1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/sysfs.h> 17 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 22 #include "core.h" 23 #include "card.h" 24 #include "host.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "quirks.h" 28 #include "sd_ops.h" 29 #include "pwrseq.h" 30 31 #define DEFAULT_CMD6_TIMEOUT_MS 500 32 #define MIN_CACHE_EN_TIMEOUT_MS 1600 33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 34 35 static const unsigned int tran_exp[] = { 36 10000, 100000, 1000000, 10000000, 37 0, 0, 0, 0 38 }; 39 40 static const unsigned char tran_mant[] = { 41 0, 10, 12, 13, 15, 20, 25, 30, 42 35, 40, 45, 50, 55, 60, 70, 80, 43 }; 44 45 static const unsigned int taac_exp[] = { 46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 47 }; 48 49 static const unsigned int taac_mant[] = { 50 0, 10, 12, 13, 15, 20, 25, 30, 51 35, 40, 45, 50, 55, 60, 70, 80, 52 }; 53 54 #define UNSTUFF_BITS(resp,start,size) \ 55 ({ \ 56 const int __size = size; \ 57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ 58 const int __off = 3 - ((start) / 32); \ 59 const int __shft = (start) & 31; \ 60 u32 __res; \ 61 \ 62 __res = resp[__off] >> __shft; \ 63 if (__size + __shft > 32) \ 64 __res |= resp[__off-1] << ((32 - __shft) % 32); \ 65 __res & __mask; \ 66 }) 67 68 /* 69 * Given the decoded CSD structure, decode the raw CID to our CID structure. 70 */ 71 static int mmc_decode_cid(struct mmc_card *card) 72 { 73 u32 *resp = card->raw_cid; 74 75 /* 76 * Add the raw card ID (cid) data to the entropy pool. It doesn't 77 * matter that not all of it is unique, it's just bonus entropy. 78 */ 79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 80 81 /* 82 * The selection of the format here is based upon published 83 * specs from sandisk and from what people have reported. 84 */ 85 switch (card->csd.mmca_vsn) { 86 case 0: /* MMC v1.0 - v1.2 */ 87 case 1: /* MMC v1.4 */ 88 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24); 89 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 90 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 91 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 92 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 93 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 94 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 95 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8); 96 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4); 97 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4); 98 card->cid.serial = UNSTUFF_BITS(resp, 16, 24); 99 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 101 break; 102 103 case 2: /* MMC v2.0 - v2.2 */ 104 case 3: /* MMC v3.1 - v3.3 */ 105 case 4: /* MMC v4 */ 106 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); 107 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); 108 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); 109 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); 110 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); 111 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); 112 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); 113 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8); 114 card->cid.prv = UNSTUFF_BITS(resp, 48, 8); 115 card->cid.serial = UNSTUFF_BITS(resp, 16, 32); 116 card->cid.month = UNSTUFF_BITS(resp, 12, 4); 117 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997; 118 break; 119 120 default: 121 pr_err("%s: card has unknown MMCA version %d\n", 122 mmc_hostname(card->host), card->csd.mmca_vsn); 123 return -EINVAL; 124 } 125 126 return 0; 127 } 128 129 static void mmc_set_erase_size(struct mmc_card *card) 130 { 131 if (card->ext_csd.erase_group_def & 1) 132 card->erase_size = card->ext_csd.hc_erase_size; 133 else 134 card->erase_size = card->csd.erase_size; 135 136 mmc_init_erase(card); 137 } 138 139 140 static void mmc_set_wp_grp_size(struct mmc_card *card) 141 { 142 if (card->ext_csd.erase_group_def & 1) 143 card->wp_grp_size = card->ext_csd.hc_erase_size * 144 card->ext_csd.raw_hc_erase_gap_size; 145 else 146 card->wp_grp_size = card->csd.erase_size * 147 (card->csd.wp_grp_size + 1); 148 } 149 150 /* 151 * Given a 128-bit response, decode to our card CSD structure. 152 */ 153 static int mmc_decode_csd(struct mmc_card *card) 154 { 155 struct mmc_csd *csd = &card->csd; 156 unsigned int e, m, a, b; 157 u32 *resp = card->raw_csd; 158 159 /* 160 * We only understand CSD structure v1.1 and v1.2. 161 * v1.2 has extra information in bits 15, 11 and 10. 162 * We also support eMMC v4.4 & v4.41. 163 */ 164 csd->structure = UNSTUFF_BITS(resp, 126, 2); 165 if (csd->structure == 0) { 166 pr_err("%s: unrecognised CSD structure version %d\n", 167 mmc_hostname(card->host), csd->structure); 168 return -EINVAL; 169 } 170 171 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4); 172 m = UNSTUFF_BITS(resp, 115, 4); 173 e = UNSTUFF_BITS(resp, 112, 3); 174 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 175 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100; 176 177 m = UNSTUFF_BITS(resp, 99, 4); 178 e = UNSTUFF_BITS(resp, 96, 3); 179 csd->max_dtr = tran_exp[e] * tran_mant[m]; 180 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); 181 182 e = UNSTUFF_BITS(resp, 47, 3); 183 m = UNSTUFF_BITS(resp, 62, 12); 184 csd->capacity = (1 + m) << (e + 2); 185 186 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); 187 csd->read_partial = UNSTUFF_BITS(resp, 79, 1); 188 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); 189 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); 190 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1); 191 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); 192 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); 193 csd->write_partial = UNSTUFF_BITS(resp, 21, 1); 194 195 if (csd->write_blkbits >= 9) { 196 a = UNSTUFF_BITS(resp, 42, 5); 197 b = UNSTUFF_BITS(resp, 37, 5); 198 csd->erase_size = (a + 1) * (b + 1); 199 csd->erase_size <<= csd->write_blkbits - 9; 200 csd->wp_grp_size = UNSTUFF_BITS(resp, 32, 5); 201 } 202 203 return 0; 204 } 205 206 static void mmc_select_card_type(struct mmc_card *card) 207 { 208 struct mmc_host *host = card->host; 209 u8 card_type = card->ext_csd.raw_card_type; 210 u32 caps = host->caps, caps2 = host->caps2; 211 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 212 unsigned int avail_type = 0; 213 214 if (caps & MMC_CAP_MMC_HIGHSPEED && 215 card_type & EXT_CSD_CARD_TYPE_HS_26) { 216 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 217 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 218 } 219 220 if (caps & MMC_CAP_MMC_HIGHSPEED && 221 card_type & EXT_CSD_CARD_TYPE_HS_52) { 222 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 223 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 224 } 225 226 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 227 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 228 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 229 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 230 } 231 232 if (caps & MMC_CAP_1_2V_DDR && 233 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 234 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 235 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 236 } 237 238 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 239 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 240 hs200_max_dtr = MMC_HS200_MAX_DTR; 241 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 242 } 243 244 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 245 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 246 hs200_max_dtr = MMC_HS200_MAX_DTR; 247 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 248 } 249 250 if (caps2 & MMC_CAP2_HS400_1_8V && 251 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 252 hs200_max_dtr = MMC_HS200_MAX_DTR; 253 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 254 } 255 256 if (caps2 & MMC_CAP2_HS400_1_2V && 257 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 258 hs200_max_dtr = MMC_HS200_MAX_DTR; 259 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 260 } 261 262 if ((caps2 & MMC_CAP2_HS400_ES) && 263 card->ext_csd.strobe_support && 264 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 265 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 266 267 card->ext_csd.hs_max_dtr = hs_max_dtr; 268 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 269 card->mmc_avail_type = avail_type; 270 } 271 272 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 273 { 274 u8 hc_erase_grp_sz, hc_wp_grp_sz; 275 276 /* 277 * Disable these attributes by default 278 */ 279 card->ext_csd.enhanced_area_offset = -EINVAL; 280 card->ext_csd.enhanced_area_size = -EINVAL; 281 282 /* 283 * Enhanced area feature support -- check whether the eMMC 284 * card has the Enhanced area enabled. If so, export enhanced 285 * area offset and size to user by adding sysfs interface. 