1 /* 2 * linux/drivers/mmc/core/mmc.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/err.h> 14 #include <linux/of.h> 15 #include <linux/slab.h> 16 #include <linux/stat.h> 17 #include <linux/pm_runtime.h> 18 19 #include <linux/mmc/host.h> 20 #include <linux/mmc/card.h> 21 #include <linux/mmc/mmc.h> 22 23 #include "core.h" 24 #include "host.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "sd_ops.h" 28 29 static const unsigned int tran_exp[] = { 30 10000, 100000, 1000000, 10000000, 31 0, 0, 0, 0 32 }; 33 34 static const unsigned char tran_mant[] = { 35 0, 10, 12, 13, 15, 20, 25, 30, 36 35, 40, 45, 50, 55, 60, 70, 80, 37 }; 38 39 static const unsigned int tacc_exp[] = { 40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 41 }; 42 43 static const unsigned int tacc_mant[] = { 44 0, 10, 12, 13, 15, 20, 25, 30, 45 35, 40, 45, 50, 55, 60, 70, 80, 46 }; 47 48 #define UNSTUFF_BITS(resp,start,size) \ 49 ({ \ 50 const int __size = size; \ 51 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 52 const int __off = 3 - ((start) / 32); \ 53 const int __shft = (start) & 31; \ 54 u32 __res; \ 55 \ 56 __res = resp[__off] >> __shft; \ 57 if (__size + __shft > 32) \ 58 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 59 __res & __mask; \ 60 }) 61 62 /* 63 * Given the decoded CSD structure, decode the raw CID to our CID structure. 64 */ 65 static int mmc_decode_cid(struct mmc_card *card) 66 { 67 u32 *resp = card->raw_cid; 68 69 /* 70 * The selection of the format here is based upon published 71 * specs from sandisk and from what people have reported. 72 */ 73 switch (card->csd.mmca_vsn) { 74 case 0: /* MMC v1.0 - v1.2 */ 75 case 1: /* MMC v1.4 */ 76 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 77 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 78 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 79 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 80 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 81 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 82 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 83 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 84 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 85 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 86 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 87 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 88 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 89 break; 90 91 case 2: /* MMC v2.0 - v2.2 */ 92 case 3: /* MMC v3.1 - v3.3 */ 93 case 4: /* MMC v4 */ 94 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 95 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 96 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 97 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 98 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 99 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 100 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 101 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 102 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 103 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 104 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 105 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 106 break; 107 108 default: 109 pr_err("%s: card has unknown MMCA version %d\n", 110 mmc_hostname(card->host), card->csd.mmca_vsn); 111 return -EINVAL; 112 } 113 114 return 0; 115 } 116 117 static void mmc_set_erase_size(struct mmc_card *card) 118 { 119 if (card->ext_csd.erase_group_def & 1) 120 card->erase_size = card->ext_csd.hc_erase_size; 121 else 122 card->erase_size = card->csd.erase_size; 123 124 mmc_init_erase(card); 125 } 126 127 /* 128 * Given a 128-bit response, decode to our card CSD structure. 129 */ 130 static int mmc_decode_csd(struct mmc_card *card) 131 { 132 struct mmc_csd *csd = &card->csd; 133 unsigned int e, m, a, b; 134 u32 *resp = card->raw_csd; 135 136 /* 137 * We only understand CSD structure v1.1 and v1.2. 138 * v1.2 has extra information in bits 15, 11 and 10. 139 * We also support eMMC v4.4 & v4.41. 140 */ 141 csd->structure = UNSTUFF_BITS(resp, 126, 2); 142 if (csd->structure == 0) { 143 pr_err("%s: unrecognised CSD structure version %d\n", 144 mmc_hostname(card->host), csd->structure); 145 return -EINVAL; 146 } 147 148 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 149 m = UNSTUFF_BITS(resp, 115, 4); 150 e = UNSTUFF_BITS(resp, 112, 3); 151 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; 152 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 153 154 m = UNSTUFF_BITS(resp, 99, 4); 155 e = UNSTUFF_BITS(resp, 96, 3); 156 csd->max_dtr = tran_exp[e] * tran_mant[m]; 157 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 158 159 e = UNSTUFF_BITS(resp, 47, 3); 160 m = UNSTUFF_BITS(resp, 62, 12); 161 csd->capacity = (1 + m) << (e + 2); 162 163 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 164 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 165 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 166 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 167 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 168 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 169 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 170 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 171 172 if (csd->write_blkbits >= 9) { 173 a = UNSTUFF_BITS(resp, 42, 5); 174 b = UNSTUFF_BITS(resp, 37, 5); 175 csd->erase_size = (a + 1) * (b + 1); 176 csd->erase_size <<= csd->write_blkbits - 9; 177 } 178 179 return 0; 180 } 181 182 static void mmc_select_card_type(struct mmc_card *card) 183 { 184 struct mmc_host *host = card->host; 185 u8 card_type = card->ext_csd.raw_card_type; 186 u32 caps = host->caps, caps2 = host->caps2; 187 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 188 unsigned int avail_type = 0; 189 190 if (caps & MMC_CAP_MMC_HIGHSPEED && 191 card_type & EXT_CSD_CARD_TYPE_HS_26) { 192 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 193 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 194 } 195 196 if (caps & MMC_CAP_MMC_HIGHSPEED && 197 card_type & EXT_CSD_CARD_TYPE_HS_52) { 198 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 199 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 200 } 201 202 if (caps & MMC_CAP_1_8V_DDR && 203 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 204 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 205 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 206 } 207 208 if (caps & MMC_CAP_1_2V_DDR && 209 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 210 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 211 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 212 } 213 214 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 215 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 216 hs200_max_dtr = MMC_HS200_MAX_DTR; 217 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 218 } 219 220 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 221 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 222 hs200_max_dtr = MMC_HS200_MAX_DTR; 223 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 224 } 225 226 if (caps2 & MMC_CAP2_HS400_1_8V && 227 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 228 hs200_max_dtr = MMC_HS200_MAX_DTR; 229 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 230 } 231 232 if (caps2 & MMC_CAP2_HS400_1_2V && 233 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 234 hs200_max_dtr = MMC_HS200_MAX_DTR; 235 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 236 } 237 238 card->ext_csd.hs_max_dtr = hs_max_dtr; 239 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 240 card->mmc_avail_type = avail_type; 241 } 242 243 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 244 { 245 u8 hc_erase_grp_sz, hc_wp_grp_sz; 246 247 /* 248 * Disable these attributes by default 249 */ 250 card->ext_csd.enhanced_area_offset = -EINVAL; 251 card->ext_csd.enhanced_area_size = -EINVAL; 252 253 /* 254 * Enhanced area feature support -- check whether the eMMC 255 * card has the Enhanced area enabled. If so, export enhanced 256 * area offset and size to user by adding sysfs interface. 