1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/sysfs.h> 17 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 22 #include "core.h" 23 #include "card.h" 24 #include "host.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "quirks.h" 28 #include "sd_ops.h" 29 #include "pwrseq.h" 30 31 #define DEFAULT_CMD6_TIMEOUT_MS 500 32 #define MIN_CACHE_EN_TIMEOUT_MS 1600 33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 34 35 static const unsigned int tran_exp[] = { 36 10000, 100000, 1000000, 10000000, 37 0, 0, 0, 0 38 }; 39 40 static const unsigned char tran_mant[] = { 41 0, 10, 12, 13, 15, 20, 25, 30, 42 35, 40, 45, 50, 55, 60, 70, 80, 43 }; 44 45 static const unsigned int taac_exp[] = { 46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 47 }; 48 49 static const unsigned int taac_mant[] = { 50 0, 10, 12, 13, 15, 20, 25, 30, 51 35, 40, 45, 50, 55, 60, 70, 80, 52 }; 53 54 #define UNSTUFF_BITS(resp,start,size) \ 55 ({ \ 56 const int __size = size; \ 57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 58 const int __off = 3 - ((start) / 32); \ 59 const int __shft = (start) & 31; \ 60 u32 __res; \ 61 \ 62 __res = resp[__off] >> __shft; \ 63 if (__size + __shft > 32) \ 64 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 65 __res & __mask; \ 66 }) 67 68 /* 69 * Given the decoded CSD structure, decode the raw CID to our CID structure. 70 */ 71 static int mmc_decode_cid(struct mmc_card *card) 72 { 73 u32 *resp = card->raw_cid; 74 75 /* 76 * Add the raw card ID (cid) data to the entropy pool. It doesn't 77 * matter that not all of it is unique, it's just bonus entropy. 78 */ 79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 80 81 /* 82 * The selection of the format here is based upon published 83 * specs from sandisk and from what people have reported. 84 */ 85 switch (card->csd.mmca_vsn) { 86 case 0: /* MMC v1.0 - v1.2 */ 87 case 1: /* MMC v1.4 */ 88 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 89 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 90 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 91 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 92 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 93 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 94 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 95 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 96 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 97 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 98 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 99 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 101 break; 102 103 case 2: /* MMC v2.0 - v2.2 */ 104 case 3: /* MMC v3.1 - v3.3 */ 105 case 4: /* MMC v4 */ 106 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 107 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 108 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 109 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 110 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 111 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 112 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 113 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 114 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 115 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 116 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 117 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 118 break; 119 120 default: 121 pr_err("%s: card has unknown MMCA version %d\n", 122 mmc_hostname(card->host), card->csd.mmca_vsn); 123 return -EINVAL; 124 } 125 126 return 0; 127 } 128 129 static void mmc_set_erase_size(struct mmc_card *card) 130 { 131 if (card->ext_csd.erase_group_def & 1) 132 card->erase_size = card->ext_csd.hc_erase_size; 133 else 134 card->erase_size = card->csd.erase_size; 135 136 mmc_init_erase(card); 137 } 138 139 140 static void mmc_set_wp_grp_size(struct mmc_card *card) 141 { 142 if (card->ext_csd.erase_group_def & 1) 143 card->wp_grp_size = card->ext_csd.hc_erase_size * 144 card->ext_csd.raw_hc_erase_gap_size; 145 else 146 card->wp_grp_size = card->csd.erase_size * 147 (card->csd.wp_grp_size + 1); 148 } 149 150 /* 151 * Given a 128-bit response, decode to our card CSD structure. 152 */ 153 static int mmc_decode_csd(struct mmc_card *card) 154 { 155 struct mmc_csd *csd = &card->csd; 156 unsigned int e, m, a, b; 157 u32 *resp = card->raw_csd; 158 159 /* 160 * We only understand CSD structure v1.1 and v1.2. 161 * v1.2 has extra information in bits 15, 11 and 10. 162 * We also support eMMC v4.4 & v4.41. 163 */ 164 csd->structure = UNSTUFF_BITS(resp, 126, 2); 165 if (csd->structure == 0) { 166 pr_err("%s: unrecognised CSD structure version %d\n", 167 mmc_hostname(card->host), csd->structure); 168 return -EINVAL; 169 } 170 171 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 172 m = UNSTUFF_BITS(resp, 115, 4); 173 e = UNSTUFF_BITS(resp, 112, 3); 174 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 175 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 176 177 m = UNSTUFF_BITS(resp, 99, 4); 178 e = UNSTUFF_BITS(resp, 96, 3); 179 csd->max_dtr = tran_exp[e] * tran_mant[m]; 180 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 181 182 e = UNSTUFF_BITS(resp, 47, 3); 183 m = UNSTUFF_BITS(resp, 62, 12); 184 csd->capacity = (1 + m) << (e + 2); 185 186 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 187 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 188 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 189 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 190 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 191 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 192 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 193 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 194 195 if (csd->write_blkbits >= 9) { 196 a = UNSTUFF_BITS(resp, 42, 5); 197 b = UNSTUFF_BITS(resp, 37, 5); 198 csd->erase_size = (a + 1) * (b + 1); 199 csd->erase_size <<= csd->write_blkbits - 9; 200 csd->wp_grp_size = UNSTUFF_BITS(resp, 32, 5); 201 } 202 203 return 0; 204 } 205 206 static void mmc_select_card_type(struct mmc_card *card) 207 { 208 struct mmc_host *host = card->host; 209 u8 card_type = card->ext_csd.raw_card_type; 210 u32 caps = host->caps, caps2 = host->caps2; 211 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 212 unsigned int avail_type = 0; 213 214 if (caps & MMC_CAP_MMC_HIGHSPEED && 215 card_type & EXT_CSD_CARD_TYPE_HS_26) { 216 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 217 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 218 } 219 220 if (caps & MMC_CAP_MMC_HIGHSPEED && 221 card_type & EXT_CSD_CARD_TYPE_HS_52) { 222 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 223 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 224 } 225 226 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 227 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 228 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 229 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 230 } 231 232 if (caps & MMC_CAP_1_2V_DDR && 233 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 234 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 235 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 236 } 237 238 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 239 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 240 hs200_max_dtr = MMC_HS200_MAX_DTR; 241 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 242 } 243 244 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 245 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 246 hs200_max_dtr = MMC_HS200_MAX_DTR; 247 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 248 } 249 250 if (caps2 & MMC_CAP2_HS400_1_8V && 251 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 252 hs200_max_dtr = MMC_HS200_MAX_DTR; 253 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 254 } 255 256 if (caps2 & MMC_CAP2_HS400_1_2V && 257 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 258 hs200_max_dtr = MMC_HS200_MAX_DTR; 259 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 260 } 261 262 if ((caps2 & MMC_CAP2_HS400_ES) && 263 card->ext_csd.strobe_support && 264 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 265 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 266 267 card->ext_csd.hs_max_dtr = hs_max_dtr; 268 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 269 card->mmc_avail_type = avail_type; 270 } 271 272 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 273 { 274 u8 hc_erase_grp_sz, hc_wp_grp_sz; 275 276 /* 277 * Disable these attributes by default 278 */ 279 card->ext_csd.enhanced_area_offset = -EINVAL; 280 card->ext_csd.enhanced_area_size = -EINVAL; 281 282 /* 283 * Enhanced area feature support -- check whether the eMMC 284 * card has the Enhanced area enabled. If so, export enhanced 285 * area offset and size to user by adding sysfs interface. 