286 */ 287 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 288 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 289 if (card->ext_csd.partition_setting_completed) { 290 hc_erase_grp_sz = 291 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 292 hc_wp_grp_sz = 293 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 294 295 /* 296 * calculate the enhanced data area offset, in bytes 297 */ 298 card->ext_csd.enhanced_area_offset = 299 (((unsigned long long)ext_csd[139]) << 24) + 300 (((unsigned long long)ext_csd[138]) << 16) + 301 (((unsigned long long)ext_csd[137]) << 8) + 302 (((unsigned long long)ext_csd[136])); 303 if (mmc_card_blockaddr(card)) 304 card->ext_csd.enhanced_area_offset <<= 9; 305 /* 306 * calculate the enhanced data area size, in kilobytes 307 */ 308 card->ext_csd.enhanced_area_size = 309 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 310 ext_csd[140]; 311 card->ext_csd.enhanced_area_size *= 312 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 313 card->ext_csd.enhanced_area_size <<= 9; 314 } else { 315 pr_warn("%s: defines enhanced area without partition setting complete\n", 316 mmc_hostname(card->host)); 317 } 318 } 319 } 320 321 static void mmc_part_add(struct mmc_card *card, u64 size, 322 unsigned int part_cfg, char *name, int idx, bool ro, 323 int area_type) 324 { 325 card->part[card->nr_parts].size = size; 326 card->part[card->nr_parts].part_cfg = part_cfg; 327 sprintf(card->part[card->nr_parts].name, name, idx); 328 card->part[card->nr_parts].force_ro = ro; 329 card->part[card->nr_parts].area_type = area_type; 330 card->nr_parts++; 331 } 332 333 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 334 { 335 int idx; 336 u8 hc_erase_grp_sz, hc_wp_grp_sz; 337 u64 part_size; 338 339 /* 340 * General purpose partition feature support -- 341 * If ext_csd has the size of general purpose partitions, 342 * set size, part_cfg, partition name in mmc_part. 343 */ 344 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 345 EXT_CSD_PART_SUPPORT_PART_EN) { 346 hc_erase_grp_sz = 347 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 348 hc_wp_grp_sz = 349 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 350 351 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 352 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 353 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 354 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 355 continue; 356 if (card->ext_csd.partition_setting_completed == 0) { 357 pr_warn("%s: has partition size defined without partition complete\n", 358 mmc_hostname(card->host)); 359 break; 360 } 361 part_size = 362 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 363 << 16) + 364 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 365 << 8) + 366 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 367 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 368 mmc_part_add(card, part_size << 19, 369 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 370 "gp%d", idx, false, 371 MMC_BLK_DATA_AREA_GP); 372 } 373 } 374 } 375 376 /* Minimum partition switch timeout in milliseconds */ 377 #define MMC_MIN_PART_SWITCH_TIME 300 378 379 /* 380 * Decode extended CSD. 381 */ 382 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 383 { 384 int err = 0, idx; 385 u64 part_size; 386 struct device_node *np; 387 bool broken_hpi = false; 388 389 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 390 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 391 if (card->csd.structure == 3) { 392 if (card->ext_csd.raw_ext_csd_structure > 2) { 393 pr_err("%s: unrecognised EXT_CSD structure " 394 "version %d\n", mmc_hostname(card->host), 395 card->ext_csd.raw_ext_csd_structure); 396 err = -EINVAL; 397 goto out; 398 } 399 } 400 401 np = mmc_of_find_child_device(card->host, 0); 402 if (np && of_device_is_compatible(np, "mmc-card")) 403 broken_hpi = of_property_read_bool(np, "broken-hpi"); 404 of_node_put(np); 405 406 /* 407 * The EXT_CSD format is meant to be forward compatible. As long 408 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 409 * are authorized, see JEDEC JESD84-B50 section B.8. 410 */ 411 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 412 413 /* fixup device after ext_csd revision field is updated */ 414 mmc_fixup_device(card, mmc_ext_csd_fixups); 415 416 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 417 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 418 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 419 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 420 if (card->ext_csd.rev >= 2) { 421 card->ext_csd.sectors = 422 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 423 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 424 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 425 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 426 427 /* Cards with density > 2GiB are sector addressed */ 428 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 429 mmc_card_set_blockaddr(card); 430 } 431 432 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 433 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 434 435 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 436 card->ext_csd.raw_erase_timeout_mult = 437 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 438 card->ext_csd.raw_hc_erase_grp_size = 439 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 440 card->ext_csd.raw_boot_mult = 441 ext_csd[EXT_CSD_BOOT_MULT]; 442 if (card->ext_csd.rev >= 3) { 443 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 444 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 445 446 /* EXT_CSD value is in units of 10ms, but we store in ms */ 447 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 448 449 /* Sleep / awake timeout in 100ns units */ 450 if (sa_shift > 0 && sa_shift <= 0x17) 451 card->ext_csd.sa_timeout = 452 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 453 card->ext_csd.erase_group_def = 454 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 455 card->ext_csd.hc_erase_timeout = 300 * 456 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 457 card->ext_csd.hc_erase_size = 458 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 459 460 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 461 462 /* 463 * There are two boot regions of equal size, defined in 464 * multiples of 128K. 465 */ 466 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 467 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 468 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 469 mmc_part_add(card, part_size, 470 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 471 "boot%d", idx, true, 472 MMC_BLK_DATA_AREA_BOOT); 473 } 474 } 475 } 476 477 card->ext_csd.raw_hc_erase_gap_size = 478 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 479 card->ext_csd.raw_sec_trim_mult = 480 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 481 card->ext_csd.raw_sec_erase_mult = 482 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 483 card->ext_csd.raw_sec_feature_support = 484 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 485 card->ext_csd.raw_trim_mult = 486 ext_csd[EXT_CSD_TRIM_MULT]; 487 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 488 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 489 if (card->ext_csd.rev >= 4) { 490 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 491 EXT_CSD_PART_SETTING_COMPLETED) 492 card->ext_csd.partition_setting_completed = 1; 493 else 494 card->ext_csd.partition_setting_completed = 0; 495 496 mmc_manage_enhanced_area(card, ext_csd); 497 498 mmc_manage_gp_partitions(card, ext_csd); 499 500 card->ext_csd.sec_trim_mult = 501 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 502 card->ext_csd.sec_erase_mult = 503 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 504 card->ext_csd.sec_feature_support = 505 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 506 card->ext_csd.trim_timeout = 300 * 507 ext_csd[EXT_CSD_TRIM_MULT]; 508 509 /* 510 * Note that the call to mmc_part_add above defaults to read 511 * only. If this default assumption is changed, the call must 512 * take into account the value of boot_locked below. 