257 */ 258 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 259 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 260 if (card->ext_csd.partition_setting_completed) { 261 hc_erase_grp_sz = 262 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 263 hc_wp_grp_sz = 264 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 265 266 /* 267 * calculate the enhanced data area offset, in bytes 268 */ 269 card->ext_csd.enhanced_area_offset = 270 (((unsigned long long)ext_csd[139]) << 24) + 271 (((unsigned long long)ext_csd[138]) << 16) + 272 (((unsigned long long)ext_csd[137]) << 8) + 273 (((unsigned long long)ext_csd[136])); 274 if (mmc_card_blockaddr(card)) 275 card->ext_csd.enhanced_area_offset <<= 9; 276 /* 277 * calculate the enhanced data area size, in kilobytes 278 */ 279 card->ext_csd.enhanced_area_size = 280 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 281 ext_csd[140]; 282 card->ext_csd.enhanced_area_size *= 283 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 284 card->ext_csd.enhanced_area_size <<= 9; 285 } else { 286 pr_warn("%s: defines enhanced area without partition setting complete\n", 287 mmc_hostname(card->host)); 288 } 289 } 290 } 291 292 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 293 { 294 int idx; 295 u8 hc_erase_grp_sz, hc_wp_grp_sz; 296 unsigned int part_size; 297 298 /* 299 * General purpose partition feature support -- 300 * If ext_csd has the size of general purpose partitions, 301 * set size, part_cfg, partition name in mmc_part. 302 */ 303 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 304 EXT_CSD_PART_SUPPORT_PART_EN) { 305 hc_erase_grp_sz = 306 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 307 hc_wp_grp_sz = 308 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 309 310 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 311 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 312 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 313 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 314 continue; 315 if (card->ext_csd.partition_setting_completed == 0) { 316 pr_warn("%s: has partition size defined without partition complete\n", 317 mmc_hostname(card->host)); 318 break; 319 } 320 part_size = 321 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 322 << 16) + 323 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 324 << 8) + 325 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 326 part_size *= (size_t)(hc_erase_grp_sz * 327 hc_wp_grp_sz); 328 mmc_part_add(card, part_size << 19, 329 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 330 "gp%d", idx, false, 331 MMC_BLK_DATA_AREA_GP); 332 } 333 } 334 } 335 336 /* Minimum partition switch timeout in milliseconds */ 337 #define MMC_MIN_PART_SWITCH_TIME 300 338 339 /* 340 * Decode extended CSD. 341 */ 342 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 343 { 344 int err = 0, idx; 345 unsigned int part_size; 346 struct device_node *np; 347 bool broken_hpi = false; 348 349 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 350 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 351 if (card->csd.structure == 3) { 352 if (card->ext_csd.raw_ext_csd_structure > 2) { 353 pr_err("%s: unrecognised EXT_CSD structure " 354 "version %d\n", mmc_hostname(card->host), 355 card->ext_csd.raw_ext_csd_structure); 356 err = -EINVAL; 357 goto out; 358 } 359 } 360 361 np = mmc_of_find_child_device(card->host, 0); 362 if (np && of_device_is_compatible(np, "mmc-card")) 363 broken_hpi = of_property_read_bool(np, "broken-hpi"); 364 of_node_put(np); 365 366 /* 367 * The EXT_CSD format is meant to be forward compatible. As long 368 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 369 * are authorized, see JEDEC JESD84-B50 section B.8. 370 */ 371 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 372 373 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 374 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 375 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 376 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 377 if (card->ext_csd.rev >= 2) { 378 card->ext_csd.sectors = 379 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 380 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 381 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 382 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 383 384 /* Cards with density > 2GiB are sector addressed */ 385 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 386 mmc_card_set_blockaddr(card); 387 } 388 389 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 390 mmc_select_card_type(card); 391 392 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 393 card->ext_csd.raw_erase_timeout_mult = 394 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 395 card->ext_csd.raw_hc_erase_grp_size = 396 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 397 if (card->ext_csd.rev >= 3) { 398 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 399 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 400 401 /* EXT_CSD value is in units of 10ms, but we store in ms */ 402 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 403 /* Some eMMC set the value too low so set a minimum */ 404 if (card->ext_csd.part_time && 405 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 406 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 407 408 /* Sleep / awake timeout in 100ns units */ 409 if (sa_shift > 0 && sa_shift <= 0x17) 410 card->ext_csd.sa_timeout = 411 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 412 card->ext_csd.erase_group_def = 413 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 414 card->ext_csd.hc_erase_timeout = 300 * 415 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 416 card->ext_csd.hc_erase_size = 417 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 418 419 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 420 421 /* 422 * There are two boot regions of equal size, defined in 423 * multiples of 128K. 424 */ 425 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 426 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 427 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 428 mmc_part_add(card, part_size, 429 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 430 "boot%d", idx, true, 431 MMC_BLK_DATA_AREA_BOOT); 432 } 433 } 434 } 435 436 card->ext_csd.raw_hc_erase_gap_size = 437 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 438 card->ext_csd.raw_sec_trim_mult = 439 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 440 card->ext_csd.raw_sec_erase_mult = 441 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 442 card->ext_csd.raw_sec_feature_support = 443 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 444 card->ext_csd.raw_trim_mult = 445 ext_csd[EXT_CSD_TRIM_MULT]; 446 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 447 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 448 if (card->ext_csd.rev >= 4) { 449 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 450 EXT_CSD_PART_SETTING_COMPLETED) 451 card->ext_csd.partition_setting_completed = 1; 452 else 453 card->ext_csd.partition_setting_completed = 0; 454 455 mmc_manage_enhanced_area(card, ext_csd); 456 457 mmc_manage_gp_partitions(card, ext_csd); 458 459 card->ext_csd.sec_trim_mult = 460 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 461 card->ext_csd.sec_erase_mult = 462 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 463 card->ext_csd.sec_feature_support = 464 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 465 card->ext_csd.trim_timeout = 300 * 466 ext_csd[EXT_CSD_TRIM_MULT]; 467 468 /* 469 * Note that the call to mmc_part_add above defaults to read 470 * only. If this default assumption is changed, the call must 471 * take into account the value of boot_locked below. 