xref: /linux/drivers/mmc/core/mmc.c (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/random.h>
16 #include <linux/sysfs.h>
17 
18 #include <linux/mmc/host.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 
22 #include "core.h"
23 #include "card.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "quirks.h"
28 #include "sd_ops.h"
29 #include "pwrseq.h"
30 
31 #define DEFAULT_CMD6_TIMEOUT_MS	500
32 #define MIN_CACHE_EN_TIMEOUT_MS 1600
33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
34 
35 static const unsigned int tran_exp[] = {
36 	10000,		100000,		1000000,	10000000,
37 	0,		0,		0,		0
38 };
39 
40 static const unsigned char tran_mant[] = {
41 	0,	10,	12,	13,	15,	20,	25,	30,
42 	35,	40,	45,	50,	55,	60,	70,	80,
43 };
44 
45 static const unsigned int taac_exp[] = {
46 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
47 };
48 
49 static const unsigned int taac_mant[] = {
50 	0,	10,	12,	13,	15,	20,	25,	30,
51 	35,	40,	45,	50,	55,	60,	70,	80,
52 };
53 
54 /*
55  * Given the decoded CSD structure, decode the raw CID to our CID structure.
56  */
57 static int mmc_decode_cid(struct mmc_card *card)
58 {
59 	u32 *resp = card->raw_cid;
60 
61 	/*
62 	 * Add the raw card ID (cid) data to the entropy pool. It doesn't
63 	 * matter that not all of it is unique, it's just bonus entropy.
64 	 */
65 	add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
66 
67 	/*
68 	 * The selection of the format here is based upon published
69 	 * specs from sandisk and from what people have reported.
70 	 */
71 	switch (card->csd.mmca_vsn) {
72 	case 0: /* MMC v1.0 - v1.2 */
73 	case 1: /* MMC v1.4 */
74 		card->cid.manfid	= unstuff_bits(resp, 104, 24);
75 		card->cid.prod_name[0]	= unstuff_bits(resp, 96, 8);
76 		card->cid.prod_name[1]	= unstuff_bits(resp, 88, 8);
77 		card->cid.prod_name[2]	= unstuff_bits(resp, 80, 8);
78 		card->cid.prod_name[3]	= unstuff_bits(resp, 72, 8);
79 		card->cid.prod_name[4]	= unstuff_bits(resp, 64, 8);
80 		card->cid.prod_name[5]	= unstuff_bits(resp, 56, 8);
81 		card->cid.prod_name[6]	= unstuff_bits(resp, 48, 8);
82 		card->cid.hwrev		= unstuff_bits(resp, 44, 4);
83 		card->cid.fwrev		= unstuff_bits(resp, 40, 4);
84 		card->cid.serial	= unstuff_bits(resp, 16, 24);
85 		card->cid.month		= unstuff_bits(resp, 12, 4);
86 		card->cid.year		= unstuff_bits(resp, 8, 4) + 1997;
87 		break;
88 
89 	case 2: /* MMC v2.0 - v2.2 */
90 	case 3: /* MMC v3.1 - v3.3 */
91 	case 4: /* MMC v4 */
92 		card->cid.manfid	= unstuff_bits(resp, 120, 8);
93 		card->cid.oemid		= unstuff_bits(resp, 104, 16);
94 		card->cid.prod_name[0]	= unstuff_bits(resp, 96, 8);
95 		card->cid.prod_name[1]	= unstuff_bits(resp, 88, 8);
96 		card->cid.prod_name[2]	= unstuff_bits(resp, 80, 8);
97 		card->cid.prod_name[3]	= unstuff_bits(resp, 72, 8);
98 		card->cid.prod_name[4]	= unstuff_bits(resp, 64, 8);
99 		card->cid.prod_name[5]	= unstuff_bits(resp, 56, 8);
100 		card->cid.prv		= unstuff_bits(resp, 48, 8);
101 		card->cid.serial	= unstuff_bits(resp, 16, 32);
102 		card->cid.month		= unstuff_bits(resp, 12, 4);
103 		card->cid.year		= unstuff_bits(resp, 8, 4) + 1997;
104 		break;
105 
106 	default:
107 		pr_err("%s: card has unknown MMCA version %d\n",
108 			mmc_hostname(card->host), card->csd.mmca_vsn);
109 		return -EINVAL;
110 	}
111 
112 	return 0;
113 }
114 
115 static void mmc_set_erase_size(struct mmc_card *card)
116 {
117 	if (card->ext_csd.erase_group_def & 1)
118 		card->erase_size = card->ext_csd.hc_erase_size;
119 	else
120 		card->erase_size = card->csd.erase_size;
121 
122 	mmc_init_erase(card);
123 }
124 
125 
126 static void mmc_set_wp_grp_size(struct mmc_card *card)
127 {
128 	if (card->ext_csd.erase_group_def & 1)
129 		card->wp_grp_size = card->ext_csd.hc_erase_size *
130 			card->ext_csd.raw_hc_erase_gap_size;
131 	else
132 		card->wp_grp_size = card->csd.erase_size *
133 			(card->csd.wp_grp_size + 1);
134 }
135 
136 /*
137  * Given a 128-bit response, decode to our card CSD structure.
138  */
139 static int mmc_decode_csd(struct mmc_card *card)
140 {
141 	struct mmc_csd *csd = &card->csd;
142 	unsigned int e, m, a, b;
143 	u32 *resp = card->raw_csd;
144 
145 	/*
146 	 * We only understand CSD structure v1.1 and v1.2.
147 	 * v1.2 has extra information in bits 15, 11 and 10.
148 	 * We also support eMMC v4.4 & v4.41.
149 	 */
150 	csd->structure = unstuff_bits(resp, 126, 2);
151 	if (csd->structure == 0) {
152 		pr_err("%s: unrecognised CSD structure version %d\n",
153 			mmc_hostname(card->host), csd->structure);
154 		return -EINVAL;
155 	}
156 
157 	csd->mmca_vsn	 = unstuff_bits(resp, 122, 4);
158 	m = unstuff_bits(resp, 115, 4);
159 	e = unstuff_bits(resp, 112, 3);
160 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
161 	csd->taac_clks	 = unstuff_bits(resp, 104, 8) * 100;
162 
163 	m = unstuff_bits(resp, 99, 4);
164 	e = unstuff_bits(resp, 96, 3);
165 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
166 	csd->cmdclass	  = unstuff_bits(resp, 84, 12);
167 
168 	e = unstuff_bits(resp, 47, 3);
169 	m = unstuff_bits(resp, 62, 12);
170 	csd->capacity	  = (1 + m) << (e + 2);
171 
172 	csd->read_blkbits = unstuff_bits(resp, 80, 4);
173 	csd->read_partial = unstuff_bits(resp, 79, 1);
174 	csd->write_misalign = unstuff_bits(resp, 78, 1);
175 	csd->read_misalign = unstuff_bits(resp, 77, 1);
176 	csd->dsr_imp = unstuff_bits(resp, 76, 1);
177 	csd->r2w_factor = unstuff_bits(resp, 26, 3);
178 	csd->write_blkbits = unstuff_bits(resp, 22, 4);
179 	csd->write_partial = unstuff_bits(resp, 21, 1);
180 
181 	if (csd->write_blkbits >= 9) {
182 		a = unstuff_bits(resp, 42, 5);
183 		b = unstuff_bits(resp, 37, 5);
184 		csd->erase_size = (a + 1) * (b + 1);
185 		csd->erase_size <<= csd->write_blkbits - 9;
186 		csd->wp_grp_size = unstuff_bits(resp, 32, 5);
187 	}
188 
189 	return 0;
190 }
191 
192 static void mmc_select_card_type(struct mmc_card *card)
193 {
194 	struct mmc_host *host = card->host;
195 	u8 card_type = card->ext_csd.raw_card_type;
196 	u32 caps = host->caps, caps2 = host->caps2;
197 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
198 	unsigned int avail_type = 0;
199 
200 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
201 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
202 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
203 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
204 	}
205 
206 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
207 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
208 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
209 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
210 	}
211 
212 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
213 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
214 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
215 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
216 	}
217 
218 	if (caps & MMC_CAP_1_2V_DDR &&
219 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
220 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
221 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
222 	}
223 
224 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
225 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
226 		hs200_max_dtr = MMC_HS200_MAX_DTR;
227 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
228 	}
229 
230 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
231 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
232 		hs200_max_dtr = MMC_HS200_MAX_DTR;
233 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
234 	}
235 
236 	if (caps2 & MMC_CAP2_HS400_1_8V &&
237 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
238 		hs200_max_dtr = MMC_HS200_MAX_DTR;
239 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
240 	}
241 
242 	if (caps2 & MMC_CAP2_HS400_1_2V &&
243 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
244 		hs200_max_dtr = MMC_HS200_MAX_DTR;
245 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
246 	}
247 
248 	if ((caps2 & MMC_CAP2_HS400_ES) &&
249 	    card->ext_csd.strobe_support &&
250 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
251 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
252 
253 	card->ext_csd.hs_max_dtr = hs_max_dtr;
254 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
255 	card->mmc_avail_type = avail_type;
256 }
257 
258 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
259 {
260 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
261 
262 	/*
263 	 * Disable these attributes by default
264 	 */
265 	card->ext_csd.enhanced_area_offset = -EINVAL;
266 	card->ext_csd.enhanced_area_size = -EINVAL;
267 
268 	/*
269 	 * Enhanced area feature support -- check whether the eMMC
270 	 * card has the Enhanced area enabled.  If so, export enhanced
271 	 * area offset and size to user by adding sysfs interface.