513 */ 514 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 515 card->ext_csd.boot_ro_lockable = true; 516 517 /* Save power class values */ 518 card->ext_csd.raw_pwr_cl_52_195 = 519 ext_csd[EXT_CSD_PWR_CL_52_195]; 520 card->ext_csd.raw_pwr_cl_26_195 = 521 ext_csd[EXT_CSD_PWR_CL_26_195]; 522 card->ext_csd.raw_pwr_cl_52_360 = 523 ext_csd[EXT_CSD_PWR_CL_52_360]; 524 card->ext_csd.raw_pwr_cl_26_360 = 525 ext_csd[EXT_CSD_PWR_CL_26_360]; 526 card->ext_csd.raw_pwr_cl_200_195 = 527 ext_csd[EXT_CSD_PWR_CL_200_195]; 528 card->ext_csd.raw_pwr_cl_200_360 = 529 ext_csd[EXT_CSD_PWR_CL_200_360]; 530 card->ext_csd.raw_pwr_cl_ddr_52_195 = 531 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 532 card->ext_csd.raw_pwr_cl_ddr_52_360 = 533 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 534 card->ext_csd.raw_pwr_cl_ddr_200_360 = 535 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 536 } 537 538 if (card->ext_csd.rev >= 5) { 539 /* Adjust production date as per JEDEC JESD84-B451 */ 540 if (card->cid.year < 2010) 541 card->cid.year += 16; 542 543 /* check whether the eMMC card supports BKOPS */ 544 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 545 card->ext_csd.bkops = 1; 546 card->ext_csd.man_bkops_en = 547 (ext_csd[EXT_CSD_BKOPS_EN] & 548 EXT_CSD_MANUAL_BKOPS_MASK); 549 card->ext_csd.raw_bkops_status = 550 ext_csd[EXT_CSD_BKOPS_STATUS]; 551 if (card->ext_csd.man_bkops_en) 552 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 553 mmc_hostname(card->host)); 554 card->ext_csd.auto_bkops_en = 555 (ext_csd[EXT_CSD_BKOPS_EN] & 556 EXT_CSD_AUTO_BKOPS_MASK); 557 if (card->ext_csd.auto_bkops_en) 558 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 559 mmc_hostname(card->host)); 560 } 561 562 /* check whether the eMMC card supports HPI */ 563 if (!mmc_card_broken_hpi(card) && 564 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 565 card->ext_csd.hpi = 1; 566 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 567 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 568 else 569 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 570 /* 571 * Indicate the maximum timeout to close 572 * a command interrupted by HPI 573 */ 574 card->ext_csd.out_of_int_time = 575 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 576 } 577 578 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 579 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 580 581 /* 582 * RPMB regions are defined in multiples of 128K. 583 */ 584 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 585 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 586 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 587 EXT_CSD_PART_CONFIG_ACC_RPMB, 588 "rpmb", 0, false, 589 MMC_BLK_DATA_AREA_RPMB); 590 } 591 } 592 593 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 594 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 595 card->erased_byte = 0xFF; 596 else 597 card->erased_byte = 0x0; 598 599 /* eMMC v4.5 or later */ 600 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 601 if (card->ext_csd.rev >= 6) { 602 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 603 604 card->ext_csd.generic_cmd6_time = 10 * 605 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 606 card->ext_csd.power_off_longtime = 10 * 607 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 608 609 card->ext_csd.cache_size = 610 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 611 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 612 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 613 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 614 615 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 616 card->ext_csd.data_sector_size = 4096; 617 else 618 card->ext_csd.data_sector_size = 512; 619 620 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 621 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 622 card->ext_csd.data_tag_unit_size = 623 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 624 (card->ext_csd.data_sector_size); 625 } else { 626 card->ext_csd.data_tag_unit_size = 0; 627 } 628 } else { 629 card->ext_csd.data_sector_size = 512; 630 } 631 632 /* 633 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 634 * when accessing a specific field", so use it here if there is no 635 * PARTITION_SWITCH_TIME. 636 */ 637 if (!card->ext_csd.part_time) 638 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 639 /* Some eMMC set the value too low so set a minimum */ 640 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 641 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 642 643 /* eMMC v5 or later */ 644 if (card->ext_csd.rev >= 7) { 645 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 646 MMC_FIRMWARE_LEN); 647 card->ext_csd.ffu_capable = 648 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 649 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 650 651 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 652 card->ext_csd.device_life_time_est_typ_a = 653 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 654 card->ext_csd.device_life_time_est_typ_b = 655 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 656 } 657 658 /* eMMC v5.1 or later */ 659 if (card->ext_csd.rev >= 8) { 660 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 661 EXT_CSD_CMDQ_SUPPORTED; 662 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 663 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 664 /* Exclude inefficiently small queue depths */ 665 if (card->ext_csd.cmdq_depth <= 2) { 666 card->ext_csd.cmdq_support = false; 667 card->ext_csd.cmdq_depth = 0; 668 } 669 if (card->ext_csd.cmdq_support) { 670 pr_debug("%s: Command Queue supported depth %u\n", 671 mmc_hostname(card->host), 672 card->ext_csd.cmdq_depth); 673 } 674 card->ext_csd.enhanced_rpmb_supported = 675 (card->ext_csd.rel_param & 676 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 677 } 678 out: 679 return err; 680 } 681 682 static int mmc_read_ext_csd(struct mmc_card *card) 683 { 684 u8 *ext_csd; 685 int err; 686 687 if (!mmc_can_ext_csd(card)) 688 return 0; 689 690 err = mmc_get_ext_csd(card, &ext_csd); 691 if (err) { 692 /* If the host or the card can't do the switch, 693 * fail more gracefully. */ 694 if ((err != -EINVAL) 695 && (err != -ENOSYS) 696 && (err != -EFAULT)) 697 return err; 698 699 /* 700 * High capacity cards should have this "magic" size 701 * stored in their CSD. 702 */ 703 if (card->csd.capacity == (4096 * 512)) { 704 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 705 mmc_hostname(card->host)); 706 } else { 707 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 708 mmc_hostname(card->host)); 709 err = 0; 710 } 711 712 return err; 713 } 714 715 err = mmc_decode_ext_csd(card, ext_csd); 716 kfree(ext_csd); 717 return err; 718 } 719 720 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 721 { 722 u8 *bw_ext_csd; 723 int err; 724 725 if (bus_width == MMC_BUS_WIDTH_1) 726 return 0; 727 728 err = mmc_get_ext_csd(card, &bw_ext_csd); 729 if (err) 730 return err; 731 732 /* only compare read only fields */ 733 err = !((card->ext_csd.raw_partition_support == 734 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 735 (card->ext_csd.raw_erased_mem_count == 736 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 737 (card->ext_csd.rev == 738 bw_ext_csd[EXT_CSD_REV]) && 739 (card->ext_csd.raw_ext_csd_structure == 740 bw_ext_csd[EXT_CSD_STRUCTURE]) && 741 (card->ext_csd.raw_card_type == 742 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 743 (card->ext_csd.raw_s_a_timeout == 744 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 745 (card->ext_csd.raw_hc_erase_gap_size == 746 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 747 (card->ext_csd.raw_erase_timeout_mult == 748 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 749 (card->ext_csd.raw_hc_erase_grp_size == 750 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 751 (card->ext_csd.raw_sec_trim_mult == 752 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 753 (card->ext_csd.raw_sec_erase_mult == 754 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 755 (card->ext_csd.raw_sec_feature_support == 756 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 757 (card->ext_csd.raw_trim_mult == 758 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 759 (card->ext_csd.raw_sectors[0] == 760 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 761 (card->ext_csd.raw_sectors[1] == 762 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 763 (card->ext_csd.raw_sectors[2] == 764 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 765 (card->ext_csd.raw_sectors[3] == 766 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 767 (card->ext_csd.raw_pwr_cl_52_195 == 768 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 769 (card->ext_csd.raw_pwr_cl_26_195 == 770 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 771 (card->ext_csd.raw_pwr_cl_52_360 == 772 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 773 (card->ext_csd.raw_pwr_cl_26_360 == 774 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 775 (card->ext_csd.raw_pwr_cl_200_195 == 776 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 777 (card->ext_csd.raw_pwr_cl_200_360 == 778 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 779 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 780 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 781 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 782 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 783 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 