xref: /linux/drivers/mmc/core/mmc.c (revision 7a92fc8b4d20680e4c20289a670d8fca2d1f2c1b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/random.h>
16 #include <linux/sysfs.h>
17 
18 #include <linux/mmc/host.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 
22 #include "core.h"
23 #include "card.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "quirks.h"
28 #include "sd_ops.h"
29 #include "pwrseq.h"
30 
31 #define DEFAULT_CMD6_TIMEOUT_MS	500
32 #define MIN_CACHE_EN_TIMEOUT_MS 1600
33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
34 
35 static const unsigned int tran_exp[] = {
36 	10000,		100000,		1000000,	10000000,
37 	0,		0,		0,		0
38 };
39 
40 static const unsigned char tran_mant[] = {
41 	0,	10,	12,	13,	15,	20,	25,	30,
42 	35,	40,	45,	50,	55,	60,	70,	80,
43 };
44 
45 static const unsigned int taac_exp[] = {
46 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
47 };
48 
49 static const unsigned int taac_mant[] = {
50 	0,	10,	12,	13,	15,	20,	25,	30,
51 	35,	40,	45,	50,	55,	60,	70,	80,
52 };
53 
54 #define UNSTUFF_BITS(resp,start,size)					\
55 	({								\
56 		const int __size = size;				\
57 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
58 		const int __off = 3 - ((start) / 32);			\
59 		const int __shft = (start) & 31;			\
60 		u32 __res;						\
61 									\
62 		__res = resp[__off] >> __shft;				\
63 		if (__size + __shft > 32)				\
64 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
65 		__res & __mask;						\
66 	})
67 
68 /*
69  * Given the decoded CSD structure, decode the raw CID to our CID structure.
70  */
71 static int mmc_decode_cid(struct mmc_card *card)
72 {
73 	u32 *resp = card->raw_cid;
74 
75 	/*
76 	 * Add the raw card ID (cid) data to the entropy pool. It doesn't
77 	 * matter that not all of it is unique, it's just bonus entropy.
78 	 */
79 	add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
80 
81 	/*
82 	 * The selection of the format here is based upon published
83 	 * specs from sandisk and from what people have reported.
84 	 */
85 	switch (card->csd.mmca_vsn) {
86 	case 0: /* MMC v1.0 - v1.2 */
87 	case 1: /* MMC v1.4 */
88 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
89 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
90 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
91 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
92 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
93 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
94 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
95 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
96 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
97 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
98 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
99 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
100 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
101 		break;
102 
103 	case 2: /* MMC v2.0 - v2.2 */
104 	case 3: /* MMC v3.1 - v3.3 */
105 	case 4: /* MMC v4 */
106 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
107 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
108 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
109 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
110 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
111 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
112 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
113 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
114 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
115 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
116 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
117 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
118 		break;
119 
120 	default:
121 		pr_err("%s: card has unknown MMCA version %d\n",
122 			mmc_hostname(card->host), card->csd.mmca_vsn);
123 		return -EINVAL;
124 	}
125 
126 	return 0;
127 }
128 
129 static void mmc_set_erase_size(struct mmc_card *card)
130 {
131 	if (card->ext_csd.erase_group_def & 1)
132 		card->erase_size = card->ext_csd.hc_erase_size;
133 	else
134 		card->erase_size = card->csd.erase_size;
135 
136 	mmc_init_erase(card);
137 }
138 
139 /*
140  * Given a 128-bit response, decode to our card CSD structure.
141  */
142 static int mmc_decode_csd(struct mmc_card *card)
143 {
144 	struct mmc_csd *csd = &card->csd;
145 	unsigned int e, m, a, b;
146 	u32 *resp = card->raw_csd;
147 
148 	/*
149 	 * We only understand CSD structure v1.1 and v1.2.
150 	 * v1.2 has extra information in bits 15, 11 and 10.
151 	 * We also support eMMC v4.4 & v4.41.
152 	 */
153 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
154 	if (csd->structure == 0) {
155 		pr_err("%s: unrecognised CSD structure version %d\n",
156 			mmc_hostname(card->host), csd->structure);
157 		return -EINVAL;
158 	}
159 
160 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
161 	m = UNSTUFF_BITS(resp, 115, 4);
162 	e = UNSTUFF_BITS(resp, 112, 3);
163 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
164 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
165 
166 	m = UNSTUFF_BITS(resp, 99, 4);
167 	e = UNSTUFF_BITS(resp, 96, 3);
168 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
169 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
170 
171 	e = UNSTUFF_BITS(resp, 47, 3);
172 	m = UNSTUFF_BITS(resp, 62, 12);
173 	csd->capacity	  = (1 + m) << (e + 2);
174 
175 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
176 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
177 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
178 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
179 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
180 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
181 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
182 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
183 
184 	if (csd->write_blkbits >= 9) {
185 		a = UNSTUFF_BITS(resp, 42, 5);
186 		b = UNSTUFF_BITS(resp, 37, 5);
187 		csd->erase_size = (a + 1) * (b + 1);
188 		csd->erase_size <<= csd->write_blkbits - 9;
189 	}
190 
191 	return 0;
192 }
193 
194 static void mmc_select_card_type(struct mmc_card *card)
195 {
196 	struct mmc_host *host = card->host;
197 	u8 card_type = card->ext_csd.raw_card_type;
198 	u32 caps = host->caps, caps2 = host->caps2;
199 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
200 	unsigned int avail_type = 0;
201 
202 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
203 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
204 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
205 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
206 	}
207 
208 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
209 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
210 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
211 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
212 	}
213 
214 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
215 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
216 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
217 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
218 	}
219 
220 	if (caps & MMC_CAP_1_2V_DDR &&
221 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
222 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
223 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
224 	}
225 
226 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
227 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
228 		hs200_max_dtr = MMC_HS200_MAX_DTR;
229 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
230 	}
231 
232 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
233 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
234 		hs200_max_dtr = MMC_HS200_MAX_DTR;
235 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
236 	}
237 
238 	if (caps2 & MMC_CAP2_HS400_1_8V &&
239 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
240 		hs200_max_dtr = MMC_HS200_MAX_DTR;
241 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
242 	}
243 
244 	if (caps2 & MMC_CAP2_HS400_1_2V &&
245 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
246 		hs200_max_dtr = MMC_HS200_MAX_DTR;
247 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
248 	}
249 
250 	if ((caps2 & MMC_CAP2_HS400_ES) &&
251 	    card->ext_csd.strobe_support &&
252 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
253 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
254 
255 	card->ext_csd.hs_max_dtr = hs_max_dtr;
256 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
257 	card->mmc_avail_type = avail_type;
258 }
259 
260 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
261 {
262 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
263 
264 	/*
265 	 * Disable these attributes by default
266 	 */
267 	card->ext_csd.enhanced_area_offset = -EINVAL;
268 	card->ext_csd.enhanced_area_size = -EINVAL;
269 
270 	/*
271 	 * Enhanced area feature support -- check whether the eMMC
272 	 * card has the Enhanced area enabled.  If so, export enhanced
273 	 * area offset and size to user by adding sysfs interface.
274 	 */
275 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
276 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
277 		if (card->ext_csd.partition_setting_completed) {
278 			hc_erase_grp_sz =
279 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
280 			hc_wp_grp_sz =
281 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
282 
283 			/*
284 			 * calculate the enhanced data area offset, in bytes
285 			 */
286 			card->ext_csd.enhanced_area_offset =
287 				(((unsigned long long)ext_csd[139]) << 24) +
288 				(((unsigned long long)ext_csd[138]) << 16) +
289 				(((unsigned long long)ext_csd[137]) << 8) +
290 				(((unsigned long long)ext_csd[136]));
291 			if (mmc_card_blockaddr(card))
292 				card->ext_csd.enhanced_area_offset <<= 9;
293 			/*
294 			 * calculate the enhanced data area size, in kilobytes
295 			 */
296 			card->ext_csd.enhanced_area_size =
297 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
298 				ext_csd[140];
299 			card->ext_csd.enhanced_area_size *=
300 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
301 			card->ext_csd.enhanced_area_size <<= 9;
302 		} else {
303 			pr_warn("%s: defines enhanced area without partition setting complete\n",
304 				mmc_hostname(card->host));
305 		}
306 	}
307 }
308 
309 static void mmc_part_add(struct mmc_card *card, u64 size,
310 			 unsigned int part_cfg, char *name, int idx, bool ro,
311 			 int area_type)
312 {
313 	card->part[card->nr_parts].size = size;
314 	card->part[card->nr_parts].part_cfg = part_cfg;
315 	sprintf(card->part[card->nr_parts].name, name, idx);
316 	card->part[card->nr_parts].force_ro = ro;
317 	card->part[card->nr_parts].area_type = area_type;
318 	card->nr_parts++;
319 }
320 
321 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
322 {
323 	int idx;
324 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
325 	u64 part_size;
326 
327 	/*
328 	 * General purpose partition feature support --
329 	 * If ext_csd has the size of general purpose partitions,
330 	 * set size, part_cfg, partition name in mmc_part.
