1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/mmc.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/of.h> 12 #include <linux/slab.h> 13 #include <linux/stat.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/random.h> 16 #include <linux/sysfs.h> 17 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 22 #include "core.h" 23 #include "card.h" 24 #include "host.h" 25 #include "bus.h" 26 #include "mmc_ops.h" 27 #include "quirks.h" 28 #include "sd_ops.h" 29 #include "pwrseq.h" 30 31 #define DEFAULT_CMD6_TIMEOUT_MS 500 32 #define MIN_CACHE_EN_TIMEOUT_MS 1600 33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */ 34 35 static const unsigned int tran_exp[] = { 36 10000, 100000, 1000000, 10000000, 37 0, 0, 0, 0 38 }; 39 40 static const unsigned char tran_mant[] = { 41 0, 10, 12, 13, 15, 20, 25, 30, 42 35, 40, 45, 50, 55, 60, 70, 80, 43 }; 44 45 static const unsigned int taac_exp[] = { 46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 47 }; 48 49 static const unsigned int taac_mant[] = { 50 0, 10, 12, 13, 15, 20, 25, 30, 51 35, 40, 45, 50, 55, 60, 70, 80, 52 }; 53 54 /* 55 * Given the decoded CSD structure, decode the raw CID to our CID structure. 56 */ 57 static int mmc_decode_cid(struct mmc_card *card) 58 { 59 u32 *resp = card->raw_cid; 60 61 /* 62 * Add the raw card ID (cid) data to the entropy pool. It doesn't 63 * matter that not all of it is unique, it's just bonus entropy. 64 */ 65 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid)); 66 67 /* 68 * The selection of the format here is based upon published 69 * specs from sandisk and from what people have reported. 70 */ 71 switch (card->csd.mmca_vsn) { 72 case 0: /* MMC v1.0 - v1.2 */ 73 case 1: /* MMC v1.4 */ 74 card->cid.manfid = unstuff_bits(resp, 104, 24); 75 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); 76 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); 77 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); 78 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); 79 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); 80 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8); 81 card->cid.prod_name[6] = unstuff_bits(resp, 48, 8); 82 card->cid.hwrev = unstuff_bits(resp, 44, 4); 83 card->cid.fwrev = unstuff_bits(resp, 40, 4); 84 card->cid.serial = unstuff_bits(resp, 16, 24); 85 card->cid.month = unstuff_bits(resp, 12, 4); 86 card->cid.year = unstuff_bits(resp, 8, 4) + 1997; 87 break; 88 89 case 2: /* MMC v2.0 - v2.2 */ 90 case 3: /* MMC v3.1 - v3.3 */ 91 case 4: /* MMC v4 */ 92 card->cid.manfid = unstuff_bits(resp, 120, 8); 93 card->cid.oemid = unstuff_bits(resp, 104, 16); 94 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8); 95 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8); 96 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8); 97 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8); 98 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8); 99 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8); 100 card->cid.prv = unstuff_bits(resp, 48, 8); 101 card->cid.serial = unstuff_bits(resp, 16, 32); 102 card->cid.month = unstuff_bits(resp, 12, 4); 103 card->cid.year = unstuff_bits(resp, 8, 4) + 1997; 104 break; 105 106 default: 107 pr_err("%s: card has unknown MMCA version %d\n", 108 mmc_hostname(card->host), card->csd.mmca_vsn); 109 return -EINVAL; 110 } 111 112 return 0; 113 } 114 115 static void mmc_set_erase_size(struct mmc_card *card) 116 { 117 if (card->ext_csd.erase_group_def & 1) 118 card->erase_size = card->ext_csd.hc_erase_size; 119 else 120 card->erase_size = card->csd.erase_size; 121 122 mmc_init_erase(card); 123 } 124 125 126 static void mmc_set_wp_grp_size(struct mmc_card *card) 127 { 128 if (card->ext_csd.erase_group_def & 1) 129 card->wp_grp_size = card->ext_csd.hc_erase_size * 130 card->ext_csd.raw_hc_erase_gap_size; 131 else 132 card->wp_grp_size = card->csd.erase_size * 133 (card->csd.wp_grp_size + 1); 134 } 135 136 /* 137 * Given a 128-bit response, decode to our card CSD structure. 138 */ 139 static int mmc_decode_csd(struct mmc_card *card) 140 { 141 struct mmc_csd *csd = &card->csd; 142 unsigned int e, m, a, b; 143 u32 *resp = card->raw_csd; 144 145 /* 146 * We only understand CSD structure v1.1 and v1.2. 147 * v1.2 has extra information in bits 15, 11 and 10. 148 * We also support eMMC v4.4 & v4.41. 149 */ 150 csd->structure = unstuff_bits(resp, 126, 2); 151 if (csd->structure == 0) { 152 pr_err("%s: unrecognised CSD structure version %d\n", 153 mmc_hostname(card->host), csd->structure); 154 return -EINVAL; 155 } 156 157 csd->mmca_vsn = unstuff_bits(resp, 122, 4); 158 m = unstuff_bits(resp, 115, 4); 159 e = unstuff_bits(resp, 112, 3); 160 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10; 161 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100; 162 163 m = unstuff_bits(resp, 99, 4); 164 e = unstuff_bits(resp, 96, 3); 165 csd->max_dtr = tran_exp[e] * tran_mant[m]; 166 csd->cmdclass = unstuff_bits(resp, 84, 12); 167 168 e = unstuff_bits(resp, 47, 3); 169 m = unstuff_bits(resp, 62, 12); 170 csd->capacity = (1 + m) << (e + 2); 171 172 csd->read_blkbits = unstuff_bits(resp, 80, 4); 173 csd->read_partial = unstuff_bits(resp, 79, 1); 174 csd->write_misalign = unstuff_bits(resp, 78, 1); 175 csd->read_misalign = unstuff_bits(resp, 77, 1); 176 csd->dsr_imp = unstuff_bits(resp, 76, 1); 177 csd->r2w_factor = unstuff_bits(resp, 26, 3); 178 csd->write_blkbits = unstuff_bits(resp, 22, 4); 179 csd->write_partial = unstuff_bits(resp, 21, 1); 180 181 if (csd->write_blkbits >= 9) { 182 a = unstuff_bits(resp, 42, 5); 183 b = unstuff_bits(resp, 37, 5); 184 csd->erase_size = (a + 1) * (b + 1); 185 csd->erase_size <<= csd->write_blkbits - 9; 186 csd->wp_grp_size = unstuff_bits(resp, 32, 5); 187 } 188 189 return 0; 190 } 191 192 static void mmc_select_card_type(struct mmc_card *card) 193 { 194 struct mmc_host *host = card->host; 195 u8 card_type = card->ext_csd.raw_card_type; 196 u32 caps = host->caps, caps2 = host->caps2; 197 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0; 198 unsigned int avail_type = 0; 199 200 if (caps & MMC_CAP_MMC_HIGHSPEED && 201 card_type & EXT_CSD_CARD_TYPE_HS_26) { 202 hs_max_dtr = MMC_HIGH_26_MAX_DTR; 203 avail_type |= EXT_CSD_CARD_TYPE_HS_26; 204 } 205 206 if (caps & MMC_CAP_MMC_HIGHSPEED && 207 card_type & EXT_CSD_CARD_TYPE_HS_52) { 208 hs_max_dtr = MMC_HIGH_52_MAX_DTR; 209 avail_type |= EXT_CSD_CARD_TYPE_HS_52; 210 } 211 212 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) && 213 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) { 