784 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 785 786 if (err) 787 err = -EINVAL; 788 789 kfree(bw_ext_csd); 790 return err; 791 } 792 793 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 794 card->raw_cid[2], card->raw_cid[3]); 795 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 796 card->raw_csd[2], card->raw_csd[3]); 797 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 798 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 799 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 800 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9); 801 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 802 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 803 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 804 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 805 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 806 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 807 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 808 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 809 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 810 card->ext_csd.device_life_time_est_typ_a, 811 card->ext_csd.device_life_time_est_typ_b); 812 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 813 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 814 card->ext_csd.enhanced_area_offset); 815 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 816 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 817 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 818 card->ext_csd.enhanced_rpmb_supported); 819 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 820 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 821 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 822 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 823 824 static ssize_t mmc_fwrev_show(struct device *dev, 825 struct device_attribute *attr, 826 char *buf) 827 { 828 struct mmc_card *card = mmc_dev_to_card(dev); 829 830 if (card->ext_csd.rev < 7) 831 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev); 832 else 833 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 834 card->ext_csd.fwrev); 835 } 836 837 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 838 839 static ssize_t mmc_dsr_show(struct device *dev, 840 struct device_attribute *attr, 841 char *buf) 842 { 843 struct mmc_card *card = mmc_dev_to_card(dev); 844 struct mmc_host *host = card->host; 845 846 if (card->csd.dsr_imp && host->dsr_req) 847 return sysfs_emit(buf, "0x%x\n", host->dsr); 848 else 849 /* return default DSR value */ 850 return sysfs_emit(buf, "0x%x\n", 0x404); 851 } 852 853 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 854 855 static struct attribute *mmc_std_attrs[] = { 856 &dev_attr_cid.attr, 857 &dev_attr_csd.attr, 858 &dev_attr_date.attr, 859 &dev_attr_erase_size.attr, 860 &dev_attr_preferred_erase_size.attr, 861 &dev_attr_wp_grp_size.attr, 862 &dev_attr_fwrev.attr, 863 &dev_attr_ffu_capable.attr, 864 &dev_attr_hwrev.attr, 865 &dev_attr_manfid.attr, 866 &dev_attr_name.attr, 867 &dev_attr_oemid.attr, 868 &dev_attr_prv.attr, 869 &dev_attr_rev.attr, 870 &dev_attr_pre_eol_info.attr, 871 &dev_attr_life_time.attr, 872 &dev_attr_serial.attr, 873 &dev_attr_enhanced_area_offset.attr, 874 &dev_attr_enhanced_area_size.attr, 875 &dev_attr_raw_rpmb_size_mult.attr, 876 &dev_attr_enhanced_rpmb_supported.attr, 877 &dev_attr_rel_sectors.attr, 878 &dev_attr_ocr.attr, 879 &dev_attr_rca.attr, 880 &dev_attr_dsr.attr, 881 &dev_attr_cmdq_en.attr, 882 NULL, 883 }; 884 ATTRIBUTE_GROUPS(mmc_std); 885 886 static const struct device_type mmc_type = { 887 .groups = mmc_std_groups, 888 }; 889 890 /* 891 * Select the PowerClass for the current bus width 892 * If power class is defined for 4/8 bit bus in the 893 * extended CSD register, select it by executing the 894 * mmc_switch command. 895 */ 896 static int __mmc_select_powerclass(struct mmc_card *card, 897 unsigned int bus_width) 898 { 899 struct mmc_host *host = card->host; 900 struct mmc_ext_csd *ext_csd = &card->ext_csd; 901 unsigned int pwrclass_val = 0; 902 int err = 0; 903 904 switch (1 << host->ios.vdd) { 905 case MMC_VDD_165_195: 906 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 907 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 908 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 909 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 910 ext_csd->raw_pwr_cl_52_195 : 911 ext_csd->raw_pwr_cl_ddr_52_195; 912 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 913 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 914 break; 915 case MMC_VDD_27_28: 916 case MMC_VDD_28_29: 917 case MMC_VDD_29_30: 918 case MMC_VDD_30_31: 919 case MMC_VDD_31_32: 920 case MMC_VDD_32_33: 921 case MMC_VDD_33_34: 922 case MMC_VDD_34_35: 923 case MMC_VDD_35_36: 924 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 925 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 926 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 927 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 928 ext_csd->raw_pwr_cl_52_360 : 929 ext_csd->raw_pwr_cl_ddr_52_360; 930 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 931 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 932 ext_csd->raw_pwr_cl_ddr_200_360 : 933 ext_csd->raw_pwr_cl_200_360; 934 break; 935 default: 936 pr_warn("%s: Voltage range not supported for power class\n", 937 mmc_hostname(host)); 938 return -EINVAL; 939 } 940 941 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 942 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 943 EXT_CSD_PWR_CL_8BIT_SHIFT; 944 else 945 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 946 EXT_CSD_PWR_CL_4BIT_SHIFT; 947 948 /* If the power class is different from the default value */ 949 if (pwrclass_val > 0) { 950 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 951 EXT_CSD_POWER_CLASS, 952 pwrclass_val, 953 card->ext_csd.generic_cmd6_time); 954 } 955 956 return err; 957 } 958 959 static int mmc_select_powerclass(struct mmc_card *card) 960 { 961 struct mmc_host *host = card->host; 962 u32 bus_width, ext_csd_bits; 963 int err, ddr; 964 965 /* Power class selection is supported for versions >= 4.0 */ 966 if (!mmc_can_ext_csd(card)) 967 return 0; 968 969 bus_width = host->ios.bus_width; 970 /* Power class values are defined only for 4/8 bit bus */ 971 if (bus_width == MMC_BUS_WIDTH_1) 972 return 0; 973 974 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 975 if (ddr) 976 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 977 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 978 else 979 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 980 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 981 982 err = __mmc_select_powerclass(card, ext_csd_bits); 983 if (err) 984 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 985 mmc_hostname(host), 1 << bus_width, ddr); 986 987 return err; 988 } 989 990 /* 991 * Set the bus speed for the selected speed mode. 992 */ 993 static void mmc_set_bus_speed(struct mmc_card *card) 994 { 995 unsigned int max_dtr = (unsigned int)-1; 996 997 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 998 max_dtr > card->ext_csd.hs200_max_dtr) 999 max_dtr = card->ext_csd.hs200_max_dtr; 1000 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 1001 max_dtr = card->ext_csd.hs_max_dtr; 1002 else if (max_dtr > card->csd.max_dtr) 1003 max_dtr = card->csd.max_dtr; 1004 1005 mmc_set_clock(card->host, max_dtr); 1006 } 1007 1008 /* 1009 * Select the bus width amoung 4-bit and 8-bit(SDR). 1010 * If the bus width is changed successfully, return the selected width value. 1011 * Zero is returned instead of error value if the wide width is not supported. 1012 */ 1013 static int mmc_select_bus_width(struct mmc_card *card) 1014 { 1015 static unsigned ext_csd_bits[] = { 1016 EXT_CSD_BUS_WIDTH_8, 1017 EXT_CSD_BUS_WIDTH_4, 1018 EXT_CSD_BUS_WIDTH_1, 1019 }; 1020 static unsigned bus_widths[] = { 1021 MMC_BUS_WIDTH_8, 1022 MMC_BUS_WIDTH_4, 1023 MMC_BUS_WIDTH_1, 1024 }; 1025 struct mmc_host *host = card->host; 1026 unsigned idx, bus_width = 0; 1027 int err = 0; 1028 1029 if (!mmc_can_ext_csd(card) || 1030 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1031 return 0; 1032 1033 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1034 1035 /* 1036 * Unlike SD, MMC cards dont have a configuration register to notify 1037 * supported bus width. So bus test command should be run to identify 1038 * the supported bus width or compare the ext csd values of current 1039 * bus width and ext csd values of 1 bit mode read earlier. 