_BUS_WIDTH,
1019 				 ext_csd_bits[idx],
1020 				 card->ext_csd.generic_cmd6_time);
1021 		if (err)
1022 			continue;
1023 
1024 		bus_width = bus_widths[idx];
1025 		mmc_set_bus_width(host, bus_width);
1026 
1027 		/*
1028 		 * If controller can't handle bus width test,
1029 		 * compare ext_csd previously read in 1 bit mode
1030 		 * against ext_csd at new bus width
1031 		 */
1032 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1033 			err = mmc_compare_ext_csds(card, bus_width);
1034 		else
1035 			err = mmc_bus_test(card, bus_width);
1036 
1037 		if (!err) {
1038 			err = bus_width;
1039 			break;
1040 		} else {
1041 			pr_warn("%s: switch to bus width %d failed\n",
1042 				mmc_hostname(host), 1 << bus_width);
1043 		}
1044 	}
1045 
1046 	return err;
1047 }
1048 
1049 /*
1050  * Switch to the high-speed mode
1051  */
1052 static int mmc_select_hs(struct mmc_card *card)
1053 {
1054 	int err;
1055 
1056 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1057 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1058 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1059 			   true, true, true);
1060 	if (err)
1061 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1062 			mmc_hostname(card->host), err);
1063 
1064 	return err;
1065 }
1066 
1067 /*
1068  * Activate wide bus and DDR if supported.
1069  */
1070 static int mmc_select_hs_ddr(struct mmc_card *card)
1071 {
1072 	struct mmc_host *host = card->host;
1073 	u32 bus_width, ext_csd_bits;
1074 	int err = 0;
1075 
1076 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1077 		return 0;
1078 
1079 	bus_width = host->ios.bus_width;
1080 	if (bus_width == MMC_BUS_WIDTH_1)
1081 		return 0;
1082 
1083 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1084 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1085 
1086 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1087 			   EXT_CSD_BUS_WIDTH,
1088 			   ext_csd_bits,
1089 			   card->ext_csd.generic_cmd6_time,
1090 			   MMC_TIMING_MMC_DDR52,
1091 			   true, true, true);
1092 	if (err) {
1093 		pr_err("%s: switch to bus width %d ddr failed\n",
1094 			mmc_hostname(host), 1 << bus_width);
1095 		return err;
1096 	}
1097 
1098 	/*
1099 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1100 	 * signaling.
1101 	 *
1102 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1103 	 *
1104 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1105 	 * in the JEDEC spec for DDR.
1106 	 *
1107 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1108 	 * host controller can support this, like some of the SDHCI
1109 	 * controller which connect to an eMMC device. Some of these
1110 	 * host controller still needs to use 1.8v vccq for supporting
1111 	 * DDR mode.
1112 	 *
1113 	 * So the sequence will be:
1114 	 * if (host and device can both support 1.2v IO)
1115 	 *	use 1.2v IO;
1116 	 * else if (host and device can both support 1.8v IO)
1117 	 *	use 1.8v IO;
1118 	 * so if host and device can only support 3.3v IO, this is the
1119 	 * last choice.
1120 	 *
1121 	 * WARNING: eMMC rules are NOT the same as SD DDR
1122 	 */
1123 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1124 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1125 		if (!err)
1126 			return 0;
1127 	}
1128 
1129 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1130 	    host->caps & MMC_CAP_1_8V_DDR)
1131 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1132 
1133 	/* make sure vccq is 3.3v after switching disaster */
1134 	if (err)
1135 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1136 
1137 	return err;
1138 }
1139 
1140 static int mmc_select_hs400(struct mmc_card *card)
1141 {
1142 	struct mmc_host *host = card->host;
1143 	unsigned int max_dtr;
1144 	int err = 0;
1145 	u8 val;
1146 
1147 	/*
1148 	 * HS400 mode requires 8-bit bus width
1149 	 */
1150 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1151 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1152 		return 0;
1153 
