xref: /linux/drivers/mmc/core/mmc.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/string.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/random.h>
17 #include <linux/sysfs.h>
18 
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31 
32 #define DEFAULT_CMD6_TIMEOUT_MS	500
33 #define MIN_CACHE_EN_TIMEOUT_MS 1600
34 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
35 
36 enum mmc_poweroff_type {
37 	MMC_POWEROFF_SUSPEND,
38 	MMC_POWEROFF_SHUTDOWN,
39 	MMC_POWEROFF_UNDERVOLTAGE,
40 	MMC_POWEROFF_UNBIND,
41 };
42 
43 static const unsigned int tran_exp[] = {
44 	10000,		100000,		1000000,	10000000,
45 	0,		0,		0,		0
46 };
47 
48 static const unsigned char tran_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 static const unsigned int taac_exp[] = {
54 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
55 };
56 
57 static const unsigned int taac_mant[] = {
58 	0,	10,	12,	13,	15,	20,	25,	30,
59 	35,	40,	45,	50,	55,	60,	70,	80,
60 };
61 
62 /*
63  * Given the decoded CSD structure, decode the raw CID to our CID structure.
64  */
65 static int mmc_decode_cid(struct mmc_card *card)
66 {
67 	u32 *resp = card->raw_cid;
68 
69 	/*
70 	 * Add the raw card ID (cid) data to the entropy pool. It doesn't
71 	 * matter that not all of it is unique, it's just bonus entropy.
72 	 */
73 	add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
74 
75 	/*
76 	 * The selection of the format here is based upon published
77 	 * specs from SanDisk and from what people have reported.
78 	 */
79 	switch (card->csd.mmca_vsn) {
80 	case 0: /* MMC v1.0 - v1.2 */
81 	case 1: /* MMC v1.4 */
82 		card->cid.manfid	= unstuff_bits(resp, 104, 24);
83 		card->cid.prod_name[0]	= unstuff_bits(resp, 96, 8);
84 		card->cid.prod_name[1]	= unstuff_bits(resp, 88, 8);
85 		card->cid.prod_name[2]	= unstuff_bits(resp, 80, 8);
86 		card->cid.prod_name[3]	= unstuff_bits(resp, 72, 8);
87 		card->cid.prod_name[4]	= unstuff_bits(resp, 64, 8);
88 		card->cid.prod_name[5]	= unstuff_bits(resp, 56, 8);
89 		card->cid.prod_name[6]	= unstuff_bits(resp, 48, 8);
90 		card->cid.hwrev		= unstuff_bits(resp, 44, 4);
91 		card->cid.fwrev		= unstuff_bits(resp, 40, 4);
92 		card->cid.serial	= unstuff_bits(resp, 16, 24);
93 		card->cid.month		= unstuff_bits(resp, 12, 4);
94 		card->cid.year		= unstuff_bits(resp, 8, 4) + 1997;
95 		break;
96 
97 	case 2: /* MMC v2.0 - v2.2 */
98 	case 3: /* MMC v3.1 - v3.3 */
99 	case 4: /* MMC v4 */
100 		card->cid.manfid	= unstuff_bits(resp, 120, 8);
101 		card->cid.oemid		= unstuff_bits(resp, 104, 16);
102 		card->cid.prod_name[0]	= unstuff_bits(resp, 96, 8);
103 		card->cid.prod_name[1]	= unstuff_bits(resp, 88, 8);
104 		card->cid.prod_name[2]	= unstuff_bits(resp, 80, 8);
105 		card->cid.prod_name[3]	= unstuff_bits(resp, 72, 8);
106 		card->cid.prod_name[4]	= unstuff_bits(resp, 64, 8);
107 		card->cid.prod_name[5]	= unstuff_bits(resp, 56, 8);
108 		card->cid.prv		= unstuff_bits(resp, 48, 8);
109 		card->cid.serial	= unstuff_bits(resp, 16, 32);
110 		card->cid.month		= unstuff_bits(resp, 12, 4);
111 		card->cid.year		= unstuff_bits(resp, 8, 4) + 1997;
112 		break;
113 
114 	default:
115 		pr_err("%s: card has unknown MMCA version %d\n",
116 			mmc_hostname(card->host), card->csd.mmca_vsn);
117 		return -EINVAL;
118 	}
119 
120 	/* some product names include trailing whitespace */
121 	strim(card->cid.prod_name);
122 
123 	return 0;
124 }
125 
126 static void mmc_set_erase_size(struct mmc_card *card)
127 {
128 	if (card->ext_csd.erase_group_def & 1)
129 		card->erase_size = card->ext_csd.hc_erase_size;
130 	else
131 		card->erase_size = card->csd.erase_size;
132 
133 	mmc_init_erase(card);
134 }
135 
136 
137 static void mmc_set_wp_grp_size(struct mmc_card *card)
138 {
139 	if (card->ext_csd.erase_group_def & 1)
140 		card->wp_grp_size = card->ext_csd.hc_erase_size *
141 			card->ext_csd.raw_hc_erase_gap_size;
142 	else
143 		card->wp_grp_size = card->csd.erase_size *
144 			(card->csd.wp_grp_size + 1);
145 }
146 
147 /*
148  * Given a 128-bit response, decode to our card CSD structure.
149  */
150 static int mmc_decode_csd(struct mmc_card *card)
151 {
152 	struct mmc_csd *csd = &card->csd;
153 	unsigned int e, m, a, b;
154 	u32 *resp = card->raw_csd;
155 
156 	/*
157 	 * We only understand CSD structure v1.1 and v1.2.
158 	 * v1.2 has extra information in bits 15, 11 and 10.
159 	 * We also support eMMC v4.4 & v4.41.
160 	 */
161 	csd->structure = unstuff_bits(resp, 126, 2);
162 	if (csd->structure == 0) {
163 		pr_err("%s: unrecognised CSD structure version %d\n",
164 			mmc_hostname(card->host), csd->structure);
165 		return -EINVAL;
166 	}
167 
168 	csd->mmca_vsn	 = unstuff_bits(resp, 122, 4);
169 	m = unstuff_bits(resp, 115, 4);
170 	e = unstuff_bits(resp, 112, 3);
171 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
172 	csd->taac_clks	 = unstuff_bits(resp, 104, 8) * 100;
173 
174 	m = unstuff_bits(resp, 99, 4);
175 	e = unstuff_bits(resp, 96, 3);
176 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
177 	csd->cmdclass	  = unstuff_bits(resp, 84, 12);
178 
179 	e = unstuff_bits(resp, 47, 3);
180 	m = unstuff_bits(resp, 62, 12);
181 	csd->capacity	  = (1 + m) << (e + 2);
182 
183 	csd->read_blkbits = unstuff_bits(resp, 80, 4);
184 	csd->read_partial = unstuff_bits(resp, 79, 1);
185 	csd->write_misalign = unstuff_bits(resp, 78, 1);
186 	csd->read_misalign = unstuff_bits(resp, 77, 1);
187 	csd->dsr_imp = unstuff_bits(resp, 76, 1);
188 	csd->r2w_factor = unstuff_bits(resp, 26, 3);
189 	csd->write_blkbits = unstuff_bits(resp, 22, 4);
190 	csd->write_partial = unstuff_bits(resp, 21, 1);
191 
192 	if (csd->write_blkbits >= 9) {
193 		a = unstuff_bits(resp, 42, 5);
194 		b = unstuff_bits(resp, 37, 5);
195 		csd->erase_size = (a + 1) * (b + 1);
196 		csd->erase_size <<= csd->write_blkbits - 9;
197 		csd->wp_grp_size = unstuff_bits(resp, 32, 5);
198 	}
199 
200 	return 0;
201 }
202 
203 static void mmc_select_card_type(struct mmc_card *card)
204 {
205 	struct mmc_host *host = card->host;
206 	u8 card_type = card->ext_csd.raw_card_type;
207 	u32 caps = host->caps, caps2 = host->caps2;
208 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
209 	unsigned int avail_type = 0;
210 
211 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
212 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
213 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
214 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
215 	}
216 
217 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
218 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
219 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
220 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
221 	}
222 
223 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
224 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
225 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
226 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
227 	}
228 
229 	if (caps & MMC_CAP_1_2V_DDR &&
230 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
231 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
232 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
233 	}
234 
235 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
236 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
237 		hs200_max_dtr = MMC_HS200_MAX_DTR;
238 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
239 	}
240 
241 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
242 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
243 		hs200_max_dtr = MMC_HS200_MAX_DTR;
244 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
245 	}
246 
247 	if (caps2 & MMC_CAP2_HS400_1_8V &&
248 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
249 		hs200_max_dtr = MMC_HS200_MAX_DTR;
250 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
251 	}
252 
253 	if (caps2 & MMC_CAP2_HS400_1_2V &&
254 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
255 		hs200_max_dtr = MMC_HS200_MAX_DTR;
256 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
257 	}
258 
259 	if ((caps2 & MMC_CAP2_HS400_ES) &&
260 	    card->ext_csd.strobe_support &&
261 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
262 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
263 
264 	card->ext_csd.hs_max_dtr = hs_max_dtr;
265 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
266 	card->mmc_avail_type = avail_type;
267 }
268 
269 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
270 {
271 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
272 
273 	/*
274 	 * Disable these attributes by default
275 	 */
276 	card->ext_csd.enhanced_area_offset = -EINVAL;
277 	card->ext_csd.enhanced_area_size = -EINVAL;
278 
279 	/*
280 	 * Enhanced area feature support -- check whether the eMMC
281 	 * card has the Enhanced area enabled.  If so, export enhanced
282 	 * area offset and size to user by adding sysfs interface.