1040 */ 1041 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1042 /* 1043 * Host is capable of 8bit transfer, then switch 1044 * the device to work in 8bit transfer mode. If the 1045 * mmc switch command returns error then switch to 1046 * 4bit transfer mode. On success set the corresponding 1047 * bus width on the host. 1048 */ 1049 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1050 EXT_CSD_BUS_WIDTH, 1051 ext_csd_bits[idx], 1052 card->ext_csd.generic_cmd6_time); 1053 if (err) 1054 continue; 1055 1056 bus_width = bus_widths[idx]; 1057 mmc_set_bus_width(host, bus_width); 1058 1059 /* 1060 * If controller can't handle bus width test, 1061 * compare ext_csd previously read in 1 bit mode 1062 * against ext_csd at new bus width 1063 */ 1064 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1065 err = mmc_compare_ext_csds(card, bus_width); 1066 else 1067 err = mmc_bus_test(card, bus_width); 1068 1069 if (!err) { 1070 err = bus_width; 1071 break; 1072 } else { 1073 pr_warn("%s: switch to bus width %d failed\n", 1074 mmc_hostname(host), 1 << bus_width); 1075 } 1076 } 1077 1078 return err; 1079 } 1080 1081 /* 1082 * Switch to the high-speed mode 1083 */ 1084 static int mmc_select_hs(struct mmc_card *card) 1085 { 1086 int err; 1087 1088 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1089 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1090 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1091 true, true, MMC_CMD_RETRIES); 1092 if (err) 1093 pr_warn("%s: switch to high-speed failed, err:%d\n", 1094 mmc_hostname(card->host), err); 1095 1096 return err; 1097 } 1098 1099 /* 1100 * Activate wide bus and DDR if supported. 1101 */ 1102 static int mmc_select_hs_ddr(struct mmc_card *card) 1103 { 1104 struct mmc_host *host = card->host; 1105 u32 bus_width, ext_csd_bits; 1106 int err = 0; 1107 1108 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1109 return 0; 1110 1111 bus_width = host->ios.bus_width; 1112 if (bus_width == MMC_BUS_WIDTH_1) 1113 return 0; 1114 1115 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1116 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1117 1118 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1119 EXT_CSD_BUS_WIDTH, 1120 ext_csd_bits, 1121 card->ext_csd.generic_cmd6_time, 1122 MMC_TIMING_MMC_DDR52, 1123 true, true, MMC_CMD_RETRIES); 1124 if (err) { 1125 pr_err("%s: switch to bus width %d ddr failed\n", 1126 mmc_hostname(host), 1 << bus_width); 1127 return err; 1128 } 1129 1130 /* 1131 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1132 * signaling. 1133 * 1134 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1135 * 1136 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1137 * in the JEDEC spec for DDR. 1138 * 1139 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1140 * host controller can support this, like some of the SDHCI 1141 * controller which connect to an eMMC device. Some of these 1142 * host controller still needs to use 1.8v vccq for supporting 1143 * DDR mode. 1144 * 1145 * So the sequence will be: 1146 * if (host and device can both support 1.2v IO) 1147 * use 1.2v IO; 1148 * else if (host and device can both support 1.8v IO) 1149 * use 1.8v IO; 1150 * so if host and device can only support 3.3v IO, this is the 1151 * last choice. 1152 * 1153 * WARNING: eMMC rules are NOT the same as SD DDR 1154 */ 1155 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1156 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1157 if (!err) 1158 return 0; 1159 } 1160 1161 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1162 host->caps & MMC_CAP_1_8V_DDR) 1163 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1164 1165 /* make sure vccq is 3.3v after switching disaster */ 1166 if (err) 1167 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1168 1169 return err; 1170 } 1171 1172 static int mmc_select_hs400(struct mmc_card *card) 1173 { 1174 struct mmc_host *host = card->host; 1175 unsigned int max_dtr; 1176 int err = 0; 1177 u8 val; 1178 1179 /* 1180 * HS400 mode requires 8-bit bus width 1181 */ 1182 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1183 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1184 return 0; 1185 1186 /* Switch card to HS mode */ 1187 val = EXT_CSD_TIMING_HS; 1188 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1189 EXT_CSD_HS_TIMING, val, 1190 card->ext_csd.generic_cmd6_time, 0, 1191 false, true, MMC_CMD_RETRIES); 1192 if (err) { 1193 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1194 mmc_hostname(host), err); 1195 return err; 1196 } 1197 1198 /* Prepare host to downgrade to HS timing */ 1199 if (host->ops->hs400_downgrade) 1200 host->ops->hs400_downgrade(host); 1201 1202 /* Set host controller to HS timing */ 1203 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1204 1205 /* Reduce frequency to HS frequency */ 1206 max_dtr = card->ext_csd.hs_max_dtr; 1207 mmc_set_clock(host, max_dtr); 1208 1209 err = mmc_switch_status(card, true); 1210 if (err) 1211 goto out_err; 1212 1213 if (host->ops->hs400_prepare_ddr) 1214 host->ops->hs400_prepare_ddr(host); 1215 1216 /* Switch card to DDR */ 1217 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1218 EXT_CSD_BUS_WIDTH, 1219 EXT_CSD_DDR_BUS_WIDTH_8, 1220 card->ext_csd.generic_cmd6_time); 1221 if (err) { 1222 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1223 mmc_hostname(host), err); 1224 return err; 1225 } 1226 1227 /* Switch card to HS400 */ 1228 val = EXT_CSD_TIMING_HS400 | 1229 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1230 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1231 EXT_CSD_HS_TIMING, val, 1232 card->ext_csd.generic_cmd6_time, 0, 1233 false, true, MMC_CMD_RETRIES); 1234 if (err) { 1235 pr_err("%s: switch to hs400 failed, err:%d\n", 1236 mmc_hostname(host), err); 1237 return err; 1238 } 1239 1240 /* Set host controller to HS400 timing and frequency */ 1241 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1242 mmc_set_bus_speed(card); 1243 1244 if (host->ops->execute_hs400_tuning) { 1245 mmc_retune_disable(host); 1246 err = host->ops->execute_hs400_tuning(host, card); 1247 mmc_retune_enable(host); 1248 if (err) 1249 goto out_err; 1250 } 1251 1252 if (host->ops->hs400_complete) 1253 host->ops->hs400_complete(host); 1254 1255 err = mmc_switch_status(card, true); 1256 if (err) 1257 goto out_err; 1258 1259 return 0; 1260 1261 out_err: 1262 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1263 __func__, err); 1264 return err; 1265 } 1266 1267 int mmc_hs200_to_hs400(struct mmc_card *card) 1268 { 1269 return mmc_select_hs400(card); 1270 } 1271 1272 int mmc_hs400_to_hs200(struct mmc_card *card) 1273 { 1274 struct mmc_host *host = card->host; 1275 unsigned int max_dtr; 1276 int err; 1277 u8 val; 1278 1279 /* Reduce frequency to HS */ 1280 max_dtr = card->ext_csd.hs_max_dtr; 1281 mmc_set_clock(host, max_dtr); 1282 1283 /* Switch HS400 to HS DDR */ 1284 val = EXT_CSD_TIMING_HS; 1285 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1286 val, card->ext_csd.generic_cmd6_time, 0, 1287 false, true, MMC_CMD_RETRIES); 1288 if (err) 1289 goto out_err; 1290 1291 if (host->ops->hs400_downgrade) 1292 host->ops->hs400_downgrade(host); 1293 1294 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1295 1296 err = mmc_switch_status(card, true); 1297 if (err) 1298 goto out_err; 1299 1300 /* Switch HS DDR to HS */ 1301 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1302 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1303 0, false, true, MMC_CMD_RETRIES); 1304 if (err) 1305 goto out_err; 1306 1307 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1308 1309 err = mmc_switch_status(card, true); 1310 if (err) 1311 goto out_err; 1312 1313 /* Switch HS to HS200 */ 1314 val = EXT_CSD_TIMING_HS200 | 1315 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1316 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1317 val, card->ext_csd.generic_cmd6_time, 0, 1318 false, true, MMC_CMD_RETRIES); 1319 if (err) 1320 goto out_err; 1321 1322 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1323 1324 /* 1325 * For HS200, CRC errors are not a reliable way to know the switch 1326 * failed. If there really is a problem, we would expect tuning will 1327 * fail and the result ends up the same. 1328 */ 1329 err = mmc_switch_status(card, false); 1330 if (err) 1331 goto out_err; 1332 1333 mmc_set_bus_speed(card); 1334 1335 /* Prepare tuning for HS400 mode. */ 1336 if (host->ops->prepare_hs400_tuning) 1337 host->ops->prepare_hs400_tuning(host, &host->ios); 1338 1339 return 0; 1340 1341 out_err: 1342 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1343 __func__, err); 1344 return err; 1345 } 1346 1347 static void mmc_select_driver_type(struct mmc_card *card) 1348 { 1349 int card_drv_type, drive_strength, drv_type = 0; 1350 int fixed_drv_type = card->host->fixed_drv_type; 1351 1352 card_drv_type = card->ext_csd.raw_driver_strength | 1353 mmc_driver_type_mask(0); 1354 1355 if (fixed_drv_type >= 0) 1356 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1357 ? fixed_drv_type : 0; 1358 else 1359 drive_strength = mmc_select_drive_strength(card, 1360 card->ext_csd.hs200_max_dtr, 