286 */ 287 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 288 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 289 if (card->ext_csd.partition_setting_completed) { 290 hc_erase_grp_sz = 291 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 292 hc_wp_grp_sz = 293 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 294 295 /* 296 * calculate the enhanced data area offset, in bytes 297 */ 298 card->ext_csd.enhanced_area_offset = 299 (((unsigned long long)ext_csd[139]) << 24) + 300 (((unsigned long long)ext_csd[138]) << 16) + 301 (((unsigned long long)ext_csd[137]) << 8) + 302 (((unsigned long long)ext_csd[136])); 303 if (mmc_card_blockaddr(card)) 304 card->ext_csd.enhanced_area_offset <<= 9; 305 /* 306 * calculate the enhanced data area size, in kilobytes 307 */ 308 card->ext_csd.enhanced_area_size = 309 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 310 ext_csd[140]; 311 card->ext_csd.enhanced_area_size *= 312 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 313 card->ext_csd.enhanced_area_size <<= 9; 314 } else { 315 pr_warn("%s: defines enhanced area without partition setting complete\n", 316 mmc_hostname(card->host)); 317 } 318 } 319 } 320 321 static void mmc_part_add(struct mmc_card *card, u64 size, 322 unsigned int part_cfg, char *name, int idx, bool ro, 323 int area_type) 324 { 325 card->part[card->nr_parts].size = size; 326 card->part[card->nr_parts].part_cfg = part_cfg; 327 sprintf(card->part[card->nr_parts].name, name, idx); 328 card->part[card->nr_parts].force_ro = ro; 329 card->part[card->nr_parts].area_type = area_type; 330 card->nr_parts++; 331 } 332 333 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 334 { 335 int idx; 336 u8 hc_erase_grp_sz, hc_wp_grp_sz; 337 u64 part_size; 338 339 /* 340 * General purpose partition feature support -- 341 * If ext_csd has the size of general purpose partitions, 342 * set size, part_cfg, partition name in mmc_part. 343 */ 344 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 345 EXT_CSD_PART_SUPPORT_PART_EN) { 346 hc_erase_grp_sz = 347 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 348 hc_wp_grp_sz = 349 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 350 351 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 352 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 353 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 354 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 355 continue; 356 if (card->ext_csd.partition_setting_completed == 0) { 357 pr_warn("%s: has partition size defined without partition complete\n", 358 mmc_hostname(card->host)); 359 break; 360 } 361 part_size = 362 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 363 << 16) + 364 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 365 << 8) + 366 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 367 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 368 mmc_part_add(card, part_size << 19, 369 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 370 "gp%d", idx, false, 371 MMC_BLK_DATA_AREA_GP); 372 } 373 } 374 } 375 376 /* Minimum partition switch timeout in milliseconds */ 377 #define MMC_MIN_PART_SWITCH_TIME 300 378 379 /* 380 * Decode extended CSD. 381 */ 382 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 383 { 384 int err = 0, idx; 385 u64 part_size; 386 struct device_node *np; 387 bool broken_hpi = false; 388 389 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 390 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 391 if (card->csd.structure == 3) { 392 if (card->ext_csd.raw_ext_csd_structure > 2) { 393 pr_err("%s: unrecognised EXT_CSD structure " 394 "version %d\n", mmc_hostname(card->host), 395 card->ext_csd.raw_ext_csd_structure); 396 err = -EINVAL; 397 goto out; 398 } 399 } 400 401 np = mmc_of_find_child_device(card->host, 0); 402 if (np && of_device_is_compatible(np, "mmc-card")) 403 broken_hpi = of_property_read_bool(np, "broken-hpi"); 404 of_node_put(np); 405 406 /* 407 * The EXT_CSD format is meant to be forward compatible. As long 408 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 409 * are authorized, see JEDEC JESD84-B50 section B.8. 410 */ 411 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 412 413 /* fixup device after ext_csd revision field is updated */ 414 mmc_fixup_device(card, mmc_ext_csd_fixups); 415 416 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 417 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 418 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 419 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 420 if (card->ext_csd.rev >= 2) { 421 card->ext_csd.sectors = 422 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 423 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 424 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 425 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 426 427 /* Cards with density > 2GiB are sector addressed */ 428 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 429 mmc_card_set_blockaddr(card); 430 } 431 432 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 433 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 434 435 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 436 card->ext_csd.raw_erase_timeout_mult = 437 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 438 card->ext_csd.raw_hc_erase_grp_size = 439 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 440 card->ext_csd.raw_boot_mult = 441 ext_csd[EXT_CSD_BOOT_MULT]; 442 if (card->ext_csd.rev >= 3) { 443 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 444 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 445 446 /* EXT_CSD value is in units of 10ms, but we store in ms */ 447 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 448 449 /* Sleep / awake timeout in 100ns units */ 450 if (sa_shift > 0 && sa_shift <= 0x17) 451 card->ext_csd.sa_timeout = 452 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 453 card->ext_csd.erase_group_def = 454 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 455 card->ext_csd.hc_erase_timeout = 300 * 456 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 457 card->ext_csd.hc_erase_size = 458 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 459 460 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 461 462 /* 463 * There are two boot regions of equal size, defined in 464 * multiples of 128K. 465 */ 466 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 467 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 468 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 469 mmc_part_add(card, part_size, 470 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 471 "boot%d", idx, true, 472 MMC_BLK_DATA_AREA_BOOT); 473 } 474 } 475 } 476 477 card->ext_csd.raw_hc_erase_gap_size = 478 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 479 card->ext_csd.raw_sec_trim_mult = 480 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 481 card->ext_csd.raw_sec_erase_mult = 482 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 483 card->ext_csd.raw_sec_feature_support = 484 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 485 card->ext_csd.raw_trim_mult = 486 ext_csd[EXT_CSD_TRIM_MULT]; 487 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 488 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 489 if (card->ext_csd.rev >= 4) { 490 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 491 EXT_CSD_PART_SETTING_COMPLETED) 492 card->ext_csd.partition_setting_completed = 1; 493 else 494 card->ext_csd.partition_setting_completed = 0; 495 496 mmc_manage_enhanced_area(card, ext_csd); 497 498 mmc_manage_gp_partitions(card, ext_csd); 499 500 card->ext_csd.sec_trim_mult = 501 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 502 card->ext_csd.sec_erase_mult = 503 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 504 card->ext_csd.sec_feature_support = 505 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 506 card->ext_csd.trim_timeout = 300 * 507 ext_csd[EXT_CSD_TRIM_MULT]; 508 509 /* 510 * Note that the call to mmc_part_add above defaults to read 511 * only. If this default assumption is changed, the call must 512 * take into account the value of boot_locked below. 