331 	 */
332 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
333 	    EXT_CSD_PART_SUPPORT_PART_EN) {
334 		hc_erase_grp_sz =
335 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
336 		hc_wp_grp_sz =
337 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
338 
339 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
340 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
341 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
342 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
343 				continue;
344 			if (card->ext_csd.partition_setting_completed == 0) {
345 				pr_warn("%s: has partition size defined without partition complete\n",
346 					mmc_hostname(card->host));
347 				break;
348 			}
349 			part_size =
350 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
351 				<< 16) +
352 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
353 				<< 8) +
354 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
355 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
356 			mmc_part_add(card, part_size << 19,
357 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
358 				"gp%d", idx, false,
359 				MMC_BLK_DATA_AREA_GP);
360 		}
361 	}
362 }
363 
364 /* Minimum partition switch timeout in milliseconds */
365 #define MMC_MIN_PART_SWITCH_TIME	300
366 
367 /*
368  * Decode extended CSD.
369  */
370 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
371 {
372 	int err = 0, idx;
373 	u64 part_size;
374 	struct device_node *np;
375 	bool broken_hpi = false;
376 
377 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
378 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
379 	if (card->csd.structure == 3) {
380 		if (card->ext_csd.raw_ext_csd_structure > 2) {
381 			pr_err("%s: unrecognised EXT_CSD structure "
382 				"version %d\n", mmc_hostname(card->host),
383 					card->ext_csd.raw_ext_csd_structure);
384 			err = -EINVAL;
385 			goto out;
386 		}
387 	}
388 
389 	np = mmc_of_find_child_device(card->host, 0);
390 	if (np && of_device_is_compatible(np, "mmc-card"))
391 		broken_hpi = of_property_read_bool(np, "broken-hpi");
392 	of_node_put(np);
393 
394 	/*
395 	 * The EXT_CSD format is meant to be forward compatible. As long
396 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
397 	 * are authorized, see JEDEC JESD84-B50 section B.8.
398 	 */
399 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
400 
401 	/* fixup device after ext_csd revision field is updated */
402 	mmc_fixup_device(card, mmc_ext_csd_fixups);
403 
404 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
405 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
406 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
407 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
408 	if (card->ext_csd.rev >= 2) {
409 		card->ext_csd.sectors =
410 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
411 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
412 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
413 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
414 
415 		/* Cards with density > 2GiB are sector addressed */
416 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
417 			mmc_card_set_blockaddr(card);
418 	}
419 
420 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
421 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
422 
423 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
424 	card->ext_csd.raw_erase_timeout_mult =
425 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
426 	card->ext_csd.raw_hc_erase_grp_size =
427 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
428 	card->ext_csd.raw_boot_mult =
429 		ext_csd[EXT_CSD_BOOT_MULT];
430 	if (card->ext_csd.rev >= 3) {
431 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
432 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
433 
434 		/* EXT_CSD value is in units of 10ms, but we store in ms */
435 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
436 
437 		/* Sleep / awake timeout in 100ns units */
438 		if (sa_shift > 0 && sa_shift <= 0x17)
439 			card->ext_csd.sa_timeout =
440 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
441 		card->ext_csd.erase_group_def =
442 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
443 		card->ext_csd.hc_erase_timeout = 300 *
444 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
445 		card->ext_csd.hc_erase_size =
446 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
447 
448 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
449 
450 		/*
451 		 * There are two boot regions of equal size, defined in
452 		 * multiples of 128K.
453 		 */
454 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
455 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
456 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
457 				mmc_part_add(card, part_size,
458 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
459 					"boot%d", idx, true,
460 					MMC_BLK_DATA_AREA_BOOT);
461 			}
462 		}
463 	}
464 
465 	card->ext_csd.raw_hc_erase_gap_size =
466 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
467 	card->ext_csd.raw_sec_trim_mult =
468 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
469 	card->ext_csd.raw_sec_erase_mult =
470 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
471 	card->ext_csd.raw_sec_feature_support =
472 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
473 	card->ext_csd.raw_trim_mult =
474 		ext_csd[EXT_CSD_TRIM_MULT];
475 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
476 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
477 	if (card->ext_csd.rev >= 4) {
478 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
479 		    EXT_CSD_PART_SETTING_COMPLETED)
480 			card->ext_csd.partition_setting_completed = 1;
481 		else
482 			card->ext_csd.partition_setting_completed = 0;
483 
484 		mmc_manage_enhanced_area(card, ext_csd);
485 
486 		mmc_manage_gp_partitions(card, ext_csd);
487 
488 		card->ext_csd.sec_trim_mult =
489 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
490 		card->ext_csd.sec_erase_mult =
491 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
492 		card->ext_csd.sec_feature_support =
493 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
494 		card->ext_csd.trim_timeout = 300 *
495 			ext_csd[EXT_CSD_TRIM_MULT];
496 
497 		/*
498 		 * Note that the call to mmc_part_add above defaults to read
499 		 * only. If this default assumption is changed, the call must
500 		 * take into account the value of boot_locked below.
501 		 */
502 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
503 		card->ext_csd.boot_ro_lockable = true;
504 
505 		/* Save power class values */
506 		card->ext_csd.raw_pwr_cl_52_195 =
507 			ext_csd[EXT_CSD_PWR_CL_52_195];
508 		card->ext_csd.raw_pwr_cl_26_195 =
509 			ext_csd[EXT_CSD_PWR_CL_26_195];
510 		card->ext_csd.raw_pwr_cl_52_360 =
511 			ext_csd[EXT_CSD_PWR_CL_52_360];
512 		card->ext_csd.raw_pwr_cl_26_360 =
513 			ext_csd[EXT_CSD_PWR_CL_26_360];
514 		card->ext_csd.raw_pwr_cl_200_195 =
515 			ext_csd[EXT_CSD_PWR_CL_200_195];
516 		card->ext_csd.raw_pwr_cl_200_360 =
517 			ext_csd[EXT_CSD_PWR_CL_200_360];
518 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
519 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
520 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
521 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
522 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
523 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
524 	}
525 
526 	if (card->ext_csd.rev >= 5) {
527 		/* Adjust production date as per JEDEC JESD84-B451 */
528 		if (card->cid.year < 2010)
529 			card->cid.year += 16;
530 
531 		/* check whether the eMMC card supports BKOPS */
532 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
533 			card->ext_csd.bkops = 1;
534 			card->ext_csd.man_bkops_en =
535 					(ext_csd[EXT_CSD_BKOPS_EN] &
536 						EXT_CSD_MANUAL_BKOPS_MASK);
537 			card->ext_csd.raw_bkops_status =
538 				ext_csd[EXT_CSD_BKOPS_STATUS];
539 			if (card->ext_csd.man_bkops_en)
540 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
541 					mmc_hostname(card->host));
542 			card->ext_csd.auto_bkops_en =
543 					(ext_csd[EXT_CSD_BKOPS_EN] &
544 						EXT_CSD_AUTO_BKOPS_MASK);
545 			if (card->ext_csd.auto_bkops_en)
546 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
547 					mmc_hostname(card->host));
548 		}
549 
550 		/* check whether the eMMC card supports HPI */
551 		if (!mmc_card_broken_hpi(card) &&
552 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
553 			card->ext_csd.hpi = 1;
554 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
555 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
556 			else
557 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
558 			/*
559 			 * Indicate the maximum timeout to close
560 			 * a command interrupted by HPI
561 			 */
562 			card->ext_csd.out_of_int_time =
563 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
564 		}
565 
566 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
567 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
568 
569 		/*
570 		 * RPMB regions are defined in multiples of 128K.
571 		 */
572 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
573 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
574 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
575 				EXT_CSD_PART_CONFIG_ACC_RPMB,
576 				"rpmb", 0, false,
577 				MMC_BLK_DATA_AREA_RPMB);
578 		}
579 	}
580 
581 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
582 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
583 		card->erased_byte = 0xFF;
584 	else
585 		card->erased_byte = 0x0;
586 
587 	/* eMMC v4.5 or later */
588 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
589 	if (card->ext_csd.rev >= 6) {
590 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
591 
592 		card->ext_csd.generic_cmd6_time = 10 *
593 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
594 		card->ext_csd.power_off_longtime = 10 *
595 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
596 
597 		card->ext_csd.cache_size =
598 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
599 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
600 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
601 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
602 
603 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
604 			card->ext_csd.data_sector_size = 4096;
605 		else
606 			card->ext_csd.data_sector_size = 512;
607 
608 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
609 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
610 			card->ext_csd.data_tag_unit_size =
611 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
612 			(card->ext_csd.data_sector_size);
613 		} else {
614 			card->ext_csd.data_tag_unit_size = 0;
615 		}
616 
617 		card->ext_csd.max_packed_writes =
618 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
619 		card->ext_csd.max_packed_reads =
620 			ext_csd[EXT_CSD_MAX_PACKED_READS];
621 	} else {
622 		card->ext_csd.data_sector_size = 512;
623 	}
624 
625 	/*
626 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
627 	 * when accessing a specific field", so use it here if there is no
628 	 * PARTITION_SWITCH_TIME.