1361 card_drv_type, &drv_type); 1362 1363 card->drive_strength = drive_strength; 1364 1365 if (drv_type) 1366 mmc_set_driver_type(card->host, drv_type); 1367 } 1368 1369 static int mmc_select_hs400es(struct mmc_card *card) 1370 { 1371 struct mmc_host *host = card->host; 1372 int err = -EINVAL; 1373 u8 val; 1374 1375 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1376 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1377 1378 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1379 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1380 1381 /* If fails try again during next card power cycle */ 1382 if (err) 1383 goto out_err; 1384 1385 err = mmc_select_bus_width(card); 1386 if (err != MMC_BUS_WIDTH_8) { 1387 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1388 mmc_hostname(host), err); 1389 err = err < 0 ? err : -ENOTSUPP; 1390 goto out_err; 1391 } 1392 1393 /* Switch card to HS mode */ 1394 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1395 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1396 card->ext_csd.generic_cmd6_time, 0, 1397 false, true, MMC_CMD_RETRIES); 1398 if (err) { 1399 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1400 mmc_hostname(host), err); 1401 goto out_err; 1402 } 1403 1404 /* 1405 * Bump to HS timing and frequency. Some cards don't handle 1406 * SEND_STATUS reliably at the initial frequency. 1407 */ 1408 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1409 mmc_set_bus_speed(card); 1410 1411 err = mmc_switch_status(card, true); 1412 if (err) 1413 goto out_err; 1414 1415 /* Switch card to DDR with strobe bit */ 1416 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1417 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1418 EXT_CSD_BUS_WIDTH, 1419 val, 1420 card->ext_csd.generic_cmd6_time); 1421 if (err) { 1422 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1423 mmc_hostname(host), err); 1424 goto out_err; 1425 } 1426 1427 mmc_select_driver_type(card); 1428 1429 /* Switch card to HS400 */ 1430 val = EXT_CSD_TIMING_HS400 | 1431 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1432 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1433 EXT_CSD_HS_TIMING, val, 1434 card->ext_csd.generic_cmd6_time, 0, 1435 false, true, MMC_CMD_RETRIES); 1436 if (err) { 1437 pr_err("%s: switch to hs400es failed, err:%d\n", 1438 mmc_hostname(host), err); 1439 goto out_err; 1440 } 1441 1442 /* Set host controller to HS400 timing and frequency */ 1443 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1444 1445 /* Controller enable enhanced strobe function */ 1446 host->ios.enhanced_strobe = true; 1447 if (host->ops->hs400_enhanced_strobe) 1448 host->ops->hs400_enhanced_strobe(host, &host->ios); 1449 1450 err = mmc_switch_status(card, true); 1451 if (err) 1452 goto out_err; 1453 1454 return 0; 1455 1456 out_err: 1457 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1458 __func__, err); 1459 return err; 1460 } 1461 1462 /* 1463 * For device supporting HS200 mode, the following sequence 1464 * should be done before executing the tuning process. 1465 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1466 * 2. switch to HS200 mode 1467 * 3. set the clock to > 52Mhz and <=200MHz 1468 */ 1469 static int mmc_select_hs200(struct mmc_card *card) 1470 { 1471 struct mmc_host *host = card->host; 1472 unsigned int old_timing, old_signal_voltage, old_clock; 1473 int err = -EINVAL; 1474 u8 val; 1475 1476 old_signal_voltage = host->ios.signal_voltage; 1477 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1478 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1479 1480 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1481 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1482 1483 /* If fails try again during next card power cycle */ 1484 if (err) 1485 return err; 1486 1487 mmc_select_driver_type(card); 1488 1489 /* 1490 * Set the bus width(4 or 8) with host's support and 1491 * switch to HS200 mode if bus width is set successfully. 1492 */ 1493 err = mmc_select_bus_width(card); 1494 if (err > 0) { 1495 val = EXT_CSD_TIMING_HS200 | 1496 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1497 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1498 EXT_CSD_HS_TIMING, val, 1499 card->ext_csd.generic_cmd6_time, 0, 1500 false, true, MMC_CMD_RETRIES); 1501 if (err) 1502 goto err; 1503 1504 /* 1505 * Bump to HS timing and frequency. Some cards don't handle 1506 * SEND_STATUS reliably at the initial frequency. 1507 * NB: We can't move to full (HS200) speeds until after we've 1508 * successfully switched over. 1509 */ 1510 old_timing = host->ios.timing; 1511 old_clock = host->ios.clock; 1512 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1513 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr); 1514 1515 /* 1516 * For HS200, CRC errors are not a reliable way to know the 1517 * switch failed. If there really is a problem, we would expect 1518 * tuning will fail and the result ends up the same. 1519 */ 1520 err = mmc_switch_status(card, false); 1521 1522 /* 1523 * mmc_select_timing() assumes timing has not changed if 1524 * it is a switch error. 1525 */ 1526 if (err == -EBADMSG) { 1527 mmc_set_clock(host, old_clock); 1528 mmc_set_timing(host, old_timing); 1529 } 1530 } 1531 err: 1532 if (err) { 1533 /* fall back to the old signal voltage, if fails report error */ 1534 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1535 err = -EIO; 1536 1537 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1538 __func__, err); 1539 } 1540 return err; 1541 } 1542 1543 /* 1544 * Activate High Speed, HS200 or HS400ES mode if supported. 1545 */ 1546 static int mmc_select_timing(struct mmc_card *card) 1547 { 1548 int err = 0; 1549 1550 if (!mmc_can_ext_csd(card)) 1551 goto bus_speed; 1552 1553 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) { 1554 err = mmc_select_hs400es(card); 1555 goto out; 1556 } 1557 1558 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) { 1559 err = mmc_select_hs200(card); 1560 if (err == -EBADMSG) 1561 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200; 1562 else 1563 goto out; 1564 } 1565 1566 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1567 err = mmc_select_hs(card); 1568 1569 out: 1570 if (err && err != -EBADMSG) 1571 return err; 1572 1573 bus_speed: 1574 /* 1575 * Set the bus speed to the selected bus timing. 1576 * If timing is not selected, backward compatible is the default. 1577 */ 1578 mmc_set_bus_speed(card); 1579 return 0; 1580 } 1581 1582 /* 1583 * Execute tuning sequence to seek the proper bus operating 1584 * conditions for HS200 and HS400, which sends CMD21 to the device. 1585 */ 1586 static int mmc_hs200_tuning(struct mmc_card *card) 1587 { 1588 struct mmc_host *host = card->host; 1589 1590 /* 1591 * Timing should be adjusted to the HS400 target 1592 * operation frequency for tuning process 1593 */ 1594 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1595 host->ios.bus_width == MMC_BUS_WIDTH_8) 1596 if (host->ops->prepare_hs400_tuning) 1597 host->ops->prepare_hs400_tuning(host, &host->ios); 1598 1599 return mmc_execute_tuning(card); 1600 } 1601 1602 /* 1603 * Handle the detection and initialisation of a card. 1604 * 1605 * In the case of a resume, "oldcard" will contain the card 1606 * we're trying to reinitialise. 1607 */ 1608 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1609 struct mmc_card *oldcard) 1610 { 1611 struct mmc_card *card; 1612 int err; 1613 u32 cid[4]; 1614 u32 rocr; 1615 1616 WARN_ON(!host->claimed); 1617 1618 /* Set correct bus mode for MMC before attempting init */ 1619 if (!mmc_host_is_spi(host)) 1620 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1621 1622 /* 1623 * Since we're changing the OCR value, we seem to 1624 * need to tell some cards to go back to the idle 1625 * state. We wait 1ms to give cards time to 1626 * respond. 1627 * mmc_go_idle is needed for eMMC that are asleep 1628 */ 1629 mmc_go_idle(host); 1630 1631 /* The extra bit indicates that we support high capacity */ 1632 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1633 if (err) 1634 goto err; 1635 1636 /* 1637 * For SPI, enable CRC as appropriate. 1638 */ 1639 if (mmc_host_is_spi(host)) { 1640 err = mmc_spi_set_crc(host, use_spi_crc); 1641 if (err) 1642 goto err; 1643 } 1644 1645 /* 1646 * Fetch CID from card. 1647 */ 1648 err = mmc_send_cid(host, cid); 1649 if (err) 1650 goto err; 1651 1652 if (oldcard) { 1653 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1654 pr_debug("%s: Perhaps the card was replaced\n", 1655 mmc_hostname(host)); 1656 err = -ENOENT; 1657 goto err; 1658 } 1659 1660 card = oldcard; 1661 } else { 1662 /* 1663 * Allocate card structure. 1664 */ 1665 card = mmc_alloc_card(host, &mmc_type); 1666 if (IS_ERR(card)) { 1667 err = PTR_ERR(card); 1668 goto err; 1669 } 1670 1671 card->ocr = ocr; 1672 card->type = MMC_TYPE_MMC; 1673 card->rca = 1; 1674 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1675 } 1676 1677 /* 1678 * Call the optional HC's init_card function to handle quirks. 