472 */ 473 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 474 card->ext_csd.boot_ro_lockable = true; 475 476 /* Save power class values */ 477 card->ext_csd.raw_pwr_cl_52_195 = 478 ext_csd[EXT_CSD_PWR_CL_52_195]; 479 card->ext_csd.raw_pwr_cl_26_195 = 480 ext_csd[EXT_CSD_PWR_CL_26_195]; 481 card->ext_csd.raw_pwr_cl_52_360 = 482 ext_csd[EXT_CSD_PWR_CL_52_360]; 483 card->ext_csd.raw_pwr_cl_26_360 = 484 ext_csd[EXT_CSD_PWR_CL_26_360]; 485 card->ext_csd.raw_pwr_cl_200_195 = 486 ext_csd[EXT_CSD_PWR_CL_200_195]; 487 card->ext_csd.raw_pwr_cl_200_360 = 488 ext_csd[EXT_CSD_PWR_CL_200_360]; 489 card->ext_csd.raw_pwr_cl_ddr_52_195 = 490 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 491 card->ext_csd.raw_pwr_cl_ddr_52_360 = 492 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 493 card->ext_csd.raw_pwr_cl_ddr_200_360 = 494 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 495 } 496 497 if (card->ext_csd.rev >= 5) { 498 /* Adjust production date as per JEDEC JESD84-B451 */ 499 if (card->cid.year < 2010) 500 card->cid.year += 16; 501 502 /* check whether the eMMC card supports BKOPS */ 503 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 504 card->ext_csd.bkops = 1; 505 card->ext_csd.man_bkops_en = 506 (ext_csd[EXT_CSD_BKOPS_EN] & 507 EXT_CSD_MANUAL_BKOPS_MASK); 508 card->ext_csd.raw_bkops_status = 509 ext_csd[EXT_CSD_BKOPS_STATUS]; 510 if (!card->ext_csd.man_bkops_en) 511 pr_debug("%s: MAN_BKOPS_EN bit is not set\n", 512 mmc_hostname(card->host)); 513 } 514 515 /* check whether the eMMC card supports HPI */ 516 if (!broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 517 card->ext_csd.hpi = 1; 518 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 519 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 520 else 521 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 522 /* 523 * Indicate the maximum timeout to close 524 * a command interrupted by HPI 525 */ 526 card->ext_csd.out_of_int_time = 527 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 528 } 529 530 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 531 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 532 533 /* 534 * RPMB regions are defined in multiples of 128K. 535 */ 536 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 537 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 538 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 539 EXT_CSD_PART_CONFIG_ACC_RPMB, 540 "rpmb", 0, false, 541 MMC_BLK_DATA_AREA_RPMB); 542 } 543 } 544 545 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 546 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 547 card->erased_byte = 0xFF; 548 else 549 card->erased_byte = 0x0; 550 551 /* eMMC v4.5 or later */ 552 if (card->ext_csd.rev >= 6) { 553 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 554 555 card->ext_csd.generic_cmd6_time = 10 * 556 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 557 card->ext_csd.power_off_longtime = 10 * 558 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 559 560 card->ext_csd.cache_size = 561 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 562 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 563 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 564 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 565 566 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 567 card->ext_csd.data_sector_size = 4096; 568 else 569 card->ext_csd.data_sector_size = 512; 570 571 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 572 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 573 card->ext_csd.data_tag_unit_size = 574 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 575 (card->ext_csd.data_sector_size); 576 } else { 577 card->ext_csd.data_tag_unit_size = 0; 578 } 579 580 card->ext_csd.max_packed_writes = 581 ext_csd[EXT_CSD_MAX_PACKED_WRITES]; 582 card->ext_csd.max_packed_reads = 583 ext_csd[EXT_CSD_MAX_PACKED_READS]; 584 } else { 585 card->ext_csd.data_sector_size = 512; 586 } 587 588 /* eMMC v5 or later */ 589 if (card->ext_csd.rev >= 7) { 590 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 591 MMC_FIRMWARE_LEN); 592 card->ext_csd.ffu_capable = 593 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 594 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 595 } 596 out: 597 return err; 598 } 599 600 static int mmc_read_ext_csd(struct mmc_card *card) 601 { 602 u8 *ext_csd; 603 int err; 604 605 if (!mmc_can_ext_csd(card)) 606 return 0; 607 608 err = mmc_get_ext_csd(card, &ext_csd); 609 if (err) { 610 /* If the host or the card can't do the switch, 611 * fail more gracefully. */ 612 if ((err != -EINVAL) 613 && (err != -ENOSYS) 614 && (err != -EFAULT)) 615 return err; 616 617 /* 618 * High capacity cards should have this "magic" size 619 * stored in their CSD. 620 */ 621 if (card->csd.capacity == (4096 * 512)) { 622 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 623 mmc_hostname(card->host)); 624 } else { 625 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 626 mmc_hostname(card->host)); 627 err = 0; 628 } 629 630 return err; 631 } 632 633 err = mmc_decode_ext_csd(card, ext_csd); 634 kfree(ext_csd); 635 return err; 636 } 637 638 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 639 { 640 u8 *bw_ext_csd; 641 int err; 642 643 if (bus_width == MMC_BUS_WIDTH_1) 644 return 0; 645 646 err = mmc_get_ext_csd(card, &bw_ext_csd); 647 if (err) 648 return err; 649 650 /* only compare read only fields */ 651 err = !((card->ext_csd.raw_partition_support == 652 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 653 (card->ext_csd.raw_erased_mem_count == 654 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 655 (card->ext_csd.rev == 656 bw_ext_csd[EXT_CSD_REV]) && 657 (card->ext_csd.raw_ext_csd_structure == 658 bw_ext_csd[EXT_CSD_STRUCTURE]) && 659 (card->ext_csd.raw_card_type == 660 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 661 (card->ext_csd.raw_s_a_timeout == 662 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 663 (card->ext_csd.raw_hc_erase_gap_size == 664 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 665 (card->ext_csd.raw_erase_timeout_mult == 666 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 667 (card->ext_csd.raw_hc_erase_grp_size == 668 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 669 (card->ext_csd.raw_sec_trim_mult == 670 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 671 (card->ext_csd.raw_sec_erase_mult == 672 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 673 (card->ext_csd.raw_sec_feature_support == 674 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 675 (card->ext_csd.raw_trim_mult == 676 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 677 (card->ext_csd.raw_sectors[0] == 678 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 679 (card->ext_csd.raw_sectors[1] == 680 