283 	 */
284 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
285 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
286 		if (card->ext_csd.partition_setting_completed) {
287 			hc_erase_grp_sz =
288 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
289 			hc_wp_grp_sz =
290 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
291 
292 			/*
293 			 * calculate the enhanced data area offset, in bytes
294 			 */
295 			card->ext_csd.enhanced_area_offset =
296 				(((unsigned long long)ext_csd[139]) << 24) +
297 				(((unsigned long long)ext_csd[138]) << 16) +
298 				(((unsigned long long)ext_csd[137]) << 8) +
299 				(((unsigned long long)ext_csd[136]));
300 			if (mmc_card_blockaddr(card))
301 				card->ext_csd.enhanced_area_offset <<= 9;
302 			/*
303 			 * calculate the enhanced data area size, in kilobytes
304 			 */
305 			card->ext_csd.enhanced_area_size =
306 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
307 				ext_csd[140];
308 			card->ext_csd.enhanced_area_size *=
309 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
310 			card->ext_csd.enhanced_area_size <<= 9;
311 		} else {
312 			pr_warn("%s: defines enhanced area without partition setting complete\n",
313 				mmc_hostname(card->host));
314 		}
315 	}
316 }
317 
318 static void mmc_part_add(struct mmc_card *card, u64 size,
319 			 unsigned int part_cfg, char *name, int idx, bool ro,
320 			 int area_type)
321 {
322 	card->part[card->nr_parts].size = size;
323 	card->part[card->nr_parts].part_cfg = part_cfg;
324 	sprintf(card->part[card->nr_parts].name, name, idx);
325 	card->part[card->nr_parts].force_ro = ro;
326 	card->part[card->nr_parts].area_type = area_type;
327 	card->nr_parts++;
328 }
329 
330 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
331 {
332 	int idx;
333 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
334 	u64 part_size;
335 
336 	/*
337 	 * General purpose partition feature support --
338 	 * If ext_csd has the size of general purpose partitions,
339 	 * set size, part_cfg, partition name in mmc_part.
340 	 */
341 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
342 	    EXT_CSD_PART_SUPPORT_PART_EN) {
343 		hc_erase_grp_sz =
344 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
345 		hc_wp_grp_sz =
346 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
347 
348 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
349 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
350 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
351 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
352 				continue;
353 			if (card->ext_csd.partition_setting_completed == 0) {
354 				pr_warn("%s: has partition size defined without partition complete\n",
355 					mmc_hostname(card->host));
356 				break;
357 			}
358 			part_size =
359 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
360 				<< 16) +
361 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
362 				<< 8) +
363 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
364 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
365 			mmc_part_add(card, part_size << 19,
366 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
367 				"gp%d", idx, false,
368 				MMC_BLK_DATA_AREA_GP);
369 		}
370 	}
371 }
372 
373 /* Minimum partition switch timeout in milliseconds */
374 #define MMC_MIN_PART_SWITCH_TIME	300
375 
376 /*
377  * Decode extended CSD.
378  */
379 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
380 {
381 	int err = 0, idx;
382 	u64 part_size;
383 	struct device_node *np;
384 	bool broken_hpi = false;
385 
386 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
387 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
388 	if (card->csd.structure == 3) {
389 		if (card->ext_csd.raw_ext_csd_structure > 2) {
390 			pr_err("%s: unrecognised EXT_CSD structure "
391 				"version %d\n", mmc_hostname(card->host),
392 					card->ext_csd.raw_ext_csd_structure);
393 			err = -EINVAL;
394 			goto out;
395 		}
396 	}
397 
398 	np = mmc_of_find_child_device(card->host, 0);
399 	if (np && of_device_is_compatible(np, "mmc-card"))
400 		broken_hpi = of_property_read_bool(np, "broken-hpi");
401 	of_node_put(np);
402 
403 	/*
404 	 * The EXT_CSD format is meant to be forward compatible. As long
405 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
406 	 * are authorized, see JEDEC JESD84-B50 section B.8.
407 	 */
408 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
409 
410 	/* fixup device after ext_csd revision field is updated */
411 	mmc_fixup_device(card, mmc_ext_csd_fixups);
412 
413 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
414 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
415 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
416 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
417 	if (card->ext_csd.rev >= 2) {
418 		card->ext_csd.sectors =
419 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
420 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
421 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
422 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
423 
424 		/* Cards with density > 2GiB are sector addressed */
425 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
426 			mmc_card_set_blockaddr(card);
427 	}
428 
429 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
430 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
431 
432 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
433 	card->ext_csd.raw_erase_timeout_mult =
434 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
435 	card->ext_csd.raw_hc_erase_grp_size =
436 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
437 	card->ext_csd.raw_boot_mult =
438 		ext_csd[EXT_CSD_BOOT_MULT];
439 	if (card->ext_csd.rev >= 3) {
440 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
441 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
442 
443 		/* EXT_CSD value is in units of 10ms, but we store in ms */
444 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
445 
446 		/* Sleep / awake timeout in 100ns units */
447 		if (sa_shift > 0 && sa_shift <= 0x17)
448 			card->ext_csd.sa_timeout =
449 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
450 		card->ext_csd.erase_group_def =
451 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
452 		card->ext_csd.hc_erase_timeout = 300 *
453 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
454 		card->ext_csd.hc_erase_size =
455 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
456 
457 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
458 
459 		/*
460 		 * There are two boot regions of equal size, defined in
461 		 * multiples of 128K.
462 		 */
463 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_host_can_access_boot(card->host)) {
464 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
465 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
466 				mmc_part_add(card, part_size,
467 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
468 					"boot%d", idx, true,
469 					MMC_BLK_DATA_AREA_BOOT);
470 			}
471 		}
472 	}
473 
474 	card->ext_csd.raw_hc_erase_gap_size =
475 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
476 	card->ext_csd.raw_sec_trim_mult =
477 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
478 	card->ext_csd.raw_sec_erase_mult =
479 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
480 	card->ext_csd.raw_sec_feature_support =
481 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
482 	card->ext_csd.raw_trim_mult =
483 		ext_csd[EXT_CSD_TRIM_MULT];
484 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
485 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
486 	if (card->ext_csd.rev >= 4) {
487 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
488 		    EXT_CSD_PART_SETTING_COMPLETED)
489 			card->ext_csd.partition_setting_completed = 1;
490 		else
491 			card->ext_csd.partition_setting_completed = 0;
492 
493 		mmc_manage_enhanced_area(card, ext_csd);
494 
495 		mmc_manage_gp_partitions(card, ext_csd);
496 
497 		card->ext_csd.sec_trim_mult =
498 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
499 		card->ext_csd.sec_erase_mult =
500 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
501 		card->ext_csd.sec_feature_support =
502 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
503 		card->ext_csd.trim_timeout = 300 *
504 			ext_csd[EXT_CSD_TRIM_MULT];
505 
506 		/*
507 		 * Note that the call to mmc_part_add above defaults to read
508 		 * only. If this default assumption is changed, the call must
509 		 * take into account the value of boot_locked below.
510 		 */
511 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
512 		card->ext_csd.boot_ro_lockable = true;
513 
514 		/* Save power class values */
515 		card->ext_csd.raw_pwr_cl_52_195 =
516 			ext_csd[EXT_CSD_PWR_CL_52_195];
517 		card->ext_csd.raw_pwr_cl_26_195 =
518 			ext_csd[EXT_CSD_PWR_CL_26_195];
519 		card->ext_csd.raw_pwr_cl_52_360 =
520 			ext_csd[EXT_CSD_PWR_CL_52_360];
521 		card->ext_csd.raw_pwr_cl_26_360 =
522 			ext_csd[EXT_CSD_PWR_CL_26_360];
523 		card->ext_csd.raw_pwr_cl_200_195 =
524 			ext_csd[EXT_CSD_PWR_CL_200_195];
525 		card->ext_csd.raw_pwr_cl_200_360 =
526 			ext_csd[EXT_CSD_PWR_CL_200_360];
527 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
528 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
529 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
530 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
531 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
532 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
533 	}
534 
535 	if (card->ext_csd.rev >= 5) {
536 		/* Adjust production date as per JEDEC JESD84-B451 */
537 		if (card->cid.year < 2010)
538 			card->cid.year += 16;
539 
540 		/* check whether the eMMC card supports BKOPS */
541 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
542 			card->ext_csd.bkops = 1;
543 			card->ext_csd.man_bkops_en =
544 					(ext_csd[EXT_CSD_BKOPS_EN] &
545 						EXT_CSD_MANUAL_BKOPS_MASK);
546 			card->ext_csd.raw_bkops_status =
547 				ext_csd[EXT_CSD_BKOPS_STATUS];
548 			if (card->ext_csd.man_bkops_en)
549 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
550 					mmc_hostname(card->host));
551 			card->ext_csd.auto_bkops_en =
552 					(ext_csd[EXT_CSD_BKOPS_EN] &
553 						EXT_CSD_AUTO_BKOPS_MASK);
554 			if (card->ext_csd.auto_bkops_en)
555 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
556 					mmc_hostname(card->host));
557 		}
558 
559 		/* check whether the eMMC card supports HPI */
560 		if (!mmc_card_broken_hpi(card) &&
561 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
562 			card->ext_csd.hpi = 1;
563 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
564 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
565 			else
566 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
567 			/*
568 			 * Indicate the maximum timeout to close
569 			 * a command interrupted by HPI
570 			 */
571 			card->ext_csd.out_of_int_time =
572 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
573 		}
574 
575 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
576 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
577 
578 		/*
579 		 * RPMB regions are defined in multiples of 128K.