513 */ 514 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 515 card->ext_csd.boot_ro_lockable = true; 516 517 /* Save power class values */ 518 card->ext_csd.raw_pwr_cl_52_195 = 519 ext_csd[EXT_CSD_PWR_CL_52_195]; 520 card->ext_csd.raw_pwr_cl_26_195 = 521 ext_csd[EXT_CSD_PWR_CL_26_195]; 522 card->ext_csd.raw_pwr_cl_52_360 = 523 ext_csd[EXT_CSD_PWR_CL_52_360]; 524 card->ext_csd.raw_pwr_cl_26_360 = 525 ext_csd[EXT_CSD_PWR_CL_26_360]; 526 card->ext_csd.raw_pwr_cl_200_195 = 527 ext_csd[EXT_CSD_PWR_CL_200_195]; 528 card->ext_csd.raw_pwr_cl_200_360 = 529 ext_csd[EXT_CSD_PWR_CL_200_360]; 530 card->ext_csd.raw_pwr_cl_ddr_52_195 = 531 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 532 card->ext_csd.raw_pwr_cl_ddr_52_360 = 533 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 534 card->ext_csd.raw_pwr_cl_ddr_200_360 = 535 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 536 } 537 538 if (card->ext_csd.rev >= 5) { 539 /* Adjust production date as per JEDEC JESD84-B451 */ 540 if (card->cid.year < 2010) 541 card->cid.year += 16; 542 543 /* check whether the eMMC card supports BKOPS */ 544 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 545 card->ext_csd.bkops = 1; 546 card->ext_csd.man_bkops_en = 547 (ext_csd[EXT_CSD_BKOPS_EN] & 548 EXT_CSD_MANUAL_BKOPS_MASK); 549 card->ext_csd.raw_bkops_status = 550 ext_csd[EXT_CSD_BKOPS_STATUS]; 551 if (card->ext_csd.man_bkops_en) 552 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 553 mmc_hostname(card->host)); 554 card->ext_csd.auto_bkops_en = 555 (ext_csd[EXT_CSD_BKOPS_EN] & 556 EXT_CSD_AUTO_BKOPS_MASK); 557 if (card->ext_csd.auto_bkops_en) 558 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 559 mmc_hostname(card->host)); 560 } 561 562 /* check whether the eMMC card supports HPI */ 563 if (!mmc_card_broken_hpi(card) && 564 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 565 card->ext_csd.hpi = 1; 566 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 567 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 568 else 569 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 570 /* 571 * Indicate the maximum timeout to close 572 * a command interrupted by HPI 573 */ 574 card->ext_csd.out_of_int_time = 575 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 576 } 577 578 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 579 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 580 581 /* 582 * RPMB regions are defined in multiples of 128K. 583 */ 584 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 585 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 586 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 587 EXT_CSD_PART_CONFIG_ACC_RPMB, 588 "rpmb", 0, false, 589 MMC_BLK_DATA_AREA_RPMB); 590 } 591 } 592 593 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 594 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 595 card->erased_byte = 0xFF; 596 else 597 card->erased_byte = 0x0; 598 599 /* eMMC v4.5 or later */ 600 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 601 if (card->ext_csd.rev >= 6) { 602 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 603 604 card->ext_csd.generic_cmd6_time = 10 * 605 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 606 card->ext_csd.power_off_longtime = 10 * 607 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 608 609 card->ext_csd.cache_size = 610 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 611 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 612 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 613 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 614 615 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 616 card->ext_csd.data_sector_size = 4096; 617 else 618 card->ext_csd.data_sector_size = 512; 619 620 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 621 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 622 card->ext_csd.data_tag_unit_size = 623 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 624 (card->ext_csd.data_sector_size); 625 } else { 626 card->ext_csd.data_tag_unit_size = 0; 627 } 628 } else { 629 card->ext_csd.data_sector_size = 512; 630 } 631 632 /* 633 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 634 * when accessing a specific field", so use it here if there is no 635 * PARTITION_SWITCH_TIME. 636 */ 637 if (!card->ext_csd.part_time) 638 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 639 /* Some eMMC set the value too low so set a minimum */ 640 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 641 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 642 643 /* eMMC v5 or later */ 644 if (card->ext_csd.rev >= 7) { 645 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 646 MMC_FIRMWARE_LEN); 647 card->ext_csd.ffu_capable = 648 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 649 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 650 651 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 652 card->ext_csd.device_life_time_est_typ_a = 653 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 654 card->ext_csd.device_life_time_est_typ_b = 655 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 656 } 657 658 /* eMMC v5.1 or later */ 659 if (card->ext_csd.rev >= 8) { 660 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 661 EXT_CSD_CMDQ_SUPPORTED; 662 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 663 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 664 /* Exclude inefficiently small queue depths */ 665 if (card->ext_csd.cmdq_depth <= 2) { 666 card->ext_csd.cmdq_support = false; 667 card->ext_csd.cmdq_depth = 0; 668 } 669 if (card->ext_csd.cmdq_support) { 670 pr_debug("%s: Command Queue supported depth %u\n", 671 mmc_hostname(card->host), 672 card->ext_csd.cmdq_depth); 673 } 674 card->ext_csd.enhanced_rpmb_supported = 675 (card->ext_csd.rel_param & 676 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 677 } 678 out: 679 return err; 680 } 681 682 static int mmc_read_ext_csd(struct mmc_card *card) 683 { 684 u8 *ext_csd; 685 int err; 686 687 if (!mmc_can_ext_csd(card)) 688 return 0; 689 690 err = mmc_get_ext_csd(card, &ext_csd); 691 if (err) { 692 /* If the host or the card can't do the switch, 693 * fail more gracefully. */ 694 if ((err != -EINVAL) 695 && (err != -ENOSYS) 696 && (err != -EFAULT)) 697 return err; 698 699 /* 700 * High capacity cards should have this "magic" size 701 * stored in their CSD. 702 */ 703 if (card->csd.capacity == (4096 * 512)) { 704 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 705 mmc_hostname(card->host)); 706 } else { 707 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 708 mmc_hostname(card->host)); 709 err = 0; 710 } 711 712 return err; 713 } 714 715 err = mmc_decode_ext_csd(card, ext_csd); 716 kfree(ext_csd); 717 return err; 718 } 719 720 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 721 { 722 u8 *bw_ext_csd; 723 int err; 724 725 if (bus_width == MMC_BUS_WIDTH_1) 726 return 0; 727 728 err = mmc_get_ext_csd(card, &bw_ext_csd); 729 if (err) 730 return err; 731 732 /* only compare read only fields */ 733 err = !((card->ext_csd.raw_partition_support == 734 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 735 (card->ext_csd.raw_erased_mem_count == 736 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 737 (card->ext_csd.rev == 738 bw_ext_csd[EXT_CSD_REV]) && 739 (card->ext_csd.raw_ext_csd_structure == 740 bw_ext_csd[EXT_CSD_STRUCTURE]) && 741 (card->ext_csd.raw_card_type == 742 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 743 (card->ext_csd.raw_s_a_timeout == 744 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 745 (card->ext_csd.raw_hc_erase_gap_size == 746 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 747 (card->ext_csd.raw_erase_timeout_mult == 748 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 749 (card->ext_csd.raw_hc_erase_grp_size == 750 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 751 (card->ext_csd.raw_sec_trim_mult == 752 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 753 (card->ext_csd.raw_sec_erase_mult == 754 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 755 (card->ext_csd.raw_sec_feature_support == 756 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 757 (card->ext_csd.raw_trim_mult == 758 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 759 (card->ext_csd.raw_sectors[0] == 760 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 761 (card->ext_csd.raw_sectors[1] == 762 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 763 (card->ext_csd.raw_sectors[2] == 764 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 765 (card->ext_csd.raw_sectors[3] == 766 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 767 (card->ext_csd.raw_pwr_cl_52_195 == 768 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 769 (card->ext_csd.raw_pwr_cl_26_195 == 770 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 771 (card->ext_csd.raw_pwr_cl_52_360 == 772 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 773 (card->ext_csd.raw_pwr_cl_26_360 == 774 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 775 (card->ext_csd.raw_pwr_cl_200_195 == 776 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 777 (card->ext_csd.raw_pwr_cl_200_360 == 778 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 779 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 780 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 781 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 782 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 783 