214 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 215 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V; 216 } 217 218 if (caps & MMC_CAP_1_2V_DDR && 219 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 220 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR; 221 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V; 222 } 223 224 if (caps2 & MMC_CAP2_HS200_1_8V_SDR && 225 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) { 226 hs200_max_dtr = MMC_HS200_MAX_DTR; 227 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V; 228 } 229 230 if (caps2 & MMC_CAP2_HS200_1_2V_SDR && 231 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) { 232 hs200_max_dtr = MMC_HS200_MAX_DTR; 233 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V; 234 } 235 236 if (caps2 & MMC_CAP2_HS400_1_8V && 237 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) { 238 hs200_max_dtr = MMC_HS200_MAX_DTR; 239 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V; 240 } 241 242 if (caps2 & MMC_CAP2_HS400_1_2V && 243 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) { 244 hs200_max_dtr = MMC_HS200_MAX_DTR; 245 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V; 246 } 247 248 if ((caps2 & MMC_CAP2_HS400_ES) && 249 card->ext_csd.strobe_support && 250 (avail_type & EXT_CSD_CARD_TYPE_HS400)) 251 avail_type |= EXT_CSD_CARD_TYPE_HS400ES; 252 253 card->ext_csd.hs_max_dtr = hs_max_dtr; 254 card->ext_csd.hs200_max_dtr = hs200_max_dtr; 255 card->mmc_avail_type = avail_type; 256 } 257 258 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd) 259 { 260 u8 hc_erase_grp_sz, hc_wp_grp_sz; 261 262 /* 263 * Disable these attributes by default 264 */ 265 card->ext_csd.enhanced_area_offset = -EINVAL; 266 card->ext_csd.enhanced_area_size = -EINVAL; 267 268 /* 269 * Enhanced area feature support -- check whether the eMMC 270 * card has the Enhanced area enabled. If so, export enhanced 271 * area offset and size to user by adding sysfs interface. 272 */ 273 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) && 274 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) { 275 if (card->ext_csd.partition_setting_completed) { 276 hc_erase_grp_sz = 277 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 278 hc_wp_grp_sz = 279 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 280 281 /* 282 * calculate the enhanced data area offset, in bytes 283 */ 284 card->ext_csd.enhanced_area_offset = 285 (((unsigned long long)ext_csd[139]) << 24) + 286 (((unsigned long long)ext_csd[138]) << 16) + 287 (((unsigned long long)ext_csd[137]) << 8) + 288 (((unsigned long long)ext_csd[136])); 289 if (mmc_card_blockaddr(card)) 290 card->ext_csd.enhanced_area_offset <<= 9; 291 /* 292 * calculate the enhanced data area size, in kilobytes 293 */ 294 card->ext_csd.enhanced_area_size = 295 (ext_csd[142] << 16) + (ext_csd[141] << 8) + 296 ext_csd[140]; 297 card->ext_csd.enhanced_area_size *= 298 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz); 299 card->ext_csd.enhanced_area_size <<= 9; 300 } else { 301 pr_warn("%s: defines enhanced area without partition setting complete\n", 302 mmc_hostname(card->host)); 303 } 304 } 305 } 306 307 static void mmc_part_add(struct mmc_card *card, u64 size, 308 unsigned int part_cfg, char *name, int idx, bool ro, 309 int area_type) 310 { 311 card->part[card->nr_parts].size = size; 312 card->part[card->nr_parts].part_cfg = part_cfg; 313 sprintf(card->part[card->nr_parts].name, name, idx); 314 card->part[card->nr_parts].force_ro = ro; 315 card->part[card->nr_parts].area_type = area_type; 316 card->nr_parts++; 317 } 318 319 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd) 320 { 321 int idx; 322 u8 hc_erase_grp_sz, hc_wp_grp_sz; 323 u64 part_size; 324 325 /* 326 * General purpose partition feature support -- 327 * If ext_csd has the size of general purpose partitions, 328 * set size, part_cfg, partition name in mmc_part. 329 */ 330 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] & 331 EXT_CSD_PART_SUPPORT_PART_EN) { 332 hc_erase_grp_sz = 333 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 334 hc_wp_grp_sz = 335 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 336 337 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) { 338 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] && 339 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] && 340 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]) 341 continue; 342 if (card->ext_csd.partition_setting_completed == 0) { 343 pr_warn("%s: has partition size defined without partition complete\n", 344 mmc_hostname(card->host)); 345 break; 346 } 347 part_size = 348 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2] 349 << 16) + 350 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] 351 << 8) + 352 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3]; 353 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz); 354 mmc_part_add(card, part_size << 19, 355 EXT_CSD_PART_CONFIG_ACC_GP0 + idx, 356 "gp%d", idx, false, 357 MMC_BLK_DATA_AREA_GP); 358 } 359 } 360 } 361 362 /* Minimum partition switch timeout in milliseconds */ 363 #define MMC_MIN_PART_SWITCH_TIME 300 364 365 /* 366 * Decode extended CSD. 367 */ 368 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd) 369 { 370 int err = 0, idx; 371 u64 part_size; 372 struct device_node *np; 373 bool broken_hpi = false; 374 375 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */ 376 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE]; 377 if (card->csd.structure == 3) { 378 if (card->ext_csd.raw_ext_csd_structure > 2) { 379 pr_err("%s: unrecognised EXT_CSD structure " 380 "version %d\n", mmc_hostname(card->host), 381 card->ext_csd.raw_ext_csd_structure); 382 err = -EINVAL; 383 goto out; 384 } 385 } 386 387 np = mmc_of_find_child_device(card->host, 0); 388 if (np && of_device_is_compatible(np, "mmc-card")) 389 broken_hpi = of_property_read_bool(np, "broken-hpi"); 390 of_node_put(np); 391 392 /* 393 * The EXT_CSD format is meant to be forward compatible. As long 394 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV 395 * are authorized, see JEDEC JESD84-B50 section B.8. 