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 681 (card->ext_csd.raw_sectors[2] == 682 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 683 (card->ext_csd.raw_sectors[3] == 684 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 685 (card->ext_csd.raw_pwr_cl_52_195 == 686 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 687 (card->ext_csd.raw_pwr_cl_26_195 == 688 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 689 (card->ext_csd.raw_pwr_cl_52_360 == 690 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 691 (card->ext_csd.raw_pwr_cl_26_360 == 692 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 693 (card->ext_csd.raw_pwr_cl_200_195 == 694 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 695 (card->ext_csd.raw_pwr_cl_200_360 == 696 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 697 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 698 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 699 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 700 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 701 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 702 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 703 704 if (err) 705 err = -EINVAL; 706 707 kfree(bw_ext_csd); 708 return err; 709 } 710 711 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 712 card->raw_cid[2], card->raw_cid[3]); 713 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 714 card->raw_csd[2], card->raw_csd[3]); 715 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 716 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 717 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 718 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 719 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 720 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 721 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 722 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 723 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 724 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 725 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 726 card->ext_csd.enhanced_area_offset); 727 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 728 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 729 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 730 731 static ssize_t mmc_fwrev_show(struct device *dev, 732 struct device_attribute *attr, 733 char *buf) 734 { 735 struct mmc_card *card = mmc_dev_to_card(dev); 736 737 if (card->ext_csd.rev < 7) { 738 return sprintf(buf, "0x%x\n", card->cid.fwrev); 739 } else { 740 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 741 card->ext_csd.fwrev); 742 } 743 } 744 745 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 746 747 static struct attribute *mmc_std_attrs[] = { 748 &dev_attr_cid.attr, 749 &dev_attr_csd.attr, 750 &dev_attr_date.attr, 751 &dev_attr_erase_size.attr, 752 &dev_attr_preferred_erase_size.attr, 753 &dev_attr_fwrev.attr, 754 &dev_attr_ffu_capable.attr, 755 &dev_attr_hwrev.attr, 756 &dev_attr_manfid.attr, 757 &dev_attr_name.attr, 758 &dev_attr_oemid.attr, 759 &dev_attr_prv.attr, 760 &dev_attr_serial.attr, 761 &dev_attr_enhanced_area_offset.attr, 762 &dev_attr_enhanced_area_size.attr, 763 &dev_attr_raw_rpmb_size_mult.attr, 764 &dev_attr_rel_sectors.attr, 765 NULL, 766 }; 767 ATTRIBUTE_GROUPS(mmc_std); 768 769 static struct device_type mmc_type = { 770 .groups = mmc_std_groups, 771 }; 772 773 /* 774 * Select the PowerClass for the current bus width 775 * If power class is defined for 4/8 bit bus in the 776 * extended CSD register, select it by executing the 777 * mmc_switch command. 778 */ 779 static int __mmc_select_powerclass(struct mmc_card *card, 780 unsigned int bus_width) 781 { 782 struct mmc_host *host = card->host; 783 struct mmc_ext_csd *ext_csd = &card->ext_csd; 784 unsigned int pwrclass_val = 0; 785 int err = 0; 786 787 switch (1 << host->ios.vdd) { 788 case MMC_VDD_165_195: 789 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 790 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 791 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 792 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 793 ext_csd->raw_pwr_cl_52_195 : 794 ext_csd->raw_pwr_cl_ddr_52_195; 795 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 796 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 797 break; 798 case MMC_VDD_27_28: 799 case MMC_VDD_28_29: 800 case MMC_VDD_29_30: 801 case MMC_VDD_30_31: 802 case MMC_VDD_31_32: 803 case MMC_VDD_32_33: 804 case MMC_VDD_33_34: 805 case MMC_VDD_34_35: 806 case MMC_VDD_35_36: 807 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 808 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 809 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 810 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 811 ext_csd->raw_pwr_cl_52_360 : 812 ext_csd->raw_pwr_cl_ddr_52_360; 813 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 814 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 815 ext_csd->raw_pwr_cl_ddr_200_360 : 816 ext_csd->raw_pwr_cl_200_360; 817 break; 818 default: 819 pr_warn("%s: Voltage range not supported for power class\n", 820 mmc_hostname(host)); 821 return -EINVAL; 822 } 823 824 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 825 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 826 EXT_CSD_PWR_CL_8BIT_SHIFT; 827 else 828 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 829 EXT_CSD_PWR_CL_4BIT_SHIFT; 830 831 /* If the power class is different from the default value */ 832 if (pwrclass_val > 0) { 833 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 834 EXT_CSD_POWER_CLASS, 835 pwrclass_val, 836 card->ext_csd.generic_cmd6_time); 837 } 838 839 return err; 840 } 841 842 static int mmc_select_powerclass(struct mmc_card *card) 843 { 844 struct mmc_host *host = card->host; 845 u32 bus_width, ext_csd_bits; 846 int err, ddr; 847 848 /* Power class selection is supported for versions >= 4.0 */ 849 if (!mmc_can_ext_csd(card)) 850 return 0; 851 852 bus_width = host->ios.bus_width; 853 /* Power class values are defined only for 4/8 bit bus */ 854 if (bus_width == MMC_BUS_WIDTH_1) 855 return 0; 856 857 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 858 if (ddr) 859 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 860 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 861 else 862 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 863 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 864 865 err = __mmc_select_powerclass(card, ext_csd_bits); 866 if (err) 867 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 868 mmc_hostname(host), 1 << bus_width, ddr); 869 870 return err; 871 } 872 873 /* 874 * Set the bus speed for the selected speed mode. 875 */ 876 static void mmc_set_bus_speed(struct mmc_card *card) 877 { 878 unsigned int max_dtr = (unsigned int)-1; 879 880 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 881 max_dtr > card->ext_csd.hs200_max_dtr) 882 max_dtr = card->ext_csd.hs200_max_dtr; 883 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 884 max_dtr = card->ext_csd.hs_max_dtr; 885 else if (max_dtr > card->csd.max_dtr) 886 max_dtr = card->csd.max_dtr; 887 888 mmc_set_clock(card->host, max_dtr); 889 } 890 891 /* 892 * Select the bus width amoung 4-bit and 8-bit(SDR). 893 * If the bus width is changed successfully, return the selected width value. 894 * Zero is returned instead of error value if the wide width is not supported. 