272 	 */
273 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
274 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
275 		if (card->ext_csd.partition_setting_completed) {
276 			hc_erase_grp_sz =
277 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
278 			hc_wp_grp_sz =
279 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
280 
281 			/*
282 			 * calculate the enhanced data area offset, in bytes
283 			 */
284 			card->ext_csd.enhanced_area_offset =
285 				(((unsigned long long)ext_csd[139]) << 24) +
286 				(((unsigned long long)ext_csd[138]) << 16) +
287 				(((unsigned long long)ext_csd[137]) << 8) +
288 				(((unsigned long long)ext_csd[136]));
289 			if (mmc_card_blockaddr(card))
290 				card->ext_csd.enhanced_area_offset <<= 9;
291 			/*
292 			 * calculate the enhanced data area size, in kilobytes
293 			 */
294 			card->ext_csd.enhanced_area_size =
295 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
296 				ext_csd[140];
297 			card->ext_csd.enhanced_area_size *=
298 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
299 			card->ext_csd.enhanced_area_size <<= 9;
300 		} else {
301 			pr_warn("%s: defines enhanced area without partition setting complete\n",
302 				mmc_hostname(card->host));
303 		}
304 	}
305 }
306 
307 static void mmc_part_add(struct mmc_card *card, u64 size,
308 			 unsigned int part_cfg, char *name, int idx, bool ro,
309 			 int area_type)
310 {
311 	card->part[card->nr_parts].size = size;
312 	card->part[card->nr_parts].part_cfg = part_cfg;
313 	sprintf(card->part[card->nr_parts].name, name, idx);
314 	card->part[card->nr_parts].force_ro = ro;
315 	card->part[card->nr_parts].area_type = area_type;
316 	card->nr_parts++;
317 }
318 
319 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
320 {
321 	int idx;
322 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
323 	u64 part_size;
324 
325 	/*
326 	 * General purpose partition feature support --
327 	 * If ext_csd has the size of general purpose partitions,
328 	 * set size, part_cfg, partition name in mmc_part.
329 	 */
330 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
331 	    EXT_CSD_PART_SUPPORT_PART_EN) {
332 		hc_erase_grp_sz =
333 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
334 		hc_wp_grp_sz =
335 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
336 
337 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
338 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
339 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
340 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
341 				continue;
342 			if (card->ext_csd.partition_setting_completed == 0) {
343 				pr_warn("%s: has partition size defined without partition complete\n",
344 					mmc_hostname(card->host));
345 				break;
346 			}
347 			part_size =
348 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
349 				<< 16) +
350 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
351 				<< 8) +
352 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
353 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
354 			mmc_part_add(card, part_size << 19,
355 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
356 				"gp%d", idx, false,
357 				MMC_BLK_DATA_AREA_GP);
358 		}
359 	}
360 }
361 
362 /* Minimum partition switch timeout in milliseconds */
363 #define MMC_MIN_PART_SWITCH_TIME	300
364 
365 /*
366  * Decode extended CSD.
367  */
368 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
369 {
370 	int err = 0, idx;
371 	u64 part_size;
372 	struct device_node *np;
373 	bool broken_hpi = false;
374 
375 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
376 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
377 	if (card->csd.structure == 3) {
378 		if (card->ext_csd.raw_ext_csd_structure > 2) {
379 			pr_err("%s: unrecognised EXT_CSD structure "
380 				"version %d\n", mmc_hostname(card->host),
381 					card->ext_csd.raw_ext_csd_structure);
382 			err = -EINVAL;
383 			goto out;
384 		}
385 	}
386 
387 	np = mmc_of_find_child_device(card->host, 0);
388 	if (np && of_device_is_compatible(np, "mmc-card"))
389 		broken_hpi = of_property_read_bool(np, "broken-hpi");
390 	of_node_put(np);
391 
392 	/*
393 	 * The EXT_CSD format is meant to be forward compatible. As long
394 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
395 	 * are authorized, see JEDEC JESD84-B50 section B.8.
396 	 */
397 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
398 
399 	/* fixup device after ext_csd revision field is updated */
400 	mmc_fixup_device(card, mmc_ext_csd_fixups);
401 
402 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
403 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
404 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
405 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
406 	if (card->ext_csd.rev >= 2) {
407 		card->ext_csd.sectors =
408 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
409 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
410 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
411 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
412 
413 		/* Cards with density > 2GiB are sector addressed */
414 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
415 			mmc_card_set_blockaddr(card);
416 	}
417 
418 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
419 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
420 
421 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 	card->ext_csd.raw_erase_timeout_mult =
423 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
424 	card->ext_csd.raw_hc_erase_grp_size =
425 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
426 	card->ext_csd.raw_boot_mult =
427 		ext_csd[EXT_CSD_BOOT_MULT];
428 	if (card->ext_csd.rev >= 3) {
429 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
430 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
431 
432 		/* EXT_CSD value is in units of 10ms, but we store in ms */
433 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
434 
435 		/* Sleep / awake timeout in 100ns units */
436 		if (sa_shift > 0 && sa_shift <= 0x17)
437 			card->ext_csd.sa_timeout =
438 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
439 		card->ext_csd.erase_group_def =
440 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
441 		card->ext_csd.hc_erase_timeout = 300 *
442 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
443 		card->ext_csd.hc_erase_size =
444 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
445 
446 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
447 
448 		/*
449 		 * There are two boot regions of equal size, defined in
450 		 * multiples of 128K.
451 		 */
452 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
453 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
454 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
455 				mmc_part_add(card, part_size,
456 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
457 					"boot%d", idx, true,
458 					MMC_BLK_DATA_AREA_BOOT);
459 			}
460 		}
461 	}
462 
463 	card->ext_csd.raw_hc_erase_gap_size =
464 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
465 	card->ext_csd.raw_sec_trim_mult =
466 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
467 	card->ext_csd.raw_sec_erase_mult =
468 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
469 	card->ext_csd.raw_sec_feature_support =
470 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
471 	card->ext_csd.raw_trim_mult =
472 		ext_csd[EXT_CSD_TRIM_MULT];
473 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
474 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
475 	if (card->ext_csd.rev >= 4) {
476 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
477 		    EXT_CSD_PART_SETTING_COMPLETED)
478 			card->ext_csd.partition_setting_completed = 1;
479 		else
480 			card->ext_csd.partition_setting_completed = 0;
481 
482 		mmc_manage_enhanced_area(card, ext_csd);
483 
484 		mmc_manage_gp_partitions(card, ext_csd);
485 
486 		card->ext_csd.sec_trim_mult =
487 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
488 		card->ext_csd.sec_erase_mult =
489 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
490 		card->ext_csd.sec_feature_support =
491 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
492 		card->ext_csd.trim_timeout = 300 *
493 			ext_csd[EXT_CSD_TRIM_MULT];
494 
495 		/*
496 		 * Note that the call to mmc_part_add above defaults to read
497 		 * only. If this default assumption is changed, the call must
498 		 * take into account the value of boot_locked below.
499 		 */
500 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
501 		card->ext_csd.boot_ro_lockable = true;
502 
503 		/* Save power class values */
504 		card->ext_csd.raw_pwr_cl_52_195 =
505 			ext_csd[EXT_CSD_PWR_CL_52_195];
506 		card->ext_csd.raw_pwr_cl_26_195 =
507 			ext_csd[EXT_CSD_PWR_CL_26_195];
508 		card->ext_csd.raw_pwr_cl_52_360 =
509 			ext_csd[EXT_CSD_PWR_CL_52_360];
510 		card->ext_csd.raw_pwr_cl_26_360 =
511 			ext_csd[EXT_CSD_PWR_CL_26_360];
512 		card->ext_csd.raw_pwr_cl_200_195 =
513 			ext_csd[EXT_CSD_PWR_CL_200_195];
514 		card->ext_csd.raw_pwr_cl_200_360 =
515 			ext_csd[EXT_CSD_PWR_CL_200_360];
516 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
518 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
519 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
520 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
521 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
522 	}
523 
524 	if (card->ext_csd.rev >= 5) {
525 		/* Adjust production date as per JEDEC JESD84-B451 */
526 		if (card->cid.year < 2010)
527 			card->cid.year += 16;
528 
529 		/* check whether the eMMC card supports BKOPS */
530 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 			card->ext_csd.bkops = 1;
532 			card->ext_csd.man_bkops_en =
533 					(ext_csd[EXT_CSD_BKOPS_EN] &
534 						EXT_CSD_MANUAL_BKOPS_MASK);
535 			card->ext_csd.raw_bkops_status =
536 				ext_csd[EXT_CSD_BKOPS_STATUS];
537 			if (card->ext_csd.man_bkops_en)
538 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 					mmc_hostname(card->host));
540 			card->ext_csd.auto_bkops_en =
541 					(ext_csd[EXT_CSD_BKOPS_EN] &
542 						EXT_CSD_AUTO_BKOPS_MASK);
543 			if (card->ext_csd.auto_bkops_en)
544 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 					mmc_hostname(card->host));
546 		}
547 
548 		/* check whether the eMMC card supports HPI */
549 		if (!mmc_card_broken_hpi(card) &&
550 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 			card->ext_csd.hpi = 1;
552 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
554 			else
555 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 			/*
557 			 * Indicate the maximum timeout to close
558 			 * a command interrupted by HPI
559 			 */
560 			card->ext_csd.out_of_int_time =
561 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 		}
563 
564 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566 
567 		/*
568 		 * RPMB regions are defined in multiples of 128K.