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 784 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 785 786 if (err) 787 err = -EINVAL; 788 789 kfree(bw_ext_csd); 790 return err; 791 } 792 793 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 794 card->raw_cid[2], card->raw_cid[3]); 795 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 796 card->raw_csd[2], card->raw_csd[3]); 797 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 798 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 799 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 800 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9); 801 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 802 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 803 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 804 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 805 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 806 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 807 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 808 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 809 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 810 card->ext_csd.device_life_time_est_typ_a, 811 card->ext_csd.device_life_time_est_typ_b); 812 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 813 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 814 card->ext_csd.enhanced_area_offset); 815 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 816 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 817 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 818 card->ext_csd.enhanced_rpmb_supported); 819 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 820 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 821 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 822 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 823 824 static ssize_t mmc_fwrev_show(struct device *dev, 825 struct device_attribute *attr, 826 char *buf) 827 { 828 struct mmc_card *card = mmc_dev_to_card(dev); 829 830 if (card->ext_csd.rev < 7) 831 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev); 832 else 833 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 834 card->ext_csd.fwrev); 835 } 836 837 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 838 839 static ssize_t mmc_dsr_show(struct device *dev, 840 struct device_attribute *attr, 841 char *buf) 842 { 843 struct mmc_card *card = mmc_dev_to_card(dev); 844 struct mmc_host *host = card->host; 845 846 if (card->csd.dsr_imp && host->dsr_req) 847 return sysfs_emit(buf, "0x%x\n", host->dsr); 848 else 849 /* return default DSR value */ 850 return sysfs_emit(buf, "0x%x\n", 0x404); 851 } 852 853 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 854 855 static struct attribute *mmc_std_attrs[] = { 856 &dev_attr_cid.attr, 857 &dev_attr_csd.attr, 858 &dev_attr_date.attr, 859 &dev_attr_erase_size.attr, 860 &dev_attr_preferred_erase_size.attr, 861 &dev_attr_wp_grp_size.attr, 862 &dev_attr_fwrev.attr, 863 &dev_attr_ffu_capable.attr, 864 &dev_attr_hwrev.attr, 865 &dev_attr_manfid.attr, 866 &dev_attr_name.attr, 867 &dev_attr_oemid.attr, 868 &dev_attr_prv.attr, 869 &dev_attr_rev.attr, 870 &dev_attr_pre_eol_info.attr, 871 &dev_attr_life_time.attr, 872 &dev_attr_serial.attr, 873 &dev_attr_enhanced_area_offset.attr, 874 &dev_attr_enhanced_area_size.attr, 875 &dev_attr_raw_rpmb_size_mult.attr, 876 &dev_attr_enhanced_rpmb_supported.attr, 877 &dev_attr_rel_sectors.attr, 878 &dev_attr_ocr.attr, 879 &dev_attr_rca.attr, 880 &dev_attr_dsr.attr, 881 &dev_attr_cmdq_en.attr, 882 NULL, 883 }; 884 ATTRIBUTE_GROUPS(mmc_std); 885 886 static struct device_type mmc_type = { 887 .groups = mmc_std_groups, 888 }; 889 890 /* 891 * Select the PowerClass for the current bus width 892 * If power class is defined for 4/8 bit bus in the 893 * extended CSD register, select it by executing the 894 * mmc_switch command. 895 */ 896 static int __mmc_select_powerclass(struct mmc_card *card, 897 unsigned int bus_width) 898 { 899 struct mmc_host *host = card->host; 900 struct mmc_ext_csd *ext_csd = &card->ext_csd; 901 unsigned int pwrclass_val = 0; 902 int err = 0; 903 904 switch (1 << host->ios.vdd) { 905 case MMC_VDD_165_195: 906 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 907 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 908 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 909 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 910 ext_csd->raw_pwr_cl_52_195 : 911 ext_csd->raw_pwr_cl_ddr_52_195; 912 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 913 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 914 break; 915 case MMC_VDD_27_28: 916 case MMC_VDD_28_29: 917 case MMC_VDD_29_30: 918 case MMC_VDD_30_31: 919 case MMC_VDD_31_32: 920 case MMC_VDD_32_33: 921 case MMC_VDD_33_34: 922 case MMC_VDD_34_35: 923 case MMC_VDD_35_36: 924 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 925 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 926 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 927 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 928 ext_csd->raw_pwr_cl_52_360 : 929 ext_csd->raw_pwr_cl_ddr_52_360; 930 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 931 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 932 ext_csd->raw_pwr_cl_ddr_200_360 : 933 ext_csd->raw_pwr_cl_200_360; 934 break; 935 default: 936 pr_warn("%s: Voltage range not supported for power class\n", 937 mmc_hostname(host)); 938 return -EINVAL; 939 } 940 941 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 942 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 943 EXT_CSD_PWR_CL_8BIT_SHIFT; 944 else 945 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 946 EXT_CSD_PWR_CL_4BIT_SHIFT; 947 948 /* If the power class is different from the default value */ 949 if (pwrclass_val > 0) { 950 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 951 EXT_CSD_POWER_CLASS, 952 pwrclass_val, 953 card->ext_csd.generic_cmd6_time); 954 } 955 956 return err; 957 } 958 959 static int mmc_select_powerclass(struct mmc_card *card) 960 { 961 struct mmc_host *host = card->host; 962 u32 bus_width, ext_csd_bits; 963 int err, ddr; 964 965 /* Power class selection is supported for versions >= 4.0 */ 966 if (!mmc_can_ext_csd(card)) 967 return 0; 968 969 bus_width = host->ios.bus_width; 970 /* Power class values are defined only for 4/8 bit bus */ 971 if (bus_width == MMC_BUS_WIDTH_1) 972 return 0; 973 974 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 975 if (ddr) 976 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 977 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 978 else 979 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 980 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 981 982 err = __mmc_select_powerclass(card, ext_csd_bits); 983 if (err) 984 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 985 mmc_hostname(host), 1 << bus_width, ddr); 986 987 return err; 988 } 989 990 /* 991 * Set the bus speed for the selected speed mode. 992 */ 993 static void mmc_set_bus_speed(struct mmc_card *card) 994 { 995 unsigned int max_dtr = (unsigned int)-1; 996 997 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 998 max_dtr > card->ext_csd.hs200_max_dtr) 999 max_dtr = card->ext_csd.hs200_max_dtr; 1000 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 1001 max_dtr = card->ext_csd.hs_max_dtr; 1002 else if (max_dtr > card->csd.max_dtr) 1003 max_dtr = card->csd.max_dtr; 1004 1005 mmc_set_clock(card->host, max_dtr); 1006 } 1007 1008 /* 1009 * Select the bus width amoung 4-bit and 8-bit(SDR). 1010 * If the bus width is changed successfully, return the selected width value. 1011 * Zero is returned instead of error value if the wide width is not supported. 1012 */ 1013 static int mmc_select_bus_width(struct mmc_card *card) 1014 { 1015 static unsigned ext_csd_bits[] = { 1016 EXT_CSD_BUS_WIDTH_8, 1017 EXT_CSD_BUS_WIDTH_4, 1018 }; 1019 static unsigned bus_widths[] = { 1020 MMC_BUS_WIDTH_8, 1021 MMC_BUS_WIDTH_4, 1022 }; 1023 struct mmc_host *host = card->host; 1024 unsigned idx, bus_width = 0; 1025 int err = 0; 1026 1027 if (!mmc_can_ext_csd(card) || 1028 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1029 return 0; 1030 1031 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1032 1033 /* 1034 * Unlike SD, MMC cards dont have a configuration register to notify 1035 * supported bus width. So bus test command should be run to identify 1036 * the supported bus width or compare the ext csd values of current 1037 * bus width and ext csd values of 1 bit mode read earlier. 