895 */ 896 static int mmc_select_bus_width(struct mmc_card *card) 897 { 898 static unsigned ext_csd_bits[] = { 899 EXT_CSD_BUS_WIDTH_8, 900 EXT_CSD_BUS_WIDTH_4, 901 }; 902 static unsigned bus_widths[] = { 903 MMC_BUS_WIDTH_8, 904 MMC_BUS_WIDTH_4, 905 }; 906 struct mmc_host *host = card->host; 907 unsigned idx, bus_width = 0; 908 int err = 0; 909 910 if (!mmc_can_ext_csd(card) || 911 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 912 return 0; 913 914 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 915 916 /* 917 * Unlike SD, MMC cards dont have a configuration register to notify 918 * supported bus width. So bus test command should be run to identify 919 * the supported bus width or compare the ext csd values of current 920 * bus width and ext csd values of 1 bit mode read earlier. 921 */ 922 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 923 /* 924 * Host is capable of 8bit transfer, then switch 925 * the device to work in 8bit transfer mode. If the 926 * mmc switch command returns error then switch to 927 * 4bit transfer mode. On success set the corresponding 928 * bus width on the host. 929 */ 930 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 931 EXT_CSD_BUS_WIDTH, 932 ext_csd_bits[idx], 933 card->ext_csd.generic_cmd6_time); 934 if (err) 935 continue; 936 937 bus_width = bus_widths[idx]; 938 mmc_set_bus_width(host, bus_width); 939 940 /* 941 * If controller can't handle bus width test, 942 * compare ext_csd previously read in 1 bit mode 943 * against ext_csd at new bus width 944 */ 945 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 946 err = mmc_compare_ext_csds(card, bus_width); 947 else 948 err = mmc_bus_test(card, bus_width); 949 950 if (!err) { 951 err = bus_width; 952 break; 953 } else { 954 pr_warn("%s: switch to bus width %d failed\n", 955 mmc_hostname(host), 1 << bus_width); 956 } 957 } 958 959 return err; 960 } 961 962 /* 963 * Switch to the high-speed mode 964 */ 965 static int mmc_select_hs(struct mmc_card *card) 966 { 967 int err; 968 969 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 970 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 971 card->ext_csd.generic_cmd6_time, 972 true, true, true); 973 if (!err) 974 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 975 976 return err; 977 } 978 979 /* 980 * Activate wide bus and DDR if supported. 981 */ 982 static int mmc_select_hs_ddr(struct mmc_card *card) 983 { 984 struct mmc_host *host = card->host; 985 u32 bus_width, ext_csd_bits; 986 int err = 0; 987 988 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 989 return 0; 990 991 bus_width = host->ios.bus_width; 992 if (bus_width == MMC_BUS_WIDTH_1) 993 return 0; 994 995 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 996 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 997 998 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 999 EXT_CSD_BUS_WIDTH, 1000 ext_csd_bits, 1001 card->ext_csd.generic_cmd6_time); 1002 if (err) { 1003 pr_err("%s: switch to bus width %d ddr failed\n", 1004 mmc_hostname(host), 1 << bus_width); 1005 return err; 1006 } 1007 1008 /* 1009 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1010 * signaling. 1011 * 1012 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1013 * 1014 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1015 * in the JEDEC spec for DDR. 1016 * 1017 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1018 * host controller can support this, like some of the SDHCI 1019 * controller which connect to an eMMC device. Some of these 1020 * host controller still needs to use 1.8v vccq for supporting 1021 * DDR mode. 1022 * 1023 * So the sequence will be: 1024 * if (host and device can both support 1.2v IO) 1025 * use 1.2v IO; 1026 * else if (host and device can both support 1.8v IO) 1027 * use 1.8v IO; 1028 * so if host and device can only support 3.3v IO, this is the 1029 * last choice. 1030 * 1031 * WARNING: eMMC rules are NOT the same as SD DDR 1032 */ 1033 err = -EINVAL; 1034 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) 1035 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1036 1037 if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V)) 1038 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1039 1040 /* make sure vccq is 3.3v after switching disaster */ 1041 if (err) 1042 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1043 1044 if (!err) 1045 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1046 1047 return err; 1048 } 1049 1050 /* Caller must hold re-tuning */ 1051 static int mmc_switch_status(struct mmc_card *card) 1052 { 1053 u32 status; 1054 int err; 1055 1056 err = mmc_send_status(card, &status); 1057 if (err) 1058 return err; 1059 1060 return mmc_switch_status_error(card->host, status); 1061 } 1062 1063 static int mmc_select_hs400(struct mmc_card *card) 1064 { 1065 struct mmc_host *host = card->host; 1066 bool send_status = true; 1067 unsigned int max_dtr; 1068 int err = 0; 1069 u8 val; 1070 1071 /* 1072 * HS400 mode requires 8-bit bus width 1073 */ 1074 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1075 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1076 return 0; 1077 1078 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY) 1079 send_status = false; 1080 1081 /* Reduce frequency to HS frequency */ 1082 max_dtr = card->ext_csd.hs_max_dtr; 1083 mmc_set_clock(host, max_dtr); 1084 1085 /* Switch card to HS mode */ 1086 val = EXT_CSD_TIMING_HS; 1087 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1088 EXT_CSD_HS_TIMING, val, 1089 card->ext_csd.generic_cmd6_time, 1090 true, send_status, true); 1091 if (err) { 1092 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1093 mmc_hostname(host), err); 1094 return err; 1095 } 1096 1097 /* Set host controller to HS timing */ 1098 mmc_set_timing(card->host, MMC_TIMING_MMC_HS); 1099 1100 if (!send_status) { 1101 err = mmc_switch_status(card); 1102 if (err) 1103 goto out_err; 1104 } 1105 1106 /* Switch card to DDR */ 1107 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1108 EXT_CSD_BUS_WIDTH, 1109 EXT_CSD_DDR_BUS_WIDTH_8, 1110 card->ext_csd.generic_cmd6_time); 1111 if (err) { 1112 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1113 mmc_hostname(host), err); 1114 return err; 1115 } 1116 1117 /* Switch card to HS400 */ 1118 val = EXT_CSD_TIMING_HS400 | 1119 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1120 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1121 EXT_CSD_HS_TIMING, val, 1122 card->ext_csd.generic_cmd6_time, 1123 true, send_status, true); 1124 if (err) { 1125 pr_err("%s: switch to hs400 failed, err:%d\n", 1126 mmc_hostname(host), err); 1127 return err; 1128 } 1129 1130 /* Set host controller to HS400 timing and frequency */ 1131 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1132 mmc_set_bus_speed(card); 1133 1134 if (!send_status) { 1135 err = mmc_switch_status(card); 1136 if (err) 1137 goto out_err; 1138 } 1139 1140 return 0; 1141 1142 out_err: 1143 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1144 __func__, err); 1145 return err; 1146 } 1147 1148 int mmc_hs200_to_hs400(struct mmc_card *card) 1149 { 1150 return mmc_select_hs400(card); 1151 } 1152 1153 int mmc_hs400_to_hs200(struct mmc_card *card) 1154 { 1155 struct mmc_host *host = card->host; 1156 bool send_status = true; 1157 unsigned int max_dtr; 1158 int err; 1159 u8 val; 1160 1161 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY) 1162 send_status = false; 1163 1164 /* Reduce frequency to HS */ 1165 max_dtr = card->ext_csd.hs_max_dtr; 1166 mmc_set_clock(host, max_dtr); 1167 1168 /* Switch HS400 to HS DDR */ 1169 val = EXT_CSD_TIMING_HS; 1170 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1171 val, card->ext_csd.generic_cmd6_time, 