569 		 */
570 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 				EXT_CSD_PART_CONFIG_ACC_RPMB,
574 				"rpmb", 0, false,
575 				MMC_BLK_DATA_AREA_RPMB);
576 		}
577 	}
578 
579 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 		card->erased_byte = 0xFF;
582 	else
583 		card->erased_byte = 0x0;
584 
585 	/* eMMC v4.5 or later */
586 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 	if (card->ext_csd.rev >= 6) {
588 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589 
590 		card->ext_csd.generic_cmd6_time = 10 *
591 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 		card->ext_csd.power_off_longtime = 10 *
593 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594 
595 		card->ext_csd.cache_size =
596 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600 
601 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 			card->ext_csd.data_sector_size = 4096;
603 		else
604 			card->ext_csd.data_sector_size = 512;
605 
606 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 			card->ext_csd.data_tag_unit_size =
609 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 			(card->ext_csd.data_sector_size);
611 		} else {
612 			card->ext_csd.data_tag_unit_size = 0;
613 		}
614 	} else {
615 		card->ext_csd.data_sector_size = 512;
616 	}
617 
618 	/*
619 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
620 	 * when accessing a specific field", so use it here if there is no
621 	 * PARTITION_SWITCH_TIME.
622 	 */
623 	if (!card->ext_csd.part_time)
624 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
625 	/* Some eMMC set the value too low so set a minimum */
626 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
627 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
628 
629 	/* eMMC v5 or later */
630 	if (card->ext_csd.rev >= 7) {
631 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
632 		       MMC_FIRMWARE_LEN);
633 		card->ext_csd.ffu_capable =
634 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
635 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
636 
637 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
638 		card->ext_csd.device_life_time_est_typ_a =
639 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
640 		card->ext_csd.device_life_time_est_typ_b =
641 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
642 	}
643 
644 	/* eMMC v5.1 or later */
645 	if (card->ext_csd.rev >= 8) {
646 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
647 					     EXT_CSD_CMDQ_SUPPORTED;
648 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
649 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
650 		/* Exclude inefficiently small queue depths */
651 		if (card->ext_csd.cmdq_depth <= 2) {
652 			card->ext_csd.cmdq_support = false;
653 			card->ext_csd.cmdq_depth = 0;
654 		}
655 		if (card->ext_csd.cmdq_support) {
656 			pr_debug("%s: Command Queue supported depth %u\n",
657 				 mmc_hostname(card->host),
658 				 card->ext_csd.cmdq_depth);
659 		}
660 		card->ext_csd.enhanced_rpmb_supported =
661 					(card->ext_csd.rel_param &
662 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
663 	}
664 out:
665 	return err;
666 }
667 
668 static int mmc_read_ext_csd(struct mmc_card *card)
669 {
670 	u8 *ext_csd;
671 	int err;
672 
673 	if (!mmc_can_ext_csd(card))
674 		return 0;
675 
676 	err = mmc_get_ext_csd(card, &ext_csd);
677 	if (err) {
678 		/* If the host or the card can't do the switch,
679 		 * fail more gracefully. */
680 		if ((err != -EINVAL)
681 		 && (err != -ENOSYS)
682 		 && (err != -EFAULT))
683 			return err;
684 
685 		/*
686 		 * High capacity cards should have this "magic" size
687 		 * stored in their CSD.
688 		 */
689 		if (card->csd.capacity == (4096 * 512)) {
690 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
691 				mmc_hostname(card->host));
692 		} else {
693 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
694 				mmc_hostname(card->host));
695 			err = 0;
696 		}
697 
698 		return err;
699 	}
700 
701 	err = mmc_decode_ext_csd(card, ext_csd);
702 	kfree(ext_csd);
703 	return err;
704 }
705 
706 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
707 {
708 	u8 *bw_ext_csd;
709 	int err;
710 
711 	if (bus_width == MMC_BUS_WIDTH_1)
712 		return 0;
713 
714 	err = mmc_get_ext_csd(card, &bw_ext_csd);
715 	if (err)
716 		return err;
717 
718 	/* only compare read only fields */
719 	err = !((card->ext_csd.raw_partition_support ==
720 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
721 		(card->ext_csd.raw_erased_mem_count ==
722 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
723 		(card->ext_csd.rev ==
724 			bw_ext_csd[EXT_CSD_REV]) &&
725 		(card->ext_csd.raw_ext_csd_structure ==
726 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
727 		(card->ext_csd.raw_card_type ==
728 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
729 		(card->ext_csd.raw_s_a_timeout ==
730 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
731 		(card->ext_csd.raw_hc_erase_gap_size ==
732 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
733 		(card->ext_csd.raw_erase_timeout_mult ==
734 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
735 		(card->ext_csd.raw_hc_erase_grp_size ==
736 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
737 		(card->ext_csd.raw_sec_trim_mult ==
738 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
739 		(card->ext_csd.raw_sec_erase_mult ==
740 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
741 		(card->ext_csd.raw_sec_feature_support ==
742 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
743 		(card->ext_csd.raw_trim_mult ==
744 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
745 		(card->ext_csd.raw_sectors[0] ==
746 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
747 		(card->ext_csd.raw_sectors[1] ==
748 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
749 		(card->ext_csd.raw_sectors[2] ==
750 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
751 		(card->ext_csd.raw_sectors[3] ==
752 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
753 		(card->ext_csd.raw_pwr_cl_52_195 ==
754 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
755 		(card->ext_csd.raw_pwr_cl_26_195 ==
756 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
757 		(card->ext_csd.raw_pwr_cl_52_360 ==
758 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
759 		(card->ext_csd.raw_pwr_cl_26_360 ==
760 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
761 		(card->ext_csd.raw_pwr_cl_200_195 ==
762 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
763 		(card->ext_csd.raw_pwr_cl_200_360 ==
764 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
765 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
766 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
767 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
768 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
769 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
770 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
771 
772 	if (err)
773 		err = -EINVAL;
774 
775 	kfree(bw_ext_csd);
776 	return err;
777 }
778 
779 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
780 	card->raw_cid[2], card->raw_cid[3]);
781 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
782 	card->raw_csd[2], card->raw_csd[3]);
783 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
784 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
785 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
786 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9);
787 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
788 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
789 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
790 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
791 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
792 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
793 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
794 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
795 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
796 	card->ext_csd.device_life_time_est_typ_a,
797 	card->ext_csd.device_life_time_est_typ_b);
798 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
799 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
800 		card->ext_csd.enhanced_area_offset);
801 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
802 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
803 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
804 	card->ext_csd.enhanced_rpmb_supported);
805 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
806 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
807 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
808 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
809 
810 static ssize_t mmc_fwrev_show(struct device *dev,
811 			      struct device_attribute *attr,
812 			      char *buf)
813 {
814 	struct mmc_card *card = mmc_dev_to_card(dev);
815 
816 	if (card->ext_csd.rev < 7)
817 		return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
818 	else
819 		return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
820 				  card->ext_csd.fwrev);
821 }
822 
823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
824 
825 static ssize_t mmc_dsr_show(struct device *dev,
826 			    struct device_attribute *attr,
827 			    char *buf)
828 {
829 	struct mmc_card *card = mmc_dev_to_card(dev);
830 	struct mmc_host *host = card->host;
831 
832 	if (card->csd.dsr_imp && host->dsr_req)
833 		return sysfs_emit(buf, "0x%x\n", host->dsr);
834 	else
835 		/* return default DSR value */
836 		return sysfs_emit(buf, "0x%x\n", 0x404);
837 }
838 
839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
840 
841 static struct attribute *mmc_std_attrs[] = {
842 	&dev_attr_cid.attr,
843 	&dev_attr_csd.attr,
844 	&dev_attr_date.attr,
845 	&dev_attr_erase_size.attr,
846 	&dev_attr_preferred_erase_size.attr,
847 	&dev_attr_wp_grp_size.attr,
848 	&dev_attr_fwrev.attr,
849 	&dev_attr_ffu_capable.attr,
850 	&dev_attr_hwrev.attr,
851 	&dev_attr_manfid.attr,
852 	&dev_attr_name.attr,
853 	&dev_attr_oemid.attr,
854 	&dev_attr_prv.attr,
855 	&dev_attr_rev.attr,
856 	&dev_attr_pre_eol_info.attr,
857 	&dev_attr_life_time.attr,
858 	&dev_attr_serial.attr,
859 	&dev_attr_enhanced_area_offset.attr,
860 	&dev_attr_enhanced_area_size.attr,
861 	&dev_attr_raw_rpmb_size_mult.attr,
862 	&dev_attr_enhanced_rpmb_supported.attr,
863 	&dev_attr_rel_sectors.attr,
864 	&dev_attr_ocr.attr,
865 	&dev_attr_rca.attr,
866 	&dev_attr_dsr.attr,
867 	&dev_attr_cmdq_en.attr,
868 	NULL,
869 };
870 ATTRIBUTE_GROUPS(mmc_std);
871 
872 static const struct device_type mmc_type = {
873 	.groups = mmc_std_groups,
874 };
875 
876 /*
877  * Select the PowerClass for the current bus width
878  * If power class is defined for 4/8 bit bus in the
879  * extended CSD register, select it by executing the
880  * mmc_switch command.