580 		 */
581 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
582 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_can_cmd23(card->host)) {
583 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
584 				EXT_CSD_PART_CONFIG_ACC_RPMB,
585 				"rpmb", 0, false,
586 				MMC_BLK_DATA_AREA_RPMB);
587 		}
588 	}
589 
590 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
591 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
592 		card->erased_byte = 0xFF;
593 	else
594 		card->erased_byte = 0x0;
595 
596 	/* eMMC v4.5 or later */
597 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
598 	if (card->ext_csd.rev >= 6) {
599 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
600 
601 		card->ext_csd.generic_cmd6_time = 10 *
602 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
603 		card->ext_csd.power_off_longtime = 10 *
604 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
605 
606 		card->ext_csd.cache_size =
607 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
608 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
609 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
610 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
611 
612 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
613 			card->ext_csd.data_sector_size = 4096;
614 		else
615 			card->ext_csd.data_sector_size = 512;
616 
617 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
618 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
619 			card->ext_csd.data_tag_unit_size =
620 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
621 			(card->ext_csd.data_sector_size);
622 		} else {
623 			card->ext_csd.data_tag_unit_size = 0;
624 		}
625 	} else {
626 		card->ext_csd.data_sector_size = 512;
627 	}
628 
629 	/*
630 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
631 	 * when accessing a specific field", so use it here if there is no
632 	 * PARTITION_SWITCH_TIME.
633 	 */
634 	if (!card->ext_csd.part_time)
635 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
636 	/* Some eMMC set the value too low so set a minimum */
637 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
638 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
639 
640 	/* eMMC v5 or later */
641 	if (card->ext_csd.rev >= 7) {
642 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
643 		       MMC_FIRMWARE_LEN);
644 		card->ext_csd.ffu_capable =
645 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
646 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
647 
648 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
649 		card->ext_csd.device_life_time_est_typ_a =
650 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
651 		card->ext_csd.device_life_time_est_typ_b =
652 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
653 	}
654 
655 	/* eMMC v5.1 or later */
656 	if (card->ext_csd.rev >= 8) {
657 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
658 					     EXT_CSD_CMDQ_SUPPORTED;
659 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
660 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
661 		/* Exclude inefficiently small queue depths */
662 		if (card->ext_csd.cmdq_depth <= 2) {
663 			card->ext_csd.cmdq_support = false;
664 			card->ext_csd.cmdq_depth = 0;
665 		}
666 		if (card->ext_csd.cmdq_support) {
667 			pr_debug("%s: Command Queue supported depth %u\n",
668 				 mmc_hostname(card->host),
669 				 card->ext_csd.cmdq_depth);
670 		}
671 		card->ext_csd.enhanced_rpmb_supported =
672 					(card->ext_csd.rel_param &
673 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
674 	}
675 out:
676 	return err;
677 }
678 
679 static int mmc_read_ext_csd(struct mmc_card *card)
680 {
681 	u8 *ext_csd;
682 	int err;
683 
684 	if (!mmc_card_can_ext_csd(card))
685 		return 0;
686 
687 	err = mmc_get_ext_csd(card, &ext_csd);
688 	if (err) {
689 		/* If the host or the card can't do the switch,
690 		 * fail more gracefully. */
691 		if ((err != -EINVAL)
692 		 && (err != -ENOSYS)
693 		 && (err != -EFAULT))
694 			return err;
695 
696 		/*
697 		 * High capacity cards should have this "magic" size
698 		 * stored in their CSD.
699 		 */
700 		if (card->csd.capacity == (4096 * 512)) {
701 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
702 				mmc_hostname(card->host));
703 		} else {
704 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
705 				mmc_hostname(card->host));
706 			err = 0;
707 		}
708 
709 		return err;
710 	}
711 
712 	err = mmc_decode_ext_csd(card, ext_csd);
713 	kfree(ext_csd);
714 	return err;
715 }
716 
717 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
718 {
719 	u8 *bw_ext_csd;
720 	int err;
721 
722 	if (bus_width == MMC_BUS_WIDTH_1)
723 		return 0;
724 
725 	err = mmc_get_ext_csd(card, &bw_ext_csd);
726 	if (err)
727 		return err;
728 
729 	/* only compare read only fields */
730 	err = !((card->ext_csd.raw_partition_support ==
731 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
732 		(card->ext_csd.raw_erased_mem_count ==
733 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
734 		(card->ext_csd.rev ==
735 			bw_ext_csd[EXT_CSD_REV]) &&
736 		(card->ext_csd.raw_ext_csd_structure ==
737 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
738 		(card->ext_csd.raw_card_type ==
739 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
740 		(card->ext_csd.raw_s_a_timeout ==
741 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
742 		(card->ext_csd.raw_hc_erase_gap_size ==
743 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
744 		(card->ext_csd.raw_erase_timeout_mult ==
745 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
746 		(card->ext_csd.raw_hc_erase_grp_size ==
747 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
748 		(card->ext_csd.raw_sec_trim_mult ==
749 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
750 		(card->ext_csd.raw_sec_erase_mult ==
751 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
752 		(card->ext_csd.raw_sec_feature_support ==
753 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
754 		(card->ext_csd.raw_trim_mult ==
755 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
756 		(card->ext_csd.raw_sectors[0] ==
757 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
758 		(card->ext_csd.raw_sectors[1] ==
759 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
760 		(card->ext_csd.raw_sectors[2] ==
761 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
762 		(card->ext_csd.raw_sectors[3] ==
763 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
764 		(card->ext_csd.raw_pwr_cl_52_195 ==
765 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
766 		(card->ext_csd.raw_pwr_cl_26_195 ==
767 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
768 		(card->ext_csd.raw_pwr_cl_52_360 ==
769 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
770 		(card->ext_csd.raw_pwr_cl_26_360 ==
771 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
772 		(card->ext_csd.raw_pwr_cl_200_195 ==
773 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
774 		(card->ext_csd.raw_pwr_cl_200_360 ==
775 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
776 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
777 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
778 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
779 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
780 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
781 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
782 
783 	if (err)
784 		err = -EINVAL;
785 
786 	kfree(bw_ext_csd);
787 	return err;
788 }
789 
790 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
791 	card->raw_cid[2], card->raw_cid[3]);
792 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
793 	card->raw_csd[2], card->raw_csd[3]);
794 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
795 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
796 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
797 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9);
798 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
799 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
800 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
801 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
802 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
803 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
804 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
805 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
806 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
807 	card->ext_csd.device_life_time_est_typ_a,
808 	card->ext_csd.device_life_time_est_typ_b);
809 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
810 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
811 		card->ext_csd.enhanced_area_offset);
812 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
813 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
814 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
815 	card->ext_csd.enhanced_rpmb_supported);
816 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
817 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
818 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
819 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
820 
821 static ssize_t mmc_fwrev_show(struct device *dev,
822 			      struct device_attribute *attr,
823 			      char *buf)
824 {
825 	struct mmc_card *card = mmc_dev_to_card(dev);
826 
827 	if (card->ext_csd.rev < 7)
828 		return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
829 	else
830 		return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
831 				  card->ext_csd.fwrev);
832 }
833 
834 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
835 
836 static ssize_t mmc_dsr_show(struct device *dev,
837 			    struct device_attribute *attr,
838 			    char *buf)
839 {
840 	struct mmc_card *card = mmc_dev_to_card(dev);
841 	struct mmc_host *host = card->host;
842 
843 	if (card->csd.dsr_imp && host->dsr_req)
844 		return sysfs_emit(buf, "0x%x\n", host->dsr);
845 	else
846 		/* return default DSR value */
847 		return sysfs_emit(buf, "0x%x\n", 0x404);
848 }
849 
850 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
851 
852 static struct attribute *mmc_std_attrs[] = {
853 	&dev_attr_cid.attr,
854 	&dev_attr_csd.attr,
855 	&dev_attr_date.attr,
856 	&dev_attr_erase_size.attr,
857 	&dev_attr_preferred_erase_size.attr,
858 	&dev_attr_wp_grp_size.attr,
859 	&dev_attr_fwrev.attr,
860 	&dev_attr_ffu_capable.attr,
861 	&dev_attr_hwrev.attr,
862 	&dev_attr_manfid.attr,
863 	&dev_attr_name.attr,
864 	&dev_attr_oemid.attr,
865 	&dev_attr_prv.attr,
866 	&dev_attr_rev.attr,
867 	&dev_attr_pre_eol_info.attr,
868 	&dev_attr_life_time.attr,
869 	&dev_attr_serial.attr,
870 	&dev_attr_enhanced_area_offset.attr,
871 	&dev_attr_enhanced_area_size.attr,
872 	&dev_attr_raw_rpmb_size_mult.attr,
873 	&dev_attr_enhanced_rpmb_supported.attr,
874 	&dev_attr_rel_sectors.attr,
875 	&dev_attr_ocr.attr,
876 	&dev_attr_rca.attr,
877 	&dev_attr_dsr.attr,
878 	&dev_attr_cmdq_en.attr,
879 	NULL,
880 };
881 ATTRIBUTE_GROUPS(mmc_std);
882 
883 static const struct device_type mmc_type = {
884 	.groups = mmc_std_groups,
885 };
886 
887 /*
888  * Select the PowerClass for the current bus width
889  * If power class is defined for 4/8 bit bus in the
890  * extended CSD register, select it by executing the
891  * mmc_switch command.