1154 	/* Switch card to HS mode */
1155 	val = EXT_CSD_TIMING_HS;
1156 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1157 			   EXT_CSD_HS_TIMING, val,
1158 			   card->ext_csd.generic_cmd6_time, 0,
1159 			   true, false, true);
1160 	if (err) {
1161 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1162 			mmc_hostname(host), err);
1163 		return err;
1164 	}
1165 
1166 	/* Set host controller to HS timing */
1167 	mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1168 
1169 	/* Prepare host to downgrade to HS timing */
1170 	if (host->ops->hs400_downgrade)
1171 		host->ops->hs400_downgrade(host);
1172 
1173 	/* Reduce frequency to HS frequency */
1174 	max_dtr = card->ext_csd.hs_max_dtr;
1175 	mmc_set_clock(host, max_dtr);
1176 
1177 	err = mmc_switch_status(card);
1178 	if (err)
1179 		goto out_err;
1180 
1181 	if (host->ops->hs400_prepare_ddr)
1182 		host->ops->hs400_prepare_ddr(host);
1183 
1184 	/* Switch card to DDR */
1185 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1186 			 EXT_CSD_BUS_WIDTH,
1187 			 EXT_CSD_DDR_BUS_WIDTH_8,
1188 			 card->ext_csd.generic_cmd6_time);
1189 	if (err) {
1190 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1191 			mmc_hostname(host), err);
1192 		return err;
1193 	}
1194 
1195 	/* Switch card to HS400 */
1196 	val = EXT_CSD_TIMING_HS400 |
1197 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1198 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1199 			   EXT_CSD_HS_TIMING, val,
1200 			   card->ext_csd.generic_cmd6_time, 0,
1201 			   true, false, true);
1202 	if (err) {
1203 		pr_err("%s: switch to hs400 failed, err:%d\n",
1204 			 mmc_hostname(host), err);
1205 		return err;
1206 	}
1207 
1208 	/* Set host controller to HS400 timing and frequency */
1209 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1210 	mmc_set_bus_speed(card);
1211 
1212 	if (host->ops->hs400_complete)
1213 		host->ops->hs400_complete(host);
1214 
1215 	err = mmc_switch_status(card);
1216 	if (err)
1217 		goto out_err;
1218 
1219 	return 0;
1220 
1221 out_err:
1222 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1223 	       __func__, err);
1224 	return err;
1225 }
1226 
1227 int mmc_hs200_to_hs400(struct mmc_card *card)
1228 {
1229 	return mmc_select_hs400(card);
1230 }
1231 
1232 int mmc_hs400_to_hs200(struct mmc_card *card)
1233 {
1234 	struct mmc_host *host = card->host;
1235 	unsigned int max_dtr;
1236 	int err;
1237 	u8 val;
1238 
1239 	/* Reduce frequency to HS */
1240 	max_dtr = card->ext_csd.hs_max_dtr;
1241 	mmc_set_clock(host, max_dtr);
1242 
1243 	/* Switch HS400 to HS DDR */
1244 	val = EXT_CSD_TIMING_HS;
1245 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1246 			   val, card->ext_csd.generic_cmd6_time, 0,
1247 			   true, false, true);
1248 	if (err)
1249 		goto out_err;
1250 
1251 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1252 
1253 	err = mmc_switch_status(card);
1254 	if (err)
1255 		goto out_err;
1256 
1257 	/* Switch HS DDR to HS */
1258 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1259 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1260 			   0, true, false, true);
1261 	if (err)
1262 		goto out_err;
1263 
1264 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1265 
1266 	if (host->ops->hs400_downgrade)
1267 		host->ops->hs400_downgrade(host);
1268 
1269 	err = mmc_switch_status(card);
1270 	if (err)
1271 		goto out_err;
1272 
1273 	/* Switch HS to HS200 */
1274 	val = EXT_CSD_TIMING_HS200 |
1275 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1276 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1277 			   val, card->ext_csd.generic_cmd6_time, 0,
1278 			   true, false, true);
1279 	if (err)
1280 		goto out_err;
1281 
1282 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1283 
1284 	/*
1285 	 * For HS200, CRC errors are not a reliable way to know the switch
1286 	 * failed. If there really is a problem, we would expect tuning will
1287 	 * fail and the result ends up the same.