881  */
882 static int __mmc_select_powerclass(struct mmc_card *card,
883 				   unsigned int bus_width)
884 {
885 	struct mmc_host *host = card->host;
886 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
887 	unsigned int pwrclass_val = 0;
888 	int err = 0;
889 
890 	switch (1 << host->ios.vdd) {
891 	case MMC_VDD_165_195:
892 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
893 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
894 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
895 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
896 				ext_csd->raw_pwr_cl_52_195 :
897 				ext_csd->raw_pwr_cl_ddr_52_195;
898 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
899 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
900 		break;
901 	case MMC_VDD_27_28:
902 	case MMC_VDD_28_29:
903 	case MMC_VDD_29_30:
904 	case MMC_VDD_30_31:
905 	case MMC_VDD_31_32:
906 	case MMC_VDD_32_33:
907 	case MMC_VDD_33_34:
908 	case MMC_VDD_34_35:
909 	case MMC_VDD_35_36:
910 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
911 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
912 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
913 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
914 				ext_csd->raw_pwr_cl_52_360 :
915 				ext_csd->raw_pwr_cl_ddr_52_360;
916 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
917 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
918 				ext_csd->raw_pwr_cl_ddr_200_360 :
919 				ext_csd->raw_pwr_cl_200_360;
920 		break;
921 	default:
922 		pr_warn("%s: Voltage range not supported for power class\n",
923 			mmc_hostname(host));
924 		return -EINVAL;
925 	}
926 
927 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
928 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
929 				EXT_CSD_PWR_CL_8BIT_SHIFT;
930 	else
931 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
932 				EXT_CSD_PWR_CL_4BIT_SHIFT;
933 
934 	/* If the power class is different from the default value */
935 	if (pwrclass_val > 0) {
936 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
937 				 EXT_CSD_POWER_CLASS,
938 				 pwrclass_val,
939 				 card->ext_csd.generic_cmd6_time);
940 	}
941 
942 	return err;
943 }
944 
945 static int mmc_select_powerclass(struct mmc_card *card)
946 {
947 	struct mmc_host *host = card->host;
948 	u32 bus_width, ext_csd_bits;
949 	int err, ddr;
950 
951 	/* Power class selection is supported for versions >= 4.0 */
952 	if (!mmc_can_ext_csd(card))
953 		return 0;
954 
955 	bus_width = host->ios.bus_width;
956 	/* Power class values are defined only for 4/8 bit bus */
957 	if (bus_width == MMC_BUS_WIDTH_1)
958 		return 0;
959 
960 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
961 	if (ddr)
962 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
963 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
964 	else
965 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
966 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
967 
968 	err = __mmc_select_powerclass(card, ext_csd_bits);
969 	if (err)
970 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
971 			mmc_hostname(host), 1 << bus_width, ddr);
972 
973 	return err;
974 }
975 
976 /*
977  * Set the bus speed for the selected speed mode.
978  */
979 static void mmc_set_bus_speed(struct mmc_card *card)
980 {
981 	unsigned int max_dtr = (unsigned int)-1;
982 
983 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
984 	     max_dtr > card->ext_csd.hs200_max_dtr)
985 		max_dtr = card->ext_csd.hs200_max_dtr;
986 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
987 		max_dtr = card->ext_csd.hs_max_dtr;
988 	else if (max_dtr > card->csd.max_dtr)
989 		max_dtr = card->csd.max_dtr;
990 
991 	mmc_set_clock(card->host, max_dtr);
992 }
993 
994 /*
995  * Select the bus width amoung 4-bit and 8-bit(SDR).
996  * If the bus width is changed successfully, return the selected width value.
997  * Zero is returned instead of error value if the wide width is not supported.
998  */
999 static int mmc_select_bus_width(struct mmc_card *card)
1000 {
1001 	static unsigned ext_csd_bits[] = {
1002 		EXT_CSD_BUS_WIDTH_8,
1003 		EXT_CSD_BUS_WIDTH_4,
1004 		EXT_CSD_BUS_WIDTH_1,
1005 	};
1006 	static unsigned bus_widths[] = {
1007 		MMC_BUS_WIDTH_8,
1008 		MMC_BUS_WIDTH_4,
1009 		MMC_BUS_WIDTH_1,
1010 	};
1011 	struct mmc_host *host = card->host;
1012 	unsigned idx, bus_width = 0;
1013 	int err = 0;
1014 
1015 	if (!mmc_can_ext_csd(card) ||
1016 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1017 		return 0;
1018 
1019 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1020 
1021 	/*
1022 	 * Unlike SD, MMC cards dont have a configuration register to notify
1023 	 * supported bus width. So bus test command should be run to identify
1024 	 * the supported bus width or compare the ext csd values of current
1025 	 * bus width and ext csd values of 1 bit mode read earlier.
1026 	 */
1027 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1028 		/*
1029 		 * Host is capable of 8bit transfer, then switch
1030 		 * the device to work in 8bit transfer mode. If the
1031 		 * mmc switch command returns error then switch to
1032 		 * 4bit transfer mode. On success set the corresponding
1033 		 * bus width on the host.
1034 		 */
1035 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1036 				 EXT_CSD_BUS_WIDTH,
1037 				 ext_csd_bits[idx],
1038 				 card->ext_csd.generic_cmd6_time);
1039 		if (err)
1040 			continue;
1041 
1042 		bus_width = bus_widths[idx];
1043 		mmc_set_bus_width(host, bus_width);
1044 
1045 		/*
1046 		 * If controller can't handle bus width test,
1047 		 * compare ext_csd previously read in 1 bit mode
1048 		 * against ext_csd at new bus width
1049 		 */
1050 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1051 			err = mmc_compare_ext_csds(card, bus_width);
1052 		else
1053 			err = mmc_bus_test(card, bus_width);
1054 
1055 		if (!err) {
1056 			err = bus_width;
1057 			break;
1058 		} else {
1059 			pr_warn("%s: switch to bus width %d failed\n",
1060 				mmc_hostname(host), 1 << bus_width);
1061 		}
1062 	}
1063 
1064 	return err;
1065 }
1066 
1067 /*
1068  * Switch to the high-speed mode
1069  */
1070 static int mmc_select_hs(struct mmc_card *card)
1071 {
1072 	int err;
1073 
1074 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1075 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1076 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1077 			   true, true, MMC_CMD_RETRIES);
1078 	if (err)
1079 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1080 			mmc_hostname(card->host), err);
1081 
1082 	return err;
1083 }
1084 
1085 /*
1086  * Activate wide bus and DDR if supported.
1087  */
1088 static int mmc_select_hs_ddr(struct mmc_card *card)
1089 {
1090 	struct mmc_host *host = card->host;
1091 	u32 bus_width, ext_csd_bits;
1092 	int err = 0;
1093 
1094 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1095 		return 0;
1096 
1097 	bus_width = host->ios.bus_width;
1098 	if (bus_width == MMC_BUS_WIDTH_1)
1099 		return 0;
1100 
1101 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1102 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1103 
1104 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1105 			   EXT_CSD_BUS_WIDTH,
1106 			   ext_csd_bits,
1107 			   card->ext_csd.generic_cmd6_time,
1108 			   MMC_TIMING_MMC_DDR52,
1109 			   true, true, MMC_CMD_RETRIES);
1110 	if (err) {
1111 		pr_err("%s: switch to bus width %d ddr failed\n",
1112 			mmc_hostname(host), 1 << bus_width);
1113 		return err;
1114 	}
1115 
1116 	/*
1117 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1118 	 * signaling.
1119 	 *
1120 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1121 	 *
1122 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1123 	 * in the JEDEC spec for DDR.
1124 	 *
1125 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1126 	 * host controller can support this, like some of the SDHCI
1127 	 * controller which connect to an eMMC device. Some of these
1128 	 * host controller still needs to use 1.8v vccq for supporting
1129 	 * DDR mode.
1130 	 *
1131 	 * So the sequence will be:
1132 	 * if (host and device can both support 1.2v IO)
1133 	 *	use 1.2v IO;
1134 	 * else if (host and device can both support 1.8v IO)
1135 	 *	use 1.8v IO;
1136 	 * so if host and device can only support 3.3v IO, this is the
1137 	 * last choice.