892  */
893 static int __mmc_select_powerclass(struct mmc_card *card,
894 				   unsigned int bus_width)
895 {
896 	struct mmc_host *host = card->host;
897 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
898 	unsigned int pwrclass_val = 0;
899 	int err = 0;
900 
901 	switch (1 << host->ios.vdd) {
902 	case MMC_VDD_165_195:
903 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
904 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
905 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
906 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
907 				ext_csd->raw_pwr_cl_52_195 :
908 				ext_csd->raw_pwr_cl_ddr_52_195;
909 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
910 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
911 		break;
912 	case MMC_VDD_27_28:
913 	case MMC_VDD_28_29:
914 	case MMC_VDD_29_30:
915 	case MMC_VDD_30_31:
916 	case MMC_VDD_31_32:
917 	case MMC_VDD_32_33:
918 	case MMC_VDD_33_34:
919 	case MMC_VDD_34_35:
920 	case MMC_VDD_35_36:
921 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
922 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
923 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
924 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
925 				ext_csd->raw_pwr_cl_52_360 :
926 				ext_csd->raw_pwr_cl_ddr_52_360;
927 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
928 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
929 				ext_csd->raw_pwr_cl_ddr_200_360 :
930 				ext_csd->raw_pwr_cl_200_360;
931 		break;
932 	default:
933 		pr_warn("%s: Voltage range not supported for power class\n",
934 			mmc_hostname(host));
935 		return -EINVAL;
936 	}
937 
938 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
939 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
940 				EXT_CSD_PWR_CL_8BIT_SHIFT;
941 	else
942 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
943 				EXT_CSD_PWR_CL_4BIT_SHIFT;
944 
945 	/* If the power class is different from the default value */
946 	if (pwrclass_val > 0) {
947 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
948 				 EXT_CSD_POWER_CLASS,
949 				 pwrclass_val,
950 				 card->ext_csd.generic_cmd6_time);
951 	}
952 
953 	return err;
954 }
955 
956 static int mmc_select_powerclass(struct mmc_card *card)
957 {
958 	struct mmc_host *host = card->host;
959 	u32 bus_width, ext_csd_bits;
960 	int err, ddr;
961 
962 	/* Power class selection is supported for versions >= 4.0 */
963 	if (!mmc_card_can_ext_csd(card))
964 		return 0;
965 
966 	bus_width = host->ios.bus_width;
967 	/* Power class values are defined only for 4/8 bit bus */
968 	if (bus_width == MMC_BUS_WIDTH_1)
969 		return 0;
970 
971 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
972 	if (ddr)
973 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
974 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
975 	else
976 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
977 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
978 
979 	err = __mmc_select_powerclass(card, ext_csd_bits);
980 	if (err)
981 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
982 			mmc_hostname(host), 1 << bus_width, ddr);
983 
984 	return err;
985 }
986 
987 /*
988  * Set the bus speed for the selected speed mode.
989  */
990 static void mmc_set_bus_speed(struct mmc_card *card)
991 {
992 	unsigned int max_dtr = (unsigned int)-1;
993 
994 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
995 	     max_dtr > card->ext_csd.hs200_max_dtr)
996 		max_dtr = card->ext_csd.hs200_max_dtr;
997 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
998 		max_dtr = card->ext_csd.hs_max_dtr;
999 	else if (max_dtr > card->csd.max_dtr)
1000 		max_dtr = card->csd.max_dtr;
1001 
1002 	mmc_set_clock(card->host, max_dtr);
1003 }
1004 
1005 /*
1006  * Select the bus width amoung 4-bit and 8-bit(SDR).
1007  * If the bus width is changed successfully, return the selected width value.
1008  * Zero is returned instead of error value if the wide width is not supported.
1009  */
1010 static int mmc_select_bus_width(struct mmc_card *card)
1011 {
1012 	static unsigned ext_csd_bits[] = {
1013 		EXT_CSD_BUS_WIDTH_8,
1014 		EXT_CSD_BUS_WIDTH_4,
1015 		EXT_CSD_BUS_WIDTH_1,
1016 	};
1017 	static unsigned bus_widths[] = {
1018 		MMC_BUS_WIDTH_8,
1019 		MMC_BUS_WIDTH_4,
1020 		MMC_BUS_WIDTH_1,
1021 	};
1022 	struct mmc_host *host = card->host;
1023 	unsigned idx, bus_width = 0;
1024 	int err = 0;
1025 
1026 	if (!mmc_card_can_ext_csd(card) ||
1027 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1028 		return 0;
1029 
1030 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1031 
1032 	/*
1033 	 * Unlike SD, MMC cards dont have a configuration register to notify
1034 	 * supported bus width. So bus test command should be run to identify
1035 	 * the supported bus width or compare the ext csd values of current
1036 	 * bus width and ext csd values of 1 bit mode read earlier.
1037 	 */
1038 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1039 		/*
1040 		 * Host is capable of 8bit transfer, then switch
1041 		 * the device to work in 8bit transfer mode. If the
1042 		 * mmc switch command returns error then switch to
1043 		 * 4bit transfer mode. On success set the corresponding
1044 		 * bus width on the host.
1045 		 */
1046 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1047 				 EXT_CSD_BUS_WIDTH,
1048 				 ext_csd_bits[idx],
1049 				 card->ext_csd.generic_cmd6_time);
1050 		if (err)
1051 			continue;
1052 
1053 		bus_width = bus_widths[idx];
1054 		mmc_set_bus_width(host, bus_width);
1055 
1056 		/*
1057 		 * If controller can't handle bus width test,
1058 		 * compare ext_csd previously read in 1 bit mode
1059 		 * against ext_csd at new bus width
1060 		 */
1061 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1062 			err = mmc_compare_ext_csds(card, bus_width);
1063 		else
1064 			err = mmc_bus_test(card, bus_width);
1065 
1066 		if (!err) {
1067 			err = bus_width;
1068 			break;
1069 		} else {
1070 			pr_warn("%s: switch to bus width %d failed\n",
1071 				mmc_hostname(host), 1 << bus_width);
1072 		}
1073 	}
1074 
1075 	return err;
1076 }
1077 
1078 /*
1079  * Switch to the high-speed mode
1080  */
1081 static int mmc_select_hs(struct mmc_card *card)
1082 {
1083 	int err;
1084 
1085 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1086 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1087 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1088 			   true, true, MMC_CMD_RETRIES);
1089 	if (err)
1090 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1091 			mmc_hostname(card->host), err);
1092 
1093 	return err;
1094 }
1095 
1096 /*
1097  * Activate wide bus and DDR if supported.
1098  */
1099 static int mmc_select_hs_ddr(struct mmc_card *card)
1100 {
1101 	struct mmc_host *host = card->host;
1102 	u32 bus_width, ext_csd_bits;
1103 	int err = 0;
1104 
1105 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1106 		return 0;
1107 
1108 	bus_width = host->ios.bus_width;
1109 	if (bus_width == MMC_BUS_WIDTH_1)
1110 		return 0;
1111 
1112 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1113 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1114 
1115 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1116 			   EXT_CSD_BUS_WIDTH,
1117 			   ext_csd_bits,
1118 			   card->ext_csd.generic_cmd6_time,
1119 			   MMC_TIMING_MMC_DDR52,
1120 			   true, true, MMC_CMD_RETRIES);
1121 	if (err) {
1122 		pr_err("%s: switch to bus width %d ddr failed\n",
1123 			mmc_hostname(host), 1 << bus_width);
1124 		return err;
1125 	}
1126 
1127 	/*
1128 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1129 	 * signaling.
1130 	 *
1131 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1132 	 *
1133 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1134 	 * in the JEDEC spec for DDR.
1135 	 *
1136 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1137 	 * host controller can support this, like some of the SDHCI
1138 	 * controller which connect to an eMMC device. Some of these
1139 	 * host controller still needs to use 1.8v vccq for supporting
1140 	 * DDR mode.
1141 	 *
1142 	 * So the sequence will be:
1143 	 * if (host and device can both support 1.2v IO)
1144 	 *	use 1.2v IO;
1145 	 * else if (host and device can both support 1.8v IO)
1146 	 *	use 1.8v IO;
1147 	 * so if host and device can only support 3.3v IO, this is the
1148 	 * last choice.