629 	 */
630 	if (!card->ext_csd.part_time)
631 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
632 	/* Some eMMC set the value too low so set a minimum */
633 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
634 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
635 
636 	/* eMMC v5 or later */
637 	if (card->ext_csd.rev >= 7) {
638 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
639 		       MMC_FIRMWARE_LEN);
640 		card->ext_csd.ffu_capable =
641 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
642 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
643 
644 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
645 		card->ext_csd.device_life_time_est_typ_a =
646 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
647 		card->ext_csd.device_life_time_est_typ_b =
648 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
649 	}
650 
651 	/* eMMC v5.1 or later */
652 	if (card->ext_csd.rev >= 8) {
653 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
654 					     EXT_CSD_CMDQ_SUPPORTED;
655 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
656 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
657 		/* Exclude inefficiently small queue depths */
658 		if (card->ext_csd.cmdq_depth <= 2) {
659 			card->ext_csd.cmdq_support = false;
660 			card->ext_csd.cmdq_depth = 0;
661 		}
662 		if (card->ext_csd.cmdq_support) {
663 			pr_debug("%s: Command Queue supported depth %u\n",
664 				 mmc_hostname(card->host),
665 				 card->ext_csd.cmdq_depth);
666 		}
667 		card->ext_csd.enhanced_rpmb_supported =
668 					(card->ext_csd.rel_param &
669 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
670 	}
671 out:
672 	return err;
673 }
674 
675 static int mmc_read_ext_csd(struct mmc_card *card)
676 {
677 	u8 *ext_csd;
678 	int err;
679 
680 	if (!mmc_can_ext_csd(card))
681 		return 0;
682 
683 	err = mmc_get_ext_csd(card, &ext_csd);
684 	if (err) {
685 		/* If the host or the card can't do the switch,
686 		 * fail more gracefully. */
687 		if ((err != -EINVAL)
688 		 && (err != -ENOSYS)
689 		 && (err != -EFAULT))
690 			return err;
691 
692 		/*
693 		 * High capacity cards should have this "magic" size
694 		 * stored in their CSD.
695 		 */
696 		if (card->csd.capacity == (4096 * 512)) {
697 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
698 				mmc_hostname(card->host));
699 		} else {
700 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
701 				mmc_hostname(card->host));
702 			err = 0;
703 		}
704 
705 		return err;
706 	}
707 
708 	err = mmc_decode_ext_csd(card, ext_csd);
709 	kfree(ext_csd);
710 	return err;
711 }
712 
713 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
714 {
715 	u8 *bw_ext_csd;
716 	int err;
717 
718 	if (bus_width == MMC_BUS_WIDTH_1)
719 		return 0;
720 
721 	err = mmc_get_ext_csd(card, &bw_ext_csd);
722 	if (err)
723 		return err;
724 
725 	/* only compare read only fields */
726 	err = !((card->ext_csd.raw_partition_support ==
727 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
728 		(card->ext_csd.raw_erased_mem_count ==
729 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
730 		(card->ext_csd.rev ==
731 			bw_ext_csd[EXT_CSD_REV]) &&
732 		(card->ext_csd.raw_ext_csd_structure ==
733 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
734 		(card->ext_csd.raw_card_type ==
735 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
736 		(card->ext_csd.raw_s_a_timeout ==
737 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
738 		(card->ext_csd.raw_hc_erase_gap_size ==
739 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
740 		(card->ext_csd.raw_erase_timeout_mult ==
741 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
742 		(card->ext_csd.raw_hc_erase_grp_size ==
743 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
744 		(card->ext_csd.raw_sec_trim_mult ==
745 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
746 		(card->ext_csd.raw_sec_erase_mult ==
747 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
748 		(card->ext_csd.raw_sec_feature_support ==
749 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
750 		(card->ext_csd.raw_trim_mult ==
751 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
752 		(card->ext_csd.raw_sectors[0] ==
753 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
754 		(card->ext_csd.raw_sectors[1] ==
755 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
756 		(card->ext_csd.raw_sectors[2] ==
757 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
758 		(card->ext_csd.raw_sectors[3] ==
759 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
760 		(card->ext_csd.raw_pwr_cl_52_195 ==
761 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
762 		(card->ext_csd.raw_pwr_cl_26_195 ==
763 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
764 		(card->ext_csd.raw_pwr_cl_52_360 ==
765 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
766 		(card->ext_csd.raw_pwr_cl_26_360 ==
767 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
768 		(card->ext_csd.raw_pwr_cl_200_195 ==
769 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
770 		(card->ext_csd.raw_pwr_cl_200_360 ==
771 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
772 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
773 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
774 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
775 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
776 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
777 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
778 
779 	if (err)
780 		err = -EINVAL;
781 
782 	kfree(bw_ext_csd);
783 	return err;
784 }
785 
786 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
787 	card->raw_cid[2], card->raw_cid[3]);
788 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
789 	card->raw_csd[2], card->raw_csd[3]);
790 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
791 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
792 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
793 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
794 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
795 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
796 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
797 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
798 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
799 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
800 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
801 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
802 	card->ext_csd.device_life_time_est_typ_a,
803 	card->ext_csd.device_life_time_est_typ_b);
804 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
805 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
806 		card->ext_csd.enhanced_area_offset);
807 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
808 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
809 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
810 	card->ext_csd.enhanced_rpmb_supported);
811 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
812 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
813 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
814 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
815 
816 static ssize_t mmc_fwrev_show(struct device *dev,
817 			      struct device_attribute *attr,
818 			      char *buf)
819 {
820 	struct mmc_card *card = mmc_dev_to_card(dev);
821 
822 	if (card->ext_csd.rev < 7)
823 		return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
824 	else
825 		return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
826 				  card->ext_csd.fwrev);
827 }
828 
829 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
830 
831 static ssize_t mmc_dsr_show(struct device *dev,
832 			    struct device_attribute *attr,
833 			    char *buf)
834 {
835 	struct mmc_card *card = mmc_dev_to_card(dev);
836 	struct mmc_host *host = card->host;
837 
838 	if (card->csd.dsr_imp && host->dsr_req)
839 		return sysfs_emit(buf, "0x%x\n", host->dsr);
840 	else
841 		/* return default DSR value */
842 		return sysfs_emit(buf, "0x%x\n", 0x404);
843 }
844 
845 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
846 
847 static struct attribute *mmc_std_attrs[] = {
848 	&dev_attr_cid.attr,
849 	&dev_attr_csd.attr,
850 	&dev_attr_date.attr,
851 	&dev_attr_erase_size.attr,
852 	&dev_attr_preferred_erase_size.attr,
853 	&dev_attr_fwrev.attr,
854 	&dev_attr_ffu_capable.attr,
855 	&dev_attr_hwrev.attr,
856 	&dev_attr_manfid.attr,
857 	&dev_attr_name.attr,
858 	&dev_attr_oemid.attr,
859 	&dev_attr_prv.attr,
860 	&dev_attr_rev.attr,
861 	&dev_attr_pre_eol_info.attr,
862 	&dev_attr_life_time.attr,
863 	&dev_attr_serial.attr,
864 	&dev_attr_enhanced_area_offset.attr,
865 	&dev_attr_enhanced_area_size.attr,
866 	&dev_attr_raw_rpmb_size_mult.attr,
867 	&dev_attr_enhanced_rpmb_supported.attr,
868 	&dev_attr_rel_sectors.attr,
869 	&dev_attr_ocr.attr,
870 	&dev_attr_rca.attr,
871 	&dev_attr_dsr.attr,
872 	&dev_attr_cmdq_en.attr,
873 	NULL,
874 };
875 ATTRIBUTE_GROUPS(mmc_std);
876 
877 static struct device_type mmc_type = {
878 	.groups = mmc_std_groups,
879 };
880 
881 /*
882  * Select the PowerClass for the current bus width
883  * If power class is defined for 4/8 bit bus in the
884  * extended CSD register, select it by executing the
885  * mmc_switch command.