1038 */ 1039 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1040 /* 1041 * Host is capable of 8bit transfer, then switch 1042 * the device to work in 8bit transfer mode. If the 1043 * mmc switch command returns error then switch to 1044 * 4bit transfer mode. On success set the corresponding 1045 * bus width on the host. 1046 */ 1047 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1048 EXT_CSD_BUS_WIDTH, 1049 ext_csd_bits[idx], 1050 card->ext_csd.generic_cmd6_time); 1051 if (err) 1052 continue; 1053 1054 bus_width = bus_widths[idx]; 1055 mmc_set_bus_width(host, bus_width); 1056 1057 /* 1058 * If controller can't handle bus width test, 1059 * compare ext_csd previously read in 1 bit mode 1060 * against ext_csd at new bus width 1061 */ 1062 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1063 err = mmc_compare_ext_csds(card, bus_width); 1064 else 1065 err = mmc_bus_test(card, bus_width); 1066 1067 if (!err) { 1068 err = bus_width; 1069 break; 1070 } else { 1071 pr_warn("%s: switch to bus width %d failed\n", 1072 mmc_hostname(host), 1 << bus_width); 1073 } 1074 } 1075 1076 return err; 1077 } 1078 1079 /* 1080 * Switch to the high-speed mode 1081 */ 1082 static int mmc_select_hs(struct mmc_card *card) 1083 { 1084 int err; 1085 1086 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1087 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1088 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1089 true, true, MMC_CMD_RETRIES); 1090 if (err) 1091 pr_warn("%s: switch to high-speed failed, err:%d\n", 1092 mmc_hostname(card->host), err); 1093 1094 return err; 1095 } 1096 1097 /* 1098 * Activate wide bus and DDR if supported. 1099 */ 1100 static int mmc_select_hs_ddr(struct mmc_card *card) 1101 { 1102 struct mmc_host *host = card->host; 1103 u32 bus_width, ext_csd_bits; 1104 int err = 0; 1105 1106 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1107 return 0; 1108 1109 bus_width = host->ios.bus_width; 1110 if (bus_width == MMC_BUS_WIDTH_1) 1111 return 0; 1112 1113 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1114 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1115 1116 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1117 EXT_CSD_BUS_WIDTH, 1118 ext_csd_bits, 1119 card->ext_csd.generic_cmd6_time, 1120 MMC_TIMING_MMC_DDR52, 1121 true, true, MMC_CMD_RETRIES); 1122 if (err) { 1123 pr_err("%s: switch to bus width %d ddr failed\n", 1124 mmc_hostname(host), 1 << bus_width); 1125 return err; 1126 } 1127 1128 /* 1129 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1130 * signaling. 1131 * 1132 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1133 * 1134 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1135 * in the JEDEC spec for DDR. 1136 * 1137 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1138 * host controller can support this, like some of the SDHCI 1139 * controller which connect to an eMMC device. Some of these 1140 * host controller still needs to use 1.8v vccq for supporting 1141 * DDR mode. 1142 * 1143 * So the sequence will be: 1144 * if (host and device can both support 1.2v IO) 1145 * use 1.2v IO; 1146 * else if (host and device can both support 1.8v IO) 1147 * use 1.8v IO; 1148 * so if host and device can only support 3.3v IO, this is the 1149 * last choice. 1150 * 1151 * WARNING: eMMC rules are NOT the same as SD DDR 1152 */ 1153 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1154 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1155 if (!err) 1156 return 0; 1157 } 1158 1159 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1160 host->caps & MMC_CAP_1_8V_DDR) 1161 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1162 1163 /* make sure vccq is 3.3v after switching disaster */ 1164 if (err) 1165 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1166 1167 return err; 1168 } 1169 1170 static int mmc_select_hs400(struct mmc_card *card) 1171 { 1172 struct mmc_host *host = card->host; 1173 unsigned int max_dtr; 1174 int err = 0; 1175 u8 val; 1176 1177 /* 1178 * HS400 mode requires 8-bit bus width 1179 */ 1180 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1181 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1182 return 0; 1183 1184 /* Switch card to HS mode */ 1185 val = EXT_CSD_TIMING_HS; 1186 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1187 EXT_CSD_HS_TIMING, val, 1188 card->ext_csd.generic_cmd6_time, 0, 1189 false, true, MMC_CMD_RETRIES); 1190 if (err) { 1191 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1192 mmc_hostname(host), err); 1193 return err; 1194 } 1195 1196 /* Prepare host to downgrade to HS timing */ 1197 if (host->ops->hs400_downgrade) 1198 host->ops->hs400_downgrade(host); 1199 1200 /* Set host controller to HS timing */ 1201 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1202 1203 /* Reduce frequency to HS frequency */ 1204 max_dtr = card->ext_csd.hs_max_dtr; 1205 mmc_set_clock(host, max_dtr); 1206 1207 err = mmc_switch_status(card, true); 1208 if (err) 1209 goto out_err; 1210 1211 if (host->ops->hs400_prepare_ddr) 1212 host->ops->hs400_prepare_ddr(host); 1213 1214 /* Switch card to DDR */ 1215 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1216 EXT_CSD_BUS_WIDTH, 1217 EXT_CSD_DDR_BUS_WIDTH_8, 1218 card->ext_csd.generic_cmd6_time); 1219 if (err) { 1220 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1221 mmc_hostname(host), err); 1222 return err; 1223 } 1224 1225 /* Switch card to HS400 */ 1226 val = EXT_CSD_TIMING_HS400 | 1227 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1228 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1229 EXT_CSD_HS_TIMING, val, 1230 card->ext_csd.generic_cmd6_time, 0, 1231 false, true, MMC_CMD_RETRIES); 1232 if (err) { 1233 pr_err("%s: switch to hs400 failed, err:%d\n", 1234 mmc_hostname(host), err); 1235 return err; 1236 } 1237 1238 /* Set host controller to HS400 timing and frequency */ 1239 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1240 mmc_set_bus_speed(card); 1241 1242 if (host->ops->execute_hs400_tuning) { 1243 mmc_retune_disable(host); 1244 err = host->ops->execute_hs400_tuning(host, card); 1245 mmc_retune_enable(host); 1246 if (err) 1247 goto out_err; 1248 } 1249 1250 if (host->ops->hs400_complete) 1251 host->ops->hs400_complete(host); 1252 1253 err = mmc_switch_status(card, true); 1254 if (err) 1255 goto out_err; 1256 1257 return 0; 1258 1259 out_err: 1260 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1261 __func__, err); 1262 return err; 1263 } 1264 1265 int mmc_hs200_to_hs400(struct mmc_card *card) 1266 { 1267 return mmc_select_hs400(card); 1268 } 1269 1270 int mmc_hs400_to_hs200(struct mmc_card *card) 1271 { 1272 struct mmc_host *host = card->host; 1273 unsigned int max_dtr; 1274 int err; 1275 u8 val; 1276 1277 /* Reduce frequency to HS */ 1278 max_dtr = card->ext_csd.hs_max_dtr; 1279 mmc_set_clock(host, max_dtr); 1280 1281 /* Switch HS400 to HS DDR */ 1282 val = EXT_CSD_TIMING_HS; 1283 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1284 val, card->ext_csd.generic_cmd6_time, 0, 1285 false, true, MMC_CMD_RETRIES); 1286 if (err) 1287 goto out_err; 1288 1289 if (host->ops->hs400_downgrade) 1290 host->ops->hs400_downgrade(host); 1291 1292 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1293 1294 err = mmc_switch_status(card, true); 1295 if (err) 1296 goto out_err; 1297 1298 /* Switch HS DDR to HS */ 1299 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1300 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1301 0, false, true, MMC_CMD_RETRIES); 1302 if (err) 1303 goto out_err; 1304 1305 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1306 1307 err = mmc_switch_status(card, true); 1308 if (err) 1309 goto out_err; 1310 1311 /* Switch HS to HS200 */ 1312 val = EXT_CSD_TIMING_HS200 | 1313 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1314 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1315 val, card->ext_csd.generic_cmd6_time, 0, 1316 false, true, MMC_CMD_RETRIES); 1317 if (err) 1318 goto out_err; 1319 1320 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1321 1322 /* 1323 * For HS200, CRC errors are not a reliable way to know the switch 1324 * failed. If there really is a problem, we would expect tuning will 1325 * fail and the result ends up the same. 1326 */ 1327 err = mmc_switch_status(card, false); 1328 if (err) 1329 goto out_err; 1330 1331 mmc_set_bus_speed(card); 1332 1333 /* Prepare tuning for HS400 mode. */ 1334 if (host->ops->prepare_hs400_tuning) 1335 host->ops->prepare_hs400_tuning(host, &host->ios); 1336 1337 return 0; 1338 1339 out_err: 1340 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1341 __func__, err); 1342 return err; 1343 } 1344 1345 static void mmc_select_driver_type(struct mmc_card *card) 1346 { 1347 int card_drv_type, drive_strength, drv_type = 0; 1348 int fixed_drv_type = card->host->fixed_drv_type; 1349 1350 card_drv_type = card->ext_csd.raw_driver_strength | 1351 mmc_driver_type_mask(0); 1352 1353 if (fixed_drv_type >= 0) 1354 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1355 ? fixed_drv_type : 0; 1356 else 1357 drive_strength = mmc_select_drive_strength(card, 1358 card->ext_csd.hs200_max_dtr, 1359 card_drv_type, &drv_type); 