1149 	 *
1150 	 * WARNING: eMMC rules are NOT the same as SD DDR
1151 	 */
1152 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1153 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1154 		if (!err)
1155 			return 0;
1156 	}
1157 
1158 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1159 	    host->caps & MMC_CAP_1_8V_DDR)
1160 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1161 
1162 	/* make sure vccq is 3.3v after switching disaster */
1163 	if (err)
1164 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1165 
1166 	return err;
1167 }
1168 
1169 static int mmc_select_hs400(struct mmc_card *card)
1170 {
1171 	struct mmc_host *host = card->host;
1172 	unsigned int max_dtr;
1173 	int err = 0;
1174 	u8 val;
1175 
1176 	/*
1177 	 * HS400 mode requires 8-bit bus width
1178 	 */
1179 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1180 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1181 		return 0;
1182 
1183 	/* Switch card to HS mode */
1184 	val = EXT_CSD_TIMING_HS;
1185 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1186 			   EXT_CSD_HS_TIMING, val,
1187 			   card->ext_csd.generic_cmd6_time, 0,
1188 			   false, true, MMC_CMD_RETRIES);
1189 	if (err) {
1190 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1191 			mmc_hostname(host), err);
1192 		return err;
1193 	}
1194 
1195 	/* Prepare host to downgrade to HS timing */
1196 	if (host->ops->hs400_downgrade)
1197 		host->ops->hs400_downgrade(host);
1198 
1199 	/* Set host controller to HS timing */
1200 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1201 
1202 	/* Reduce frequency to HS frequency */
1203 	max_dtr = card->ext_csd.hs_max_dtr;
1204 	mmc_set_clock(host, max_dtr);
1205 
1206 	err = mmc_switch_status(card, true);
1207 	if (err)
1208 		goto out_err;
1209 
1210 	if (host->ops->hs400_prepare_ddr)
1211 		host->ops->hs400_prepare_ddr(host);
1212 
1213 	/* Switch card to DDR */
1214 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1215 			 EXT_CSD_BUS_WIDTH,
1216 			 EXT_CSD_DDR_BUS_WIDTH_8,
1217 			 card->ext_csd.generic_cmd6_time);
1218 	if (err) {
1219 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1220 			mmc_hostname(host), err);
1221 		return err;
1222 	}
1223 
1224 	/* Switch card to HS400 */
1225 	val = EXT_CSD_TIMING_HS400 |
1226 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1227 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1228 			   EXT_CSD_HS_TIMING, val,
1229 			   card->ext_csd.generic_cmd6_time, 0,
1230 			   false, true, MMC_CMD_RETRIES);
1231 	if (err) {
1232 		pr_err("%s: switch to hs400 failed, err:%d\n",
1233 			 mmc_hostname(host), err);
1234 		return err;
1235 	}
1236 
1237 	/* Set host controller to HS400 timing and frequency */
1238 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1239 	mmc_set_bus_speed(card);
1240 
1241 	if (host->ops->execute_hs400_tuning) {
1242 		mmc_retune_disable(host);
1243 		err = host->ops->execute_hs400_tuning(host, card);
1244 		mmc_retune_enable(host);
1245 		if (err)
1246 			goto out_err;
1247 	}
1248 
1249 	if (host->ops->hs400_complete)
1250 		host->ops->hs400_complete(host);
1251 
1252 	err = mmc_switch_status(card, true);
1253 	if (err)
1254 		goto out_err;
1255 
1256 	return 0;
1257 
1258 out_err:
1259 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1260 	       __func__, err);
1261 	return err;
1262 }
1263 
1264 int mmc_hs200_to_hs400(struct mmc_card *card)
1265 {
1266 	return mmc_select_hs400(card);
1267 }
1268 
1269 int mmc_hs400_to_hs200(struct mmc_card *card)
1270 {
1271 	struct mmc_host *host = card->host;
1272 	unsigned int max_dtr;
1273 	int err;
1274 	u8 val;
1275 
1276 	/* Reduce frequency to HS */
1277 	max_dtr = card->ext_csd.hs_max_dtr;
1278 	mmc_set_clock(host, max_dtr);
1279 
1280 	/* Switch HS400 to HS DDR */
1281 	val = EXT_CSD_TIMING_HS;
1282 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1283 			   val, card->ext_csd.generic_cmd6_time, 0,
1284 			   false, true, MMC_CMD_RETRIES);
1285 	if (err)
1286 		goto out_err;
1287 
1288 	if (host->ops->hs400_downgrade)
1289 		host->ops->hs400_downgrade(host);
1290 
1291 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1292 
1293 	err = mmc_switch_status(card, true);
1294 	if (err)
1295 		goto out_err;
1296 
1297 	/* Switch HS DDR to HS */
1298 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1299 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1300 			   0, false, true, MMC_CMD_RETRIES);
1301 	if (err)
1302 		goto out_err;
1303 
1304 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1305 
1306 	err = mmc_switch_status(card, true);
1307 	if (err)
1308 		goto out_err;
1309 
1310 	/* Switch HS to HS200 */
1311 	val = EXT_CSD_TIMING_HS200 |
1312 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1313 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1314 			   val, card->ext_csd.generic_cmd6_time, 0,
1315 			   false, true, MMC_CMD_RETRIES);
1316 	if (err)
1317 		goto out_err;
1318 
1319 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1320 
1321 	/*
1322 	 * For HS200, CRC errors are not a reliable way to know the switch
1323 	 * failed. If there really is a problem, we would expect tuning will
1324 	 * fail and the result ends up the same.
1325 	 */
1326 	err = mmc_switch_status(card, false);
1327 	if (err)
1328 		goto out_err;
1329 
1330 	mmc_set_bus_speed(card);
1331 
1332 	/* Prepare tuning for HS400 mode. */
1333 	if (host->ops->prepare_hs400_tuning)
1334 		host->ops->prepare_hs400_tuning(host, &host->ios);
1335 
1336 	return 0;
1337 
1338 out_err:
1339 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1340 	       __func__, err);
1341 	return err;
1342 }
1343 
1344 static void mmc_select_driver_type(struct mmc_card *card)
1345 {
1346 	int card_drv_type, drive_strength, drv_type = 0;
1347 	int fixed_drv_type = card->host->fixed_drv_type;
1348 
1349 	card_drv_type = card->ext_csd.raw_driver_strength |
1350 			mmc_driver_type_mask(0);
1351 
1352 	if (fixed_drv_type >= 0)
1353 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1354 				 ? fixed_drv_type : 0;
1355 	else
1356 		drive_strength = mmc_select_drive_strength(card,
1357 							   card->ext_csd.hs200_max_dtr,
1358 							   card_drv_type, &drv_type);
1359 
1360 	card->drive_strength = drive_strength;
1361 
1362 	if (drv_type)
1363 		mmc_set_driver_type(card->host, drv_type);
1364 }
1365 
1366 static int mmc_select_hs400es(struct mmc_card *card)
1367 {
1368 	struct mmc_host *host = card->host;
1369 	int err = -EINVAL;
1370 	u8 val;
1371 
1372 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1373 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1374 
1375 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1376 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1377 
1378 	/* If fails try again during next card power cycle */
1379 	if (err)
1380 		goto out_err;
1381 
1382 	err = mmc_select_bus_width(card);
1383 	if (err != MMC_BUS_WIDTH_8) {
1384 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1385 			mmc_hostname(host), err);
1386 		err = err < 0 ? err : -ENOTSUPP;
1387 		goto out_err;
1388 	}
1389 
1390 	/* Switch card to HS mode */
1391 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1392 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1393 			   card->ext_csd.generic_cmd6_time, 0,
1394 			   false, true, MMC_CMD_RETRIES);
1395 	if (err) {
1396 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1397 			mmc_hostname(host), err);
1398 		goto out_err;
1399 	}
1400 
1401 	/*
1402 	 * Bump to HS timing and frequency. Some cards don't handle
1403 	 * SEND_STATUS reliably at the initial frequency.
1404 	 */
1405 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1406 	mmc_set_bus_speed(card);
1407 
1408 	err = mmc_switch_status(card, true);
1409 	if (err)
1410 		goto out_err;
1411 
1412 	/* Switch card to DDR with strobe bit */
1413 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1414 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1415 			 EXT_CSD_BUS_WIDTH,
1416 			 val,
1417 			 card->ext_csd.generic_cmd6_time);
1418 	if (err) {
1419 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1420 			mmc_hostname(host), err);
1421 		goto out_err;
1422 	}
1423 
1424 	mmc_select_driver_type(card);
1425 
1426 	/* Switch card to HS400 */
1427 	val = EXT_CSD_TIMING_HS400 |
1428 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1429 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1430 			   EXT_CSD_HS_TIMING, val,
1431 			   card->ext_csd.generic_cmd6_time, 0,
1432 			   false, true, MMC_CMD_RETRIES);
1433 	if (err) {
1434 		pr_err("%s: switch to hs400es failed, err:%d\n",
1435 			mmc_hostname(host), err);
1436 		goto out_err;
1437 	}
1438 
1439 	/* Set host controller to HS400 timing and frequency */
1440 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1441 
1442 	/* Controller enable enhanced strobe function */
1443 	host->ios.enhanced_strobe = true;
1444 	if (host->ops->hs400_enhanced_strobe)
1445 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1446 
1447 	err = mmc_switch_status(card, true);
1448 	if (err)
1449 		goto out_err;
1450 
1451 	return 0;
1452 
1453 out_err:
1454 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1455 	       __func__, err);
1456 	return err;
1457 }
1458 
1459 /*
1460  * For device supporting HS200 mode, the following sequence
1461  * should be done before executing the tuning process.
1462  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1463  * 2. switch to HS200 mode
1464  * 3. set the clock to > 52Mhz and <=200MHz
1465  */
1466 static int mmc_select_hs200(struct mmc_card *card)
1467 {
1468 	struct mmc_host *host = card->host;
1469 	unsigned int old_timing, old_signal_voltage, old_clock;
1470 	int err = -EINVAL;
1471 	u8 val;
1472 
1473 	old_signal_voltage = host->ios.signal_voltage;
1474 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1475 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1476 
1477 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1478 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1479 
1480 	/* If fails try again during next card power cycle */
1481 	if (err)
1482 		return err;
1483 
1484 	mmc_select_driver_type(card);
1485 
1486 	/*
1487 	 * Set the bus width(4 or 8) with host's support and
1488 	 * switch to HS200 mode if bus width is set successfully.
1489 	 */
1490 	err = mmc_select_bus_width(card);
1491 	if (err > 0) {
1492 		val = EXT_CSD_TIMING_HS200 |
1493 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1494 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1495 				   EXT_CSD_HS_TIMING, val,
1496 				   card->ext_csd.generic_cmd6_time, 0,
1497 				   false, true, MMC_CMD_RETRIES);
1498 		if (err)
1499 			goto err;
1500 
1501 		/*
1502 		 * Bump to HS timing and frequency. Some cards don't handle
1503 		 * SEND_STATUS reliably at the initial frequency.
1504 		 * NB: We can't move to full (HS200) speeds until after we've
1505 		 * successfully switched over.
1506 		 */
1507 		old_timing = host->ios.timing;
1508 		old_clock = host->ios.clock;
1509 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1510 		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1511 
1512 		/*
1513 		 * For HS200, CRC errors are not a reliable way to know the
1514 		 * switch failed. If there really is a problem, we would expect
1515 		 * tuning will fail and the result ends up the same.
1516 		 */
1517 		err = mmc_switch_status(card, false);
1518 
1519 		/*
1520 		 * mmc_select_timing() assumes timing has not changed if
1521 		 * it is a switch error.