1679 */ 1680 if (host->ops->init_card) 1681 host->ops->init_card(host, card); 1682 1683 /* 1684 * For native busses: set card RCA and quit open drain mode. 1685 */ 1686 if (!mmc_host_is_spi(host)) { 1687 err = mmc_set_relative_addr(card); 1688 if (err) 1689 goto free_card; 1690 1691 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1692 } 1693 1694 if (!oldcard) { 1695 /* 1696 * Fetch CSD from card. 1697 */ 1698 err = mmc_send_csd(card, card->raw_csd); 1699 if (err) 1700 goto free_card; 1701 1702 err = mmc_decode_csd(card); 1703 if (err) 1704 goto free_card; 1705 err = mmc_decode_cid(card); 1706 if (err) 1707 goto free_card; 1708 } 1709 1710 /* 1711 * handling only for cards supporting DSR and hosts requesting 1712 * DSR configuration 1713 */ 1714 if (card->csd.dsr_imp && host->dsr_req) 1715 mmc_set_dsr(host); 1716 1717 /* 1718 * Select card, as all following commands rely on that. 1719 */ 1720 if (!mmc_host_is_spi(host)) { 1721 err = mmc_select_card(card); 1722 if (err) 1723 goto free_card; 1724 } 1725 1726 if (!oldcard) { 1727 /* Read extended CSD. */ 1728 err = mmc_read_ext_csd(card); 1729 if (err) 1730 goto free_card; 1731 1732 /* 1733 * If doing byte addressing, check if required to do sector 1734 * addressing. Handle the case of <2GB cards needing sector 1735 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1736 * ocr register has bit 30 set for sector addressing. 1737 */ 1738 if (rocr & BIT(30)) 1739 mmc_card_set_blockaddr(card); 1740 1741 /* Erase size depends on CSD and Extended CSD */ 1742 mmc_set_erase_size(card); 1743 } 1744 1745 /* 1746 * Reselect the card type since host caps could have been changed when 1747 * debugging even if the card is not new. 1748 */ 1749 mmc_select_card_type(card); 1750 1751 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1752 if (card->ext_csd.rev >= 3) { 1753 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1754 EXT_CSD_ERASE_GROUP_DEF, 1, 1755 card->ext_csd.generic_cmd6_time); 1756 1757 if (err && err != -EBADMSG) 1758 goto free_card; 1759 1760 if (err) { 1761 /* 1762 * Just disable enhanced area off & sz 1763 * will try to enable ERASE_GROUP_DEF 1764 * during next time reinit 1765 */ 1766 card->ext_csd.enhanced_area_offset = -EINVAL; 1767 card->ext_csd.enhanced_area_size = -EINVAL; 1768 } else { 1769 card->ext_csd.erase_group_def = 1; 1770 /* 1771 * enable ERASE_GRP_DEF successfully. 1772 * This will affect the erase size, so 1773 * here need to reset erase size 1774 */ 1775 mmc_set_erase_size(card); 1776 } 1777 } 1778 mmc_set_wp_grp_size(card); 1779 /* 1780 * Ensure eMMC user default partition is enabled 1781 */ 1782 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1783 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1784 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1785 card->ext_csd.part_config, 1786 card->ext_csd.part_time); 1787 if (err && err != -EBADMSG) 1788 goto free_card; 1789 } 1790 1791 /* 1792 * Enable power_off_notification byte in the ext_csd register 1793 */ 1794 if (card->ext_csd.rev >= 6) { 1795 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1796 EXT_CSD_POWER_OFF_NOTIFICATION, 1797 EXT_CSD_POWER_ON, 1798 card->ext_csd.generic_cmd6_time); 1799 if (err && err != -EBADMSG) 1800 goto free_card; 1801 1802 /* 1803 * The err can be -EBADMSG or 0, 1804 * so check for success and update the flag 1805 */ 1806 if (!err) 1807 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1808 } 1809 1810 /* set erase_arg */ 1811 if (mmc_can_discard(card)) 1812 card->erase_arg = MMC_DISCARD_ARG; 1813 else if (mmc_can_trim(card)) 1814 card->erase_arg = MMC_TRIM_ARG; 1815 else 1816 card->erase_arg = MMC_ERASE_ARG; 1817 1818 /* 1819 * Select timing interface 1820 */ 1821 err = mmc_select_timing(card); 1822 if (err) 1823 goto free_card; 1824 1825 if (mmc_card_hs200(card)) { 1826 host->doing_init_tune = 1; 1827 1828 err = mmc_hs200_tuning(card); 1829 if (!err) 1830 err = mmc_select_hs400(card); 1831 1832 host->doing_init_tune = 0; 1833 1834 if (err) 1835 goto free_card; 1836 } else if (mmc_card_hs400es(card)) { 1837 if (host->ops->execute_hs400_tuning) { 1838 err = host->ops->execute_hs400_tuning(host, card); 1839 if (err) 1840 goto free_card; 1841 } 1842 } else { 1843 /* Select the desired bus width optionally */ 1844 err = mmc_select_bus_width(card); 1845 if (err > 0 && mmc_card_hs(card)) { 1846 err = mmc_select_hs_ddr(card); 1847 if (err) 1848 goto free_card; 1849 } 1850 } 1851 1852 /* 1853 * Choose the power class with selected bus interface 1854 */ 1855 mmc_select_powerclass(card); 1856 1857 /* 1858 * Enable HPI feature (if supported) 1859 */ 1860 if (card->ext_csd.hpi) { 1861 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1862 EXT_CSD_HPI_MGMT, 1, 1863 card->ext_csd.generic_cmd6_time); 1864 if (err && err != -EBADMSG) 1865 goto free_card; 1866 if (err) { 1867 pr_warn("%s: Enabling HPI failed\n", 1868 mmc_hostname(card->host)); 1869 card->ext_csd.hpi_en = 0; 1870 } else { 1871 card->ext_csd.hpi_en = 1; 1872 } 1873 } 1874 1875 /* 1876 * If cache size is higher than 0, this indicates the existence of cache 1877 * and it can be turned on. Note that some eMMCs from Micron has been 1878 * reported to need ~800 ms timeout, while enabling the cache after 1879 * sudden power failure tests. Let's extend the timeout to a minimum of 1880 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1881 */ 1882 if (card->ext_csd.cache_size > 0) { 1883 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1884 1885 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1886 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1887 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1888 if (err && err != -EBADMSG) 1889 goto free_card; 1890 1891 /* 1892 * Only if no error, cache is turned on successfully. 1893 */ 1894 if (err) { 1895 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1896 mmc_hostname(card->host), err); 1897 card->ext_csd.cache_ctrl = 0; 1898 } else { 1899 card->ext_csd.cache_ctrl = 1; 1900 } 1901 } 1902 1903 /* 1904 * Enable Command Queue if supported. Note that Packed Commands cannot 1905 * be used with Command Queue. 1906 */ 1907 card->ext_csd.cmdq_en = false; 1908 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1909 err = mmc_cmdq_enable(card); 1910 if (err && err != -EBADMSG) 1911 goto free_card; 1912 if (err) { 1913 pr_warn("%s: Enabling CMDQ failed\n", 1914 mmc_hostname(card->host)); 1915 card->ext_csd.cmdq_support = false; 1916 card->ext_csd.cmdq_depth = 0; 1917 } 1918 } 1919 /* 1920 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1921 * disabled for a time, so a flag is needed to indicate to re-enable the 1922 * Command Queue. 1923 */ 1924 card->reenable_cmdq = card->ext_csd.cmdq_en; 1925 1926 if (host->cqe_ops && !host->cqe_enabled) { 1927 err = host->cqe_ops->cqe_enable(host, card); 1928 if (!err) { 1929 host->cqe_enabled = true; 1930 1931 if (card->ext_csd.cmdq_en) { 1932 pr_info("%s: Command Queue Engine enabled\n", 1933 mmc_hostname(host)); 1934 } else { 1935 host->hsq_enabled = true; 1936 pr_info("%s: Host Software Queue enabled\n", 1937 mmc_hostname(host)); 1938 } 1939 } 1940 } 1941 1942 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1943 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1944 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1945 mmc_hostname(host)); 1946 err = -EINVAL; 1947 goto free_card; 1948 } 1949 1950 if (!oldcard) 1951 host->card = card; 1952 1953 return 0; 1954 1955 free_card: 1956 if (!oldcard) 1957 mmc_remove_card(card); 1958 err: 1959 return err; 1960 } 1961 1962 static int mmc_can_sleep(struct mmc_card *card) 1963 { 1964 return card->ext_csd.rev >= 3; 1965 } 1966 1967 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1968 { 1969 struct mmc_host *host = cb_data; 1970 1971 *busy = host->ops->card_busy(host); 1972 return 0; 1973 } 1974 1975 static int mmc_sleep(struct mmc_host *host) 1976 { 1977 struct mmc_command cmd = {}; 1978 struct mmc_card *card = host->card; 1979 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1980 bool use_r1b_resp; 1981 int err; 1982 1983 /* Re-tuning can't be done once the card is deselected */ 1984 mmc_retune_hold(host); 1985 1986 err = mmc_deselect_cards(host); 1987 if (err) 1988 goto out_release; 1989 1990 cmd.opcode = MMC_SLEEP_AWAKE; 1991 cmd.arg = card->rca << 16; 1992 cmd.arg |= 1 << 15; 1993 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1994 1995 err = mmc_wait_for_cmd(host, &cmd, 0); 1996 if (err) 1997 goto out_release; 1998 1999 /* 2000 * If the host does not wait while the card signals busy, then we can 2001 * try to poll, but only if the host supports HW polling, as the 2002 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 2003 * to wait the sleep/awake timeout. 