1138 	 *
1139 	 * WARNING: eMMC rules are NOT the same as SD DDR
1140 	 */
1141 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1142 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1143 		if (!err)
1144 			return 0;
1145 	}
1146 
1147 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1148 	    host->caps & MMC_CAP_1_8V_DDR)
1149 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1150 
1151 	/* make sure vccq is 3.3v after switching disaster */
1152 	if (err)
1153 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1154 
1155 	return err;
1156 }
1157 
1158 static int mmc_select_hs400(struct mmc_card *card)
1159 {
1160 	struct mmc_host *host = card->host;
1161 	unsigned int max_dtr;
1162 	int err = 0;
1163 	u8 val;
1164 
1165 	/*
1166 	 * HS400 mode requires 8-bit bus width
1167 	 */
1168 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1169 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1170 		return 0;
1171 
1172 	/* Switch card to HS mode */
1173 	val = EXT_CSD_TIMING_HS;
1174 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1175 			   EXT_CSD_HS_TIMING, val,
1176 			   card->ext_csd.generic_cmd6_time, 0,
1177 			   false, true, MMC_CMD_RETRIES);
1178 	if (err) {
1179 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1180 			mmc_hostname(host), err);
1181 		return err;
1182 	}
1183 
1184 	/* Prepare host to downgrade to HS timing */
1185 	if (host->ops->hs400_downgrade)
1186 		host->ops->hs400_downgrade(host);
1187 
1188 	/* Set host controller to HS timing */
1189 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1190 
1191 	/* Reduce frequency to HS frequency */
1192 	max_dtr = card->ext_csd.hs_max_dtr;
1193 	mmc_set_clock(host, max_dtr);
1194 
1195 	err = mmc_switch_status(card, true);
1196 	if (err)
1197 		goto out_err;
1198 
1199 	if (host->ops->hs400_prepare_ddr)
1200 		host->ops->hs400_prepare_ddr(host);
1201 
1202 	/* Switch card to DDR */
1203 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1204 			 EXT_CSD_BUS_WIDTH,
1205 			 EXT_CSD_DDR_BUS_WIDTH_8,
1206 			 card->ext_csd.generic_cmd6_time);
1207 	if (err) {
1208 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1209 			mmc_hostname(host), err);
1210 		return err;
1211 	}
1212 
1213 	/* Switch card to HS400 */
1214 	val = EXT_CSD_TIMING_HS400 |
1215 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1216 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1217 			   EXT_CSD_HS_TIMING, val,
1218 			   card->ext_csd.generic_cmd6_time, 0,
1219 			   false, true, MMC_CMD_RETRIES);
1220 	if (err) {
1221 		pr_err("%s: switch to hs400 failed, err:%d\n",
1222 			 mmc_hostname(host), err);
1223 		return err;
1224 	}
1225 
1226 	/* Set host controller to HS400 timing and frequency */
1227 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1228 	mmc_set_bus_speed(card);
1229 
1230 	if (host->ops->execute_hs400_tuning) {
1231 		mmc_retune_disable(host);
1232 		err = host->ops->execute_hs400_tuning(host, card);
1233 		mmc_retune_enable(host);
1234 		if (err)
1235 			goto out_err;
1236 	}
1237 
1238 	if (host->ops->hs400_complete)
1239 		host->ops->hs400_complete(host);
1240 
1241 	err = mmc_switch_status(card, true);
1242 	if (err)
1243 		goto out_err;
1244 
1245 	return 0;
1246 
1247 out_err:
1248 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1249 	       __func__, err);
1250 	return err;
1251 }
1252 
1253 int mmc_hs200_to_hs400(struct mmc_card *card)
1254 {
1255 	return mmc_select_hs400(card);
1256 }
1257 
1258 int mmc_hs400_to_hs200(struct mmc_card *card)
1259 {
1260 	struct mmc_host *host = card->host;
1261 	unsigned int max_dtr;
1262 	int err;
1263 	u8 val;
1264 
1265 	/* Reduce frequency to HS */
1266 	max_dtr = card->ext_csd.hs_max_dtr;
1267 	mmc_set_clock(host, max_dtr);
1268 
1269 	/* Switch HS400 to HS DDR */
1270 	val = EXT_CSD_TIMING_HS;
1271 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1272 			   val, card->ext_csd.generic_cmd6_time, 0,
1273 			   false, true, MMC_CMD_RETRIES);
1274 	if (err)
1275 		goto out_err;
1276 
1277 	if (host->ops->hs400_downgrade)
1278 		host->ops->hs400_downgrade(host);
1279 
1280 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1281 
1282 	err = mmc_switch_status(card, true);
1283 	if (err)
1284 		goto out_err;
1285 
1286 	/* Switch HS DDR to HS */
1287 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1288 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1289 			   0, false, true, MMC_CMD_RETRIES);
1290 	if (err)
1291 		goto out_err;
1292 
1293 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1294 
1295 	err = mmc_switch_status(card, true);
1296 	if (err)
1297 		goto out_err;
1298 
1299 	/* Switch HS to HS200 */
1300 	val = EXT_CSD_TIMING_HS200 |
1301 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1302 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1303 			   val, card->ext_csd.generic_cmd6_time, 0,
1304 			   false, true, MMC_CMD_RETRIES);
1305 	if (err)
1306 		goto out_err;
1307 
1308 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1309 
1310 	/*
1311 	 * For HS200, CRC errors are not a reliable way to know the switch
1312 	 * failed. If there really is a problem, we would expect tuning will
1313 	 * fail and the result ends up the same.
1314 	 */
1315 	err = mmc_switch_status(card, false);
1316 	if (err)
1317 		goto out_err;
1318 
1319 	mmc_set_bus_speed(card);
1320 
1321 	/* Prepare tuning for HS400 mode. */
1322 	if (host->ops->prepare_hs400_tuning)
1323 		host->ops->prepare_hs400_tuning(host, &host->ios);
1324 
1325 	return 0;
1326 
1327 out_err:
1328 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1329 	       __func__, err);
1330 	return err;
1331 }
1332 
1333 static void mmc_select_driver_type(struct mmc_card *card)
1334 {
1335 	int card_drv_type, drive_strength, drv_type = 0;
1336 	int fixed_drv_type = card->host->fixed_drv_type;
1337 
1338 	card_drv_type = card->ext_csd.raw_driver_strength |
1339 			mmc_driver_type_mask(0);
1340 
1341 	if (fixed_drv_type >= 0)
1342 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1343 				 ? fixed_drv_type : 0;
1344 	else
1345 		drive_strength = mmc_select_drive_strength(card,
1346 							   card->ext_csd.hs200_max_dtr,
1347 							   card_drv_type, &drv_type);
1348 
1349 	card->drive_strength = drive_strength;
1350 
1351 	if (drv_type)
1352 		mmc_set_driver_type(card->host, drv_type);
1353 }
1354 
1355 static int mmc_select_hs400es(struct mmc_card *card)
1356 {
1357 	struct mmc_host *host = card->host;
1358 	int err = -EINVAL;
1359 	u8 val;
1360 
1361 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1362 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1363 
1364 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1365 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1366 
1367 	/* If fails try again during next card power cycle */
1368 	if (err)
1369 		goto out_err;
1370 
1371 	err = mmc_select_bus_width(card);
1372 	if (err != MMC_BUS_WIDTH_8) {
1373 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1374 			mmc_hostname(host), err);
1375 		err = err < 0 ? err : -ENOTSUPP;
1376 		goto out_err;
1377 	}
1378 
1379 	/* Switch card to HS mode */
1380 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1381 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1382 			   card->ext_csd.generic_cmd6_time, 0,
1383 			   false, true, MMC_CMD_RETRIES);
1384 	if (err) {
1385 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1386 			mmc_hostname(host), err);
1387 		goto out_err;
1388 	}
1389 
1390 	/*
1391 	 * Bump to HS timing and frequency. Some cards don't handle
1392 	 * SEND_STATUS reliably at the initial frequency.
1393 	 */
1394 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1395 	mmc_set_bus_speed(card);
1396 
1397 	err = mmc_switch_status(card, true);
1398 	if (err)
1399 		goto out_err;
1400 
1401 	/* Switch card to DDR with strobe bit */
1402 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1403 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1404 			 EXT_CSD_BUS_WIDTH,
1405 			 val,
1406 			 card->ext_csd.generic_cmd6_time);
1407 	if (err) {
1408 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1409 			mmc_hostname(host), err);
1410 		goto out_err;
1411 	}
1412 
1413 	mmc_select_driver_type(card);
1414 
1415 	/* Switch card to HS400 */
1416 	val = EXT_CSD_TIMING_HS400 |
1417 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1418 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1419 			   EXT_CSD_HS_TIMING, val,
1420 			   card->ext_csd.generic_cmd6_time, 0,
1421 			   false, true, MMC_CMD_RETRIES);
1422 	if (err) {
1423 		pr_err("%s: switch to hs400es failed, err:%d\n",
1424 			mmc_hostname(host), err);
1425 		goto out_err;
1426 	}
1427 
1428 	/* Set host controller to HS400 timing and frequency */
1429 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1430 
1431 	/* Controller enable enhanced strobe function */
1432 	host->ios.enhanced_strobe = true;
1433 	if (host->ops->hs400_enhanced_strobe)
1434 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1435 
1436 	err = mmc_switch_status(card, true);
1437 	if (err)
1438 		goto out_err;
1439 
1440 	return 0;
1441 
1442 out_err:
1443 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1444 	       __func__, err);
1445 	return err;
1446 }
1447 
1448 /*
1449  * For device supporting HS200 mode, the following sequence
1450  * should be done before executing the tuning process.