1522 		 */
1523 		if (err == -EBADMSG) {
1524 			mmc_set_clock(host, old_clock);
1525 			mmc_set_timing(host, old_timing);
1526 		}
1527 	}
1528 err:
1529 	if (err) {
1530 		/* fall back to the old signal voltage, if fails report error */
1531 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1532 			err = -EIO;
1533 
1534 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1535 		       __func__, err);
1536 	}
1537 	return err;
1538 }
1539 
1540 /*
1541  * Activate High Speed, HS200 or HS400ES mode if supported.
1542  */
1543 static int mmc_select_timing(struct mmc_card *card)
1544 {
1545 	int err = 0;
1546 
1547 	if (!mmc_card_can_ext_csd(card))
1548 		goto bus_speed;
1549 
1550 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1551 		err = mmc_select_hs400es(card);
1552 		goto out;
1553 	}
1554 
1555 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1556 		err = mmc_select_hs200(card);
1557 		if (err == -EBADMSG)
1558 			card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1559 		else
1560 			goto out;
1561 	}
1562 
1563 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1564 		err = mmc_select_hs(card);
1565 
1566 out:
1567 	if (err && err != -EBADMSG)
1568 		return err;
1569 
1570 bus_speed:
1571 	/*
1572 	 * Set the bus speed to the selected bus timing.
1573 	 * If timing is not selected, backward compatible is the default.
1574 	 */
1575 	mmc_set_bus_speed(card);
1576 	return 0;
1577 }
1578 
1579 /*
1580  * Execute tuning sequence to seek the proper bus operating
1581  * conditions for HS200 and HS400, which sends CMD21 to the device.
1582  */
1583 static int mmc_hs200_tuning(struct mmc_card *card)
1584 {
1585 	struct mmc_host *host = card->host;
1586 
1587 	/*
1588 	 * Timing should be adjusted to the HS400 target
1589 	 * operation frequency for tuning process
1590 	 */
1591 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1592 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1593 		if (host->ops->prepare_hs400_tuning)
1594 			host->ops->prepare_hs400_tuning(host, &host->ios);
1595 
1596 	return mmc_execute_tuning(card);
1597 }
1598 
1599 /*
1600  * Handle the detection and initialisation of a card.
1601  *
1602  * In the case of a resume, "oldcard" will contain the card
1603  * we're trying to reinitialise.
1604  */
1605 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1606 	struct mmc_card *oldcard)
1607 {
1608 	struct mmc_card *card;
1609 	int err;
1610 	u32 cid[4];
1611 	u32 rocr;
1612 
1613 	WARN_ON(!host->claimed);
1614 
1615 	/* Set correct bus mode for MMC before attempting init */
1616 	if (!mmc_host_is_spi(host))
1617 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1618 
1619 	/*
1620 	 * Since we're changing the OCR value, we seem to
1621 	 * need to tell some cards to go back to the idle
1622 	 * state.  We wait 1ms to give cards time to
1623 	 * respond.
1624 	 * mmc_go_idle is needed for eMMC that are asleep
1625 	 */
1626 	mmc_go_idle(host);
1627 
1628 	/* The extra bit indicates that we support high capacity */
1629 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1630 	if (err)
1631 		goto err;
1632 
1633 	/*
1634 	 * For SPI, enable CRC as appropriate.
1635 	 */
1636 	if (mmc_host_is_spi(host)) {
1637 		err = mmc_spi_set_crc(host, use_spi_crc);
1638 		if (err)
1639 			goto err;
1640 	}
1641 
1642 	/*
1643 	 * Fetch CID from card.
1644 	 */
1645 	err = mmc_send_cid(host, cid);
1646 	if (err)
1647 		goto err;
1648 
1649 	if (oldcard) {
1650 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1651 			pr_debug("%s: Perhaps the card was replaced\n",
1652 				mmc_hostname(host));
1653 			err = -ENOENT;
1654 			goto err;
1655 		}
1656 
1657 		card = oldcard;
1658 	} else {
1659 		/*
1660 		 * Allocate card structure.
1661 		 */
1662 		card = mmc_alloc_card(host, &mmc_type);
1663 		if (IS_ERR(card)) {
1664 			err = PTR_ERR(card);
1665 			goto err;
1666 		}
1667 
1668 		card->ocr = ocr;
1669 		card->type = MMC_TYPE_MMC;
1670 		card->rca = 1;
1671 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1672 	}
1673 
1674 	/*
1675 	 * Call the optional HC's init_card function to handle quirks.
1676 	 */
1677 	if (host->ops->init_card)
1678 		host->ops->init_card(host, card);
1679 
1680 	/*
1681 	 * For native busses:  set card RCA and quit open drain mode.
1682 	 */
1683 	if (!mmc_host_is_spi(host)) {
1684 		err = mmc_set_relative_addr(card);
1685 		if (err)
1686 			goto free_card;
1687 
1688 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1689 	}
1690 
1691 	if (!oldcard) {
1692 		/*
1693 		 * Fetch CSD from card.
1694 		 */
1695 		err = mmc_send_csd(card, card->raw_csd);
1696 		if (err)
1697 			goto free_card;
1698 
1699 		err = mmc_decode_csd(card);
1700 		if (err)
1701 			goto free_card;
1702 		err = mmc_decode_cid(card);
1703 		if (err)
1704 			goto free_card;
1705 	}
1706 
1707 	/*
1708 	 * handling only for cards supporting DSR and hosts requesting
1709 	 * DSR configuration
1710 	 */
1711 	if (card->csd.dsr_imp && host->dsr_req)
1712 		mmc_set_dsr(host);
1713 
1714 	/*
1715 	 * Select card, as all following commands rely on that.
1716 	 */
1717 	if (!mmc_host_is_spi(host)) {
1718 		err = mmc_select_card(card);
1719 		if (err)
1720 			goto free_card;
1721 	}
1722 
1723 	if (!oldcard) {
1724 		/* Read extended CSD. */
1725 		err = mmc_read_ext_csd(card);
1726 		if (err)
1727 			goto free_card;
1728 
1729 		/*
1730 		 * If doing byte addressing, check if required to do sector
1731 		 * addressing.  Handle the case of <2GB cards needing sector
1732 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1733 		 * ocr register has bit 30 set for sector addressing.
1734 		 */
1735 		if (rocr & BIT(30))
1736 			mmc_card_set_blockaddr(card);
1737 
1738 		/* Erase size depends on CSD and Extended CSD */
1739 		mmc_set_erase_size(card);
1740 	}
1741 
1742 	/*
1743 	 * Reselect the card type since host caps could have been changed when
1744 	 * debugging even if the card is not new.
1745 	 */
1746 	mmc_select_card_type(card);
1747 
1748 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1749 	if (card->ext_csd.rev >= 3) {
1750 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1751 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1752 				 card->ext_csd.generic_cmd6_time);
1753 
1754 		if (err && err != -EBADMSG)
1755 			goto free_card;
1756 
1757 		if (err) {
1758 			/*
1759 			 * Just disable enhanced area off & sz
1760 			 * will try to enable ERASE_GROUP_DEF
1761 			 * during next time reinit
1762 			 */
1763 			card->ext_csd.enhanced_area_offset = -EINVAL;
1764 			card->ext_csd.enhanced_area_size = -EINVAL;
1765 		} else {
1766 			card->ext_csd.erase_group_def = 1;
1767 			/*
1768 			 * enable ERASE_GRP_DEF successfully.
1769 			 * This will affect the erase size, so
1770 			 * here need to reset erase size
1771 			 */
1772 			mmc_set_erase_size(card);
1773 		}
1774 	}
1775 	mmc_set_wp_grp_size(card);
1776 	/*
1777 	 * Ensure eMMC user default partition is enabled
1778 	 */
1779 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1780 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1781 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1782 				 card->ext_csd.part_config,
1783 				 card->ext_csd.part_time);
1784 		if (err && err != -EBADMSG)
1785 			goto free_card;
1786 	}
1787 
1788 	/*
1789 	 * Enable power_off_notification byte in the ext_csd register
1790 	 */
1791 	if (card->ext_csd.rev >= 6) {
1792 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1793 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1794 				 EXT_CSD_POWER_ON,
1795 				 card->ext_csd.generic_cmd6_time);
1796 		if (err && err != -EBADMSG)
1797 			goto free_card;
1798 
1799 		/*
1800 		 * The err can be -EBADMSG or 0,
1801 		 * so check for success and update the flag
1802 		 */
1803 		if (!err)
1804 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1805 	}
1806 
1807 	/* set erase_arg */
1808 	if (mmc_card_can_discard(card))
1809 		card->erase_arg = MMC_DISCARD_ARG;
1810 	else if (mmc_card_can_trim(card))
1811 		card->erase_arg = MMC_TRIM_ARG;
1812 	else
1813 		card->erase_arg = MMC_ERASE_ARG;
1814 
1815 	/*
1816 	 * Select timing interface
1817 	 */
1818 	err = mmc_select_timing(card);
1819 	if (err)
1820 		goto free_card;
1821 
1822 	if (mmc_card_hs200(card)) {
1823 		host->doing_init_tune = 1;
1824 
1825 		err = mmc_hs200_tuning(card);
1826 		if (!err)
1827 			err = mmc_select_hs400(card);
1828 
1829 		host->doing_init_tune = 0;
1830 
1831 		if (err)
1832 			goto free_card;
1833 	} else if (mmc_card_hs400es(card)) {
1834 		if (host->ops->execute_hs400_tuning) {
1835 			err = host->ops->execute_hs400_tuning(host, card);
1836 			if (err)
1837 				goto free_card;
1838 		}
1839 	} else {
1840 		/* Select the desired bus width optionally */
1841 		err = mmc_select_bus_width(card);
1842 		if (err > 0 && mmc_card_hs(card)) {
1843 			err = mmc_select_hs_ddr(card);
1844 			if (err)
1845 				goto free_card;
1846 		}
1847 	}
1848 
1849 	/*
1850 	 * Choose the power class with selected bus interface
1851 	 */
1852 	mmc_select_powerclass(card);
1853 
1854 	/*
1855 	 * Enable HPI feature (if supported)
1856 	 */
1857 	if (card->ext_csd.hpi) {
1858 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1859 				EXT_CSD_HPI_MGMT, 1,
1860 				card->ext_csd.generic_cmd6_time);
1861 		if (err && err != -EBADMSG)
1862 			goto free_card;
1863 		if (err) {
1864 			pr_warn("%s: Enabling HPI failed\n",
1865 				mmc_hostname(card->host));
1866 			card->ext_csd.hpi_en = 0;
1867 		} else {
1868 			card->ext_csd.hpi_en = 1;
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * If cache size is higher than 0, this indicates the existence of cache
1874 	 * and it can be turned on. Note that some eMMCs from Micron has been
1875 	 * reported to need ~800 ms timeout, while enabling the cache after
1876 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1877 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1878 	 */
1879 	if (card->ext_csd.cache_size > 0) {
1880 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1881 
1882 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1883 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1884 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1885 		if (err && err != -EBADMSG)
1886 			goto free_card;
1887 
1888 		/*
1889 		 * Only if no error, cache is turned on successfully.