1288 	 */
1289 	err = __mmc_switch_status(card, false);
1290 	if (err)
1291 		goto out_err;
1292 
1293 	mmc_set_bus_speed(card);
1294 
1295 	/* Prepare tuning for HS400 mode. */
1296 	if (host->ops->prepare_hs400_tuning)
1297 		host->ops->prepare_hs400_tuning(host, &host->ios);
1298 
1299 	return 0;
1300 
1301 out_err:
1302 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1303 	       __func__, err);
1304 	return err;
1305 }
1306 
1307 static void mmc_select_driver_type(struct mmc_card *card)
1308 {
1309 	int card_drv_type, drive_strength, drv_type = 0;
1310 	int fixed_drv_type = card->host->fixed_drv_type;
1311 
1312 	card_drv_type = card->ext_csd.raw_driver_strength |
1313 			mmc_driver_type_mask(0);
1314 
1315 	if (fixed_drv_type >= 0)
1316 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1317 				 ? fixed_drv_type : 0;
1318 	else
1319 		drive_strength = mmc_select_drive_strength(card,
1320 							   card->ext_csd.hs200_max_dtr,
1321 							   card_drv_type, &drv_type);
1322 
1323 	card->drive_strength = drive_strength;
1324 
1325 	if (drv_type)
1326 		mmc_set_driver_type(card->host, drv_type);
1327 }
1328 
1329 static int mmc_select_hs400es(struct mmc_card *card)
1330 {
1331 	struct mmc_host *host = card->host;
1332 	int err = -EINVAL;
1333 	u8 val;
1334 
1335 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1336 		err = -ENOTSUPP;
1337 		goto out_err;
1338 	}
1339 
1340 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1341 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1342 
1343 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1344 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1345 
1346 	/* If fails try again during next card power cycle */
1347 	if (err)
1348 		goto out_err;
1349 
1350 	err = mmc_select_bus_width(card);
1351 	if (err != MMC_BUS_WIDTH_8) {
1352 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1353 			mmc_hostname(host), err);
1354 		err = err < 0 ? err : -ENOTSUPP;
1355 		goto out_err;
1356 	}
1357 
1358 	/* Switch card to HS mode */
1359 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1360 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1361 			   card->ext_csd.generic_cmd6_time, 0,
1362 			   true, false, true);
1363 	if (err) {
1364 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1365 			mmc_hostname(host), err);
1366 		goto out_err;
1367 	}
1368 
1369 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1370 	err = mmc_switch_status(card);
1371 	if (err)
1372 		goto out_err;
1373 
1374 	mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1375 
1376 	/* Switch card to DDR with strobe bit */
1377 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1378 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1379 			 EXT_CSD_BUS_WIDTH,
1380 			 val,
1381 			 card->ext_csd.generic_cmd6_time);
1382 	if (err) {
1383 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1384 			mmc_hostname(host), err);
1385 		goto out_err;
1386 	}
1387 
1388 	mmc_select_driver_type(card);
1389 
1390 	/* Switch card to HS400 */
1391 	val = EXT_CSD_TIMING_HS400 |
1392 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1393 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1394 			   EXT_CSD_HS_TIMING, val,
1395 			   card->ext_csd.generic_cmd6_time, 0,
1396 			   true, false, true);
1397 	if (err) {
1398 		pr_err("%s: switch to hs400es failed, err:%d\n",
1399 			mmc_hostname(host), err);
1400 		goto out_err;
1401 	}
1402 
1403 	/* Set host controller to HS400 timing and frequency */
1404 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1405 
1406 	/* Controller enable enhanced strobe function */
1407 	host->ios.enhanced_strobe = true;
1408 	if (host->ops->hs400_enhanced_strobe)
1409 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1410 
1411 	err = mmc_switch_status(card);
1412 	if (err)
1413 		goto out_err;
1414 
1415 	return 0;
1416 
1417 out_err:
1418 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1419 	       __func__, err);
1420 	return err;
1421 }
1422 
1423 /*
1424  * For device supporting HS200 mode, the following sequence
1425  * should be done before executing the tuning process.
1426  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1427  * 2. switch to HS200 mode
1428  * 3. set the clock to > 52Mhz and <=200MHz
1429  */
1430 static int mmc_select_hs200(struct mmc_card *card)
1431 {
1432 	struct mmc_host *host = card->host;
1433 	unsigned int old_timing, old_signal_voltage;
1434 	int err = -EINVAL;
1435 	u8 val;
1436 
1437 	old_signal_voltage = host->ios.signal_voltage;
1438 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1439 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1440 
1441 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1442 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1443 
1444 	/* If fails try again during next card power cycle */
1445 	if (err)
1446 		return err;
1447 
1448 	mmc_select_driver_type(card);
1449 
1450 	/*
1451 	 * Set the bus width(4 or 8) with host's support and
1452 	 * switch to HS200 mode if bus width is set successfully.
1453 	 */
1454 	err = mmc_select_bus_width(card);
1455 	if (err > 0) {
1456 		val = EXT_CSD_TIMING_HS200 |
1457 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1458 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1459 				   EXT_CSD_HS_TIMING, val,
1460 				   card->ext_csd.generic_cmd6_time, 0,
1461 				   true, false, true);
1462 		if (err)
1463 			goto err;
1464 		old_timing = host->ios.timing;
1465 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1466 
1467 		/*
1468 		 * For HS200, CRC errors are not a reliable way to know the
1469 		 * switch failed. If there really is a problem, we would expect
1470 		 * tuning will fail and the result ends up the same.
1471 		 */
1472 		err = __mmc_switch_status(card, false);
1473 
1474 		/*
1475 		 * mmc_select_timing() assumes timing has not changed if
1476 		 * it is a switch error.