1451  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1452  * 2. switch to HS200 mode
1453  * 3. set the clock to > 52Mhz and <=200MHz
1454  */
1455 static int mmc_select_hs200(struct mmc_card *card)
1456 {
1457 	struct mmc_host *host = card->host;
1458 	unsigned int old_timing, old_signal_voltage, old_clock;
1459 	int err = -EINVAL;
1460 	u8 val;
1461 
1462 	old_signal_voltage = host->ios.signal_voltage;
1463 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1464 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1465 
1466 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1467 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1468 
1469 	/* If fails try again during next card power cycle */
1470 	if (err)
1471 		return err;
1472 
1473 	mmc_select_driver_type(card);
1474 
1475 	/*
1476 	 * Set the bus width(4 or 8) with host's support and
1477 	 * switch to HS200 mode if bus width is set successfully.
1478 	 */
1479 	err = mmc_select_bus_width(card);
1480 	if (err > 0) {
1481 		val = EXT_CSD_TIMING_HS200 |
1482 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1483 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1484 				   EXT_CSD_HS_TIMING, val,
1485 				   card->ext_csd.generic_cmd6_time, 0,
1486 				   false, true, MMC_CMD_RETRIES);
1487 		if (err)
1488 			goto err;
1489 
1490 		/*
1491 		 * Bump to HS timing and frequency. Some cards don't handle
1492 		 * SEND_STATUS reliably at the initial frequency.
1493 		 * NB: We can't move to full (HS200) speeds until after we've
1494 		 * successfully switched over.
1495 		 */
1496 		old_timing = host->ios.timing;
1497 		old_clock = host->ios.clock;
1498 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1499 		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1500 
1501 		/*
1502 		 * For HS200, CRC errors are not a reliable way to know the
1503 		 * switch failed. If there really is a problem, we would expect
1504 		 * tuning will fail and the result ends up the same.
1505 		 */
1506 		err = mmc_switch_status(card, false);
1507 
1508 		/*
1509 		 * mmc_select_timing() assumes timing has not changed if
1510 		 * it is a switch error.
1511 		 */
1512 		if (err == -EBADMSG) {
1513 			mmc_set_clock(host, old_clock);
1514 			mmc_set_timing(host, old_timing);
1515 		}
1516 	}
1517 err:
1518 	if (err) {
1519 		/* fall back to the old signal voltage, if fails report error */
1520 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1521 			err = -EIO;
1522 
1523 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1524 		       __func__, err);
1525 	}
1526 	return err;
1527 }
1528 
1529 /*
1530  * Activate High Speed, HS200 or HS400ES mode if supported.
1531  */
1532 static int mmc_select_timing(struct mmc_card *card)
1533 {
1534 	int err = 0;
1535 
1536 	if (!mmc_can_ext_csd(card))
1537 		goto bus_speed;
1538 
1539 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1540 		err = mmc_select_hs400es(card);
1541 		goto out;
1542 	}
1543 
1544 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1545 		err = mmc_select_hs200(card);
1546 		if (err == -EBADMSG)
1547 			card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1548 		else
1549 			goto out;
1550 	}
1551 
1552 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1553 		err = mmc_select_hs(card);
1554 
1555 out:
1556 	if (err && err != -EBADMSG)
1557 		return err;
1558 
1559 bus_speed:
1560 	/*
1561 	 * Set the bus speed to the selected bus timing.
1562 	 * If timing is not selected, backward compatible is the default.
1563 	 */
1564 	mmc_set_bus_speed(card);
1565 	return 0;
1566 }
1567 
1568 /*
1569  * Execute tuning sequence to seek the proper bus operating
1570  * conditions for HS200 and HS400, which sends CMD21 to the device.
1571  */
1572 static int mmc_hs200_tuning(struct mmc_card *card)
1573 {
1574 	struct mmc_host *host = card->host;
1575 
1576 	/*
1577 	 * Timing should be adjusted to the HS400 target
1578 	 * operation frequency for tuning process
1579 	 */
1580 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1581 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1582 		if (host->ops->prepare_hs400_tuning)
1583 			host->ops->prepare_hs400_tuning(host, &host->ios);
1584 
1585 	return mmc_execute_tuning(card);
1586 }
1587 
1588 /*
1589  * Handle the detection and initialisation of a card.
1590  *
1591  * In the case of a resume, "oldcard" will contain the card
1592  * we're trying to reinitialise.
1593  */
1594 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1595 	struct mmc_card *oldcard)
1596 {
1597 	struct mmc_card *card;
1598 	int err;
1599 	u32 cid[4];
1600 	u32 rocr;
1601 
1602 	WARN_ON(!host->claimed);
1603 
1604 	/* Set correct bus mode for MMC before attempting init */
1605 	if (!mmc_host_is_spi(host))
1606 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1607 
1608 	/*
1609 	 * Since we're changing the OCR value, we seem to
1610 	 * need to tell some cards to go back to the idle
1611 	 * state.  We wait 1ms to give cards time to
1612 	 * respond.
1613 	 * mmc_go_idle is needed for eMMC that are asleep
1614 	 */
1615 	mmc_go_idle(host);
1616 
1617 	/* The extra bit indicates that we support high capacity */
1618 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1619 	if (err)
1620 		goto err;
1621 
1622 	/*
1623 	 * For SPI, enable CRC as appropriate.
1624 	 */
1625 	if (mmc_host_is_spi(host)) {
1626 		err = mmc_spi_set_crc(host, use_spi_crc);
1627 		if (err)
1628 			goto err;
1629 	}
1630 
1631 	/*
1632 	 * Fetch CID from card.
1633 	 */
1634 	err = mmc_send_cid(host, cid);
1635 	if (err)
1636 		goto err;
1637 
1638 	if (oldcard) {
1639 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1640 			pr_debug("%s: Perhaps the card was replaced\n",
1641 				mmc_hostname(host));
1642 			err = -ENOENT;
1643 			goto err;
1644 		}
1645 
1646 		card = oldcard;
1647 	} else {
1648 		/*
1649 		 * Allocate card structure.
1650 		 */
1651 		card = mmc_alloc_card(host, &mmc_type);
1652 		if (IS_ERR(card)) {
1653 			err = PTR_ERR(card);
1654 			goto err;
1655 		}
1656 
1657 		card->ocr = ocr;
1658 		card->type = MMC_TYPE_MMC;
1659 		card->rca = 1;
1660 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1661 	}
1662 
1663 	/*
1664 	 * Call the optional HC's init_card function to handle quirks.
1665 	 */
1666 	if (host->ops->init_card)
1667 		host->ops->init_card(host, card);
1668 
1669 	/*
1670 	 * For native busses:  set card RCA and quit open drain mode.
1671 	 */
1672 	if (!mmc_host_is_spi(host)) {
1673 		err = mmc_set_relative_addr(card);
1674 		if (err)
1675 			goto free_card;
1676 
1677 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1678 	}
1679 
1680 	if (!oldcard) {
1681 		/*
1682 		 * Fetch CSD from card.
1683 		 */
1684 		err = mmc_send_csd(card, card->raw_csd);
1685 		if (err)
1686 			goto free_card;
1687 
1688 		err = mmc_decode_csd(card);
1689 		if (err)
1690 			goto free_card;
1691 		err = mmc_decode_cid(card);
1692 		if (err)
1693 			goto free_card;
1694 	}
1695 
1696 	/*
1697 	 * handling only for cards supporting DSR and hosts requesting
1698 	 * DSR configuration
1699 	 */
1700 	if (card->csd.dsr_imp && host->dsr_req)
1701 		mmc_set_dsr(host);
1702 
1703 	/*
1704 	 * Select card, as all following commands rely on that.
1705 	 */
1706 	if (!mmc_host_is_spi(host)) {
1707 		err = mmc_select_card(card);
1708 		if (err)
1709 			goto free_card;
1710 	}
1711 
1712 	if (!oldcard) {
1713 		/* Read extended CSD. */
1714 		err = mmc_read_ext_csd(card);
1715 		if (err)
1716 			goto free_card;
1717 
1718 		/*
1719 		 * If doing byte addressing, check if required to do sector
1720 		 * addressing.  Handle the case of <2GB cards needing sector
1721 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1722 		 * ocr register has bit 30 set for sector addressing.
1723 		 */
1724 		if (rocr & BIT(30))
1725 			mmc_card_set_blockaddr(card);
1726 
1727 		/* Erase size depends on CSD and Extended CSD */
1728 		mmc_set_erase_size(card);
1729 	}
1730 
1731 	/*
1732 	 * Reselect the card type since host caps could have been changed when
1733 	 * debugging even if the card is not new.