1360 1361 card->drive_strength = drive_strength; 1362 1363 if (drv_type) 1364 mmc_set_driver_type(card->host, drv_type); 1365 } 1366 1367 static int mmc_select_hs400es(struct mmc_card *card) 1368 { 1369 struct mmc_host *host = card->host; 1370 int err = -EINVAL; 1371 u8 val; 1372 1373 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1374 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1375 1376 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1377 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1378 1379 /* If fails try again during next card power cycle */ 1380 if (err) 1381 goto out_err; 1382 1383 err = mmc_select_bus_width(card); 1384 if (err != MMC_BUS_WIDTH_8) { 1385 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1386 mmc_hostname(host), err); 1387 err = err < 0 ? err : -ENOTSUPP; 1388 goto out_err; 1389 } 1390 1391 /* Switch card to HS mode */ 1392 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1393 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1394 card->ext_csd.generic_cmd6_time, 0, 1395 false, true, MMC_CMD_RETRIES); 1396 if (err) { 1397 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1398 mmc_hostname(host), err); 1399 goto out_err; 1400 } 1401 1402 /* 1403 * Bump to HS timing and frequency. Some cards don't handle 1404 * SEND_STATUS reliably at the initial frequency. 1405 */ 1406 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1407 mmc_set_bus_speed(card); 1408 1409 err = mmc_switch_status(card, true); 1410 if (err) 1411 goto out_err; 1412 1413 /* Switch card to DDR with strobe bit */ 1414 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1415 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1416 EXT_CSD_BUS_WIDTH, 1417 val, 1418 card->ext_csd.generic_cmd6_time); 1419 if (err) { 1420 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1421 mmc_hostname(host), err); 1422 goto out_err; 1423 } 1424 1425 mmc_select_driver_type(card); 1426 1427 /* Switch card to HS400 */ 1428 val = EXT_CSD_TIMING_HS400 | 1429 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1430 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1431 EXT_CSD_HS_TIMING, val, 1432 card->ext_csd.generic_cmd6_time, 0, 1433 false, true, MMC_CMD_RETRIES); 1434 if (err) { 1435 pr_err("%s: switch to hs400es failed, err:%d\n", 1436 mmc_hostname(host), err); 1437 goto out_err; 1438 } 1439 1440 /* Set host controller to HS400 timing and frequency */ 1441 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1442 1443 /* Controller enable enhanced strobe function */ 1444 host->ios.enhanced_strobe = true; 1445 if (host->ops->hs400_enhanced_strobe) 1446 host->ops->hs400_enhanced_strobe(host, &host->ios); 1447 1448 err = mmc_switch_status(card, true); 1449 if (err) 1450 goto out_err; 1451 1452 return 0; 1453 1454 out_err: 1455 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1456 __func__, err); 1457 return err; 1458 } 1459 1460 /* 1461 * For device supporting HS200 mode, the following sequence 1462 * should be done before executing the tuning process. 1463 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1464 * 2. switch to HS200 mode 1465 * 3. set the clock to > 52Mhz and <=200MHz 1466 */ 1467 static int mmc_select_hs200(struct mmc_card *card) 1468 { 1469 struct mmc_host *host = card->host; 1470 unsigned int old_timing, old_signal_voltage, old_clock; 1471 int err = -EINVAL; 1472 u8 val; 1473 1474 old_signal_voltage = host->ios.signal_voltage; 1475 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1476 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1477 1478 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1479 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1480 1481 /* If fails try again during next card power cycle */ 1482 if (err) 1483 return err; 1484 1485 mmc_select_driver_type(card); 1486 1487 /* 1488 * Set the bus width(4 or 8) with host's support and 1489 * switch to HS200 mode if bus width is set successfully. 1490 */ 1491 err = mmc_select_bus_width(card); 1492 if (err > 0) { 1493 val = EXT_CSD_TIMING_HS200 | 1494 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1495 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1496 EXT_CSD_HS_TIMING, val, 1497 card->ext_csd.generic_cmd6_time, 0, 1498 false, true, MMC_CMD_RETRIES); 1499 if (err) 1500 goto err; 1501 1502 /* 1503 * Bump to HS timing and frequency. Some cards don't handle 1504 * SEND_STATUS reliably at the initial frequency. 1505 * NB: We can't move to full (HS200) speeds until after we've 1506 * successfully switched over. 1507 */ 1508 old_timing = host->ios.timing; 1509 old_clock = host->ios.clock; 1510 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1511 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr); 1512 1513 /* 1514 * For HS200, CRC errors are not a reliable way to know the 1515 * switch failed. If there really is a problem, we would expect 1516 * tuning will fail and the result ends up the same. 1517 */ 1518 err = mmc_switch_status(card, false); 1519 1520 /* 1521 * mmc_select_timing() assumes timing has not changed if 1522 * it is a switch error. 1523 */ 1524 if (err == -EBADMSG) { 1525 mmc_set_clock(host, old_clock); 1526 mmc_set_timing(host, old_timing); 1527 } 1528 } 1529 err: 1530 if (err) { 1531 /* fall back to the old signal voltage, if fails report error */ 1532 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1533 err = -EIO; 1534 1535 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1536 __func__, err); 1537 } 1538 return err; 1539 } 1540 1541 /* 1542 * Activate High Speed, HS200 or HS400ES mode if supported. 1543 */ 1544 static int mmc_select_timing(struct mmc_card *card) 1545 { 1546 int err = 0; 1547 1548 if (!mmc_can_ext_csd(card)) 1549 goto bus_speed; 1550 1551 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) { 1552 err = mmc_select_hs400es(card); 1553 goto out; 1554 } 1555 1556 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) { 1557 err = mmc_select_hs200(card); 1558 if (err == -EBADMSG) 1559 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200; 1560 else 1561 goto out; 1562 } 1563 1564 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1565 err = mmc_select_hs(card); 1566 1567 out: 1568 if (err && err != -EBADMSG) 1569 return err; 1570 1571 bus_speed: 1572 /* 1573 * Set the bus speed to the selected bus timing. 1574 * If timing is not selected, backward compatible is the default. 1575 */ 1576 mmc_set_bus_speed(card); 1577 return 0; 1578 } 1579 1580 /* 1581 * Execute tuning sequence to seek the proper bus operating 1582 * conditions for HS200 and HS400, which sends CMD21 to the device. 1583 */ 1584 static int mmc_hs200_tuning(struct mmc_card *card) 1585 { 1586 struct mmc_host *host = card->host; 1587 1588 /* 1589 * Timing should be adjusted to the HS400 target 1590 * operation frequency for tuning process 1591 */ 1592 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1593 host->ios.bus_width == MMC_BUS_WIDTH_8) 1594 if (host->ops->prepare_hs400_tuning) 1595 host->ops->prepare_hs400_tuning(host, &host->ios); 1596 1597 return mmc_execute_tuning(card); 1598 } 1599 1600 /* 1601 * Handle the detection and initialisation of a card. 1602 * 1603 * In the case of a resume, "oldcard" will contain the card 1604 * we're trying to reinitialise. 1605 */ 1606 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1607 struct mmc_card *oldcard) 1608 { 1609 struct mmc_card *card; 1610 int err; 1611 u32 cid[4]; 1612 u32 rocr; 1613 1614 WARN_ON(!host->claimed); 1615 1616 /* Set correct bus mode for MMC before attempting init */ 1617 if (!mmc_host_is_spi(host)) 1618 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1619 1620 /* 1621 * Since we're changing the OCR value, we seem to 1622 * need to tell some cards to go back to the idle 1623 * state. We wait 1ms to give cards time to 1624 * respond. 1625 * mmc_go_idle is needed for eMMC that are asleep 1626 */ 1627 mmc_go_idle(host); 1628 1629 /* The extra bit indicates that we support high capacity */ 1630 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1631 if (err) 1632 goto err; 1633 1634 /* 1635 * For SPI, enable CRC as appropriate. 1636 */ 1637 if (mmc_host_is_spi(host)) { 1638 err = mmc_spi_set_crc(host, use_spi_crc); 1639 if (err) 1640 goto err; 1641 } 1642 1643 /* 1644 * Fetch CID from card. 1645 */ 1646 err = mmc_send_cid(host, cid); 1647 if (err) 1648 goto err; 1649 1650 if (oldcard) { 1651 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1652 pr_debug("%s: Perhaps the card was replaced\n", 1653 mmc_hostname(host)); 1654 err = -ENOENT; 1655 goto err; 1656 } 1657 1658 card = oldcard; 1659 } else { 1660 /* 1661 * Allocate card structure. 1662 */ 1663 card = mmc_alloc_card(host, &mmc_type); 1664 if (IS_ERR(card)) { 1665 err = PTR_ERR(card); 1666 goto err; 1667 } 1668 1669 card->ocr = ocr; 1670 card->type = MMC_TYPE_MMC; 1671 card->rca = 1; 1672 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1673 } 1674 1675 /* 1676 * Call the optional HC's init_card function to handle quirks. 