1172 true, send_status, true); 1173 if (err) 1174 goto out_err; 1175 1176 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1177 1178 if (!send_status) { 1179 err = mmc_switch_status(card); 1180 if (err) 1181 goto out_err; 1182 } 1183 1184 /* Switch HS DDR to HS */ 1185 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1186 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1187 true, send_status, true); 1188 if (err) 1189 goto out_err; 1190 1191 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1192 1193 if (!send_status) { 1194 err = mmc_switch_status(card); 1195 if (err) 1196 goto out_err; 1197 } 1198 1199 /* Switch HS to HS200 */ 1200 val = EXT_CSD_TIMING_HS200 | 1201 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1202 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1203 val, card->ext_csd.generic_cmd6_time, true, 1204 send_status, true); 1205 if (err) 1206 goto out_err; 1207 1208 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1209 1210 if (!send_status) { 1211 err = mmc_switch_status(card); 1212 if (err) 1213 goto out_err; 1214 } 1215 1216 mmc_set_bus_speed(card); 1217 1218 return 0; 1219 1220 out_err: 1221 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1222 __func__, err); 1223 return err; 1224 } 1225 1226 static void mmc_select_driver_type(struct mmc_card *card) 1227 { 1228 int card_drv_type, drive_strength, drv_type; 1229 1230 card_drv_type = card->ext_csd.raw_driver_strength | 1231 mmc_driver_type_mask(0); 1232 1233 drive_strength = mmc_select_drive_strength(card, 1234 card->ext_csd.hs200_max_dtr, 1235 card_drv_type, &drv_type); 1236 1237 card->drive_strength = drive_strength; 1238 1239 if (drv_type) 1240 mmc_set_driver_type(card->host, drv_type); 1241 } 1242 1243 /* 1244 * For device supporting HS200 mode, the following sequence 1245 * should be done before executing the tuning process. 1246 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1247 * 2. switch to HS200 mode 1248 * 3. set the clock to > 52Mhz and <=200MHz 1249 */ 1250 static int mmc_select_hs200(struct mmc_card *card) 1251 { 1252 struct mmc_host *host = card->host; 1253 bool send_status = true; 1254 unsigned int old_timing, old_signal_voltage; 1255 int err = -EINVAL; 1256 u8 val; 1257 1258 old_signal_voltage = host->ios.signal_voltage; 1259 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1260 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1261 1262 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1263 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1264 1265 /* If fails try again during next card power cycle */ 1266 if (err) 1267 return err; 1268 1269 mmc_select_driver_type(card); 1270 1271 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY) 1272 send_status = false; 1273 1274 /* 1275 * Set the bus width(4 or 8) with host's support and 1276 * switch to HS200 mode if bus width is set successfully. 1277 */ 1278 err = mmc_select_bus_width(card); 1279 if (err >= 0) { 1280 val = EXT_CSD_TIMING_HS200 | 1281 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1282 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1283 EXT_CSD_HS_TIMING, val, 1284 card->ext_csd.generic_cmd6_time, 1285 true, send_status, true); 1286 if (err) 1287 goto err; 1288 old_timing = host->ios.timing; 1289 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1290 if (!send_status) { 1291 err = mmc_switch_status(card); 1292 /* 1293 * mmc_select_timing() assumes timing has not changed if 1294 * it is a switch error. 1295 */ 1296 if (err == -EBADMSG) 1297 mmc_set_timing(host, old_timing); 1298 } 1299 } 1300 err: 1301 if (err) { 1302 /* fall back to the old signal voltage, if fails report error */ 1303 if (__mmc_set_signal_voltage(host, old_signal_voltage)) 1304 err = -EIO; 1305 1306 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1307 __func__, err); 1308 } 1309 return err; 1310 } 1311 1312 /* 1313 * Activate High Speed or HS200 mode if supported. 1314 */ 1315 static int mmc_select_timing(struct mmc_card *card) 1316 { 1317 int err = 0; 1318 1319 if (!mmc_can_ext_csd(card)) 1320 goto bus_speed; 1321 1322 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) 1323 err = mmc_select_hs200(card); 1324 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1325 err = mmc_select_hs(card); 1326 1327 if (err && err != -EBADMSG) 1328 return err; 1329 1330 bus_speed: 1331 /* 1332 * Set the bus speed to the selected bus timing. 1333 * If timing is not selected, backward compatible is the default. 1334 */ 1335 mmc_set_bus_speed(card); 1336 return 0; 1337 } 1338 1339 /* 1340 * Execute tuning sequence to seek the proper bus operating 1341 * conditions for HS200 and HS400, which sends CMD21 to the device. 1342 */ 1343 static int mmc_hs200_tuning(struct mmc_card *card) 1344 { 1345 struct mmc_host *host = card->host; 1346 1347 /* 1348 * Timing should be adjusted to the HS400 target 1349 * operation frequency for tuning process 1350 */ 1351 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1352 host->ios.bus_width == MMC_BUS_WIDTH_8) 1353 if (host->ops->prepare_hs400_tuning) 1354 host->ops->prepare_hs400_tuning(host, &host->ios); 1355 1356 return mmc_execute_tuning(card); 1357 } 1358 1359 /* 1360 * Handle the detection and initialisation of a card. 1361 * 1362 * In the case of a resume, "oldcard" will contain the card 1363 * we're trying to reinitialise. 1364 */ 1365 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1366 struct mmc_card *oldcard) 1367 { 1368 struct mmc_card *card; 1369 int err; 1370 u32 cid[4]; 1371 u32 rocr; 1372 1373 BUG_ON(!host); 1374 WARN_ON(!host->claimed); 1375 1376 /* Set correct bus mode for MMC before attempting init */ 1377 if (!mmc_host_is_spi(host)) 1378 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1379 1380 /* 1381 * Since we're changing the OCR value, we seem to 1382 * need to tell some cards to go back to the idle 1383 * state. We wait 1ms to give cards time to 1384 * respond. 1385 * mmc_go_idle is needed for eMMC that are asleep 1386 */ 1387 mmc_go_idle(host); 1388 1389 /* The extra bit indicates that we support high capacity */ 1390 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1391 if (err) 1392 goto err; 1393 1394 /* 1395 * For SPI, enable CRC as appropriate. 1396 */ 1397 if (mmc_host_is_spi(host)) { 1398 err = mmc_spi_set_crc(host, use_spi_crc); 1399 if (err) 1400 goto err; 1401 } 1402 1403 /* 1404 * Fetch CID from card. 1405 */ 1406 if (mmc_host_is_spi(host)) 1407 err = mmc_send_cid(host, cid); 1408 else 1409 err = mmc_all_send_cid(host, cid); 1410 if (err) 1411 goto err; 1412 1413 if (oldcard) { 1414 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1415 err = -ENOENT; 1416 goto err; 1417 } 1418 1419 card = oldcard; 1420 } else { 1421 /* 1422 * Allocate card structure. 1423 */ 1424 card = mmc_alloc_card(host, &mmc_type); 1425 if (IS_ERR(card)) { 1426 err = PTR_ERR(card); 1427 goto err; 1428 } 1429 1430 card->ocr = ocr; 1431 card->type = MMC_TYPE_MMC; 1432 card->rca = 1; 1433 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1434 } 1435 1436 /* 1437 * Call the optional HC's init_card function to handle quirks. 