1477 		 */
1478 		if (err == -EBADMSG)
1479 			mmc_set_timing(host, old_timing);
1480 	}
1481 err:
1482 	if (err) {
1483 		/* fall back to the old signal voltage, if fails report error */
1484 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1485 			err = -EIO;
1486 
1487 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1488 		       __func__, err);
1489 	}
1490 	return err;
1491 }
1492 
1493 /*
1494  * Activate High Speed, HS200 or HS400ES mode if supported.
1495  */
1496 static int mmc_select_timing(struct mmc_card *card)
1497 {
1498 	int err = 0;
1499 
1500 	if (!mmc_can_ext_csd(card))
1501 		goto bus_speed;
1502 
1503 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1504 		err = mmc_select_hs400es(card);
1505 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1506 		err = mmc_select_hs200(card);
1507 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1508 		err = mmc_select_hs(card);
1509 
1510 	if (err && err != -EBADMSG)
1511 		return err;
1512 
1513 bus_speed:
1514 	/*
1515 	 * Set the bus speed to the selected bus timing.
1516 	 * If timing is not selected, backward compatible is the default.
1517 	 */
1518 	mmc_set_bus_speed(card);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Execute tuning sequence to seek the proper bus operating
1524  * conditions for HS200 and HS400, which sends CMD21 to the device.
1525  */
1526 static int mmc_hs200_tuning(struct mmc_card *card)
1527 {
1528 	struct mmc_host *host = card->host;
1529 
1530 	/*
1531 	 * Timing should be adjusted to the HS400 target
1532 	 * operation frequency for tuning process
1533 	 */
1534 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1535 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1536 		if (host->ops->prepare_hs400_tuning)
1537 			host->ops->prepare_hs400_tuning(host, &host->ios);
1538 
1539 	return mmc_execute_tuning(card);
1540 }
1541 
1542 /*
1543  * Handle the detection and initialisation of a card.
1544  *
1545  * In the case of a resume, "oldcard" will contain the card
1546  * we're trying to reinitialise.
1547  */
1548 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1549 	struct mmc_card *oldcard)
1550 {
1551 	struct mmc_card *card;
1552 	int err;
1553 	u32 cid[4];
1554 	u32 rocr;
1555 
1556 	WARN_ON(!host->claimed);
1557 
1558 	/* Set correct bus mode for MMC before attempting init */
1559 	if (!mmc_host_is_spi(host))
1560 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1561 
1562 	/*
1563 	 * Since we're changing the OCR value, we seem to
1564 	 * need to tell some cards to go back to the idle
1565 	 * state.  We wait 1ms to give cards time to
1566 	 * respond.
1567 	 * mmc_go_idle is needed for eMMC that are asleep
1568 	 */
1569 	mmc_go_idle(host);
1570 
1571 	/* The extra bit indicates that we support high capacity */
1572 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1573 	if (err)
1574 		goto err;
1575 
1576 	/*
1577 	 * For SPI, enable CRC as appropriate.
1578 	 */
1579 	if (mmc_host_is_spi(host)) {
1580 		err = mmc_spi_set_crc(host, use_spi_crc);
1581 		if (err)
1582 			goto err;
1583 	}
1584 
1585 	/*
1586 	 * Fetch CID from card.
1587 	 */
1588 	err = mmc_send_cid(host, cid);
1589 	if (err)
1590 		goto err;
1591 
1592 	if (oldcard) {
1593 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1594 			pr_debug("%s: Perhaps the card was replaced\n",
1595 				mmc_hostname(host));
1596 			err = -ENOENT;
1597 			goto err;
1598 		}
1599 
1600 		card = oldcard;
1601 	} else {
1602 		/*
1603 		 * Allocate card structure.
1604 		 */
1605 		card = mmc_alloc_card(host, &mmc_type);
1606 		if (IS_ERR(card)) {
1607 			err = PTR_ERR(card);
1608 			goto err;
1609 		}
1610 
1611 		card->ocr = ocr;
1612 		card->type = MMC_TYPE_MMC;
1613 		card->rca = 1;
1614 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1615 	}
1616 
1617 	/*
1618 	 * Call the optional HC's init_card function to handle quirks.
1619 	 */
1620 	if (host->ops->init_card)
1621 		host->ops->init_card(host, card);
1622 
1623 	/*
1624 	 * For native busses:  set card RCA and quit open drain mode.
1625 	 */
1626 	if (!mmc_host_is_spi(host)) {
1627 		err = mmc_set_relative_addr(card);
1628 		if (err)
1629 			goto free_card;
1630 
1631 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1632 	}
1633 
1634 	if (!oldcard) {
1635 		/*
1636 		 * Fetch CSD from card.