886  */
887 static int __mmc_select_powerclass(struct mmc_card *card,
888 				   unsigned int bus_width)
889 {
890 	struct mmc_host *host = card->host;
891 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
892 	unsigned int pwrclass_val = 0;
893 	int err = 0;
894 
895 	switch (1 << host->ios.vdd) {
896 	case MMC_VDD_165_195:
897 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
898 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
899 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
900 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
901 				ext_csd->raw_pwr_cl_52_195 :
902 				ext_csd->raw_pwr_cl_ddr_52_195;
903 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
904 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
905 		break;
906 	case MMC_VDD_27_28:
907 	case MMC_VDD_28_29:
908 	case MMC_VDD_29_30:
909 	case MMC_VDD_30_31:
910 	case MMC_VDD_31_32:
911 	case MMC_VDD_32_33:
912 	case MMC_VDD_33_34:
913 	case MMC_VDD_34_35:
914 	case MMC_VDD_35_36:
915 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
916 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
917 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
918 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
919 				ext_csd->raw_pwr_cl_52_360 :
920 				ext_csd->raw_pwr_cl_ddr_52_360;
921 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
922 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
923 				ext_csd->raw_pwr_cl_ddr_200_360 :
924 				ext_csd->raw_pwr_cl_200_360;
925 		break;
926 	default:
927 		pr_warn("%s: Voltage range not supported for power class\n",
928 			mmc_hostname(host));
929 		return -EINVAL;
930 	}
931 
932 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
933 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
934 				EXT_CSD_PWR_CL_8BIT_SHIFT;
935 	else
936 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
937 				EXT_CSD_PWR_CL_4BIT_SHIFT;
938 
939 	/* If the power class is different from the default value */
940 	if (pwrclass_val > 0) {
941 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
942 				 EXT_CSD_POWER_CLASS,
943 				 pwrclass_val,
944 				 card->ext_csd.generic_cmd6_time);
945 	}
946 
947 	return err;
948 }
949 
950 static int mmc_select_powerclass(struct mmc_card *card)
951 {
952 	struct mmc_host *host = card->host;
953 	u32 bus_width, ext_csd_bits;
954 	int err, ddr;
955 
956 	/* Power class selection is supported for versions >= 4.0 */
957 	if (!mmc_can_ext_csd(card))
958 		return 0;
959 
960 	bus_width = host->ios.bus_width;
961 	/* Power class values are defined only for 4/8 bit bus */
962 	if (bus_width == MMC_BUS_WIDTH_1)
963 		return 0;
964 
965 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
966 	if (ddr)
967 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
968 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
969 	else
970 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
971 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
972 
973 	err = __mmc_select_powerclass(card, ext_csd_bits);
974 	if (err)
975 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
976 			mmc_hostname(host), 1 << bus_width, ddr);
977 
978 	return err;
979 }
980 
981 /*
982  * Set the bus speed for the selected speed mode.
983  */
984 static void mmc_set_bus_speed(struct mmc_card *card)
985 {
986 	unsigned int max_dtr = (unsigned int)-1;
987 
988 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
989 	     max_dtr > card->ext_csd.hs200_max_dtr)
990 		max_dtr = card->ext_csd.hs200_max_dtr;
991 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
992 		max_dtr = card->ext_csd.hs_max_dtr;
993 	else if (max_dtr > card->csd.max_dtr)
994 		max_dtr = card->csd.max_dtr;
995 
996 	mmc_set_clock(card->host, max_dtr);
997 }
998 
999 /*
1000  * Select the bus width amoung 4-bit and 8-bit(SDR).
1001  * If the bus width is changed successfully, return the selected width value.
1002  * Zero is returned instead of error value if the wide width is not supported.
1003  */
1004 static int mmc_select_bus_width(struct mmc_card *card)
1005 {
1006 	static unsigned ext_csd_bits[] = {
1007 		EXT_CSD_BUS_WIDTH_8,
1008 		EXT_CSD_BUS_WIDTH_4,
1009 	};
1010 	static unsigned bus_widths[] = {
1011 		MMC_BUS_WIDTH_8,
1012 		MMC_BUS_WIDTH_4,
1013 	};
1014 	struct mmc_host *host = card->host;
1015 	unsigned idx, bus_width = 0;
1016 	int err = 0;
1017 
1018 	if (!mmc_can_ext_csd(card) ||
1019 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1020 		return 0;
1021 
1022 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1023 
1024 	/*
1025 	 * Unlike SD, MMC cards dont have a configuration register to notify
1026 	 * supported bus width. So bus test command should be run to identify
1027 	 * the supported bus width or compare the ext csd values of current
1028 	 * bus width and ext csd values of 1 bit mode read earlier.
1029 	 */
1030 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1031 		/*
1032 		 * Host is capable of 8bit transfer, then switch
1033 		 * the device to work in 8bit transfer mode. If the
1034 		 * mmc switch command returns error then switch to
1035 		 * 4bit transfer mode. On success set the corresponding
1036 		 * bus width on the host.
1037 		 */
1038 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1039 				 EXT_CSD_BUS_WIDTH,
1040 				 ext_csd_bits[idx],
1041 				 card->ext_csd.generic_cmd6_time);
1042 		if (err)
1043 			continue;
1044 
1045 		bus_width = bus_widths[idx];
1046 		mmc_set_bus_width(host, bus_width);
1047 
1048 		/*
1049 		 * If controller can't handle bus width test,
1050 		 * compare ext_csd previously read in 1 bit mode
1051 		 * against ext_csd at new bus width
1052 		 */
1053 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1054 			err = mmc_compare_ext_csds(card, bus_width);
1055 		else
1056 			err = mmc_bus_test(card, bus_width);
1057 
1058 		if (!err) {
1059 			err = bus_width;
1060 			break;
1061 		} else {
1062 			pr_warn("%s: switch to bus width %d failed\n",
1063 				mmc_hostname(host), 1 << bus_width);
1064 		}
1065 	}
1066 
1067 	return err;
1068 }
1069 
1070 /*
1071  * Switch to the high-speed mode
1072  */
1073 static int mmc_select_hs(struct mmc_card *card)
1074 {
1075 	int err;
1076 
1077 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1078 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1079 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1080 			   true, true, MMC_CMD_RETRIES);
1081 	if (err)
1082 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1083 			mmc_hostname(card->host), err);
1084 
1085 	return err;
1086 }
1087 
1088 /*
1089  * Activate wide bus and DDR if supported.
1090  */
1091 static int mmc_select_hs_ddr(struct mmc_card *card)
1092 {
1093 	struct mmc_host *host = card->host;
1094 	u32 bus_width, ext_csd_bits;
1095 	int err = 0;
1096 
1097 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1098 		return 0;
1099 
1100 	bus_width = host->ios.bus_width;
1101 	if (bus_width == MMC_BUS_WIDTH_1)
1102 		return 0;
1103 
1104 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1105 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1106 
1107 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1108 			   EXT_CSD_BUS_WIDTH,
1109 			   ext_csd_bits,
1110 			   card->ext_csd.generic_cmd6_time,
1111 			   MMC_TIMING_MMC_DDR52,
1112 			   true, true, MMC_CMD_RETRIES);
1113 	if (err) {
1114 		pr_err("%s: switch to bus width %d ddr failed\n",
1115 			mmc_hostname(host), 1 << bus_width);
1116 		return err;
1117 	}
1118 
1119 	/*
1120 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1121 	 * signaling.
1122 	 *
1123 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1124 	 *
1125 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1126 	 * in the JEDEC spec for DDR.
1127 	 *
1128 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1129 	 * host controller can support this, like some of the SDHCI
1130 	 * controller which connect to an eMMC device. Some of these
1131 	 * host controller still needs to use 1.8v vccq for supporting
1132 	 * DDR mode.
1133 	 *
1134 	 * So the sequence will be:
1135 	 * if (host and device can both support 1.2v IO)
1136 	 *	use 1.2v IO;
1137 	 * else if (host and device can both support 1.8v IO)
1138 	 *	use 1.8v IO;
1139 	 * so if host and device can only support 3.3v IO, this is the
1140 	 * last choice.