1890 		 */
1891 		if (err) {
1892 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1893 				mmc_hostname(card->host), err);
1894 			card->ext_csd.cache_ctrl = 0;
1895 		} else {
1896 			card->ext_csd.cache_ctrl = 1;
1897 		}
1898 	}
1899 
1900 	/*
1901 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1902 	 * be used with Command Queue.
1903 	 */
1904 	card->ext_csd.cmdq_en = false;
1905 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1906 		err = mmc_cmdq_enable(card);
1907 		if (err && err != -EBADMSG)
1908 			goto free_card;
1909 		if (err) {
1910 			pr_warn("%s: Enabling CMDQ failed\n",
1911 				mmc_hostname(card->host));
1912 			card->ext_csd.cmdq_support = false;
1913 			card->ext_csd.cmdq_depth = 0;
1914 		}
1915 	}
1916 	/*
1917 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1918 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1919 	 * Command Queue.
1920 	 */
1921 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1922 
1923 	if (host->cqe_ops && !host->cqe_enabled) {
1924 		err = host->cqe_ops->cqe_enable(host, card);
1925 		if (!err) {
1926 			host->cqe_enabled = true;
1927 
1928 			if (card->ext_csd.cmdq_en) {
1929 				pr_info("%s: Command Queue Engine enabled\n",
1930 					mmc_hostname(host));
1931 			} else {
1932 				host->hsq_enabled = true;
1933 				pr_info("%s: Host Software Queue enabled\n",
1934 					mmc_hostname(host));
1935 			}
1936 		}
1937 	}
1938 
1939 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1940 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1941 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1942 			mmc_hostname(host));
1943 		err = -EINVAL;
1944 		goto free_card;
1945 	}
1946 
1947 	if (!oldcard)
1948 		host->card = card;
1949 
1950 	return 0;
1951 
1952 free_card:
1953 	if (!oldcard)
1954 		mmc_remove_card(card);
1955 err:
1956 	return err;
1957 }
1958 
1959 static bool mmc_card_can_sleep(struct mmc_card *card)
1960 {
1961 	return card->ext_csd.rev >= 3;
1962 }
1963 
1964 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1965 {
1966 	struct mmc_host *host = cb_data;
1967 
1968 	*busy = host->ops->card_busy(host);
1969 	return 0;
1970 }
1971 
1972 static int mmc_sleep(struct mmc_host *host)
1973 {
1974 	struct mmc_command cmd = {};
1975 	struct mmc_card *card = host->card;
1976 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1977 	bool use_r1b_resp;
1978 	int err;
1979 
1980 	/* Re-tuning can't be done once the card is deselected */
1981 	mmc_retune_hold(host);
1982 
1983 	err = mmc_deselect_cards(host);
1984 	if (err)
1985 		goto out_release;
1986 
1987 	cmd.opcode = MMC_SLEEP_AWAKE;
1988 	cmd.arg = card->rca << 16;
1989 	cmd.arg |= 1 << 15;
1990 	use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1991 
1992 	err = mmc_wait_for_cmd(host, &cmd, 0);
1993 	if (err)
1994 		goto out_release;
1995 
1996 	/*
1997 	 * If the host does not wait while the card signals busy, then we can
1998 	 * try to poll, but only if the host supports HW polling, as the
1999 	 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
2000 	 * to wait the sleep/awake timeout.
2001 	 */
2002 	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
2003 		goto out_release;
2004 
2005 	if (!host->ops->card_busy) {
2006 		mmc_delay(timeout_ms);
2007 		goto out_release;
2008 	}
2009 
2010 	err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
2011 
2012 out_release:
2013 	mmc_retune_release(host);
2014 	return err;
2015 }
2016 
2017 static bool mmc_card_can_poweroff_notify(const struct mmc_card *card)
2018 {
2019 	return card &&
2020 		mmc_card_mmc(card) &&
2021 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2022 }
2023 
2024 static bool mmc_host_can_poweroff_notify(const struct mmc_host *host,
2025 					 enum mmc_poweroff_type pm_type)
2026 {
2027 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)
2028 		return true;
2029 
2030 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND &&
2031 	    pm_type == MMC_POWEROFF_SUSPEND)
2032 		return true;
2033 
2034 	return pm_type == MMC_POWEROFF_SHUTDOWN;
2035 }
2036 
2037 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2038 {
2039 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
2040 	int err;
2041 
2042 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2043 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2044 		timeout = card->ext_csd.power_off_longtime;
2045 
2046 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2047 			EXT_CSD_POWER_OFF_NOTIFICATION,
2048 			notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2049 	if (err)
2050 		pr_err("%s: Power Off Notification timed out, %u\n",
2051 		       mmc_hostname(card->host), timeout);
2052 
2053 	/* Disable the power off notification after the switch operation. */
2054 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2055 
2056 	return err;
2057 }
2058 
2059 /*
2060  * Card detection - card is alive.
2061  */
2062 static int mmc_alive(struct mmc_host *host)
2063 {
2064 	return mmc_send_status(host->card, NULL);
2065 }
2066 
2067 /*
2068  * Card detection callback from host.
2069  */
2070 static void mmc_detect(struct mmc_host *host)
2071 {
2072 	int err;
2073 
2074 	mmc_get_card(host->card, NULL);
2075 
2076 	/*
2077 	 * Just check if our card has been removed.
2078 	 */
2079 	err = _mmc_detect_card_removed(host);
2080 
2081 	mmc_put_card(host->card, NULL);
2082 
2083 	if (err) {
2084 		mmc_remove_card(host->card);
2085 		host->card = NULL;
2086 
2087 		mmc_claim_host(host);
2088 		mmc_detach_bus(host);
2089 		mmc_power_off(host);
2090 		mmc_release_host(host);
2091 	}
2092 }
2093 
2094 static bool _mmc_cache_enabled(struct mmc_host *host)
2095 {
2096 	return host->card->ext_csd.cache_size > 0 &&
2097 	       host->card->ext_csd.cache_ctrl & 1;
2098 }
2099 
2100 /*
2101  * Flush the internal cache of the eMMC to non-volatile storage.
2102  */
2103 static int _mmc_flush_cache(struct mmc_host *host)
2104 {
2105 	int err = 0;
2106 
2107 	if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag)
2108 		return 0;
2109 
2110 	if (_mmc_cache_enabled(host)) {
2111 		err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2112 				 EXT_CSD_FLUSH_CACHE, 1,
2113 				 CACHE_FLUSH_TIMEOUT_MS);
2114 		if (err)
2115 			pr_err("%s: cache flush error %d\n", mmc_hostname(host), err);
2116 		else
2117 			host->card->written_flag = false;
2118 	}
2119 
2120 	return err;
2121 }
2122 
2123 static int _mmc_suspend(struct mmc_host *host, enum mmc_poweroff_type pm_type)
2124 {
2125 	unsigned int notify_type = EXT_CSD_POWER_OFF_SHORT;
2126 	int err = 0;
2127 
2128 	if (pm_type == MMC_POWEROFF_SHUTDOWN)
2129 		notify_type = EXT_CSD_POWER_OFF_LONG;
2130 
2131 	mmc_claim_host(host);
2132 
2133 	if (mmc_card_suspended(host->card))
2134 		goto out;
2135 
2136 	/*
2137 	 * For the undervoltage case, we care more about device integrity.
2138 	 * Avoid cache flush and notify the device to power off quickly.
2139 	 */
2140 	if (pm_type != MMC_POWEROFF_UNDERVOLTAGE) {
2141 		err = _mmc_flush_cache(host);
2142 		if (err)
2143 			goto out;
2144 	}
2145 
2146 	if (mmc_card_can_poweroff_notify(host->card) &&
2147 	    mmc_host_can_poweroff_notify(host, pm_type))
2148 		err = mmc_poweroff_notify(host->card, notify_type);
2149 	else if (mmc_card_can_sleep(host->card))
2150 		err = mmc_sleep(host);
2151 	else if (!mmc_host_is_spi(host))
2152 		err = mmc_deselect_cards(host);
2153 
2154 	if (!err) {
2155 		mmc_power_off(host);
2156 		mmc_card_set_suspended(host->card);
2157 	}
2158 out:
2159 	mmc_release_host(host);
2160 	return err;
2161 }
2162 
2163 /*
2164  * Host is being removed. Free up the current card and do a graceful power-off.