1637 		 */
1638 		err = mmc_send_csd(card, card->raw_csd);
1639 		if (err)
1640 			goto free_card;
1641 
1642 		err = mmc_decode_csd(card);
1643 		if (err)
1644 			goto free_card;
1645 		err = mmc_decode_cid(card);
1646 		if (err)
1647 			goto free_card;
1648 	}
1649 
1650 	/*
1651 	 * handling only for cards supporting DSR and hosts requesting
1652 	 * DSR configuration
1653 	 */
1654 	if (card->csd.dsr_imp && host->dsr_req)
1655 		mmc_set_dsr(host);
1656 
1657 	/*
1658 	 * Select card, as all following commands rely on that.
1659 	 */
1660 	if (!mmc_host_is_spi(host)) {
1661 		err = mmc_select_card(card);
1662 		if (err)
1663 			goto free_card;
1664 	}
1665 
1666 	if (!oldcard) {
1667 		/* Read extended CSD. */
1668 		err = mmc_read_ext_csd(card);
1669 		if (err)
1670 			goto free_card;
1671 
1672 		/*
1673 		 * If doing byte addressing, check if required to do sector
1674 		 * addressing.  Handle the case of <2GB cards needing sector
1675 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1676 		 * ocr register has bit 30 set for sector addressing.
1677 		 */
1678 		if (rocr & BIT(30))
1679 			mmc_card_set_blockaddr(card);
1680 
1681 		/* Erase size depends on CSD and Extended CSD */
1682 		mmc_set_erase_size(card);
1683 	}
1684 
1685 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1686 	if (card->ext_csd.rev >= 3) {
1687 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1688 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1689 				 card->ext_csd.generic_cmd6_time);
1690 
1691 		if (err && err != -EBADMSG)
1692 			goto free_card;
1693 
1694 		if (err) {
1695 			err = 0;
1696 			/*
1697 			 * Just disable enhanced area off & sz
1698 			 * will try to enable ERASE_GROUP_DEF
1699 			 * during next time reinit
1700 			 */
1701 			card->ext_csd.enhanced_area_offset = -EINVAL;
1702 			card->ext_csd.enhanced_area_size = -EINVAL;
1703 		} else {
1704 			card->ext_csd.erase_group_def = 1;
1705 			/*
1706 			 * enable ERASE_GRP_DEF successfully.
1707 			 * This will affect the erase size, so
1708 			 * here need to reset erase size
1709 			 */
1710 			mmc_set_erase_size(card);
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * Ensure eMMC user default partition is enabled
1716 	 */
1717 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1718 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1719 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1720 				 card->ext_csd.part_config,
1721 				 card->ext_csd.part_time);
1722 		if (err && err != -EBADMSG)
1723 			goto free_card;
1724 	}
1725 
1726 	/*
1727 	 * Enable power_off_notification byte in the ext_csd register
1728 	 */
1729 	if (card->ext_csd.rev >= 6) {
1730 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1731 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1732 				 EXT_CSD_POWER_ON,
1733 				 card->ext_csd.generic_cmd6_time);
1734 		if (err && err != -EBADMSG)
1735 			goto free_card;
1736 
1737 		/*
1738 		 * The err can be -EBADMSG or 0,
1739 		 * so check for success and update the flag
1740 		 */
1741 		if (!err)
1742 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1743 	}
1744 
1745 	/* set erase_arg */
1746 	if (mmc_can_discard(card))
1747 		card->erase_arg = MMC_DISCARD_ARG;
1748 	else if (mmc_can_trim(card))
1749 		card->erase_arg = MMC_TRIM_ARG;
1750 	else
1751 		card->erase_arg = MMC_ERASE_ARG;
1752 
1753 	/*
1754 	 * Select timing interface
1755 	 */
1756 	err = mmc_select_timing(card);
1757 	if (err)
1758 		goto free_card;
1759 
1760 	if (mmc_card_hs200(card)) {
1761 		err = mmc_hs200_tuning(card);
1762 		if (err)
1763 			goto free_card;
1764 
1765 		err = mmc_select_hs400(card);
1766 		if (err)
1767 			goto free_card;
1768 	} else if (!mmc_card_hs400es(card)) {
1769 		/* Select the desired bus width optionally */
1770 		err = mmc_select_bus_width(card);
1771 		if (err > 0 && mmc_card_hs(card)) {
1772 			err = mmc_select_hs_ddr(card);
1773 			if (err)
1774 				goto free_card;
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * Choose the power class with selected bus interface
1780 	 */
1781 	mmc_select_powerclass(card);
1782 
1783 	/*
1784 	 * Enable HPI feature (if supported)
1785 	 */
1786 	if (card->ext_csd.hpi) {
1787 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1788 				EXT_CSD_HPI_MGMT, 1,
1789 				card->ext_csd.generic_cmd6_time);
1790 		if (err && err != -EBADMSG)
1791 			goto free_card;
1792 		if (err) {
1793 			pr_warn("%s: Enabling HPI failed\n",
1794 				mmc_hostname(card->host));
1795 			card->ext_csd.hpi_en = 0;
1796 			err = 0;
1797 		} else {
1798 			card->ext_csd.hpi_en = 1;
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * If cache size is higher than 0, this indicates the existence of cache
1804 	 * and it can be turned on. Note that some eMMCs from Micron has been
1805 	 * reported to need ~800 ms timeout, while enabling the cache after
1806 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1807 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1808 	 */
1809 	if (card->ext_csd.cache_size > 0) {
1810 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1811 
1812 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1813 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1814 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1815 		if (err && err != -EBADMSG)
1816 			goto free_card;
1817 
1818 		/*
1819 		 * Only if no error, cache is turned on successfully.