396 */ 397 card->ext_csd.rev = ext_csd[EXT_CSD_REV]; 398 399 /* fixup device after ext_csd revision field is updated */ 400 mmc_fixup_device(card, mmc_ext_csd_fixups); 401 402 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0]; 403 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1]; 404 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2]; 405 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3]; 406 if (card->ext_csd.rev >= 2) { 407 card->ext_csd.sectors = 408 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 | 409 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | 410 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | 411 ext_csd[EXT_CSD_SEC_CNT + 3] << 24; 412 413 /* Cards with density > 2GiB are sector addressed */ 414 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512) 415 mmc_card_set_blockaddr(card); 416 } 417 418 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT]; 419 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE]; 420 421 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT]; 422 card->ext_csd.raw_erase_timeout_mult = 423 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 424 card->ext_csd.raw_hc_erase_grp_size = 425 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; 426 card->ext_csd.raw_boot_mult = 427 ext_csd[EXT_CSD_BOOT_MULT]; 428 if (card->ext_csd.rev >= 3) { 429 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT]; 430 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG]; 431 432 /* EXT_CSD value is in units of 10ms, but we store in ms */ 433 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME]; 434 435 /* Sleep / awake timeout in 100ns units */ 436 if (sa_shift > 0 && sa_shift <= 0x17) 437 card->ext_csd.sa_timeout = 438 1 << ext_csd[EXT_CSD_S_A_TIMEOUT]; 439 card->ext_csd.erase_group_def = 440 ext_csd[EXT_CSD_ERASE_GROUP_DEF]; 441 card->ext_csd.hc_erase_timeout = 300 * 442 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]; 443 card->ext_csd.hc_erase_size = 444 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10; 445 446 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C]; 447 448 /* 449 * There are two boot regions of equal size, defined in 450 * multiples of 128K. 451 */ 452 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) { 453 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) { 454 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17; 455 mmc_part_add(card, part_size, 456 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx, 457 "boot%d", idx, true, 458 MMC_BLK_DATA_AREA_BOOT); 459 } 460 } 461 } 462 463 card->ext_csd.raw_hc_erase_gap_size = 464 ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; 465 card->ext_csd.raw_sec_trim_mult = 466 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 467 card->ext_csd.raw_sec_erase_mult = 468 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 469 card->ext_csd.raw_sec_feature_support = 470 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 471 card->ext_csd.raw_trim_mult = 472 ext_csd[EXT_CSD_TRIM_MULT]; 473 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT]; 474 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH]; 475 if (card->ext_csd.rev >= 4) { 476 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] & 477 EXT_CSD_PART_SETTING_COMPLETED) 478 card->ext_csd.partition_setting_completed = 1; 479 else 480 card->ext_csd.partition_setting_completed = 0; 481 482 mmc_manage_enhanced_area(card, ext_csd); 483 484 mmc_manage_gp_partitions(card, ext_csd); 485 486 card->ext_csd.sec_trim_mult = 487 ext_csd[EXT_CSD_SEC_TRIM_MULT]; 488 card->ext_csd.sec_erase_mult = 489 ext_csd[EXT_CSD_SEC_ERASE_MULT]; 490 card->ext_csd.sec_feature_support = 491 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]; 492 card->ext_csd.trim_timeout = 300 * 493 ext_csd[EXT_CSD_TRIM_MULT]; 494 495 /* 496 * Note that the call to mmc_part_add above defaults to read 497 * only. If this default assumption is changed, the call must 498 * take into account the value of boot_locked below. 499 */ 500 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP]; 501 card->ext_csd.boot_ro_lockable = true; 502 503 /* Save power class values */ 504 card->ext_csd.raw_pwr_cl_52_195 = 505 ext_csd[EXT_CSD_PWR_CL_52_195]; 506 card->ext_csd.raw_pwr_cl_26_195 = 507 ext_csd[EXT_CSD_PWR_CL_26_195]; 508 card->ext_csd.raw_pwr_cl_52_360 = 509 ext_csd[EXT_CSD_PWR_CL_52_360]; 510 card->ext_csd.raw_pwr_cl_26_360 = 511 ext_csd[EXT_CSD_PWR_CL_26_360]; 512 card->ext_csd.raw_pwr_cl_200_195 = 513 ext_csd[EXT_CSD_PWR_CL_200_195]; 514 card->ext_csd.raw_pwr_cl_200_360 = 515 ext_csd[EXT_CSD_PWR_CL_200_360]; 516 card->ext_csd.raw_pwr_cl_ddr_52_195 = 517 ext_csd[EXT_CSD_PWR_CL_DDR_52_195]; 518 card->ext_csd.raw_pwr_cl_ddr_52_360 = 519 ext_csd[EXT_CSD_PWR_CL_DDR_52_360]; 520 card->ext_csd.raw_pwr_cl_ddr_200_360 = 521 ext_csd[EXT_CSD_PWR_CL_DDR_200_360]; 522 } 523 524 if (card->ext_csd.rev >= 5) { 525 /* Adjust production date as per JEDEC JESD84-B451 */ 526 if (card->cid.year < 2010) 527 card->cid.year += 16; 528 529 /* check whether the eMMC card supports BKOPS */ 530 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) { 531 card->ext_csd.bkops = 1; 532 card->ext_csd.man_bkops_en = 533 (ext_csd[EXT_CSD_BKOPS_EN] & 534 EXT_CSD_MANUAL_BKOPS_MASK); 535 card->ext_csd.raw_bkops_status = 536 ext_csd[EXT_CSD_BKOPS_STATUS]; 537 if (card->ext_csd.man_bkops_en) 538 pr_debug("%s: MAN_BKOPS_EN bit is set\n", 539 mmc_hostname(card->host)); 540 card->ext_csd.auto_bkops_en = 541 (ext_csd[EXT_CSD_BKOPS_EN] & 542 EXT_CSD_AUTO_BKOPS_MASK); 543 if (card->ext_csd.auto_bkops_en) 544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n", 545 mmc_hostname(card->host)); 546 } 547 548 /* check whether the eMMC card supports HPI */ 549 if (!mmc_card_broken_hpi(card) && 550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) { 551 card->ext_csd.hpi = 1; 552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2) 553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION; 554 else 555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS; 556 /* 557 * Indicate the maximum timeout to close 558 * a command interrupted by HPI 559 */ 560 card->ext_csd.out_of_int_time = 561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10; 562 } 563 564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM]; 565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION]; 566 567 /* 568 * RPMB regions are defined in multiples of 128K. 569 */ 570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT]; 571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) { 572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17, 573 EXT_CSD_PART_CONFIG_ACC_RPMB, 574 "rpmb", 0, false, 575 MMC_BLK_DATA_AREA_RPMB); 576 } 577 } 578 579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT]; 580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT]) 581 card->erased_byte = 0xFF; 582 else 583 card->erased_byte = 0x0; 584 585 /* eMMC v4.5 or later */ 586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS; 