2004 */ 2005 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 2006 goto out_release; 2007 2008 if (!host->ops->card_busy) { 2009 mmc_delay(timeout_ms); 2010 goto out_release; 2011 } 2012 2013 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host); 2014 2015 out_release: 2016 mmc_retune_release(host); 2017 return err; 2018 } 2019 2020 static int mmc_can_poweroff_notify(const struct mmc_card *card) 2021 { 2022 return card && 2023 mmc_card_mmc(card) && 2024 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 2025 } 2026 2027 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 2028 { 2029 unsigned int timeout = card->ext_csd.generic_cmd6_time; 2030 int err; 2031 2032 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 2033 if (notify_type == EXT_CSD_POWER_OFF_LONG) 2034 timeout = card->ext_csd.power_off_longtime; 2035 2036 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2037 EXT_CSD_POWER_OFF_NOTIFICATION, 2038 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 2039 if (err) 2040 pr_err("%s: Power Off Notification timed out, %u\n", 2041 mmc_hostname(card->host), timeout); 2042 2043 /* Disable the power off notification after the switch operation. */ 2044 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 2045 2046 return err; 2047 } 2048 2049 /* 2050 * Host is being removed. Free up the current card. 2051 */ 2052 static void mmc_remove(struct mmc_host *host) 2053 { 2054 mmc_remove_card(host->card); 2055 host->card = NULL; 2056 } 2057 2058 /* 2059 * Card detection - card is alive. 2060 */ 2061 static int mmc_alive(struct mmc_host *host) 2062 { 2063 return mmc_send_status(host->card, NULL); 2064 } 2065 2066 /* 2067 * Card detection callback from host. 2068 */ 2069 static void mmc_detect(struct mmc_host *host) 2070 { 2071 int err; 2072 2073 mmc_get_card(host->card, NULL); 2074 2075 /* 2076 * Just check if our card has been removed. 2077 */ 2078 err = _mmc_detect_card_removed(host); 2079 2080 mmc_put_card(host->card, NULL); 2081 2082 if (err) { 2083 mmc_remove(host); 2084 2085 mmc_claim_host(host); 2086 mmc_detach_bus(host); 2087 mmc_power_off(host); 2088 mmc_release_host(host); 2089 } 2090 } 2091 2092 static bool _mmc_cache_enabled(struct mmc_host *host) 2093 { 2094 return host->card->ext_csd.cache_size > 0 && 2095 host->card->ext_csd.cache_ctrl & 1; 2096 } 2097 2098 /* 2099 * Flush the internal cache of the eMMC to non-volatile storage. 2100 */ 2101 static int _mmc_flush_cache(struct mmc_host *host) 2102 { 2103 int err = 0; 2104 2105 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag) 2106 return 0; 2107 2108 if (_mmc_cache_enabled(host)) { 2109 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2110 EXT_CSD_FLUSH_CACHE, 1, 2111 CACHE_FLUSH_TIMEOUT_MS); 2112 if (err) 2113 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err); 2114 else 2115 host->card->written_flag = false; 2116 } 2117 2118 return err; 2119 } 2120 2121 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2122 { 2123 int err = 0; 2124 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2125 EXT_CSD_POWER_OFF_LONG; 2126 2127 mmc_claim_host(host); 2128 2129 if (mmc_card_suspended(host->card)) 2130 goto out; 2131 2132 err = _mmc_flush_cache(host); 2133 if (err) 2134 goto out; 2135 2136 if (mmc_can_poweroff_notify(host->card) && 2137 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2138 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2139 err = mmc_poweroff_notify(host->card, notify_type); 2140 else if (mmc_can_sleep(host->card)) 2141 err = mmc_sleep(host); 2142 else if (!mmc_host_is_spi(host)) 2143 err = mmc_deselect_cards(host); 2144 2145 if (!err) { 2146 mmc_power_off(host); 2147 mmc_card_set_suspended(host->card); 2148 } 2149 out: 2150 mmc_release_host(host); 2151 return err; 2152 } 2153 2154 /* 2155 * Suspend callback 2156 */ 2157 static int mmc_suspend(struct mmc_host *host) 2158 { 2159 int err; 2160 2161 err = _mmc_suspend(host, true); 2162 if (!err) { 2163 pm_runtime_disable(&host->card->dev); 2164 pm_runtime_set_suspended(&host->card->dev); 2165 } 2166 2167 return err; 2168 } 2169 2170 /* 2171 * This function tries to determine if the same card is still present 2172 * and, if so, restore all state to it. 2173 */ 2174 static int _mmc_resume(struct mmc_host *host) 2175 { 2176 int err = 0; 2177 2178 mmc_claim_host(host); 2179 2180 if (!mmc_card_suspended(host->card)) 2181 goto out; 2182 2183 mmc_power_up(host, host->card->ocr); 2184 err = mmc_init_card(host, host->card->ocr, host->card); 2185 mmc_card_clr_suspended(host->card); 2186 2187 out: 2188 mmc_release_host(host); 2189 return err; 2190 } 2191 2192 /* 2193 * Shutdown callback 2194 */ 2195 static int mmc_shutdown(struct mmc_host *host) 2196 { 2197 int err = 0; 2198 2199 /* 2200 * In a specific case for poweroff notify, we need to resume the card 2201 * before we can shutdown it properly. 2202 */ 2203 if (mmc_can_poweroff_notify(host->card) && 2204 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2205 err = _mmc_resume(host); 2206 2207 if (!err) 2208 err = _mmc_suspend(host, false); 2209 2210 return err; 2211 } 2212 2213 /* 2214 * Callback for resume. 2215 */ 2216 static int mmc_resume(struct mmc_host *host) 2217 { 2218 pm_runtime_enable(&host->card->dev); 2219 return 0; 2220 } 2221 2222 /* 2223 * Callback for runtime_suspend. 2224 */ 2225 static int mmc_runtime_suspend(struct mmc_host *host) 2226 { 2227 int err; 2228 2229 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2230 return 0; 2231 2232 err = _mmc_suspend(host, true); 2233 if (err) 2234 pr_err("%s: error %d doing aggressive suspend\n", 2235 mmc_hostname(host), err); 2236 2237 return err; 2238 } 2239 2240 /* 2241 * Callback for runtime_resume. 2242 */ 2243 static int mmc_runtime_resume(struct mmc_host *host) 2244 { 2245 int err; 2246 2247 err = _mmc_resume(host); 2248 if (err && err != -ENOMEDIUM) 2249 pr_err("%s: error %d doing runtime resume\n", 2250 mmc_hostname(host), err); 2251 2252 return 0; 2253 } 2254 2255 static int mmc_can_reset(struct mmc_card *card) 2256 { 2257 u8 rst_n_function; 2258 2259 rst_n_function = card->ext_csd.rst_n_function; 2260 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2261 return 0; 2262 return 1; 2263 } 2264 2265 static int _mmc_hw_reset(struct mmc_host *host) 2266 { 2267 struct mmc_card *card = host->card; 2268 2269 /* 2270 * In the case of recovery, we can't expect flushing the cache to work 2271 * always, but we have a go and ignore errors. 2272 */ 2273 _mmc_flush_cache(host); 2274 2275 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset && 2276 mmc_can_reset(card)) { 2277 /* If the card accept RST_n signal, send it. */ 2278 mmc_set_clock(host, host->f_init); 2279 host->ops->card_hw_reset(host); 2280 /* Set initial state and call mmc_set_ios */ 2281 mmc_set_initial_state(host); 2282 } else { 2283 /* Do a brute force power cycle */ 2284 mmc_power_cycle(host, card->ocr); 2285 mmc_pwrseq_reset(host); 2286 } 2287 return mmc_init_card(host, card->ocr, card); 2288 } 2289 2290 static const struct mmc_bus_ops mmc_ops = { 2291 .remove = mmc_remove, 2292 .detect = mmc_detect, 2293 .suspend = mmc_suspend, 2294 .resume = mmc_resume, 2295 .runtime_suspend = mmc_runtime_suspend, 2296 .runtime_resume = mmc_runtime_resume, 2297 .alive = mmc_alive, 2298 .shutdown = mmc_shutdown, 2299 .hw_reset = _mmc_hw_reset, 2300 .cache_enabled = _mmc_cache_enabled, 2301 .flush_cache = _mmc_flush_cache, 2302 }; 2303 2304 /* 2305 * Starting point for MMC card init. 2306 */ 2307 int mmc_attach_mmc(struct mmc_host *host) 2308 { 2309 int err; 2310 u32 ocr, rocr; 2311 2312 WARN_ON(!host->claimed); 2313 2314 /* Set correct bus mode for MMC before attempting attach */ 2315 if (!mmc_host_is_spi(host)) 2316 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2317 2318 err = mmc_send_op_cond(host, 0, &ocr); 2319 if (err) 2320 return err; 2321 2322 mmc_attach_bus(host, &mmc_ops); 2323 if (host->ocr_avail_mmc) 2324 host->ocr_avail = host->ocr_avail_mmc; 2325 2326 /* 2327 * We need to get OCR a different way for SPI. 2328 */ 2329 if (mmc_host_is_spi(host)) { 2330 err = mmc_spi_read_ocr(host, 1, &ocr); 2331 if (err) 2332 goto err; 2333 } 2334 2335 rocr = mmc_select_voltage(host, ocr); 2336 2337 /* 2338 * Can we support the voltage of the card? 2339 */ 2340 if (!rocr) { 2341 err = -EINVAL; 2342 goto err; 2343 } 2344 2345 /* 2346 * Detect and init the card. 2347 */ 2348 err = mmc_init_card(host, rocr, NULL); 2349 if (err) 2350 goto err; 2351 2352 mmc_release_host(host); 2353 err = mmc_add_card(host->card); 2354 if (err) 2355 goto remove_card; 2356 2357 mmc_claim_host(host); 2358 return 0; 2359 2360 remove_card: 2361 mmc_remove_card(host->card); 2362 mmc_claim_host(host); 2363 host->card = NULL; 2364 err: 2365 mmc_detach_bus(host); 2366 2367 pr_err("%s: error %d whilst initialising MMC card\n", 2368 mmc_hostname(host), err); 2369 2370 return err; 2371 } 2372