1141 	 *
1142 	 * WARNING: eMMC rules are NOT the same as SD DDR
1143 	 */
1144 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1145 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1146 		if (!err)
1147 			return 0;
1148 	}
1149 
1150 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1151 	    host->caps & MMC_CAP_1_8V_DDR)
1152 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1153 
1154 	/* make sure vccq is 3.3v after switching disaster */
1155 	if (err)
1156 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1157 
1158 	return err;
1159 }
1160 
1161 static int mmc_select_hs400(struct mmc_card *card)
1162 {
1163 	struct mmc_host *host = card->host;
1164 	unsigned int max_dtr;
1165 	int err = 0;
1166 	u8 val;
1167 
1168 	/*
1169 	 * HS400 mode requires 8-bit bus width
1170 	 */
1171 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1172 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1173 		return 0;
1174 
1175 	/* Switch card to HS mode */
1176 	val = EXT_CSD_TIMING_HS;
1177 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1178 			   EXT_CSD_HS_TIMING, val,
1179 			   card->ext_csd.generic_cmd6_time, 0,
1180 			   false, true, MMC_CMD_RETRIES);
1181 	if (err) {
1182 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1183 			mmc_hostname(host), err);
1184 		return err;
1185 	}
1186 
1187 	/* Prepare host to downgrade to HS timing */
1188 	if (host->ops->hs400_downgrade)
1189 		host->ops->hs400_downgrade(host);
1190 
1191 	/* Set host controller to HS timing */
1192 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1193 
1194 	/* Reduce frequency to HS frequency */
1195 	max_dtr = card->ext_csd.hs_max_dtr;
1196 	mmc_set_clock(host, max_dtr);
1197 
1198 	err = mmc_switch_status(card, true);
1199 	if (err)
1200 		goto out_err;
1201 
1202 	if (host->ops->hs400_prepare_ddr)
1203 		host->ops->hs400_prepare_ddr(host);
1204 
1205 	/* Switch card to DDR */
1206 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1207 			 EXT_CSD_BUS_WIDTH,
1208 			 EXT_CSD_DDR_BUS_WIDTH_8,
1209 			 card->ext_csd.generic_cmd6_time);
1210 	if (err) {
1211 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1212 			mmc_hostname(host), err);
1213 		return err;
1214 	}
1215 
1216 	/* Switch card to HS400 */
1217 	val = EXT_CSD_TIMING_HS400 |
1218 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1219 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1220 			   EXT_CSD_HS_TIMING, val,
1221 			   card->ext_csd.generic_cmd6_time, 0,
1222 			   false, true, MMC_CMD_RETRIES);
1223 	if (err) {
1224 		pr_err("%s: switch to hs400 failed, err:%d\n",
1225 			 mmc_hostname(host), err);
1226 		return err;
1227 	}
1228 
1229 	/* Set host controller to HS400 timing and frequency */
1230 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1231 	mmc_set_bus_speed(card);
1232 
1233 	if (host->ops->execute_hs400_tuning) {
1234 		mmc_retune_disable(host);
1235 		err = host->ops->execute_hs400_tuning(host, card);
1236 		mmc_retune_enable(host);
1237 		if (err)
1238 			goto out_err;
1239 	}
1240 
1241 	if (host->ops->hs400_complete)
1242 		host->ops->hs400_complete(host);
1243 
1244 	err = mmc_switch_status(card, true);
1245 	if (err)
1246 		goto out_err;
1247 
1248 	return 0;
1249 
1250 out_err:
1251 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1252 	       __func__, err);
1253 	return err;
1254 }
1255 
1256 int mmc_hs200_to_hs400(struct mmc_card *card)
1257 {
1258 	return mmc_select_hs400(card);
1259 }
1260 
1261 int mmc_hs400_to_hs200(struct mmc_card *card)
1262 {
1263 	struct mmc_host *host = card->host;
1264 	unsigned int max_dtr;
1265 	int err;
1266 	u8 val;
1267 
1268 	/* Reduce frequency to HS */
1269 	max_dtr = card->ext_csd.hs_max_dtr;
1270 	mmc_set_clock(host, max_dtr);
1271 
1272 	/* Switch HS400 to HS DDR */
1273 	val = EXT_CSD_TIMING_HS;
1274 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1275 			   val, card->ext_csd.generic_cmd6_time, 0,
1276 			   false, true, MMC_CMD_RETRIES);
1277 	if (err)
1278 		goto out_err;
1279 
1280 	if (host->ops->hs400_downgrade)
1281 		host->ops->hs400_downgrade(host);
1282 
1283 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1284 
1285 	err = mmc_switch_status(card, true);
1286 	if (err)
1287 		goto out_err;
1288 
1289 	/* Switch HS DDR to HS */
1290 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1291 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1292 			   0, false, true, MMC_CMD_RETRIES);
1293 	if (err)
1294 		goto out_err;
1295 
1296 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1297 
1298 	err = mmc_switch_status(card, true);
1299 	if (err)
1300 		goto out_err;
1301 
1302 	/* Switch HS to HS200 */
1303 	val = EXT_CSD_TIMING_HS200 |
1304 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1305 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1306 			   val, card->ext_csd.generic_cmd6_time, 0,
1307 			   false, true, MMC_CMD_RETRIES);
1308 	if (err)
1309 		goto out_err;
1310 
1311 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1312 
1313 	/*
1314 	 * For HS200, CRC errors are not a reliable way to know the switch
1315 	 * failed. If there really is a problem, we would expect tuning will
1316 	 * fail and the result ends up the same.
1317 	 */
1318 	err = mmc_switch_status(card, false);
1319 	if (err)
1320 		goto out_err;
1321 
1322 	mmc_set_bus_speed(card);
1323 
1324 	/* Prepare tuning for HS400 mode. */
1325 	if (host->ops->prepare_hs400_tuning)
1326 		host->ops->prepare_hs400_tuning(host, &host->ios);
1327 
1328 	return 0;
1329 
1330 out_err:
1331 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1332 	       __func__, err);
1333 	return err;
1334 }
1335 
1336 static void mmc_select_driver_type(struct mmc_card *card)
1337 {
1338 	int card_drv_type, drive_strength, drv_type = 0;
1339 	int fixed_drv_type = card->host->fixed_drv_type;
1340 
1341 	card_drv_type = card->ext_csd.raw_driver_strength |
1342 			mmc_driver_type_mask(0);
1343 
1344 	if (fixed_drv_type >= 0)
1345 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1346 				 ? fixed_drv_type : 0;
1347 	else
1348 		drive_strength = mmc_select_drive_strength(card,
1349 							   card->ext_csd.hs200_max_dtr,
1350 							   card_drv_type, &drv_type);
1351 
1352 	card->drive_strength = drive_strength;
1353 
1354 	if (drv_type)
1355 		mmc_set_driver_type(card->host, drv_type);
1356 }
1357 
1358 static int mmc_select_hs400es(struct mmc_card *card)
1359 {
1360 	struct mmc_host *host = card->host;
1361 	int err = -EINVAL;
1362 	u8 val;
1363 
1364 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1365 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1366 
1367 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1368 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1369 
1370 	/* If fails try again during next card power cycle */
1371 	if (err)
1372 		goto out_err;
1373 
1374 	err = mmc_select_bus_width(card);
1375 	if (err != MMC_BUS_WIDTH_8) {
1376 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1377 			mmc_hostname(host), err);
1378 		err = err < 0 ? err : -ENOTSUPP;
1379 		goto out_err;
1380 	}
1381 
1382 	/* Switch card to HS mode */
1383 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1384 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1385 			   card->ext_csd.generic_cmd6_time, 0,
1386 			   false, true, MMC_CMD_RETRIES);
1387 	if (err) {
1388 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1389 			mmc_hostname(host), err);
1390 		goto out_err;
1391 	}
1392 
1393 	/*
1394 	 * Bump to HS timing and frequency. Some cards don't handle
1395 	 * SEND_STATUS reliably at the initial frequency.
1396 	 */
1397 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1398 	mmc_set_bus_speed(card);
1399 
1400 	err = mmc_switch_status(card, true);
1401 	if (err)
1402 		goto out_err;
1403 
1404 	/* Switch card to DDR with strobe bit */
1405 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1406 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1407 			 EXT_CSD_BUS_WIDTH,
1408 			 val,
1409 			 card->ext_csd.generic_cmd6_time);
1410 	if (err) {
1411 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1412 			mmc_hostname(host), err);
1413 		goto out_err;
1414 	}
1415 
1416 	mmc_select_driver_type(card);
1417 
1418 	/* Switch card to HS400 */
1419 	val = EXT_CSD_TIMING_HS400 |
1420 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1421 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1422 			   EXT_CSD_HS_TIMING, val,
1423 			   card->ext_csd.generic_cmd6_time, 0,
1424 			   false, true, MMC_CMD_RETRIES);
1425 	if (err) {
1426 		pr_err("%s: switch to hs400es failed, err:%d\n",
1427 			mmc_hostname(host), err);
1428 		goto out_err;
1429 	}
1430 
1431 	/* Set host controller to HS400 timing and frequency */
1432 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1433 
1434 	/* Controller enable enhanced strobe function */
1435 	host->ios.enhanced_strobe = true;
1436 	if (host->ops->hs400_enhanced_strobe)
1437 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1438 
1439 	err = mmc_switch_status(card, true);
1440 	if (err)
1441 		goto out_err;
1442 
1443 	return 0;
1444 
1445 out_err:
1446 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1447 	       __func__, err);
1448 	return err;
1449 }
1450 
1451 /*
1452  * For device supporting HS200 mode, the following sequence
1453  * should be done before executing the tuning process.