587 if (card->ext_csd.rev >= 6) { 588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE; 589 590 card->ext_csd.generic_cmd6_time = 10 * 591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; 592 card->ext_csd.power_off_longtime = 10 * 593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME]; 594 595 card->ext_csd.cache_size = 596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | 597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | 598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | 599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; 600 601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1) 602 card->ext_csd.data_sector_size = 4096; 603 else 604 card->ext_csd.data_sector_size = 512; 605 606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) && 607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) { 608 card->ext_csd.data_tag_unit_size = 609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) * 610 (card->ext_csd.data_sector_size); 611 } else { 612 card->ext_csd.data_tag_unit_size = 0; 613 } 614 } else { 615 card->ext_csd.data_sector_size = 512; 616 } 617 618 /* 619 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined 620 * when accessing a specific field", so use it here if there is no 621 * PARTITION_SWITCH_TIME. 622 */ 623 if (!card->ext_csd.part_time) 624 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time; 625 /* Some eMMC set the value too low so set a minimum */ 626 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME) 627 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME; 628 629 /* eMMC v5 or later */ 630 if (card->ext_csd.rev >= 7) { 631 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION], 632 MMC_FIRMWARE_LEN); 633 card->ext_csd.ffu_capable = 634 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) && 635 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1); 636 637 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO]; 638 card->ext_csd.device_life_time_est_typ_a = 639 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]; 640 card->ext_csd.device_life_time_est_typ_b = 641 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]; 642 } 643 644 /* eMMC v5.1 or later */ 645 if (card->ext_csd.rev >= 8) { 646 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] & 647 EXT_CSD_CMDQ_SUPPORTED; 648 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] & 649 EXT_CSD_CMDQ_DEPTH_MASK) + 1; 650 /* Exclude inefficiently small queue depths */ 651 if (card->ext_csd.cmdq_depth <= 2) { 652 card->ext_csd.cmdq_support = false; 653 card->ext_csd.cmdq_depth = 0; 654 } 655 if (card->ext_csd.cmdq_support) { 656 pr_debug("%s: Command Queue supported depth %u\n", 657 mmc_hostname(card->host), 658 card->ext_csd.cmdq_depth); 659 } 660 card->ext_csd.enhanced_rpmb_supported = 661 (card->ext_csd.rel_param & 662 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR); 663 } 664 out: 665 return err; 666 } 667 668 static int mmc_read_ext_csd(struct mmc_card *card) 669 { 670 u8 *ext_csd; 671 int err; 672 673 if (!mmc_can_ext_csd(card)) 674 return 0; 675 676 err = mmc_get_ext_csd(card, &ext_csd); 677 if (err) { 678 /* If the host or the card can't do the switch, 679 * fail more gracefully. */ 680 if ((err != -EINVAL) 681 && (err != -ENOSYS) 682 && (err != -EFAULT)) 683 return err; 684 685 /* 686 * High capacity cards should have this "magic" size 687 * stored in their CSD. 688 */ 689 if (card->csd.capacity == (4096 * 512)) { 690 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n", 691 mmc_hostname(card->host)); 692 } else { 693 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n", 694 mmc_hostname(card->host)); 695 err = 0; 696 } 697 698 return err; 699 } 700 701 err = mmc_decode_ext_csd(card, ext_csd); 702 kfree(ext_csd); 703 return err; 704 } 705 706 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width) 707 { 708 u8 *bw_ext_csd; 709 int err; 710 711 if (bus_width == MMC_BUS_WIDTH_1) 712 return 0; 713 714 err = mmc_get_ext_csd(card, &bw_ext_csd); 715 if (err) 716 return err; 717 718 /* only compare read only fields */ 719 err = !((card->ext_csd.raw_partition_support == 720 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && 721 (card->ext_csd.raw_erased_mem_count == 722 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && 723 (card->ext_csd.rev == 724 bw_ext_csd[EXT_CSD_REV]) && 725 (card->ext_csd.raw_ext_csd_structure == 726 bw_ext_csd[EXT_CSD_STRUCTURE]) && 727 (card->ext_csd.raw_card_type == 728 bw_ext_csd[EXT_CSD_CARD_TYPE]) && 729 (card->ext_csd.raw_s_a_timeout == 730 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && 731 (card->ext_csd.raw_hc_erase_gap_size == 732 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && 733 (card->ext_csd.raw_erase_timeout_mult == 734 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && 735 (card->ext_csd.raw_hc_erase_grp_size == 736 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && 737 (card->ext_csd.raw_sec_trim_mult == 738 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && 739 (card->ext_csd.raw_sec_erase_mult == 740 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && 741 (card->ext_csd.raw_sec_feature_support == 742 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && 743 (card->ext_csd.raw_trim_mult == 744 bw_ext_csd[EXT_CSD_TRIM_MULT]) && 745 (card->ext_csd.raw_sectors[0] == 746 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && 747 (card->ext_csd.raw_sectors[1] == 748 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && 749 (card->ext_csd.raw_sectors[2] == 750 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && 751 (card->ext_csd.raw_sectors[3] == 752 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && 753 (card->ext_csd.raw_pwr_cl_52_195 == 754 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && 755 (card->ext_csd.raw_pwr_cl_26_195 == 756 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && 757 (card->ext_csd.raw_pwr_cl_52_360 == 758 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && 759 (card->ext_csd.raw_pwr_cl_26_360 == 760 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && 761 (card->ext_csd.raw_pwr_cl_200_195 == 762 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && 763 (card->ext_csd.raw_pwr_cl_200_360 == 764 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && 765 (card->ext_csd.raw_pwr_cl_ddr_52_195 == 766 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && 767 (card->ext_csd.raw_pwr_cl_ddr_52_360 == 768 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && 769 (card->ext_csd.raw_pwr_cl_ddr_200_360 == 770 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); 771 772 if (err) 773 err = -EINVAL; 774 775 kfree(bw_ext_csd); 776 return err; 777 } 778 779 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], 780 card->raw_cid[2], card->raw_cid[3]); 781 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], 782 card->raw_csd[2], card->raw_csd[3]); 783 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); 784 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); 785 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); 786 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9); 787 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable); 788 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); 789 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); 790 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); 791 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); 792 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv); 793 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev); 794 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info); 795 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n", 796 card->ext_csd.device_life_time_est_typ_a, 797 card->ext_csd.device_life_time_est_typ_b); 798 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); 799 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n", 800 card->ext_csd.enhanced_area_offset); 801 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size); 802 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult); 803 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n", 804 card->ext_csd.enhanced_rpmb_supported); 805 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors); 806 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr); 807 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca); 808 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en); 809 810 static ssize_t mmc_fwrev_show(struct device *dev, 811 struct device_attribute *attr, 812 char *buf) 813 { 814 struct mmc_card *card = mmc_dev_to_card(dev); 815 816 if (card->ext_csd.rev < 7) 817 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev); 818 else 819 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN, 820 card->ext_csd.fwrev); 821 } 822 823 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL); 824 825 static ssize_t mmc_dsr_show(struct device *dev, 826 struct device_attribute *attr, 827 char *buf) 828 { 829 struct mmc_card *card = mmc_dev_to_card(dev); 830 struct mmc_host *host = card->host; 831 832 if (card->csd.dsr_imp && host->dsr_req) 833 return sysfs_emit(buf, "0x%x\n", host->dsr); 834 else 835 /* return default DSR value */ 836 return sysfs_emit(buf, "0x%x\n", 0x404); 837 } 838 839 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL); 840 841 static struct attribute *mmc_std_attrs[] = { 842 &dev_attr_cid.attr, 843 &dev_attr_csd.attr, 844 &dev_attr_date.attr, 845 &dev_attr_erase_size.attr, 846 &dev_attr_preferred_erase_size.attr, 847 &dev_attr_wp_grp_size.attr, 848 &dev_attr_fwrev.attr, 849 &dev_attr_ffu_capable.attr, 850 &dev_attr_hwrev.attr, 851 &dev_attr_manfid.attr, 852 &dev_attr_name.attr, 853 &dev_attr_oemid.attr, 854 &dev_attr_prv.attr, 855 &dev_attr_rev.attr, 856 &dev_attr_pre_eol_info.attr, 857 &dev_attr_life_time.attr, 858 &dev_attr_serial.attr, 859 &dev_attr_enhanced_area_offset.attr, 860 &dev_attr_enhanced_area_size.attr, 861 &dev_attr_raw_rpmb_size_mult.attr, 862 &dev_attr_enhanced_rpmb_supported.attr, 863 &dev_attr_rel_sectors.attr, 864 &dev_attr_ocr.attr, 865 &dev_attr_rca.attr, 866 &dev_attr_dsr.attr, 867 &dev_attr_cmdq_en.attr, 868 NULL, 869 }; 870 ATTRIBUTE_GROUPS(mmc_std); 871 872 static const struct device_type mmc_type = { 873 .groups = mmc_std_groups, 874 }; 875 876 /* 877 * Select the PowerClass for the current bus width 878 * If power class is defined for 4/8 bit bus in the 879 * extended CSD register, select it by executing the 880 * mmc_switch command. 881 */ 882 static int __mmc_select_powerclass(struct mmc_card *card, 883 unsigned int bus_width) 884 { 885 struct mmc_host *host = card->host; 886 struct mmc_ext_csd *ext_csd = &card->ext_csd; 887 unsigned int pwrclass_val = 0; 888 int err = 0; 889 890 switch (1 << host->ios.vdd) { 891 case MMC_VDD_165_195: 892 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 893 pwrclass_val = ext_csd->raw_pwr_cl_26_195; 894 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 895 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 896 ext_csd->raw_pwr_cl_52_195 : 897 ext_csd->raw_pwr_cl_ddr_52_195; 898 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 899 pwrclass_val = ext_csd->raw_pwr_cl_200_195; 900 break; 901 case MMC_VDD_27_28: 902 case MMC_VDD_28_29: 903 case MMC_VDD_29_30: 904 case MMC_VDD_30_31: 905 case MMC_VDD_31_32: 906 case MMC_VDD_32_33: 907 case MMC_VDD_33_34: 908 case MMC_VDD_34_35: 909 case MMC_VDD_35_36: 910 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR) 911 pwrclass_val = ext_csd->raw_pwr_cl_26_360; 912 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR) 913 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ? 914 ext_csd->raw_pwr_cl_52_360 : 915 ext_csd->raw_pwr_cl_ddr_52_360; 916 else if (host->ios.clock <= MMC_HS200_MAX_DTR) 917 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ? 918 ext_csd->raw_pwr_cl_ddr_200_360 : 919 ext_csd->raw_pwr_cl_200_360; 920 break; 921 default: 922 pr_warn("%s: Voltage range not supported for power class\n", 923 mmc_hostname(host)); 924 return -EINVAL; 925 } 926 927 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8)) 928 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >> 929 EXT_CSD_PWR_CL_8BIT_SHIFT; 930 else 931 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >> 932 EXT_CSD_PWR_CL_4BIT_SHIFT; 933 934 /* If the power class is different from the default value */ 935 if (pwrclass_val > 0) { 936 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 937 EXT_CSD_POWER_CLASS, 938 pwrclass_val, 939 card->ext_csd.generic_cmd6_time); 940 } 941 942 return err; 943 } 944 945 static int mmc_select_powerclass(struct mmc_card *card) 946 { 947 struct mmc_host *host = card->host; 948 u32 bus_width, ext_csd_bits; 949 int err, ddr; 950 951 /* Power class selection is supported for versions >= 4.0 */ 952 if (!mmc_can_ext_csd(card)) 953 return 0; 954 955 bus_width = host->ios.bus_width; 956 /* Power class values are defined only for 4/8 bit bus */ 957 if (bus_width == MMC_BUS_WIDTH_1) 958 return 0; 959 960 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52; 961 if (ddr) 962 