1734 	 */
1735 	mmc_select_card_type(card);
1736 
1737 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1738 	if (card->ext_csd.rev >= 3) {
1739 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1740 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1741 				 card->ext_csd.generic_cmd6_time);
1742 
1743 		if (err && err != -EBADMSG)
1744 			goto free_card;
1745 
1746 		if (err) {
1747 			/*
1748 			 * Just disable enhanced area off & sz
1749 			 * will try to enable ERASE_GROUP_DEF
1750 			 * during next time reinit
1751 			 */
1752 			card->ext_csd.enhanced_area_offset = -EINVAL;
1753 			card->ext_csd.enhanced_area_size = -EINVAL;
1754 		} else {
1755 			card->ext_csd.erase_group_def = 1;
1756 			/*
1757 			 * enable ERASE_GRP_DEF successfully.
1758 			 * This will affect the erase size, so
1759 			 * here need to reset erase size
1760 			 */
1761 			mmc_set_erase_size(card);
1762 		}
1763 	}
1764 	mmc_set_wp_grp_size(card);
1765 	/*
1766 	 * Ensure eMMC user default partition is enabled
1767 	 */
1768 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1769 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1770 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1771 				 card->ext_csd.part_config,
1772 				 card->ext_csd.part_time);
1773 		if (err && err != -EBADMSG)
1774 			goto free_card;
1775 	}
1776 
1777 	/*
1778 	 * Enable power_off_notification byte in the ext_csd register
1779 	 */
1780 	if (card->ext_csd.rev >= 6) {
1781 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1782 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1783 				 EXT_CSD_POWER_ON,
1784 				 card->ext_csd.generic_cmd6_time);
1785 		if (err && err != -EBADMSG)
1786 			goto free_card;
1787 
1788 		/*
1789 		 * The err can be -EBADMSG or 0,
1790 		 * so check for success and update the flag
1791 		 */
1792 		if (!err)
1793 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1794 	}
1795 
1796 	/* set erase_arg */
1797 	if (mmc_can_discard(card))
1798 		card->erase_arg = MMC_DISCARD_ARG;
1799 	else if (mmc_can_trim(card))
1800 		card->erase_arg = MMC_TRIM_ARG;
1801 	else
1802 		card->erase_arg = MMC_ERASE_ARG;
1803 
1804 	/*
1805 	 * Select timing interface
1806 	 */
1807 	err = mmc_select_timing(card);
1808 	if (err)
1809 		goto free_card;
1810 
1811 	if (mmc_card_hs200(card)) {
1812 		host->doing_init_tune = 1;
1813 
1814 		err = mmc_hs200_tuning(card);
1815 		if (!err)
1816 			err = mmc_select_hs400(card);
1817 
1818 		host->doing_init_tune = 0;
1819 
1820 		if (err)
1821 			goto free_card;
1822 	} else if (mmc_card_hs400es(card)) {
1823 		if (host->ops->execute_hs400_tuning) {
1824 			err = host->ops->execute_hs400_tuning(host, card);
1825 			if (err)
1826 				goto free_card;
1827 		}
1828 	} else {
1829 		/* Select the desired bus width optionally */
1830 		err = mmc_select_bus_width(card);
1831 		if (err > 0 && mmc_card_hs(card)) {
1832 			err = mmc_select_hs_ddr(card);
1833 			if (err)
1834 				goto free_card;
1835 		}
1836 	}
1837 
1838 	/*
1839 	 * Choose the power class with selected bus interface
1840 	 */
1841 	mmc_select_powerclass(card);
1842 
1843 	/*
1844 	 * Enable HPI feature (if supported)
1845 	 */
1846 	if (card->ext_csd.hpi) {
1847 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1848 				EXT_CSD_HPI_MGMT, 1,
1849 				card->ext_csd.generic_cmd6_time);
1850 		if (err && err != -EBADMSG)
1851 			goto free_card;
1852 		if (err) {
1853 			pr_warn("%s: Enabling HPI failed\n",
1854 				mmc_hostname(card->host));
1855 			card->ext_csd.hpi_en = 0;
1856 		} else {
1857 			card->ext_csd.hpi_en = 1;
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * If cache size is higher than 0, this indicates the existence of cache
1863 	 * and it can be turned on. Note that some eMMCs from Micron has been
1864 	 * reported to need ~800 ms timeout, while enabling the cache after
1865 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1866 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1867 	 */
1868 	if (card->ext_csd.cache_size > 0) {
1869 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1870 
1871 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1872 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1873 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1874 		if (err && err != -EBADMSG)
1875 			goto free_card;
1876 
1877 		/*
1878 		 * Only if no error, cache is turned on successfully.
1879 		 */
1880 		if (err) {
1881 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1882 				mmc_hostname(card->host), err);
1883 			card->ext_csd.cache_ctrl = 0;
1884 		} else {
1885 			card->ext_csd.cache_ctrl = 1;
1886 		}
1887 	}
1888 
1889 	/*
1890 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1891 	 * be used with Command Queue.
1892 	 */
1893 	card->ext_csd.cmdq_en = false;
1894 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1895 		err = mmc_cmdq_enable(card);
1896 		if (err && err != -EBADMSG)
1897 			goto free_card;
1898 		if (err) {
1899 			pr_warn("%s: Enabling CMDQ failed\n",
1900 				mmc_hostname(card->host));
1901 			card->ext_csd.cmdq_support = false;
1902 			card->ext_csd.cmdq_depth = 0;
1903 		}
1904 	}
1905 	/*
1906 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1907 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1908 	 * Command Queue.
1909 	 */
1910 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1911 
1912 	if (host->cqe_ops && !host->cqe_enabled) {
1913 		err = host->cqe_ops->cqe_enable(host, card);
1914 		if (!err) {
1915 			host->cqe_enabled = true;
1916 
1917 			if (card->ext_csd.cmdq_en) {
1918 				pr_info("%s: Command Queue Engine enabled\n",
1919 					mmc_hostname(host));
1920 			} else {
1921 				host->hsq_enabled = true;
1922 				pr_info("%s: Host Software Queue enabled\n",
1923 					mmc_hostname(host));
1924 			}
1925 		}
1926 	}
1927 
1928 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1929 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1930 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1931 			mmc_hostname(host));
1932 		err = -EINVAL;
1933 		goto free_card;
1934 	}
1935 
1936 	if (!oldcard)
1937 		host->card = card;
1938 
1939 	return 0;
1940 
1941 free_card:
1942 	if (!oldcard)
1943 		mmc_remove_card(card);
1944 err:
1945 	return err;
1946 }
1947 
1948 static int mmc_can_sleep(struct mmc_card *card)
1949 {
1950 	return card->ext_csd.rev >= 3;
1951 }
1952 
1953 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1954 {
1955 	struct mmc_host *host = cb_data;
1956 
1957 	*busy = host->ops->card_busy(host);
1958 	return 0;
1959 }
1960 
1961 static int mmc_sleep(struct mmc_host *host)
1962 {
1963 	struct mmc_command cmd = {};
1964 	struct mmc_card *card = host->card;
1965 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1966 	bool use_r1b_resp;
1967 	int err;
1968 
1969 	/* Re-tuning can't be done once the card is deselected */
1970 	mmc_retune_hold(host);
1971 
1972 	err = mmc_deselect_cards(host);
1973 	if (err)
1974 		goto out_release;
1975 
1976 	cmd.opcode = MMC_SLEEP_AWAKE;
1977 	cmd.arg = card->rca << 16;
1978 	cmd.arg |= 1 << 15;
1979 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1980 
1981 	err = mmc_wait_for_cmd(host, &cmd, 0);
1982 	if (err)
1983 		goto out_release;
1984 
1985 	/*
1986 	 * If the host does not wait while the card signals busy, then we can
1987 	 * try to poll, but only if the host supports HW polling, as the
1988 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1989 	 * to wait the sleep/awake timeout.
1990 	 */
1991 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1992 		goto out_release;
1993 
1994 	if (!host->ops->card_busy) {
1995 		mmc_delay(timeout_ms);
1996 		goto out_release;
1997 	}
1998 
1999 	err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
2000 
2001 out_release:
2002 	mmc_retune_release(host);
2003 	return err;
2004 }
2005 
2006 static int mmc_can_poweroff_notify(const struct mmc_card *card)
2007 {
2008 	return card &&
2009 		mmc_card_mmc(card) &&
2010 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2011 }
2012 
2013 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2014 {
2015 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
2016 	int err;
2017 
2018 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2019 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2020 		timeout = card->ext_csd.power_off_longtime;
2021 
2022 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2023 			EXT_CSD_POWER_OFF_NOTIFICATION,
2024 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2025 	if (err)
2026 		pr_err("%s: Power Off Notification timed out, %u\n",
2027 		       mmc_hostname(card->host), timeout);
2028 
2029 	/* Disable the power off notification after the switch operation. */
2030 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2031 
2032 	return err;
2033 }
2034 
2035 /*
2036  * Host is being removed. Free up the current card.
2037  */
2038 static void mmc_remove(struct mmc_host *host)
2039 {
2040 	mmc_remove_card(host->card);
2041 	host->card = NULL;
2042 }
2043 
2044 /*
2045  * Card detection - card is alive.
2046  */
2047 static int mmc_alive(struct mmc_host *host)
2048 {
2049 	return mmc_send_status(host->card, NULL);
2050 }
2051 
2052 /*
2053  * Card detection callback from host.