1454  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1455  * 2. switch to HS200 mode
1456  * 3. set the clock to > 52Mhz and <=200MHz
1457  */
1458 static int mmc_select_hs200(struct mmc_card *card)
1459 {
1460 	struct mmc_host *host = card->host;
1461 	unsigned int old_timing, old_signal_voltage, old_clock;
1462 	int err = -EINVAL;
1463 	u8 val;
1464 
1465 	old_signal_voltage = host->ios.signal_voltage;
1466 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1467 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1468 
1469 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1470 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1471 
1472 	/* If fails try again during next card power cycle */
1473 	if (err)
1474 		return err;
1475 
1476 	mmc_select_driver_type(card);
1477 
1478 	/*
1479 	 * Set the bus width(4 or 8) with host's support and
1480 	 * switch to HS200 mode if bus width is set successfully.
1481 	 */
1482 	err = mmc_select_bus_width(card);
1483 	if (err > 0) {
1484 		val = EXT_CSD_TIMING_HS200 |
1485 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1486 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1487 				   EXT_CSD_HS_TIMING, val,
1488 				   card->ext_csd.generic_cmd6_time, 0,
1489 				   false, true, MMC_CMD_RETRIES);
1490 		if (err)
1491 			goto err;
1492 
1493 		/*
1494 		 * Bump to HS timing and frequency. Some cards don't handle
1495 		 * SEND_STATUS reliably at the initial frequency.
1496 		 * NB: We can't move to full (HS200) speeds until after we've
1497 		 * successfully switched over.
1498 		 */
1499 		old_timing = host->ios.timing;
1500 		old_clock = host->ios.clock;
1501 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1502 		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1503 
1504 		/*
1505 		 * For HS200, CRC errors are not a reliable way to know the
1506 		 * switch failed. If there really is a problem, we would expect
1507 		 * tuning will fail and the result ends up the same.
1508 		 */
1509 		err = mmc_switch_status(card, false);
1510 
1511 		/*
1512 		 * mmc_select_timing() assumes timing has not changed if
1513 		 * it is a switch error.
1514 		 */
1515 		if (err == -EBADMSG) {
1516 			mmc_set_clock(host, old_clock);
1517 			mmc_set_timing(host, old_timing);
1518 		}
1519 	}
1520 err:
1521 	if (err) {
1522 		/* fall back to the old signal voltage, if fails report error */
1523 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1524 			err = -EIO;
1525 
1526 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1527 		       __func__, err);
1528 	}
1529 	return err;
1530 }
1531 
1532 /*
1533  * Activate High Speed, HS200 or HS400ES mode if supported.
1534  */
1535 static int mmc_select_timing(struct mmc_card *card)
1536 {
1537 	int err = 0;
1538 
1539 	if (!mmc_can_ext_csd(card))
1540 		goto bus_speed;
1541 
1542 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1543 		err = mmc_select_hs400es(card);
1544 		goto out;
1545 	}
1546 
1547 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1548 		err = mmc_select_hs200(card);
1549 		if (err == -EBADMSG)
1550 			card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1551 		else
1552 			goto out;
1553 	}
1554 
1555 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1556 		err = mmc_select_hs(card);
1557 
1558 out:
1559 	if (err && err != -EBADMSG)
1560 		return err;
1561 
1562 bus_speed:
1563 	/*
1564 	 * Set the bus speed to the selected bus timing.
1565 	 * If timing is not selected, backward compatible is the default.
1566 	 */
1567 	mmc_set_bus_speed(card);
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Execute tuning sequence to seek the proper bus operating
1573  * conditions for HS200 and HS400, which sends CMD21 to the device.
1574  */
1575 static int mmc_hs200_tuning(struct mmc_card *card)
1576 {
1577 	struct mmc_host *host = card->host;
1578 
1579 	/*
1580 	 * Timing should be adjusted to the HS400 target
1581 	 * operation frequency for tuning process
1582 	 */
1583 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1584 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1585 		if (host->ops->prepare_hs400_tuning)
1586 			host->ops->prepare_hs400_tuning(host, &host->ios);
1587 
1588 	return mmc_execute_tuning(card);
1589 }
1590 
1591 /*
1592  * Handle the detection and initialisation of a card.
1593  *
1594  * In the case of a resume, "oldcard" will contain the card
1595  * we're trying to reinitialise.
1596  */
1597 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1598 	struct mmc_card *oldcard)
1599 {
1600 	struct mmc_card *card;
1601 	int err;
1602 	u32 cid[4];
1603 	u32 rocr;
1604 
1605 	WARN_ON(!host->claimed);
1606 
1607 	/* Set correct bus mode for MMC before attempting init */
1608 	if (!mmc_host_is_spi(host))
1609 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1610 
1611 	/*
1612 	 * Since we're changing the OCR value, we seem to
1613 	 * need to tell some cards to go back to the idle
1614 	 * state.  We wait 1ms to give cards time to
1615 	 * respond.
1616 	 * mmc_go_idle is needed for eMMC that are asleep
1617 	 */
1618 	mmc_go_idle(host);
1619 
1620 	/* The extra bit indicates that we support high capacity */
1621 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1622 	if (err)
1623 		goto err;
1624 
1625 	/*
1626 	 * For SPI, enable CRC as appropriate.
1627 	 */
1628 	if (mmc_host_is_spi(host)) {
1629 		err = mmc_spi_set_crc(host, use_spi_crc);
1630 		if (err)
1631 			goto err;
1632 	}
1633 
1634 	/*
1635 	 * Fetch CID from card.
1636 	 */
1637 	err = mmc_send_cid(host, cid);
1638 	if (err)
1639 		goto err;
1640 
1641 	if (oldcard) {
1642 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1643 			pr_debug("%s: Perhaps the card was replaced\n",
1644 				mmc_hostname(host));
1645 			err = -ENOENT;
1646 			goto err;
1647 		}
1648 
1649 		card = oldcard;
1650 	} else {
1651 		/*
1652 		 * Allocate card structure.
1653 		 */
1654 		card = mmc_alloc_card(host, &mmc_type);
1655 		if (IS_ERR(card)) {
1656 			err = PTR_ERR(card);
1657 			goto err;
1658 		}
1659 
1660 		card->ocr = ocr;
1661 		card->type = MMC_TYPE_MMC;
1662 		card->rca = 1;
1663 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1664 	}
1665 
1666 	/*
1667 	 * Call the optional HC's init_card function to handle quirks.
1668 	 */
1669 	if (host->ops->init_card)
1670 		host->ops->init_card(host, card);
1671 
1672 	/*
1673 	 * For native busses:  set card RCA and quit open drain mode.
1674 	 */
1675 	if (!mmc_host_is_spi(host)) {
1676 		err = mmc_set_relative_addr(card);
1677 		if (err)
1678 			goto free_card;
1679 
1680 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1681 	}
1682 
1683 	if (!oldcard) {
1684 		/*
1685 		 * Fetch CSD from card.
1686 		 */
1687 		err = mmc_send_csd(card, card->raw_csd);
1688 		if (err)
1689 			goto free_card;
1690 
1691 		err = mmc_decode_csd(card);
1692 		if (err)
1693 			goto free_card;
1694 		err = mmc_decode_cid(card);
1695 		if (err)
1696 			goto free_card;
1697 	}
1698 
1699 	/*
1700 	 * handling only for cards supporting DSR and hosts requesting
1701 	 * DSR configuration
1702 	 */
1703 	if (card->csd.dsr_imp && host->dsr_req)
1704 		mmc_set_dsr(host);
1705 
1706 	/*
1707 	 * Select card, as all following commands rely on that.
1708 	 */
1709 	if (!mmc_host_is_spi(host)) {
1710 		err = mmc_select_card(card);
1711 		if (err)
1712 			goto free_card;
1713 	}
1714 
1715 	if (!oldcard) {
1716 		/* Read extended CSD. */
1717 		err = mmc_read_ext_csd(card);
1718 		if (err)
1719 			goto free_card;
1720 
1721 		/*
1722 		 * If doing byte addressing, check if required to do sector
1723 		 * addressing.  Handle the case of <2GB cards needing sector
1724 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1725 		 * ocr register has bit 30 set for sector addressing.
1726 		 */
1727 		if (rocr & BIT(30))
1728 			mmc_card_set_blockaddr(card);
1729 
1730 		/* Erase size depends on CSD and Extended CSD */
1731 		mmc_set_erase_size(card);
1732 	}
1733 
1734 	/*
1735 	 * Reselect the card type since host caps could have been changed when
1736 	 * debugging even if the card is not new.
1737 	 */
1738 	mmc_select_card_type(card);
1739 
1740 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1741 	if (card->ext_csd.rev >= 3) {
1742 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1743 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1744 				 card->ext_csd.generic_cmd6_time);
1745 
1746 		if (err && err != -EBADMSG)
1747 			goto free_card;
1748 
1749 		if (err) {
1750 			/*
1751 			 * Just disable enhanced area off & sz
1752 			 * will try to enable ERASE_GROUP_DEF
1753 			 * during next time reinit
1754 			 */
1755 			card->ext_csd.enhanced_area_offset = -EINVAL;
1756 			card->ext_csd.enhanced_area_size = -EINVAL;
1757 		} else {
1758 			card->ext_csd.erase_group_def = 1;
1759 			/*
1760 			 * enable ERASE_GRP_DEF successfully.