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 963 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 964 else 965 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 966 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4; 967 968 err = __mmc_select_powerclass(card, ext_csd_bits); 969 if (err) 970 pr_warn("%s: power class selection to bus width %d ddr %d failed\n", 971 mmc_hostname(host), 1 << bus_width, ddr); 972 973 return err; 974 } 975 976 /* 977 * Set the bus speed for the selected speed mode. 978 */ 979 static void mmc_set_bus_speed(struct mmc_card *card) 980 { 981 unsigned int max_dtr = (unsigned int)-1; 982 983 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) && 984 max_dtr > card->ext_csd.hs200_max_dtr) 985 max_dtr = card->ext_csd.hs200_max_dtr; 986 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr) 987 max_dtr = card->ext_csd.hs_max_dtr; 988 else if (max_dtr > card->csd.max_dtr) 989 max_dtr = card->csd.max_dtr; 990 991 mmc_set_clock(card->host, max_dtr); 992 } 993 994 /* 995 * Select the bus width amoung 4-bit and 8-bit(SDR). 996 * If the bus width is changed successfully, return the selected width value. 997 * Zero is returned instead of error value if the wide width is not supported. 998 */ 999 static int mmc_select_bus_width(struct mmc_card *card) 1000 { 1001 static unsigned ext_csd_bits[] = { 1002 EXT_CSD_BUS_WIDTH_8, 1003 EXT_CSD_BUS_WIDTH_4, 1004 EXT_CSD_BUS_WIDTH_1, 1005 }; 1006 static unsigned bus_widths[] = { 1007 MMC_BUS_WIDTH_8, 1008 MMC_BUS_WIDTH_4, 1009 MMC_BUS_WIDTH_1, 1010 }; 1011 struct mmc_host *host = card->host; 1012 unsigned idx, bus_width = 0; 1013 int err = 0; 1014 1015 if (!mmc_can_ext_csd(card) || 1016 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA))) 1017 return 0; 1018 1019 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1; 1020 1021 /* 1022 * Unlike SD, MMC cards dont have a configuration register to notify 1023 * supported bus width. So bus test command should be run to identify 1024 * the supported bus width or compare the ext csd values of current 1025 * bus width and ext csd values of 1 bit mode read earlier. 1026 */ 1027 for (; idx < ARRAY_SIZE(bus_widths); idx++) { 1028 /* 1029 * Host is capable of 8bit transfer, then switch 1030 * the device to work in 8bit transfer mode. If the 1031 * mmc switch command returns error then switch to 1032 * 4bit transfer mode. On success set the corresponding 1033 * bus width on the host. 1034 */ 1035 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1036 EXT_CSD_BUS_WIDTH, 1037 ext_csd_bits[idx], 1038 card->ext_csd.generic_cmd6_time); 1039 if (err) 1040 continue; 1041 1042 bus_width = bus_widths[idx]; 1043 mmc_set_bus_width(host, bus_width); 1044 1045 /* 1046 * If controller can't handle bus width test, 1047 * compare ext_csd previously read in 1 bit mode 1048 * against ext_csd at new bus width 1049 */ 1050 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST)) 1051 err = mmc_compare_ext_csds(card, bus_width); 1052 else 1053 err = mmc_bus_test(card, bus_width); 1054 1055 if (!err) { 1056 err = bus_width; 1057 break; 1058 } else { 1059 pr_warn("%s: switch to bus width %d failed\n", 1060 mmc_hostname(host), 1 << bus_width); 1061 } 1062 } 1063 1064 return err; 1065 } 1066 1067 /* 1068 * Switch to the high-speed mode 1069 */ 1070 static int mmc_select_hs(struct mmc_card *card) 1071 { 1072 int err; 1073 1074 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1075 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1076 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS, 1077 true, true, MMC_CMD_RETRIES); 1078 if (err) 1079 pr_warn("%s: switch to high-speed failed, err:%d\n", 1080 mmc_hostname(card->host), err); 1081 1082 return err; 1083 } 1084 1085 /* 1086 * Activate wide bus and DDR if supported. 1087 */ 1088 static int mmc_select_hs_ddr(struct mmc_card *card) 1089 { 1090 struct mmc_host *host = card->host; 1091 u32 bus_width, ext_csd_bits; 1092 int err = 0; 1093 1094 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52)) 1095 return 0; 1096 1097 bus_width = host->ios.bus_width; 1098 if (bus_width == MMC_BUS_WIDTH_1) 1099 return 0; 1100 1101 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ? 1102 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4; 1103 1104 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1105 EXT_CSD_BUS_WIDTH, 1106 ext_csd_bits, 1107 card->ext_csd.generic_cmd6_time, 1108 MMC_TIMING_MMC_DDR52, 1109 true, true, MMC_CMD_RETRIES); 1110 if (err) { 1111 pr_err("%s: switch to bus width %d ddr failed\n", 1112 mmc_hostname(host), 1 << bus_width); 1113 return err; 1114 } 1115 1116 /* 1117 * eMMC cards can support 3.3V to 1.2V i/o (vccq) 1118 * signaling. 1119 * 1120 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq. 1121 * 1122 * 1.8V vccq at 3.3V core voltage (vcc) is not required 1123 * in the JEDEC spec for DDR. 1124 * 1125 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all 1126 * host controller can support this, like some of the SDHCI 1127 * controller which connect to an eMMC device. Some of these 1128 * host controller still needs to use 1.8v vccq for supporting 1129 * DDR mode. 1130 * 1131 * So the sequence will be: 1132 * if (host and device can both support 1.2v IO) 1133 * use 1.2v IO; 1134 * else if (host and device can both support 1.8v IO) 1135 * use 1.8v IO; 1136 * so if host and device can only support 3.3v IO, this is the 1137 * last choice. 1138 * 1139 * WARNING: eMMC rules are NOT the same as SD DDR 1140 */ 1141 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) { 1142 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1143 if (!err) 1144 return 0; 1145 } 1146 1147 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V && 1148 host->caps & MMC_CAP_1_8V_DDR) 1149 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1150 1151 /* make sure vccq is 3.3v after switching disaster */ 1152 if (err) 1153 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1154 1155 return err; 1156 } 1157 1158 static int mmc_select_hs400(struct mmc_card *card) 1159 { 1160 struct mmc_host *host = card->host; 1161 unsigned int max_dtr; 1162 int err = 0; 1163 u8 val; 1164 1165 /* 1166 * HS400 mode requires 8-bit bus width 1167 */ 1168 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1169 host->ios.bus_width == MMC_BUS_WIDTH_8)) 1170 return 0; 1171 1172 /* Switch card to HS mode */ 1173 val = EXT_CSD_TIMING_HS; 1174 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1175 EXT_CSD_HS_TIMING, val, 1176 card->ext_csd.generic_cmd6_time, 0, 1177 false, true, MMC_CMD_RETRIES); 1178 if (err) { 1179 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n", 1180 mmc_hostname(host), err); 1181 return err; 1182 } 1183 1184 /* Prepare host to downgrade to HS timing */ 1185 if (host->ops->hs400_downgrade) 1186 host->ops->hs400_downgrade(host); 1187 1188 /* Set host controller to HS timing */ 1189 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1190 1191 /* Reduce frequency to HS frequency */ 1192 max_dtr = card->ext_csd.hs_max_dtr; 1193 mmc_set_clock(host, max_dtr); 1194 1195 err = mmc_switch_status(card, true); 1196 if (err) 1197 goto out_err; 1198 1199 if (host->ops->hs400_prepare_ddr) 1200 host->ops->hs400_prepare_ddr(host); 1201 1202 /* Switch card to DDR */ 1203 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1204 EXT_CSD_BUS_WIDTH, 1205 EXT_CSD_DDR_BUS_WIDTH_8, 1206 card->ext_csd.generic_cmd6_time); 1207 if (err) { 1208 pr_err("%s: switch to bus width for hs400 failed, err:%d\n", 1209 mmc_hostname(host), err); 1210 return err; 1211 } 1212 1213 /* Switch card to HS400 */ 1214 val = EXT_CSD_TIMING_HS400 | 1215 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1216 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1217 EXT_CSD_HS_TIMING, val, 1218 card->ext_csd.generic_cmd6_time, 0, 1219 false, true, MMC_CMD_RETRIES); 1220 if (err) { 1221 pr_err("%s: switch to hs400 failed, err:%d\n", 1222 mmc_hostname(host), err); 1223 return err; 1224 } 1225 1226 /* Set host controller to HS400 timing and frequency */ 1227 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1228 mmc_set_bus_speed(card); 1229 1230 if (host->ops->execute_hs400_tuning) { 1231 mmc_retune_disable(host); 1232 err = host->ops->execute_hs400_tuning(host, card); 1233 mmc_retune_enable(host); 1234 if (err) 1235 goto out_err; 1236 } 1237 1238 if (host->ops->hs400_complete) 1239 host->ops->hs400_complete(host); 1240 1241 err = mmc_switch_status(card, true); 1242 if (err) 1243 goto out_err; 1244 1245 return 0; 1246 1247 out_err: 1248 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1249 __func__, err); 1250 return err; 1251 } 1252 1253 int mmc_hs200_to_hs400(struct mmc_card *card) 1254 { 1255 return mmc_select_hs400(card); 1256 } 1257 1258 int mmc_hs400_to_hs200(struct mmc_card *card) 1259 { 1260 struct mmc_host *host = card->host; 1261 unsigned int max_dtr; 1262 int err; 1263 u8 val; 1264 1265 /* Reduce frequency to HS */ 1266 max_dtr = card->ext_csd.hs_max_dtr; 1267 mmc_set_clock(host, max_dtr); 1268 1269 /* Switch HS400 to HS DDR */ 1270 val = EXT_CSD_TIMING_HS; 1271 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1272 val, card->ext_csd.generic_cmd6_time, 0, 1273 false, true, MMC_CMD_RETRIES); 1274 if (err) 1275 goto out_err; 1276 1277 if (host->ops->hs400_downgrade) 1278 host->ops->hs400_downgrade(host); 1279 1280 mmc_set_timing(host, MMC_TIMING_MMC_DDR52); 1281 1282 err = mmc_switch_status(card, true); 1283 if (err) 1284 goto out_err; 1285 1286 /* Switch HS DDR to HS */ 1287 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, 1288 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time, 1289 0, false, true, MMC_CMD_RETRIES); 1290 if (err) 1291 goto out_err; 1292 1293 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1294 1295 err = mmc_switch_status(card, true); 1296 if (err) 1297 goto out_err; 1298 1299 /* Switch HS to HS200 */ 1300 val = EXT_CSD_TIMING_HS200 | 1301 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1303 val, card->ext_csd.generic_cmd6_time, 0, 1304 false, true, MMC_CMD_RETRIES); 1305 if (err) 1306 goto out_err; 1307 1308 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1309 1310 /* 1311 * For HS200, CRC errors are not a reliable way to know the switch 1312 * failed. If there really is a problem, we would expect tuning will 1313 * fail and the result ends up the same. 1314 */ 1315 err = mmc_switch_status(card, false); 1316 if (err) 1317 goto out_err; 1318 1319 mmc_set_bus_speed(card); 1320 1321 /* Prepare tuning for HS400 mode. */ 1322 if (host->ops->prepare_hs400_tuning) 1323 host->ops->prepare_hs400_tuning(host, &host->ios); 1324 1325 return 0; 1326 1327 out_err: 1328 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1329 __func__, err); 1330 return err; 1331 } 1332 1333 static void mmc_select_driver_type(struct mmc_card *card) 1334 { 1335 int card_drv_type, drive_strength, drv_type = 0; 1336 int fixed_drv_type = card->host->fixed_drv_type; 1337 1338 card_drv_type = card->ext_csd.raw_driver_strength | 1339 mmc_driver_type_mask(0); 1340 1341 if (fixed_drv_type >= 0) 1342 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type) 1343 ? fixed_drv_type : 0; 1344 else 1345 drive_strength = mmc_select_drive_strength(card, 1346 card->ext_csd.hs200_max_dtr, 1347 card_drv_type, &drv_type); 1348 1349 card->drive_strength = drive_strength; 1350 1351 if (drv_type) 1352 mmc_set_driver_type(card->host, drv_type); 1353 } 1354 1355 static int mmc_select_hs400es(struct mmc_card *card) 1356 { 1357 struct mmc_host *host = card->host; 1358 int err = -EINVAL; 1359 u8 val; 1360 1361 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V) 1362 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1363 1364 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V) 1365 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1366 1367 /* If fails try again during next card power cycle */ 1368 if (err) 1369 goto out_err; 1370 1371 err = mmc_select_bus_width(card); 1372 if (err != MMC_BUS_WIDTH_8) { 1373 pr_err("%s: switch to 8bit bus width failed, err:%d\n", 1374 mmc_hostname(host), err); 1375 err = err < 0 ? err : -ENOTSUPP; 1376 goto out_err; 1377 } 1378 1379 /* Switch card to HS mode */ 1380 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1381 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS, 1382 card->ext_csd.generic_cmd6_time, 0, 1383 false, true, MMC_CMD_RETRIES); 1384 if (err) { 1385 pr_err("%s: switch to hs for hs400es failed, err:%d\n", 1386 mmc_hostname(host), err); 1387 goto out_err; 1388 } 1389 1390 /* 1391 * Bump to HS timing and frequency. Some cards don't handle 1392 * SEND_STATUS reliably at the initial frequency. 