1438 */ 1439 if (host->ops->init_card) 1440 host->ops->init_card(host, card); 1441 1442 /* 1443 * For native busses: set card RCA and quit open drain mode. 1444 */ 1445 if (!mmc_host_is_spi(host)) { 1446 err = mmc_set_relative_addr(card); 1447 if (err) 1448 goto free_card; 1449 1450 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1451 } 1452 1453 if (!oldcard) { 1454 /* 1455 * Fetch CSD from card. 1456 */ 1457 err = mmc_send_csd(card, card->raw_csd); 1458 if (err) 1459 goto free_card; 1460 1461 err = mmc_decode_csd(card); 1462 if (err) 1463 goto free_card; 1464 err = mmc_decode_cid(card); 1465 if (err) 1466 goto free_card; 1467 } 1468 1469 /* 1470 * handling only for cards supporting DSR and hosts requesting 1471 * DSR configuration 1472 */ 1473 if (card->csd.dsr_imp && host->dsr_req) 1474 mmc_set_dsr(host); 1475 1476 /* 1477 * Select card, as all following commands rely on that. 1478 */ 1479 if (!mmc_host_is_spi(host)) { 1480 err = mmc_select_card(card); 1481 if (err) 1482 goto free_card; 1483 } 1484 1485 if (!oldcard) { 1486 /* Read extended CSD. */ 1487 err = mmc_read_ext_csd(card); 1488 if (err) 1489 goto free_card; 1490 1491 /* 1492 * If doing byte addressing, check if required to do sector 1493 * addressing. Handle the case of <2GB cards needing sector 1494 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1495 * ocr register has bit 30 set for sector addressing. 1496 */ 1497 if (rocr & BIT(30)) 1498 mmc_card_set_blockaddr(card); 1499 1500 /* Erase size depends on CSD and Extended CSD */ 1501 mmc_set_erase_size(card); 1502 } 1503 1504 /* 1505 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF 1506 * bit. This bit will be lost every time after a reset or power off. 1507 */ 1508 if (card->ext_csd.partition_setting_completed || 1509 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) { 1510 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1511 EXT_CSD_ERASE_GROUP_DEF, 1, 1512 card->ext_csd.generic_cmd6_time); 1513 1514 if (err && err != -EBADMSG) 1515 goto free_card; 1516 1517 if (err) { 1518 err = 0; 1519 /* 1520 * Just disable enhanced area off & sz 1521 * will try to enable ERASE_GROUP_DEF 1522 * during next time reinit 1523 */ 1524 card->ext_csd.enhanced_area_offset = -EINVAL; 1525 card->ext_csd.enhanced_area_size = -EINVAL; 1526 } else { 1527 card->ext_csd.erase_group_def = 1; 1528 /* 1529 * enable ERASE_GRP_DEF successfully. 1530 * This will affect the erase size, so 1531 * here need to reset erase size 1532 */ 1533 mmc_set_erase_size(card); 1534 } 1535 } 1536 1537 /* 1538 * Ensure eMMC user default partition is enabled 1539 */ 1540 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1541 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1542 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1543 card->ext_csd.part_config, 1544 card->ext_csd.part_time); 1545 if (err && err != -EBADMSG) 1546 goto free_card; 1547 } 1548 1549 /* 1550 * Enable power_off_notification byte in the ext_csd register 1551 */ 1552 if (card->ext_csd.rev >= 6) { 1553 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1554 EXT_CSD_POWER_OFF_NOTIFICATION, 1555 EXT_CSD_POWER_ON, 1556 card->ext_csd.generic_cmd6_time); 1557 if (err && err != -EBADMSG) 1558 goto free_card; 1559 1560 /* 1561 * The err can be -EBADMSG or 0, 1562 * so check for success and update the flag 1563 */ 1564 if (!err) 1565 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1566 } 1567 1568 /* 1569 * Select timing interface 1570 */ 1571 err = mmc_select_timing(card); 1572 if (err) 1573 goto free_card; 1574 1575 if (mmc_card_hs200(card)) { 1576 err = mmc_hs200_tuning(card); 1577 if (err) 1578 goto free_card; 1579 1580 err = mmc_select_hs400(card); 1581 if (err) 1582 goto free_card; 1583 } else if (mmc_card_hs(card)) { 1584 /* Select the desired bus width optionally */ 1585 err = mmc_select_bus_width(card); 1586 if (err >= 0) { 1587 err = mmc_select_hs_ddr(card); 1588 if (err) 1589 goto free_card; 1590 } 1591 } 1592 1593 /* 1594 * Choose the power class with selected bus interface 1595 */ 1596 mmc_select_powerclass(card); 1597 1598 /* 1599 * Enable HPI feature (if supported) 1600 */ 1601 if (card->ext_csd.hpi) { 1602 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1603 EXT_CSD_HPI_MGMT, 1, 1604 card->ext_csd.generic_cmd6_time); 1605 if (err && err != -EBADMSG) 1606 goto free_card; 1607 if (err) { 1608 pr_warn("%s: Enabling HPI failed\n", 1609 mmc_hostname(card->host)); 1610 err = 0; 1611 } else 1612 card->ext_csd.hpi_en = 1; 1613 } 1614 1615 /* 1616 * If cache size is higher than 0, this indicates 1617 * the existence of cache and it can be turned on. 1618 */ 1619 if (card->ext_csd.cache_size > 0) { 1620 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1621 EXT_CSD_CACHE_CTRL, 1, 1622 card->ext_csd.generic_cmd6_time); 1623 if (err && err != -EBADMSG) 1624 goto free_card; 1625 1626 /* 1627 * Only if no error, cache is turned on successfully. 1628 */ 1629 if (err) { 1630 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1631 mmc_hostname(card->host), err); 1632 card->ext_csd.cache_ctrl = 0; 1633 err = 0; 1634 } else { 1635 card->ext_csd.cache_ctrl = 1; 1636 } 1637 } 1638 1639 /* 1640 * The mandatory minimum values are defined for packed command. 1641 * read: 5, write: 3 1642 */ 1643 if (card->ext_csd.max_packed_writes >= 3 && 1644 card->ext_csd.max_packed_reads >= 5 && 1645 host->caps2 & MMC_CAP2_PACKED_CMD) { 1646 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1647 EXT_CSD_EXP_EVENTS_CTRL, 1648 EXT_CSD_PACKED_EVENT_EN, 1649 card->ext_csd.generic_cmd6_time); 1650 if (err && err != -EBADMSG) 1651 goto free_card; 1652 if (err) { 1653 pr_warn("%s: Enabling packed event failed\n", 1654 mmc_hostname(card->host)); 1655 card->ext_csd.packed_event_en = 0; 1656 err = 0; 1657 } else { 1658 card->ext_csd.packed_event_en = 1; 1659 } 1660 } 1661 1662 if (!oldcard) 1663 host->card = card; 1664 1665 return 0; 1666 1667 free_card: 1668 if (!oldcard) 1669 mmc_remove_card(card); 1670 err: 1671 return err; 1672 } 1673 1674 static int mmc_can_sleep(struct mmc_card *card) 1675 { 1676 return (card && card->ext_csd.rev >= 3); 1677 } 1678 1679 static int mmc_sleep(struct mmc_host *host) 1680 { 1681 struct mmc_command cmd = {0}; 1682 struct mmc_card *card = host->card; 1683 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1684 int err; 1685 1686 /* Re-tuning can't be done once the card is deselected */ 1687 mmc_retune_hold(host); 1688 1689 err = mmc_deselect_cards(host); 1690 if (err) 1691 goto out_release; 1692 1693 cmd.opcode = MMC_SLEEP_AWAKE; 1694 cmd.arg = card->rca << 16; 1695 cmd.arg |= 1 << 15; 1696 1697 /* 1698 * If the max_busy_timeout of the host is specified, validate it against 1699 * the sleep cmd timeout. A failure means we need to prevent the host 1700 * from doing hw busy detection, which is done by converting to a R1 1701 * response instead of a R1B. 1702 */ 1703 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) { 1704 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1705 } else { 1706 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 1707 cmd.busy_timeout = timeout_ms; 1708 } 1709 1710 err = mmc_wait_for_cmd(host, &cmd, 0); 1711 if (err) 1712 goto out_release; 1713 1714 /* 1715 * If the host does not wait while the card signals busy, then we will 1716 * will have to wait the sleep/awake timeout. Note, we cannot use the 1717 * SEND_STATUS command to poll the status because that command (and most 1718 * others) is invalid while the card sleeps. 