1761 			 * This will affect the erase size, so
1762 			 * here need to reset erase size
1763 			 */
1764 			mmc_set_erase_size(card);
1765 		}
1766 	}
1767 
1768 	/*
1769 	 * Ensure eMMC user default partition is enabled
1770 	 */
1771 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1772 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1773 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1774 				 card->ext_csd.part_config,
1775 				 card->ext_csd.part_time);
1776 		if (err && err != -EBADMSG)
1777 			goto free_card;
1778 	}
1779 
1780 	/*
1781 	 * Enable power_off_notification byte in the ext_csd register
1782 	 */
1783 	if (card->ext_csd.rev >= 6) {
1784 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1785 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1786 				 EXT_CSD_POWER_ON,
1787 				 card->ext_csd.generic_cmd6_time);
1788 		if (err && err != -EBADMSG)
1789 			goto free_card;
1790 
1791 		/*
1792 		 * The err can be -EBADMSG or 0,
1793 		 * so check for success and update the flag
1794 		 */
1795 		if (!err)
1796 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1797 	}
1798 
1799 	/* set erase_arg */
1800 	if (mmc_can_discard(card))
1801 		card->erase_arg = MMC_DISCARD_ARG;
1802 	else if (mmc_can_trim(card))
1803 		card->erase_arg = MMC_TRIM_ARG;
1804 	else
1805 		card->erase_arg = MMC_ERASE_ARG;
1806 
1807 	/*
1808 	 * Select timing interface
1809 	 */
1810 	err = mmc_select_timing(card);
1811 	if (err)
1812 		goto free_card;
1813 
1814 	if (mmc_card_hs200(card)) {
1815 		host->doing_init_tune = 1;
1816 
1817 		err = mmc_hs200_tuning(card);
1818 		if (!err)
1819 			err = mmc_select_hs400(card);
1820 
1821 		host->doing_init_tune = 0;
1822 
1823 		if (err)
1824 			goto free_card;
1825 
1826 	} else if (!mmc_card_hs400es(card)) {
1827 		/* Select the desired bus width optionally */
1828 		err = mmc_select_bus_width(card);
1829 		if (err > 0 && mmc_card_hs(card)) {
1830 			err = mmc_select_hs_ddr(card);
1831 			if (err)
1832 				goto free_card;
1833 		}
1834 	}
1835 
1836 	/*
1837 	 * Choose the power class with selected bus interface
1838 	 */
1839 	mmc_select_powerclass(card);
1840 
1841 	/*
1842 	 * Enable HPI feature (if supported)
1843 	 */
1844 	if (card->ext_csd.hpi) {
1845 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1846 				EXT_CSD_HPI_MGMT, 1,
1847 				card->ext_csd.generic_cmd6_time);
1848 		if (err && err != -EBADMSG)
1849 			goto free_card;
1850 		if (err) {
1851 			pr_warn("%s: Enabling HPI failed\n",
1852 				mmc_hostname(card->host));
1853 			card->ext_csd.hpi_en = 0;
1854 		} else {
1855 			card->ext_csd.hpi_en = 1;
1856 		}
1857 	}
1858 
1859 	/*
1860 	 * If cache size is higher than 0, this indicates the existence of cache
1861 	 * and it can be turned on. Note that some eMMCs from Micron has been
1862 	 * reported to need ~800 ms timeout, while enabling the cache after
1863 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1864 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1865 	 */
1866 	if (card->ext_csd.cache_size > 0) {
1867 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1868 
1869 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1870 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1871 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1872 		if (err && err != -EBADMSG)
1873 			goto free_card;
1874 
1875 		/*
1876 		 * Only if no error, cache is turned on successfully.
1877 		 */
1878 		if (err) {
1879 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1880 				mmc_hostname(card->host), err);
1881 			card->ext_csd.cache_ctrl = 0;
1882 		} else {
1883 			card->ext_csd.cache_ctrl = 1;
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1889 	 * be used with Command Queue.
1890 	 */
1891 	card->ext_csd.cmdq_en = false;
1892 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1893 		err = mmc_cmdq_enable(card);
1894 		if (err && err != -EBADMSG)
1895 			goto free_card;
1896 		if (err) {
1897 			pr_warn("%s: Enabling CMDQ failed\n",
1898 				mmc_hostname(card->host));
1899 			card->ext_csd.cmdq_support = false;
1900 			card->ext_csd.cmdq_depth = 0;
1901 		}
1902 	}
1903 	/*
1904 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1905 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1906 	 * Command Queue.
1907 	 */
1908 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1909 
1910 	if (host->cqe_ops && !host->cqe_enabled) {
1911 		err = host->cqe_ops->cqe_enable(host, card);
1912 		if (!err) {
1913 			host->cqe_enabled = true;
1914 
1915 			if (card->ext_csd.cmdq_en) {
1916 				pr_info("%s: Command Queue Engine enabled\n",
1917 					mmc_hostname(host));
1918 			} else {
1919 				host->hsq_enabled = true;
1920 				pr_info("%s: Host Software Queue enabled\n",
1921 					mmc_hostname(host));
1922 			}
1923 		}
1924 	}
1925 
1926 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1927 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1928 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1929 			mmc_hostname(host));
1930 		err = -EINVAL;
1931 		goto free_card;
1932 	}
1933 
1934 	if (!oldcard)
1935 		host->card = card;
1936 
1937 	return 0;
1938 
1939 free_card:
1940 	if (!oldcard)
1941 		mmc_remove_card(card);
1942 err:
1943 	return err;
1944 }
1945 
1946 static int mmc_can_sleep(struct mmc_card *card)
1947 {
1948 	return card->ext_csd.rev >= 3;
1949 }
1950 
1951 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1952 {
1953 	struct mmc_host *host = cb_data;
1954 
1955 	*busy = host->ops->card_busy(host);
1956 	return 0;
1957 }
1958 
1959 static int mmc_sleep(struct mmc_host *host)
1960 {
1961 	struct mmc_command cmd = {};
1962 	struct mmc_card *card = host->card;
1963 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1964 	bool use_r1b_resp;
1965 	int err;
1966 
1967 	/* Re-tuning can't be done once the card is deselected */
1968 	mmc_retune_hold(host);
1969 
1970 	err = mmc_deselect_cards(host);
1971 	if (err)
1972 		goto out_release;
1973 
1974 	cmd.opcode = MMC_SLEEP_AWAKE;
1975 	cmd.arg = card->rca << 16;
1976 	cmd.arg |= 1 << 15;
1977 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1978 
1979 	err = mmc_wait_for_cmd(host, &cmd, 0);
1980 	if (err)
1981 		goto out_release;
1982 
1983 	/*
1984 	 * If the host does not wait while the card signals busy, then we can
1985 	 * try to poll, but only if the host supports HW polling, as the
1986 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1987 	 * to wait the sleep/awake timeout.
1988 	 */
1989 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1990 		goto out_release;
1991 
1992 	if (!host->ops->card_busy) {
1993 		mmc_delay(timeout_ms);
1994 		goto out_release;
1995 	}
1996 
1997 	err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
1998 
1999 out_release:
2000 	mmc_retune_release(host);
2001 	return err;
2002 }
2003 
2004 static int mmc_can_poweroff_notify(const struct mmc_card *card)
2005 {
2006 	return card &&
2007 		mmc_card_mmc(card) &&
2008 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2009 }
2010 
2011 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2012 {
2013 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
2014 	int err;
2015 
2016 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2017 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2018 		timeout = card->ext_csd.power_off_longtime;
2019 
2020 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2021 			EXT_CSD_POWER_OFF_NOTIFICATION,
2022 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2023 	if (err)
2024 		pr_err("%s: Power Off Notification timed out, %u\n",
2025 		       mmc_hostname(card->host), timeout);
2026 
2027 	/* Disable the power off notification after the switch operation. */
2028 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2029 
2030 	return err;
2031 }
2032 
2033 /*
2034  * Host is being removed. Free up the current card.
2035  */
2036 static void mmc_remove(struct mmc_host *host)
2037 {
2038 	mmc_remove_card(host->card);
2039 	host->card = NULL;
2040 }
2041 
2042 /*
2043  * Card detection - card is alive.
2044  */
2045 static int mmc_alive(struct mmc_host *host)
2046 {
2047 	return mmc_send_status(host->card, NULL);
2048 }
2049 
2050 /*
2051  * Card detection callback from host.
2052  */
2053 static void mmc_detect(struct mmc_host *host)
2054 {
2055 	int err;
2056 
2057 	mmc_get_card(host->card, NULL);
2058 
2059 	/*
2060 	 * Just check if our card has been removed.