2165  */
2166 static void mmc_remove(struct mmc_host *host)
2167 {
2168 	get_device(&host->card->dev);
2169 	mmc_remove_card(host->card);
2170 
2171 	_mmc_suspend(host, MMC_POWEROFF_UNBIND);
2172 
2173 	put_device(&host->card->dev);
2174 	host->card = NULL;
2175 }
2176 
2177 /*
2178  * Suspend callback
2179  */
2180 static int mmc_suspend(struct mmc_host *host)
2181 {
2182 	int err;
2183 
2184 	err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND);
2185 	if (!err) {
2186 		pm_runtime_disable(&host->card->dev);
2187 		pm_runtime_set_suspended(&host->card->dev);
2188 	}
2189 
2190 	return err;
2191 }
2192 
2193 /*
2194  * This function tries to determine if the same card is still present
2195  * and, if so, restore all state to it.
2196  */
2197 static int _mmc_resume(struct mmc_host *host)
2198 {
2199 	int err = 0;
2200 
2201 	mmc_claim_host(host);
2202 
2203 	if (!mmc_card_suspended(host->card))
2204 		goto out;
2205 
2206 	mmc_power_up(host, host->card->ocr);
2207 	err = mmc_init_card(host, host->card->ocr, host->card);
2208 	mmc_card_clr_suspended(host->card);
2209 
2210 out:
2211 	mmc_release_host(host);
2212 	return err;
2213 }
2214 
2215 /*
2216  * Shutdown callback
2217  */
2218 static int mmc_shutdown(struct mmc_host *host)
2219 {
2220 	int err = 0;
2221 
2222 	/*
2223 	 * In case of undervoltage, the card will be powered off (removed) by
2224 	 * _mmc_handle_undervoltage()
2225 	 */
2226 	if (mmc_card_removed(host->card))
2227 		return 0;
2228 
2229 	/*
2230 	 * If the card remains suspended at this point and it was done by using
2231 	 * the sleep-cmd (CMD5), we may need to re-initialize it first, to allow
2232 	 * us to send the preferred poweroff-notification cmd at shutdown.
2233 	 */
2234 	if (mmc_card_can_poweroff_notify(host->card) &&
2235 	    !mmc_host_can_poweroff_notify(host, MMC_POWEROFF_SUSPEND))
2236 		err = _mmc_resume(host);
2237 
2238 	if (!err)
2239 		err = _mmc_suspend(host, MMC_POWEROFF_SHUTDOWN);
2240 
2241 	return err;
2242 }
2243 
2244 /*
2245  * Callback for resume.
2246  */
2247 static int mmc_resume(struct mmc_host *host)
2248 {
2249 	pm_runtime_enable(&host->card->dev);
2250 	return 0;
2251 }
2252 
2253 /*
2254  * Callback for runtime_suspend.
2255  */
2256 static int mmc_runtime_suspend(struct mmc_host *host)
2257 {
2258 	int err;
2259 
2260 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2261 		return 0;
2262 
2263 	err = _mmc_suspend(host, MMC_POWEROFF_SUSPEND);
2264 	if (err)
2265 		pr_err("%s: error %d doing aggressive suspend\n",
2266 			mmc_hostname(host), err);
2267 
2268 	return err;
2269 }
2270 
2271 /*
2272  * Callback for runtime_resume.
2273  */
2274 static int mmc_runtime_resume(struct mmc_host *host)
2275 {
2276 	int err;
2277 
2278 	err = _mmc_resume(host);
2279 	if (err && err != -ENOMEDIUM)
2280 		pr_err("%s: error %d doing runtime resume\n",
2281 			mmc_hostname(host), err);
2282 
2283 	return 0;
2284 }
2285 
2286 static bool mmc_card_can_reset(struct mmc_card *card)
2287 {
2288 	u8 rst_n_function;
2289 
2290 	rst_n_function = card->ext_csd.rst_n_function;
2291 	return ((rst_n_function & EXT_CSD_RST_N_EN_MASK) == EXT_CSD_RST_N_ENABLED);
2292 }
2293 
2294 static int _mmc_hw_reset(struct mmc_host *host)
2295 {
2296 	struct mmc_card *card = host->card;
2297 
2298 	/*
2299 	 * In the case of recovery, we can't expect flushing the cache to work
2300 	 * always, but we have a go and ignore errors.
2301 	 */
2302 	_mmc_flush_cache(host);
2303 
2304 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2305 	     mmc_card_can_reset(card)) {
2306 		/* If the card accept RST_n signal, send it. */
2307 		mmc_set_clock(host, host->f_init);
2308 		host->ops->card_hw_reset(host);
2309 		/* Set initial state and call mmc_set_ios */
2310 		mmc_set_initial_state(host);
2311 	} else {
2312 		/* Do a brute force power cycle */
2313 		mmc_power_cycle(host, card->ocr);
2314 		mmc_pwrseq_reset(host);
2315 	}
2316 	return mmc_init_card(host, card->ocr, card);
2317 }
2318 
2319 /**
2320  * _mmc_handle_undervoltage - Handle an undervoltage event for MMC/eMMC devices
2321  * @host: MMC host structure
2322  *
2323  * This function is triggered when an undervoltage condition is detected.
2324  * It attempts to transition the device into a low-power or safe state to
2325  * prevent data corruption.
2326  *
2327  * Steps performed:
2328  * - Perform an emergency suspend using EXT_CSD_POWER_OFF_SHORT if possible.
2329  *    - If power-off notify is not supported, fallback mechanisms like sleep or
2330  *      deselecting the card are attempted.
2331  *    - Cache flushing is skipped to reduce execution time.
2332  * - Mark the card as removed to prevent further interactions after
2333  *    undervoltage.
2334  *
2335  * Note: This function does not handle host claiming or releasing. The caller
2336  *	 must ensure that the host is properly claimed before calling this
2337  *	 function and released afterward.
2338  *
2339  * Returns: 0 on success, or a negative error code if any step fails.
2340  */
2341 static int _mmc_handle_undervoltage(struct mmc_host *host)
2342 {
2343 	struct mmc_card *card = host->card;
2344 	int err;
2345 
2346 	/*
2347 	 * Perform an emergency suspend to power off the eMMC quickly.
2348 	 * This ensures the device enters a safe state before power is lost.
2349 	 * We first attempt EXT_CSD_POWER_OFF_SHORT, but if power-off notify
2350 	 * is not supported, we fall back to sleep mode or deselecting the card.
2351 	 * Cache flushing is skipped to minimize delay.
2352 	 */
2353 	err = _mmc_suspend(host, MMC_POWEROFF_UNDERVOLTAGE);
2354 	if (err)
2355 		pr_err("%s: undervoltage suspend failed: %pe\n",
2356 		       mmc_hostname(host), ERR_PTR(err));
2357 
2358 	/*
2359 	 * Mark the card as removed to prevent further operations.
2360 	 * This ensures the system does not attempt to access the device
2361 	 * after an undervoltage event, avoiding potential corruption.
2362 	 */
2363 	mmc_card_set_removed(card);
2364 
2365 	return err;
2366 }
2367 
2368 static const struct mmc_bus_ops mmc_ops = {
2369 	.remove = mmc_remove,
2370 	.detect = mmc_detect,
2371 	.suspend = mmc_suspend,
2372 	.resume = mmc_resume,
2373 	.runtime_suspend = mmc_runtime_suspend,
2374 	.runtime_resume = mmc_runtime_resume,
2375 	.alive = mmc_alive,
2376 	.shutdown = mmc_shutdown,
2377 	.hw_reset = _mmc_hw_reset,
2378 	.cache_enabled = _mmc_cache_enabled,
2379 	.flush_cache = _mmc_flush_cache,
2380 	.handle_undervoltage = _mmc_handle_undervoltage,
2381 };
2382 
2383 /*
2384  * Starting point for MMC card init.
2385  */
2386 int mmc_attach_mmc(struct mmc_host *host)
2387 {
2388 	int err;
2389 	u32 ocr, rocr;
2390 
2391 	WARN_ON(!host->claimed);
2392 
2393 	/* Set correct bus mode for MMC before attempting attach */
2394 	if (!mmc_host_is_spi(host))
2395 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2396 
2397 	err = mmc_send_op_cond(host, 0, &ocr);
2398 	if (err)
2399 		return err;
2400 
2401 	mmc_attach_bus(host, &mmc_ops);
2402 	if (host->ocr_avail_mmc)
2403 		host->ocr_avail = host->ocr_avail_mmc;
2404 
2405 	/*
2406 	 * We need to get OCR a different way for SPI.
2407 	 */
2408 	if (mmc_host_is_spi(host)) {
2409 		err = mmc_spi_read_ocr(host, 1, &ocr);
2410 		if (err)
2411 			goto err;
2412 	}
2413 
2414 	rocr = mmc_select_voltage(host, ocr);
2415 
2416 	/*
2417 	 * Can we support the voltage of the card?
2418 	 */
2419 	if (!rocr) {
2420 		err = -EINVAL;
2421 		goto err;
2422 	}
2423 
2424 	/*
2425 	 * Detect and init the card.
2426 	 */
2427 	err = mmc_init_card(host, rocr, NULL);
2428 	if (err)
2429 		goto err;
2430 
2431 	mmc_release_host(host);
2432 	err = mmc_add_card(host->card);
2433 	if (err)
2434 		goto remove_card;
2435 
2436 	mmc_claim_host(host);
2437 	return 0;
2438 
2439 remove_card:
2440 	mmc_remove_card(host->card);
2441 	mmc_claim_host(host);
2442 	host->card = NULL;
2443 err:
2444 	mmc_detach_bus(host);
2445 
2446 	pr_err("%s: error %d whilst initialising MMC card\n",
2447 		mmc_hostname(host), err);
2448 
2449 	return err;
2450 }
2451