1677 */ 1678 if (host->ops->init_card) 1679 host->ops->init_card(host, card); 1680 1681 /* 1682 * For native busses: set card RCA and quit open drain mode. 1683 */ 1684 if (!mmc_host_is_spi(host)) { 1685 err = mmc_set_relative_addr(card); 1686 if (err) 1687 goto free_card; 1688 1689 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1690 } 1691 1692 if (!oldcard) { 1693 /* 1694 * Fetch CSD from card. 1695 */ 1696 err = mmc_send_csd(card, card->raw_csd); 1697 if (err) 1698 goto free_card; 1699 1700 err = mmc_decode_csd(card); 1701 if (err) 1702 goto free_card; 1703 err = mmc_decode_cid(card); 1704 if (err) 1705 goto free_card; 1706 } 1707 1708 /* 1709 * handling only for cards supporting DSR and hosts requesting 1710 * DSR configuration 1711 */ 1712 if (card->csd.dsr_imp && host->dsr_req) 1713 mmc_set_dsr(host); 1714 1715 /* 1716 * Select card, as all following commands rely on that. 1717 */ 1718 if (!mmc_host_is_spi(host)) { 1719 err = mmc_select_card(card); 1720 if (err) 1721 goto free_card; 1722 } 1723 1724 if (!oldcard) { 1725 /* Read extended CSD. */ 1726 err = mmc_read_ext_csd(card); 1727 if (err) 1728 goto free_card; 1729 1730 /* 1731 * If doing byte addressing, check if required to do sector 1732 * addressing. Handle the case of <2GB cards needing sector 1733 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1734 * ocr register has bit 30 set for sector addressing. 1735 */ 1736 if (rocr & BIT(30)) 1737 mmc_card_set_blockaddr(card); 1738 1739 /* Erase size depends on CSD and Extended CSD */ 1740 mmc_set_erase_size(card); 1741 } 1742 1743 /* 1744 * Reselect the card type since host caps could have been changed when 1745 * debugging even if the card is not new. 1746 */ 1747 mmc_select_card_type(card); 1748 1749 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1750 if (card->ext_csd.rev >= 3) { 1751 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1752 EXT_CSD_ERASE_GROUP_DEF, 1, 1753 card->ext_csd.generic_cmd6_time); 1754 1755 if (err && err != -EBADMSG) 1756 goto free_card; 1757 1758 if (err) { 1759 /* 1760 * Just disable enhanced area off & sz 1761 * will try to enable ERASE_GROUP_DEF 1762 * during next time reinit 1763 */ 1764 card->ext_csd.enhanced_area_offset = -EINVAL; 1765 card->ext_csd.enhanced_area_size = -EINVAL; 1766 } else { 1767 card->ext_csd.erase_group_def = 1; 1768 /* 1769 * enable ERASE_GRP_DEF successfully. 1770 * This will affect the erase size, so 1771 * here need to reset erase size 1772 */ 1773 mmc_set_erase_size(card); 1774 } 1775 } 1776 mmc_set_wp_grp_size(card); 1777 /* 1778 * Ensure eMMC user default partition is enabled 1779 */ 1780 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1781 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1782 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1783 card->ext_csd.part_config, 1784 card->ext_csd.part_time); 1785 if (err && err != -EBADMSG) 1786 goto free_card; 1787 } 1788 1789 /* 1790 * Enable power_off_notification byte in the ext_csd register 1791 */ 1792 if (card->ext_csd.rev >= 6) { 1793 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1794 EXT_CSD_POWER_OFF_NOTIFICATION, 1795 EXT_CSD_POWER_ON, 1796 card->ext_csd.generic_cmd6_time); 1797 if (err && err != -EBADMSG) 1798 goto free_card; 1799 1800 /* 1801 * The err can be -EBADMSG or 0, 1802 * so check for success and update the flag 1803 */ 1804 if (!err) 1805 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1806 } 1807 1808 /* set erase_arg */ 1809 if (mmc_can_discard(card)) 1810 card->erase_arg = MMC_DISCARD_ARG; 1811 else if (mmc_can_trim(card)) 1812 card->erase_arg = MMC_TRIM_ARG; 1813 else 1814 card->erase_arg = MMC_ERASE_ARG; 1815 1816 /* 1817 * Select timing interface 1818 */ 1819 err = mmc_select_timing(card); 1820 if (err) 1821 goto free_card; 1822 1823 if (mmc_card_hs200(card)) { 1824 host->doing_init_tune = 1; 1825 1826 err = mmc_hs200_tuning(card); 1827 if (!err) 1828 err = mmc_select_hs400(card); 1829 1830 host->doing_init_tune = 0; 1831 1832 if (err) 1833 goto free_card; 1834 } else if (mmc_card_hs400es(card)) { 1835 if (host->ops->execute_hs400_tuning) { 1836 err = host->ops->execute_hs400_tuning(host, card); 1837 if (err) 1838 goto free_card; 1839 } 1840 } else { 1841 /* Select the desired bus width optionally */ 1842 err = mmc_select_bus_width(card); 1843 if (err > 0 && mmc_card_hs(card)) { 1844 err = mmc_select_hs_ddr(card); 1845 if (err) 1846 goto free_card; 1847 } 1848 } 1849 1850 /* 1851 * Choose the power class with selected bus interface 1852 */ 1853 mmc_select_powerclass(card); 1854 1855 /* 1856 * Enable HPI feature (if supported) 1857 */ 1858 if (card->ext_csd.hpi) { 1859 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1860 EXT_CSD_HPI_MGMT, 1, 1861 card->ext_csd.generic_cmd6_time); 1862 if (err && err != -EBADMSG) 1863 goto free_card; 1864 if (err) { 1865 pr_warn("%s: Enabling HPI failed\n", 1866 mmc_hostname(card->host)); 1867 card->ext_csd.hpi_en = 0; 1868 } else { 1869 card->ext_csd.hpi_en = 1; 1870 } 1871 } 1872 1873 /* 1874 * If cache size is higher than 0, this indicates the existence of cache 1875 * and it can be turned on. Note that some eMMCs from Micron has been 1876 * reported to need ~800 ms timeout, while enabling the cache after 1877 * sudden power failure tests. Let's extend the timeout to a minimum of 1878 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1879 */ 1880 if (card->ext_csd.cache_size > 0) { 1881 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1882 1883 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1884 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1885 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1886 if (err && err != -EBADMSG) 1887 goto free_card; 1888 1889 /* 1890 * Only if no error, cache is turned on successfully. 1891 */ 1892 if (err) { 1893 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1894 mmc_hostname(card->host), err); 1895 card->ext_csd.cache_ctrl = 0; 1896 } else { 1897 card->ext_csd.cache_ctrl = 1; 1898 } 1899 } 1900 1901 /* 1902 * Enable Command Queue if supported. Note that Packed Commands cannot 1903 * be used with Command Queue. 1904 */ 1905 card->ext_csd.cmdq_en = false; 1906 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1907 err = mmc_cmdq_enable(card); 1908 if (err && err != -EBADMSG) 1909 goto free_card; 1910 if (err) { 1911 pr_warn("%s: Enabling CMDQ failed\n", 1912 mmc_hostname(card->host)); 1913 card->ext_csd.cmdq_support = false; 1914 card->ext_csd.cmdq_depth = 0; 1915 } 1916 } 1917 /* 1918 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1919 * disabled for a time, so a flag is needed to indicate to re-enable the 1920 * Command Queue. 1921 */ 1922 card->reenable_cmdq = card->ext_csd.cmdq_en; 1923 1924 if (host->cqe_ops && !host->cqe_enabled) { 1925 err = host->cqe_ops->cqe_enable(host, card); 1926 if (!err) { 1927 host->cqe_enabled = true; 1928 1929 if (card->ext_csd.cmdq_en) { 1930 pr_info("%s: Command Queue Engine enabled\n", 1931 mmc_hostname(host)); 1932 } else { 1933 host->hsq_enabled = true; 1934 pr_info("%s: Host Software Queue enabled\n", 1935 mmc_hostname(host)); 1936 } 1937 } 1938 } 1939 1940 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1941 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1942 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1943 mmc_hostname(host)); 1944 err = -EINVAL; 1945 goto free_card; 1946 } 1947 1948 if (!oldcard) 1949 host->card = card; 1950 1951 return 0; 1952 1953 free_card: 1954 if (!oldcard) 1955 mmc_remove_card(card); 1956 err: 1957 return err; 1958 } 1959 1960 static int mmc_can_sleep(struct mmc_card *card) 1961 { 1962 return card->ext_csd.rev >= 3; 1963 } 1964 1965 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1966 { 1967 struct mmc_host *host = cb_data; 1968 1969 *busy = host->ops->card_busy(host); 1970 return 0; 1971 } 1972 1973 static int mmc_sleep(struct mmc_host *host) 1974 { 1975 struct mmc_command cmd = {}; 1976 struct mmc_card *card = host->card; 1977 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1978 bool use_r1b_resp; 1979 int err; 1980 1981 /* Re-tuning can't be done once the card is deselected */ 1982 mmc_retune_hold(host); 1983 1984 err = mmc_deselect_cards(host); 1985 if (err) 1986 goto out_release; 1987 1988 cmd.opcode = MMC_SLEEP_AWAKE; 1989 cmd.arg = card->rca << 16; 1990 cmd.arg |= 1 << 15; 1991 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1992 1993 err = mmc_wait_for_cmd(host, &cmd, 0); 1994 if (err) 1995 goto out_release; 1996 1997 /* 1998 * If the host does not wait while the card signals busy, then we can 1999 * try to poll, but only if the host supports HW polling, as the 2000 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 2001 * to wait the sleep/awake timeout. 