1820 		 */
1821 		if (err) {
1822 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1823 				mmc_hostname(card->host), err);
1824 			card->ext_csd.cache_ctrl = 0;
1825 			err = 0;
1826 		} else {
1827 			card->ext_csd.cache_ctrl = 1;
1828 		}
1829 	}
1830 
1831 	/*
1832 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1833 	 * be used with Command Queue.
1834 	 */
1835 	card->ext_csd.cmdq_en = false;
1836 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1837 		err = mmc_cmdq_enable(card);
1838 		if (err && err != -EBADMSG)
1839 			goto free_card;
1840 		if (err) {
1841 			pr_warn("%s: Enabling CMDQ failed\n",
1842 				mmc_hostname(card->host));
1843 			card->ext_csd.cmdq_support = false;
1844 			card->ext_csd.cmdq_depth = 0;
1845 			err = 0;
1846 		}
1847 	}
1848 	/*
1849 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1850 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1851 	 * Command Queue.
1852 	 */
1853 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1854 
1855 	if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1856 		err = host->cqe_ops->cqe_enable(host, card);
1857 		if (err) {
1858 			pr_err("%s: Failed to enable CQE, error %d\n",
1859 				mmc_hostname(host), err);
1860 		} else {
1861 			host->cqe_enabled = true;
1862 			pr_info("%s: Command Queue Engine enabled\n",
1863 				mmc_hostname(host));
1864 		}
1865 	}
1866 
1867 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1868 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1869 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1870 			mmc_hostname(host));
1871 		err = -EINVAL;
1872 		goto free_card;
1873 	}
1874 
1875 	if (!oldcard)
1876 		host->card = card;
1877 
1878 	return 0;
1879 
1880 free_card:
1881 	if (!oldcard)
1882 		mmc_remove_card(card);
1883 err:
1884 	return err;
1885 }
1886 
1887 static int mmc_can_sleep(struct mmc_card *card)
1888 {
1889 	return (card && card->ext_csd.rev >= 3);
1890 }
1891 
1892 static int mmc_sleep(struct mmc_host *host)
1893 {
1894 	struct mmc_command cmd = {};
1895 	struct mmc_card *card = host->card;
1896 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1897 	int err;
1898 
1899 	/* Re-tuning can't be done once the card is deselected */
1900 	mmc_retune_hold(host);
1901 
1902 	err = mmc_deselect_cards(host);
1903 	if (err)
1904 		goto out_release;
1905 
1906 	cmd.opcode = MMC_SLEEP_AWAKE;
1907 	cmd.arg = card->rca << 16;
1908 	cmd.arg |= 1 << 15;
1909 
1910 	/*
1911 	 * If the max_busy_timeout of the host is specified, validate it against
1912 	 * the sleep cmd timeout. A failure means we need to prevent the host
1913 	 * from doing hw busy detection, which is done by converting to a R1
1914 	 * response instead of a R1B.
1915 	 */
1916 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1917 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1918 	} else {
1919 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1920 		cmd.busy_timeout = timeout_ms;
1921 	}
1922 
1923 	err = mmc_wait_for_cmd(host, &cmd, 0);
1924 	if (err)
1925 		goto out_release;
1926 
1927 	/*
1928 	 * If the host does not wait while the card signals busy, then we will
1929 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
1930 	 * SEND_STATUS command to poll the status because that command (and most
1931 	 * others) is invalid while the card sleeps.