2061 	 */
2062 	err = _mmc_detect_card_removed(host);
2063 
2064 	mmc_put_card(host->card, NULL);
2065 
2066 	if (err) {
2067 		mmc_remove(host);
2068 
2069 		mmc_claim_host(host);
2070 		mmc_detach_bus(host);
2071 		mmc_power_off(host);
2072 		mmc_release_host(host);
2073 	}
2074 }
2075 
2076 static bool _mmc_cache_enabled(struct mmc_host *host)
2077 {
2078 	return host->card->ext_csd.cache_size > 0 &&
2079 	       host->card->ext_csd.cache_ctrl & 1;
2080 }
2081 
2082 /*
2083  * Flush the internal cache of the eMMC to non-volatile storage.
2084  */
2085 static int _mmc_flush_cache(struct mmc_host *host)
2086 {
2087 	int err = 0;
2088 
2089 	if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag)
2090 		return 0;
2091 
2092 	if (_mmc_cache_enabled(host)) {
2093 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2094 				 EXT_CSD_FLUSH_CACHE, 1,
2095 				 CACHE_FLUSH_TIMEOUT_MS);
2096 		if (err)
2097 			pr_err("%s: cache flush error %d\n", mmc_hostname(host), err);
2098 		else
2099 			host->card->written_flag = false;
2100 	}
2101 
2102 	return err;
2103 }
2104 
2105 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2106 {
2107 	int err = 0;
2108 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2109 					EXT_CSD_POWER_OFF_LONG;
2110 
2111 	mmc_claim_host(host);
2112 
2113 	if (mmc_card_suspended(host->card))
2114 		goto out;
2115 
2116 	err = _mmc_flush_cache(host);
2117 	if (err)
2118 		goto out;
2119 
2120 	if (mmc_can_poweroff_notify(host->card) &&
2121 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2122 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2123 		err = mmc_poweroff_notify(host->card, notify_type);
2124 	else if (mmc_can_sleep(host->card))
2125 		err = mmc_sleep(host);
2126 	else if (!mmc_host_is_spi(host))
2127 		err = mmc_deselect_cards(host);
2128 
2129 	if (!err) {
2130 		mmc_power_off(host);
2131 		mmc_card_set_suspended(host->card);
2132 	}
2133 out:
2134 	mmc_release_host(host);
2135 	return err;
2136 }
2137 
2138 /*
2139  * Suspend callback
2140  */
2141 static int mmc_suspend(struct mmc_host *host)
2142 {
2143 	int err;
2144 
2145 	err = _mmc_suspend(host, true);
2146 	if (!err) {
2147 		pm_runtime_disable(&host->card->dev);
2148 		pm_runtime_set_suspended(&host->card->dev);
2149 	}
2150 
2151 	return err;
2152 }
2153 
2154 /*
2155  * This function tries to determine if the same card is still present
2156  * and, if so, restore all state to it.
2157  */
2158 static int _mmc_resume(struct mmc_host *host)
2159 {
2160 	int err = 0;
2161 
2162 	mmc_claim_host(host);
2163 
2164 	if (!mmc_card_suspended(host->card))
2165 		goto out;
2166 
2167 	mmc_power_up(host, host->card->ocr);
2168 	err = mmc_init_card(host, host->card->ocr, host->card);
2169 	mmc_card_clr_suspended(host->card);
2170 
2171 out:
2172 	mmc_release_host(host);
2173 	return err;
2174 }
2175 
2176 /*
2177  * Shutdown callback
2178  */
2179 static int mmc_shutdown(struct mmc_host *host)
2180 {
2181 	int err = 0;
2182 
2183 	/*
2184 	 * In a specific case for poweroff notify, we need to resume the card
2185 	 * before we can shutdown it properly.
2186 	 */
2187 	if (mmc_can_poweroff_notify(host->card) &&
2188 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2189 		err = _mmc_resume(host);
2190 
2191 	if (!err)
2192 		err = _mmc_suspend(host, false);
2193 
2194 	return err;
2195 }
2196 
2197 /*
2198  * Callback for resume.
2199  */
2200 static int mmc_resume(struct mmc_host *host)
2201 {
2202 	pm_runtime_enable(&host->card->dev);
2203 	return 0;
2204 }
2205 
2206 /*
2207  * Callback for runtime_suspend.
2208  */
2209 static int mmc_runtime_suspend(struct mmc_host *host)
2210 {
2211 	int err;
2212 
2213 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2214 		return 0;
2215 
2216 	err = _mmc_suspend(host, true);
2217 	if (err)
2218 		pr_err("%s: error %d doing aggressive suspend\n",
2219 			mmc_hostname(host), err);
2220 
2221 	return err;
2222 }
2223 
2224 /*
2225  * Callback for runtime_resume.
2226  */
2227 static int mmc_runtime_resume(struct mmc_host *host)
2228 {
2229 	int err;
2230 
2231 	err = _mmc_resume(host);
2232 	if (err && err != -ENOMEDIUM)
2233 		pr_err("%s: error %d doing runtime resume\n",
2234 			mmc_hostname(host), err);
2235 
2236 	return 0;
2237 }
2238 
2239 static int mmc_can_reset(struct mmc_card *card)
2240 {
2241 	u8 rst_n_function;
2242 
2243 	rst_n_function = card->ext_csd.rst_n_function;
2244 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2245 		return 0;
2246 	return 1;
2247 }
2248 
2249 static int _mmc_hw_reset(struct mmc_host *host)
2250 {
2251 	struct mmc_card *card = host->card;
2252 
2253 	/*
2254 	 * In the case of recovery, we can't expect flushing the cache to work
2255 	 * always, but we have a go and ignore errors.
2256 	 */
2257 	_mmc_flush_cache(host);
2258 
2259 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2260 	     mmc_can_reset(card)) {
2261 		/* If the card accept RST_n signal, send it. */
2262 		mmc_set_clock(host, host->f_init);
2263 		host->ops->card_hw_reset(host);
2264 		/* Set initial state and call mmc_set_ios */
2265 		mmc_set_initial_state(host);
2266 	} else {
2267 		/* Do a brute force power cycle */
2268 		mmc_power_cycle(host, card->ocr);
2269 		mmc_pwrseq_reset(host);
2270 	}
2271 	return mmc_init_card(host, card->ocr, card);
2272 }
2273 
2274 static const struct mmc_bus_ops mmc_ops = {
2275 	.remove = mmc_remove,
2276 	.detect = mmc_detect,
2277 	.suspend = mmc_suspend,
2278 	.resume = mmc_resume,
2279 	.runtime_suspend = mmc_runtime_suspend,
2280 	.runtime_resume = mmc_runtime_resume,
2281 	.alive = mmc_alive,
2282 	.shutdown = mmc_shutdown,
2283 	.hw_reset = _mmc_hw_reset,
2284 	.cache_enabled = _mmc_cache_enabled,
2285 	.flush_cache = _mmc_flush_cache,
2286 };
2287 
2288 /*
2289  * Starting point for MMC card init.
2290  */
2291 int mmc_attach_mmc(struct mmc_host *host)
2292 {
2293 	int err;
2294 	u32 ocr, rocr;
2295 
2296 	WARN_ON(!host->claimed);
2297 
2298 	/* Set correct bus mode for MMC before attempting attach */
2299 	if (!mmc_host_is_spi(host))
2300 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2301 
2302 	err = mmc_send_op_cond(host, 0, &ocr);
2303 	if (err)
2304 		return err;
2305 
2306 	mmc_attach_bus(host, &mmc_ops);
2307 	if (host->ocr_avail_mmc)
2308 		host->ocr_avail = host->ocr_avail_mmc;
2309 
2310 	/*
2311 	 * We need to get OCR a different way for SPI.
2312 	 */
2313 	if (mmc_host_is_spi(host)) {
2314 		err = mmc_spi_read_ocr(host, 1, &ocr);
2315 		if (err)
2316 			goto err;
2317 	}
2318 
2319 	rocr = mmc_select_voltage(host, ocr);
2320 
2321 	/*
2322 	 * Can we support the voltage of the card?
2323 	 */
2324 	if (!rocr) {
2325 		err = -EINVAL;
2326 		goto err;
2327 	}
2328 
2329 	/*
2330 	 * Detect and init the card.
2331 	 */
2332 	err = mmc_init_card(host, rocr, NULL);
2333 	if (err)
2334 		goto err;
2335 
2336 	mmc_release_host(host);
2337 	err = mmc_add_card(host->card);
2338 	if (err)
2339 		goto remove_card;
2340 
2341 	mmc_claim_host(host);
2342 	return 0;
2343 
2344 remove_card:
2345 	mmc_remove_card(host->card);
2346 	mmc_claim_host(host);
2347 	host->card = NULL;
2348 err:
2349 	mmc_detach_bus(host);
2350 
2351 	pr_err("%s: error %d whilst initialising MMC card\n",
2352 		mmc_hostname(host), err);
2353 
2354 	return err;
2355 }
2356