1719 */ 1720 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) 1721 mmc_delay(timeout_ms); 1722 1723 out_release: 1724 mmc_retune_release(host); 1725 return err; 1726 } 1727 1728 static int mmc_can_poweroff_notify(const struct mmc_card *card) 1729 { 1730 return card && 1731 mmc_card_mmc(card) && 1732 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 1733 } 1734 1735 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 1736 { 1737 unsigned int timeout = card->ext_csd.generic_cmd6_time; 1738 int err; 1739 1740 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 1741 if (notify_type == EXT_CSD_POWER_OFF_LONG) 1742 timeout = card->ext_csd.power_off_longtime; 1743 1744 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1745 EXT_CSD_POWER_OFF_NOTIFICATION, 1746 notify_type, timeout, true, false, false); 1747 if (err) 1748 pr_err("%s: Power Off Notification timed out, %u\n", 1749 mmc_hostname(card->host), timeout); 1750 1751 /* Disable the power off notification after the switch operation. */ 1752 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 1753 1754 return err; 1755 } 1756 1757 /* 1758 * Host is being removed. Free up the current card. 1759 */ 1760 static void mmc_remove(struct mmc_host *host) 1761 { 1762 BUG_ON(!host); 1763 BUG_ON(!host->card); 1764 1765 mmc_remove_card(host->card); 1766 host->card = NULL; 1767 } 1768 1769 /* 1770 * Card detection - card is alive. 1771 */ 1772 static int mmc_alive(struct mmc_host *host) 1773 { 1774 return mmc_send_status(host->card, NULL); 1775 } 1776 1777 /* 1778 * Card detection callback from host. 1779 */ 1780 static void mmc_detect(struct mmc_host *host) 1781 { 1782 int err; 1783 1784 BUG_ON(!host); 1785 BUG_ON(!host->card); 1786 1787 mmc_get_card(host->card); 1788 1789 /* 1790 * Just check if our card has been removed. 1791 */ 1792 err = _mmc_detect_card_removed(host); 1793 1794 mmc_put_card(host->card); 1795 1796 if (err) { 1797 mmc_remove(host); 1798 1799 mmc_claim_host(host); 1800 mmc_detach_bus(host); 1801 mmc_power_off(host); 1802 mmc_release_host(host); 1803 } 1804 } 1805 1806 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 1807 { 1808 int err = 0; 1809 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 1810 EXT_CSD_POWER_OFF_LONG; 1811 1812 BUG_ON(!host); 1813 BUG_ON(!host->card); 1814 1815 mmc_claim_host(host); 1816 1817 if (mmc_card_suspended(host->card)) 1818 goto out; 1819 1820 if (mmc_card_doing_bkops(host->card)) { 1821 err = mmc_stop_bkops(host->card); 1822 if (err) 1823 goto out; 1824 } 1825 1826 err = mmc_flush_cache(host->card); 1827 if (err) 1828 goto out; 1829 1830 if (mmc_can_poweroff_notify(host->card) && 1831 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend)) 1832 err = mmc_poweroff_notify(host->card, notify_type); 1833 else if (mmc_can_sleep(host->card)) 1834 err = mmc_sleep(host); 1835 else if (!mmc_host_is_spi(host)) 1836 err = mmc_deselect_cards(host); 1837 1838 if (!err) { 1839 mmc_power_off(host); 1840 mmc_card_set_suspended(host->card); 1841 } 1842 out: 1843 mmc_release_host(host); 1844 return err; 1845 } 1846 1847 /* 1848 * Suspend callback 1849 */ 1850 static int mmc_suspend(struct mmc_host *host) 1851 { 1852 int err; 1853 1854 err = _mmc_suspend(host, true); 1855 if (!err) { 1856 pm_runtime_disable(&host->card->dev); 1857 pm_runtime_set_suspended(&host->card->dev); 1858 } 1859 1860 return err; 1861 } 1862 1863 /* 1864 * This function tries to determine if the same card is still present 1865 * and, if so, restore all state to it. 1866 */ 1867 static int _mmc_resume(struct mmc_host *host) 1868 { 1869 int err = 0; 1870 1871 BUG_ON(!host); 1872 BUG_ON(!host->card); 1873 1874 mmc_claim_host(host); 1875 1876 if (!mmc_card_suspended(host->card)) 1877 goto out; 1878 1879 mmc_power_up(host, host->card->ocr); 1880 err = mmc_init_card(host, host->card->ocr, host->card); 1881 mmc_card_clr_suspended(host->card); 1882 1883 out: 1884 mmc_release_host(host); 1885 return err; 1886 } 1887 1888 /* 1889 * Shutdown callback 1890 */ 1891 static int mmc_shutdown(struct mmc_host *host) 1892 { 1893 int err = 0; 1894 1895 /* 1896 * In a specific case for poweroff notify, we need to resume the card 1897 * before we can shutdown it properly. 1898 */ 1899 if (mmc_can_poweroff_notify(host->card) && 1900 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 1901 err = _mmc_resume(host); 1902 1903 if (!err) 1904 err = _mmc_suspend(host, false); 1905 1906 return err; 1907 } 1908 1909 /* 1910 * Callback for resume. 1911 */ 1912 static int mmc_resume(struct mmc_host *host) 1913 { 1914 pm_runtime_enable(&host->card->dev); 1915 return 0; 1916 } 1917 1918 /* 1919 * Callback for runtime_suspend. 1920 */ 1921 static int mmc_runtime_suspend(struct mmc_host *host) 1922 { 1923 int err; 1924 1925 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 1926 return 0; 1927 1928 err = _mmc_suspend(host, true); 1929 if (err) 1930 pr_err("%s: error %d doing aggressive suspend\n", 1931 mmc_hostname(host), err); 1932 1933 return err; 1934 } 1935 1936 /* 1937 * Callback for runtime_resume. 1938 */ 1939 static int mmc_runtime_resume(struct mmc_host *host) 1940 { 1941 int err; 1942 1943 err = _mmc_resume(host); 1944 if (err && err != -ENOMEDIUM) 1945 pr_err("%s: error %d doing runtime resume\n", 1946 mmc_hostname(host), err); 1947 1948 return 0; 1949 } 1950 1951 int mmc_can_reset(struct mmc_card *card) 1952 { 1953 u8 rst_n_function; 1954 1955 rst_n_function = card->ext_csd.rst_n_function; 1956 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 1957 return 0; 1958 return 1; 1959 } 1960 EXPORT_SYMBOL(mmc_can_reset); 1961 1962 static int mmc_reset(struct mmc_host *host) 1963 { 1964 struct mmc_card *card = host->card; 1965 1966 /* 1967 * In the case of recovery, we can't expect flushing the cache to work 1968 * always, but we have a go and ignore errors. 1969 */ 1970 mmc_flush_cache(host->card); 1971 1972 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset && 1973 mmc_can_reset(card)) { 1974 /* If the card accept RST_n signal, send it. */ 1975 mmc_set_clock(host, host->f_init); 1976 host->ops->hw_reset(host); 1977 /* Set initial state and call mmc_set_ios */ 1978 mmc_set_initial_state(host); 1979 } else { 1980 /* Do a brute force power cycle */ 1981 mmc_power_cycle(host, card->ocr); 1982 } 1983 return mmc_init_card(host, card->ocr, card); 1984 } 1985 1986 static const struct mmc_bus_ops mmc_ops = { 1987 .remove = mmc_remove, 1988 .detect = mmc_detect, 1989 .suspend = mmc_suspend, 1990 .resume = mmc_resume, 1991 .runtime_suspend = mmc_runtime_suspend, 1992 .runtime_resume = mmc_runtime_resume, 1993 .alive = mmc_alive, 1994 .shutdown = mmc_shutdown, 1995 .reset = mmc_reset, 1996 }; 1997 1998 /* 1999 * Starting point for MMC card init. 2000 */ 2001 int mmc_attach_mmc(struct mmc_host *host) 2002 { 2003 int err; 2004 u32 ocr, rocr; 2005 2006 BUG_ON(!host); 2007 WARN_ON(!host->claimed); 2008 2009 /* Set correct bus mode for MMC before attempting attach */ 2010 if (!mmc_host_is_spi(host)) 2011 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2012 2013 err = mmc_send_op_cond(host, 0, &ocr); 2014 if (err) 2015 return err; 2016 2017 mmc_attach_bus(host, &mmc_ops); 2018 if (host->ocr_avail_mmc) 2019 host->ocr_avail = host->ocr_avail_mmc; 2020 2021 /* 2022 * We need to get OCR a different way for SPI. 2023 */ 2024 if (mmc_host_is_spi(host)) { 2025 err = mmc_spi_read_ocr(host, 1, &ocr); 2026 if (err) 2027 goto err; 2028 } 2029 2030 rocr = mmc_select_voltage(host, ocr); 2031 2032 /* 2033 * Can we support the voltage of the card? 2034 */ 2035 if (!rocr) { 2036 err = -EINVAL; 2037 goto err; 2038 } 2039 2040 /* 2041 * Detect and init the card. 2042 */ 2043 err = mmc_init_card(host, rocr, NULL); 2044 if (err) 2045 goto err; 2046 2047 mmc_release_host(host); 2048 err = mmc_add_card(host->card); 2049 if (err) 2050 goto remove_card; 2051 2052 mmc_claim_host(host); 2053 return 0; 2054 2055 remove_card: 2056 mmc_remove_card(host->card); 2057 mmc_claim_host(host); 2058 host->card = NULL; 2059 err: 2060 mmc_detach_bus(host); 2061 2062 pr_err("%s: error %d whilst initialising MMC card\n", 2063 mmc_hostname(host), err); 2064 2065 return err; 2066 } 2067