1932 	 */
1933 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1934 		mmc_delay(timeout_ms);
1935 
1936 out_release:
1937 	mmc_retune_release(host);
1938 	return err;
1939 }
1940 
1941 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1942 {
1943 	return card &&
1944 		mmc_card_mmc(card) &&
1945 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1946 }
1947 
1948 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1949 {
1950 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
1951 	int err;
1952 
1953 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1954 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
1955 		timeout = card->ext_csd.power_off_longtime;
1956 
1957 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1958 			EXT_CSD_POWER_OFF_NOTIFICATION,
1959 			notify_type, timeout, 0, true, false, false);
1960 	if (err)
1961 		pr_err("%s: Power Off Notification timed out, %u\n",
1962 		       mmc_hostname(card->host), timeout);
1963 
1964 	/* Disable the power off notification after the switch operation. */
1965 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1966 
1967 	return err;
1968 }
1969 
1970 /*
1971  * Host is being removed. Free up the current card.
1972  */
1973 static void mmc_remove(struct mmc_host *host)
1974 {
1975 	mmc_remove_card(host->card);
1976 	host->card = NULL;
1977 }
1978 
1979 /*
1980  * Card detection - card is alive.
1981  */
1982 static int mmc_alive(struct mmc_host *host)
1983 {
1984 	return mmc_send_status(host->card, NULL);
1985 }
1986 
1987 /*
1988  * Card detection callback from host.
1989  */
1990 static void mmc_detect(struct mmc_host *host)
1991 {
1992 	int err;
1993 
1994 	mmc_get_card(host->card, NULL);
1995 
1996 	/*
1997 	 * Just check if our card has been removed.
1998 	 */
1999 	err = _mmc_detect_card_removed(host);
2000 
2001 	mmc_put_card(host->card, NULL);
2002 
2003 	if (err) {
2004 		mmc_remove(host);
2005 
2006 		mmc_claim_host(host);
2007 		mmc_detach_bus(host);
2008 		mmc_power_off(host);
2009 		mmc_release_host(host);
2010 	}
2011 }
2012 
2013 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2014 {
2015 	int err = 0;
2016 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2017 					EXT_CSD_POWER_OFF_LONG;
2018 
2019 	mmc_claim_host(host);
2020 
2021 	if (mmc_card_suspended(host->card))
2022 		goto out;
2023 
2024 	err = mmc_flush_cache(host->card);
2025 	if (err)
2026 		goto out;
2027 
2028 	if (mmc_can_poweroff_notify(host->card) &&
2029 		((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
2030 		err = mmc_poweroff_notify(host->card, notify_type);
2031 	else if (mmc_can_sleep(host->card))
2032 		err = mmc_sleep(host);
2033 	else if (!mmc_host_is_spi(host))
2034 		err = mmc_deselect_cards(host);
2035 
2036 	if (!err) {
2037 		mmc_power_off(host);
2038 		mmc_card_set_suspended(host->card);
2039 	}
2040 out:
2041 	mmc_release_host(host);
2042 	return err;
2043 }
2044 
2045 /*
2046  * Suspend callback
2047  */
2048 static int mmc_suspend(struct mmc_host *host)
2049 {
2050 	int err;
2051 
2052 	err = _mmc_suspend(host, true);
2053 	if (!err) {
2054 		pm_runtime_disable(&host->card->dev);
2055 		pm_runtime_set_suspended(&host->card->dev);
2056 	}
2057 
2058 	return err;
2059 }
2060 
2061 /*
2062  * This function tries to determine if the same card is still present
2063  * and, if so, restore all state to it.
2064  */
2065 static int _mmc_resume(struct mmc_host *host)
2066 {
2067 	int err = 0;
2068 
2069 	mmc_claim_host(host);
2070 
2071 	if (!mmc_card_suspended(host->card))
2072 		goto out;
2073 
2074 	mmc_power_up(host, host->card->ocr);
2075 	err = mmc_init_card(host, host->card->ocr, host->card);
2076 	mmc_card_clr_suspended(host->card);
2077 
2078 out:
2079 	mmc_release_host(host);
2080 	return err;
2081 }
2082 
2083 /*
2084  * Shutdown callback
2085  */
2086 static int mmc_shutdown(struct mmc_host *host)
2087 {
2088 	int err = 0;
2089 
2090 	/*
2091 	 * In a specific case for poweroff notify, we need to resume the card
2092 	 * before we can shutdown it properly.
2093 	 */
2094 	if (mmc_can_poweroff_notify(host->card) &&
2095 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2096 		err = _mmc_resume(host);
2097 
2098 	if (!err)
2099 		err = _mmc_suspend(host, false);
2100 
2101 	return err;
2102 }
2103 
2104 /*
2105  * Callback for resume.
2106  */
2107 static int mmc_resume(struct mmc_host *host)
2108 {
2109 	pm_runtime_enable(&host->card->dev);
2110 	return 0;
2111 }
2112 
2113 /*
2114  * Callback for runtime_suspend.