2002 */ 2003 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 2004 goto out_release; 2005 2006 if (!host->ops->card_busy) { 2007 mmc_delay(timeout_ms); 2008 goto out_release; 2009 } 2010 2011 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host); 2012 2013 out_release: 2014 mmc_retune_release(host); 2015 return err; 2016 } 2017 2018 static int mmc_can_poweroff_notify(const struct mmc_card *card) 2019 { 2020 return card && 2021 mmc_card_mmc(card) && 2022 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 2023 } 2024 2025 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 2026 { 2027 unsigned int timeout = card->ext_csd.generic_cmd6_time; 2028 int err; 2029 2030 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 2031 if (notify_type == EXT_CSD_POWER_OFF_LONG) 2032 timeout = card->ext_csd.power_off_longtime; 2033 2034 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2035 EXT_CSD_POWER_OFF_NOTIFICATION, 2036 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 2037 if (err) 2038 pr_err("%s: Power Off Notification timed out, %u\n", 2039 mmc_hostname(card->host), timeout); 2040 2041 /* Disable the power off notification after the switch operation. */ 2042 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 2043 2044 return err; 2045 } 2046 2047 /* 2048 * Host is being removed. Free up the current card. 2049 */ 2050 static void mmc_remove(struct mmc_host *host) 2051 { 2052 mmc_remove_card(host->card); 2053 host->card = NULL; 2054 } 2055 2056 /* 2057 * Card detection - card is alive. 2058 */ 2059 static int mmc_alive(struct mmc_host *host) 2060 { 2061 return mmc_send_status(host->card, NULL); 2062 } 2063 2064 /* 2065 * Card detection callback from host. 2066 */ 2067 static void mmc_detect(struct mmc_host *host) 2068 { 2069 int err; 2070 2071 mmc_get_card(host->card, NULL); 2072 2073 /* 2074 * Just check if our card has been removed. 2075 */ 2076 err = _mmc_detect_card_removed(host); 2077 2078 mmc_put_card(host->card, NULL); 2079 2080 if (err) { 2081 mmc_remove(host); 2082 2083 mmc_claim_host(host); 2084 mmc_detach_bus(host); 2085 mmc_power_off(host); 2086 mmc_release_host(host); 2087 } 2088 } 2089 2090 static bool _mmc_cache_enabled(struct mmc_host *host) 2091 { 2092 return host->card->ext_csd.cache_size > 0 && 2093 host->card->ext_csd.cache_ctrl & 1; 2094 } 2095 2096 /* 2097 * Flush the internal cache of the eMMC to non-volatile storage. 2098 */ 2099 static int _mmc_flush_cache(struct mmc_host *host) 2100 { 2101 int err = 0; 2102 2103 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag) 2104 return 0; 2105 2106 if (_mmc_cache_enabled(host)) { 2107 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2108 EXT_CSD_FLUSH_CACHE, 1, 2109 CACHE_FLUSH_TIMEOUT_MS); 2110 if (err) 2111 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err); 2112 else 2113 host->card->written_flag = false; 2114 } 2115 2116 return err; 2117 } 2118 2119 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2120 { 2121 int err = 0; 2122 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2123 EXT_CSD_POWER_OFF_LONG; 2124 2125 mmc_claim_host(host); 2126 2127 if (mmc_card_suspended(host->card)) 2128 goto out; 2129 2130 err = _mmc_flush_cache(host); 2131 if (err) 2132 goto out; 2133 2134 if (mmc_can_poweroff_notify(host->card) && 2135 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2136 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2137 err = mmc_poweroff_notify(host->card, notify_type); 2138 else if (mmc_can_sleep(host->card)) 2139 err = mmc_sleep(host); 2140 else if (!mmc_host_is_spi(host)) 2141 err = mmc_deselect_cards(host); 2142 2143 if (!err) { 2144 mmc_power_off(host); 2145 mmc_card_set_suspended(host->card); 2146 } 2147 out: 2148 mmc_release_host(host); 2149 return err; 2150 } 2151 2152 /* 2153 * Suspend callback 2154 */ 2155 static int mmc_suspend(struct mmc_host *host) 2156 { 2157 int err; 2158 2159 err = _mmc_suspend(host, true); 2160 if (!err) { 2161 pm_runtime_disable(&host->card->dev); 2162 pm_runtime_set_suspended(&host->card->dev); 2163 } 2164 2165 return err; 2166 } 2167 2168 /* 2169 * This function tries to determine if the same card is still present 2170 * and, if so, restore all state to it. 2171 */ 2172 static int _mmc_resume(struct mmc_host *host) 2173 { 2174 int err = 0; 2175 2176 mmc_claim_host(host); 2177 2178 if (!mmc_card_suspended(host->card)) 2179 goto out; 2180 2181 mmc_power_up(host, host->card->ocr); 2182 err = mmc_init_card(host, host->card->ocr, host->card); 2183 mmc_card_clr_suspended(host->card); 2184 2185 out: 2186 mmc_release_host(host); 2187 return err; 2188 } 2189 2190 /* 2191 * Shutdown callback 2192 */ 2193 static int mmc_shutdown(struct mmc_host *host) 2194 { 2195 int err = 0; 2196 2197 /* 2198 * In a specific case for poweroff notify, we need to resume the card 2199 * before we can shutdown it properly. 2200 */ 2201 if (mmc_can_poweroff_notify(host->card) && 2202 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2203 err = _mmc_resume(host); 2204 2205 if (!err) 2206 err = _mmc_suspend(host, false); 2207 2208 return err; 2209 } 2210 2211 /* 2212 * Callback for resume. 2213 */ 2214 static int mmc_resume(struct mmc_host *host) 2215 { 2216 pm_runtime_enable(&host->card->dev); 2217 return 0; 2218 } 2219 2220 /* 2221 * Callback for runtime_suspend. 2222 */ 2223 static int mmc_runtime_suspend(struct mmc_host *host) 2224 { 2225 int err; 2226 2227 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2228 return 0; 2229 2230 err = _mmc_suspend(host, true); 2231 if (err) 2232 pr_err("%s: error %d doing aggressive suspend\n", 2233 mmc_hostname(host), err); 2234 2235 return err; 2236 } 2237 2238 /* 2239 * Callback for runtime_resume. 2240 */ 2241 static int mmc_runtime_resume(struct mmc_host *host) 2242 { 2243 int err; 2244 2245 err = _mmc_resume(host); 2246 if (err && err != -ENOMEDIUM) 2247 pr_err("%s: error %d doing runtime resume\n", 2248 mmc_hostname(host), err); 2249 2250 return 0; 2251 } 2252 2253 static int mmc_can_reset(struct mmc_card *card) 2254 { 2255 u8 rst_n_function; 2256 2257 rst_n_function = card->ext_csd.rst_n_function; 2258 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2259 return 0; 2260 return 1; 2261 } 2262 2263 static int _mmc_hw_reset(struct mmc_host *host) 2264 { 2265 struct mmc_card *card = host->card; 2266 2267 /* 2268 * In the case of recovery, we can't expect flushing the cache to work 2269 * always, but we have a go and ignore errors. 2270 */ 2271 _mmc_flush_cache(host); 2272 2273 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset && 2274 mmc_can_reset(card)) { 2275 /* If the card accept RST_n signal, send it. */ 2276 mmc_set_clock(host, host->f_init); 2277 host->ops->card_hw_reset(host); 2278 /* Set initial state and call mmc_set_ios */ 2279 mmc_set_initial_state(host); 2280 } else { 2281 /* Do a brute force power cycle */ 2282 mmc_power_cycle(host, card->ocr); 2283 mmc_pwrseq_reset(host); 2284 } 2285 return mmc_init_card(host, card->ocr, card); 2286 } 2287 2288 static const struct mmc_bus_ops mmc_ops = { 2289 .remove = mmc_remove, 2290 .detect = mmc_detect, 2291 .suspend = mmc_suspend, 2292 .resume = mmc_resume, 2293 .runtime_suspend = mmc_runtime_suspend, 2294 .runtime_resume = mmc_runtime_resume, 2295 .alive = mmc_alive, 2296 .shutdown = mmc_shutdown, 2297 .hw_reset = _mmc_hw_reset, 2298 .cache_enabled = _mmc_cache_enabled, 2299 .flush_cache = _mmc_flush_cache, 2300 }; 2301 2302 /* 2303 * Starting point for MMC card init. 2304 */ 2305 int mmc_attach_mmc(struct mmc_host *host) 2306 { 2307 int err; 2308 u32 ocr, rocr; 2309 2310 WARN_ON(!host->claimed); 2311 2312 /* Set correct bus mode for MMC before attempting attach */ 2313 if (!mmc_host_is_spi(host)) 2314 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2315 2316 err = mmc_send_op_cond(host, 0, &ocr); 2317 if (err) 2318 return err; 2319 2320 mmc_attach_bus(host, &mmc_ops); 2321 if (host->ocr_avail_mmc) 2322 host->ocr_avail = host->ocr_avail_mmc; 2323 2324 /* 2325 * We need to get OCR a different way for SPI. 2326 */ 2327 if (mmc_host_is_spi(host)) { 2328 err = mmc_spi_read_ocr(host, 1, &ocr); 2329 if (err) 2330 goto err; 2331 } 2332 2333 rocr = mmc_select_voltage(host, ocr); 2334 2335 /* 2336 * Can we support the voltage of the card? 2337 */ 2338 if (!rocr) { 2339 err = -EINVAL; 2340 goto err; 2341 } 2342 2343 /* 2344 * Detect and init the card. 2345 */ 2346 err = mmc_init_card(host, rocr, NULL); 2347 if (err) 2348 goto err; 2349 2350 mmc_release_host(host); 2351 err = mmc_add_card(host->card); 2352 if (err) 2353 goto remove_card; 2354 2355 mmc_claim_host(host); 2356 return 0; 2357 2358 remove_card: 2359 mmc_remove_card(host->card); 2360 mmc_claim_host(host); 2361 host->card = NULL; 2362 err: 2363 mmc_detach_bus(host); 2364 2365 pr_err("%s: error %d whilst initialising MMC card\n", 2366 mmc_hostname(host), err); 2367 2368 return err; 2369 } 2370