2054  */
2055 static void mmc_detect(struct mmc_host *host)
2056 {
2057 	int err;
2058 
2059 	mmc_get_card(host->card, NULL);
2060 
2061 	/*
2062 	 * Just check if our card has been removed.
2063 	 */
2064 	err = _mmc_detect_card_removed(host);
2065 
2066 	mmc_put_card(host->card, NULL);
2067 
2068 	if (err) {
2069 		mmc_remove(host);
2070 
2071 		mmc_claim_host(host);
2072 		mmc_detach_bus(host);
2073 		mmc_power_off(host);
2074 		mmc_release_host(host);
2075 	}
2076 }
2077 
2078 static bool _mmc_cache_enabled(struct mmc_host *host)
2079 {
2080 	return host->card->ext_csd.cache_size > 0 &&
2081 	       host->card->ext_csd.cache_ctrl & 1;
2082 }
2083 
2084 /*
2085  * Flush the internal cache of the eMMC to non-volatile storage.
2086  */
2087 static int _mmc_flush_cache(struct mmc_host *host)
2088 {
2089 	int err = 0;
2090 
2091 	if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag)
2092 		return 0;
2093 
2094 	if (_mmc_cache_enabled(host)) {
2095 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2096 				 EXT_CSD_FLUSH_CACHE, 1,
2097 				 CACHE_FLUSH_TIMEOUT_MS);
2098 		if (err)
2099 			pr_err("%s: cache flush error %d\n", mmc_hostname(host), err);
2100 		else
2101 			host->card->written_flag = false;
2102 	}
2103 
2104 	return err;
2105 }
2106 
2107 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2108 {
2109 	int err = 0;
2110 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2111 					EXT_CSD_POWER_OFF_LONG;
2112 
2113 	mmc_claim_host(host);
2114 
2115 	if (mmc_card_suspended(host->card))
2116 		goto out;
2117 
2118 	err = _mmc_flush_cache(host);
2119 	if (err)
2120 		goto out;
2121 
2122 	if (mmc_can_poweroff_notify(host->card) &&
2123 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2124 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2125 		err = mmc_poweroff_notify(host->card, notify_type);
2126 	else if (mmc_can_sleep(host->card))
2127 		err = mmc_sleep(host);
2128 	else if (!mmc_host_is_spi(host))
2129 		err = mmc_deselect_cards(host);
2130 
2131 	if (!err) {
2132 		mmc_power_off(host);
2133 		mmc_card_set_suspended(host->card);
2134 	}
2135 out:
2136 	mmc_release_host(host);
2137 	return err;
2138 }
2139 
2140 /*
2141  * Suspend callback
2142  */
2143 static int mmc_suspend(struct mmc_host *host)
2144 {
2145 	int err;
2146 
2147 	err = _mmc_suspend(host, true);
2148 	if (!err) {
2149 		pm_runtime_disable(&host->card->dev);
2150 		pm_runtime_set_suspended(&host->card->dev);
2151 	}
2152 
2153 	return err;
2154 }
2155 
2156 /*
2157  * This function tries to determine if the same card is still present
2158  * and, if so, restore all state to it.
2159  */
2160 static int _mmc_resume(struct mmc_host *host)
2161 {
2162 	int err = 0;
2163 
2164 	mmc_claim_host(host);
2165 
2166 	if (!mmc_card_suspended(host->card))
2167 		goto out;
2168 
2169 	mmc_power_up(host, host->card->ocr);
2170 	err = mmc_init_card(host, host->card->ocr, host->card);
2171 	mmc_card_clr_suspended(host->card);
2172 
2173 out:
2174 	mmc_release_host(host);
2175 	return err;
2176 }
2177 
2178 /*
2179  * Shutdown callback
2180  */
2181 static int mmc_shutdown(struct mmc_host *host)
2182 {
2183 	int err = 0;
2184 
2185 	/*
2186 	 * In a specific case for poweroff notify, we need to resume the card
2187 	 * before we can shutdown it properly.
2188 	 */
2189 	if (mmc_can_poweroff_notify(host->card) &&
2190 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2191 		err = _mmc_resume(host);
2192 
2193 	if (!err)
2194 		err = _mmc_suspend(host, false);
2195 
2196 	return err;
2197 }
2198 
2199 /*
2200  * Callback for resume.
2201  */
2202 static int mmc_resume(struct mmc_host *host)
2203 {
2204 	pm_runtime_enable(&host->card->dev);
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Callback for runtime_suspend.
2210  */
2211 static int mmc_runtime_suspend(struct mmc_host *host)
2212 {
2213 	int err;
2214 
2215 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2216 		return 0;
2217 
2218 	err = _mmc_suspend(host, true);
2219 	if (err)
2220 		pr_err("%s: error %d doing aggressive suspend\n",
2221 			mmc_hostname(host), err);
2222 
2223 	return err;
2224 }
2225 
2226 /*
2227  * Callback for runtime_resume.
2228  */
2229 static int mmc_runtime_resume(struct mmc_host *host)
2230 {
2231 	int err;
2232 
2233 	err = _mmc_resume(host);
2234 	if (err && err != -ENOMEDIUM)
2235 		pr_err("%s: error %d doing runtime resume\n",
2236 			mmc_hostname(host), err);
2237 
2238 	return 0;
2239 }
2240 
2241 static int mmc_can_reset(struct mmc_card *card)
2242 {
2243 	u8 rst_n_function;
2244 
2245 	rst_n_function = card->ext_csd.rst_n_function;
2246 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2247 		return 0;
2248 	return 1;
2249 }
2250 
2251 static int _mmc_hw_reset(struct mmc_host *host)
2252 {
2253 	struct mmc_card *card = host->card;
2254 
2255 	/*
2256 	 * In the case of recovery, we can't expect flushing the cache to work
2257 	 * always, but we have a go and ignore errors.
2258 	 */
2259 	_mmc_flush_cache(host);
2260 
2261 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2262 	     mmc_can_reset(card)) {
2263 		/* If the card accept RST_n signal, send it. */
2264 		mmc_set_clock(host, host->f_init);
2265 		host->ops->card_hw_reset(host);
2266 		/* Set initial state and call mmc_set_ios */
2267 		mmc_set_initial_state(host);
2268 	} else {
2269 		/* Do a brute force power cycle */
2270 		mmc_power_cycle(host, card->ocr);
2271 		mmc_pwrseq_reset(host);
2272 	}
2273 	return mmc_init_card(host, card->ocr, card);
2274 }
2275 
2276 static const struct mmc_bus_ops mmc_ops = {
2277 	.remove = mmc_remove,
2278 	.detect = mmc_detect,
2279 	.suspend = mmc_suspend,
2280 	.resume = mmc_resume,
2281 	.runtime_suspend = mmc_runtime_suspend,
2282 	.runtime_resume = mmc_runtime_resume,
2283 	.alive = mmc_alive,
2284 	.shutdown = mmc_shutdown,
2285 	.hw_reset = _mmc_hw_reset,
2286 	.cache_enabled = _mmc_cache_enabled,
2287 	.flush_cache = _mmc_flush_cache,
2288 };
2289 
2290 /*
2291  * Starting point for MMC card init.
2292  */
2293 int mmc_attach_mmc(struct mmc_host *host)
2294 {
2295 	int err;
2296 	u32 ocr, rocr;
2297 
2298 	WARN_ON(!host->claimed);
2299 
2300 	/* Set correct bus mode for MMC before attempting attach */
2301 	if (!mmc_host_is_spi(host))
2302 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2303 
2304 	err = mmc_send_op_cond(host, 0, &ocr);
2305 	if (err)
2306 		return err;
2307 
2308 	mmc_attach_bus(host, &mmc_ops);
2309 	if (host->ocr_avail_mmc)
2310 		host->ocr_avail = host->ocr_avail_mmc;
2311 
2312 	/*
2313 	 * We need to get OCR a different way for SPI.
2314 	 */
2315 	if (mmc_host_is_spi(host)) {
2316 		err = mmc_spi_read_ocr(host, 1, &ocr);
2317 		if (err)
2318 			goto err;
2319 	}
2320 
2321 	rocr = mmc_select_voltage(host, ocr);
2322 
2323 	/*
2324 	 * Can we support the voltage of the card?
2325 	 */
2326 	if (!rocr) {
2327 		err = -EINVAL;
2328 		goto err;
2329 	}
2330 
2331 	/*
2332 	 * Detect and init the card.
2333 	 */
2334 	err = mmc_init_card(host, rocr, NULL);
2335 	if (err)
2336 		goto err;
2337 
2338 	mmc_release_host(host);
2339 	err = mmc_add_card(host->card);
2340 	if (err)
2341 		goto remove_card;
2342 
2343 	mmc_claim_host(host);
2344 	return 0;
2345 
2346 remove_card:
2347 	mmc_remove_card(host->card);
2348 	mmc_claim_host(host);
2349 	host->card = NULL;
2350 err:
2351 	mmc_detach_bus(host);
2352 
2353 	pr_err("%s: error %d whilst initialising MMC card\n",
2354 		mmc_hostname(host), err);
2355 
2356 	return err;
2357 }
2358