2115  */
2116 static int mmc_runtime_suspend(struct mmc_host *host)
2117 {
2118 	int err;
2119 
2120 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2121 		return 0;
2122 
2123 	err = _mmc_suspend(host, true);
2124 	if (err)
2125 		pr_err("%s: error %d doing aggressive suspend\n",
2126 			mmc_hostname(host), err);
2127 
2128 	return err;
2129 }
2130 
2131 /*
2132  * Callback for runtime_resume.
2133  */
2134 static int mmc_runtime_resume(struct mmc_host *host)
2135 {
2136 	int err;
2137 
2138 	err = _mmc_resume(host);
2139 	if (err && err != -ENOMEDIUM)
2140 		pr_err("%s: error %d doing runtime resume\n",
2141 			mmc_hostname(host), err);
2142 
2143 	return 0;
2144 }
2145 
2146 static int mmc_can_reset(struct mmc_card *card)
2147 {
2148 	u8 rst_n_function;
2149 
2150 	rst_n_function = card->ext_csd.rst_n_function;
2151 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2152 		return 0;
2153 	return 1;
2154 }
2155 
2156 static int _mmc_hw_reset(struct mmc_host *host)
2157 {
2158 	struct mmc_card *card = host->card;
2159 
2160 	/*
2161 	 * In the case of recovery, we can't expect flushing the cache to work
2162 	 * always, but we have a go and ignore errors.
2163 	 */
2164 	mmc_flush_cache(host->card);
2165 
2166 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2167 	     mmc_can_reset(card)) {
2168 		/* If the card accept RST_n signal, send it. */
2169 		mmc_set_clock(host, host->f_init);
2170 		host->ops->hw_reset(host);
2171 		/* Set initial state and call mmc_set_ios */
2172 		mmc_set_initial_state(host);
2173 	} else {
2174 		/* Do a brute force power cycle */
2175 		mmc_power_cycle(host, card->ocr);
2176 		mmc_pwrseq_reset(host);
2177 	}
2178 	return mmc_init_card(host, card->ocr, card);
2179 }
2180 
2181 static const struct mmc_bus_ops mmc_ops = {
2182 	.remove = mmc_remove,
2183 	.detect = mmc_detect,
2184 	.suspend = mmc_suspend,
2185 	.resume = mmc_resume,
2186 	.runtime_suspend = mmc_runtime_suspend,
2187 	.runtime_resume = mmc_runtime_resume,
2188 	.alive = mmc_alive,
2189 	.shutdown = mmc_shutdown,
2190 	.hw_reset = _mmc_hw_reset,
2191 };
2192 
2193 /*
2194  * Starting point for MMC card init.
2195  */
2196 int mmc_attach_mmc(struct mmc_host *host)
2197 {
2198 	int err;
2199 	u32 ocr, rocr;
2200 
2201 	WARN_ON(!host->claimed);
2202 
2203 	/* Set correct bus mode for MMC before attempting attach */
2204 	if (!mmc_host_is_spi(host))
2205 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2206 
2207 	err = mmc_send_op_cond(host, 0, &ocr);
2208 	if (err)
2209 		return err;
2210 
2211 	mmc_attach_bus(host, &mmc_ops);
2212 	if (host->ocr_avail_mmc)
2213 		host->ocr_avail = host->ocr_avail_mmc;
2214 
2215 	/*
2216 	 * We need to get OCR a different way for SPI.
2217 	 */
2218 	if (mmc_host_is_spi(host)) {
2219 		err = mmc_spi_read_ocr(host, 1, &ocr);
2220 		if (err)
2221 			goto err;
2222 	}
2223 
2224 	rocr = mmc_select_voltage(host, ocr);
2225 
2226 	/*
2227 	 * Can we support the voltage of the card?
2228 	 */
2229 	if (!rocr) {
2230 		err = -EINVAL;
2231 		goto err;
2232 	}
2233 
2234 	/*
2235 	 * Detect and init the card.
2236 	 */
2237 	err = mmc_init_card(host, rocr, NULL);
2238 	if (err)
2239 		goto err;
2240 
2241 	mmc_release_host(host);
2242 	err = mmc_add_card(host->card);
2243 	if (err)
2244 		goto remove_card;
2245 
2246 	mmc_claim_host(host);
2247 	return 0;
2248 
2249 remove_card:
2250 	mmc_remove_card(host->card);
2251 	mmc_claim_host(host);
2252 	host->card = NULL;
2253 err:
2254 	mmc_detach_bus(host);
2255 
2256 	pr_err("%s: error %d whilst initialising MMC card\n",
2257 		mmc_hostname(host), err);
2258 
2259 	return err;
2260 }
2261