1393 */ 1394 mmc_set_timing(host, MMC_TIMING_MMC_HS); 1395 mmc_set_bus_speed(card); 1396 1397 err = mmc_switch_status(card, true); 1398 if (err) 1399 goto out_err; 1400 1401 /* Switch card to DDR with strobe bit */ 1402 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE; 1403 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1404 EXT_CSD_BUS_WIDTH, 1405 val, 1406 card->ext_csd.generic_cmd6_time); 1407 if (err) { 1408 pr_err("%s: switch to bus width for hs400es failed, err:%d\n", 1409 mmc_hostname(host), err); 1410 goto out_err; 1411 } 1412 1413 mmc_select_driver_type(card); 1414 1415 /* Switch card to HS400 */ 1416 val = EXT_CSD_TIMING_HS400 | 1417 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1418 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1419 EXT_CSD_HS_TIMING, val, 1420 card->ext_csd.generic_cmd6_time, 0, 1421 false, true, MMC_CMD_RETRIES); 1422 if (err) { 1423 pr_err("%s: switch to hs400es failed, err:%d\n", 1424 mmc_hostname(host), err); 1425 goto out_err; 1426 } 1427 1428 /* Set host controller to HS400 timing and frequency */ 1429 mmc_set_timing(host, MMC_TIMING_MMC_HS400); 1430 1431 /* Controller enable enhanced strobe function */ 1432 host->ios.enhanced_strobe = true; 1433 if (host->ops->hs400_enhanced_strobe) 1434 host->ops->hs400_enhanced_strobe(host, &host->ios); 1435 1436 err = mmc_switch_status(card, true); 1437 if (err) 1438 goto out_err; 1439 1440 return 0; 1441 1442 out_err: 1443 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1444 __func__, err); 1445 return err; 1446 } 1447 1448 /* 1449 * For device supporting HS200 mode, the following sequence 1450 * should be done before executing the tuning process. 1451 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported) 1452 * 2. switch to HS200 mode 1453 * 3. set the clock to > 52Mhz and <=200MHz 1454 */ 1455 static int mmc_select_hs200(struct mmc_card *card) 1456 { 1457 struct mmc_host *host = card->host; 1458 unsigned int old_timing, old_signal_voltage, old_clock; 1459 int err = -EINVAL; 1460 u8 val; 1461 1462 old_signal_voltage = host->ios.signal_voltage; 1463 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V) 1464 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120); 1465 1466 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V) 1467 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180); 1468 1469 /* If fails try again during next card power cycle */ 1470 if (err) 1471 return err; 1472 1473 mmc_select_driver_type(card); 1474 1475 /* 1476 * Set the bus width(4 or 8) with host's support and 1477 * switch to HS200 mode if bus width is set successfully. 1478 */ 1479 err = mmc_select_bus_width(card); 1480 if (err > 0) { 1481 val = EXT_CSD_TIMING_HS200 | 1482 card->drive_strength << EXT_CSD_DRV_STR_SHIFT; 1483 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1484 EXT_CSD_HS_TIMING, val, 1485 card->ext_csd.generic_cmd6_time, 0, 1486 false, true, MMC_CMD_RETRIES); 1487 if (err) 1488 goto err; 1489 1490 /* 1491 * Bump to HS timing and frequency. Some cards don't handle 1492 * SEND_STATUS reliably at the initial frequency. 1493 * NB: We can't move to full (HS200) speeds until after we've 1494 * successfully switched over. 1495 */ 1496 old_timing = host->ios.timing; 1497 old_clock = host->ios.clock; 1498 mmc_set_timing(host, MMC_TIMING_MMC_HS200); 1499 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr); 1500 1501 /* 1502 * For HS200, CRC errors are not a reliable way to know the 1503 * switch failed. If there really is a problem, we would expect 1504 * tuning will fail and the result ends up the same. 1505 */ 1506 err = mmc_switch_status(card, false); 1507 1508 /* 1509 * mmc_select_timing() assumes timing has not changed if 1510 * it is a switch error. 1511 */ 1512 if (err == -EBADMSG) { 1513 mmc_set_clock(host, old_clock); 1514 mmc_set_timing(host, old_timing); 1515 } 1516 } 1517 err: 1518 if (err) { 1519 /* fall back to the old signal voltage, if fails report error */ 1520 if (mmc_set_signal_voltage(host, old_signal_voltage)) 1521 err = -EIO; 1522 1523 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host), 1524 __func__, err); 1525 } 1526 return err; 1527 } 1528 1529 /* 1530 * Activate High Speed, HS200 or HS400ES mode if supported. 1531 */ 1532 static int mmc_select_timing(struct mmc_card *card) 1533 { 1534 int err = 0; 1535 1536 if (!mmc_can_ext_csd(card)) 1537 goto bus_speed; 1538 1539 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) { 1540 err = mmc_select_hs400es(card); 1541 goto out; 1542 } 1543 1544 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) { 1545 err = mmc_select_hs200(card); 1546 if (err == -EBADMSG) 1547 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200; 1548 else 1549 goto out; 1550 } 1551 1552 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS) 1553 err = mmc_select_hs(card); 1554 1555 out: 1556 if (err && err != -EBADMSG) 1557 return err; 1558 1559 bus_speed: 1560 /* 1561 * Set the bus speed to the selected bus timing. 1562 * If timing is not selected, backward compatible is the default. 1563 */ 1564 mmc_set_bus_speed(card); 1565 return 0; 1566 } 1567 1568 /* 1569 * Execute tuning sequence to seek the proper bus operating 1570 * conditions for HS200 and HS400, which sends CMD21 to the device. 1571 */ 1572 static int mmc_hs200_tuning(struct mmc_card *card) 1573 { 1574 struct mmc_host *host = card->host; 1575 1576 /* 1577 * Timing should be adjusted to the HS400 target 1578 * operation frequency for tuning process 1579 */ 1580 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 && 1581 host->ios.bus_width == MMC_BUS_WIDTH_8) 1582 if (host->ops->prepare_hs400_tuning) 1583 host->ops->prepare_hs400_tuning(host, &host->ios); 1584 1585 return mmc_execute_tuning(card); 1586 } 1587 1588 /* 1589 * Handle the detection and initialisation of a card. 1590 * 1591 * In the case of a resume, "oldcard" will contain the card 1592 * we're trying to reinitialise. 1593 */ 1594 static int mmc_init_card(struct mmc_host *host, u32 ocr, 1595 struct mmc_card *oldcard) 1596 { 1597 struct mmc_card *card; 1598 int err; 1599 u32 cid[4]; 1600 u32 rocr; 1601 1602 WARN_ON(!host->claimed); 1603 1604 /* Set correct bus mode for MMC before attempting init */ 1605 if (!mmc_host_is_spi(host)) 1606 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 1607 1608 /* 1609 * Since we're changing the OCR value, we seem to 1610 * need to tell some cards to go back to the idle 1611 * state. We wait 1ms to give cards time to 1612 * respond. 1613 * mmc_go_idle is needed for eMMC that are asleep 1614 */ 1615 mmc_go_idle(host); 1616 1617 /* The extra bit indicates that we support high capacity */ 1618 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); 1619 if (err) 1620 goto err; 1621 1622 /* 1623 * For SPI, enable CRC as appropriate. 1624 */ 1625 if (mmc_host_is_spi(host)) { 1626 err = mmc_spi_set_crc(host, use_spi_crc); 1627 if (err) 1628 goto err; 1629 } 1630 1631 /* 1632 * Fetch CID from card. 1633 */ 1634 err = mmc_send_cid(host, cid); 1635 if (err) 1636 goto err; 1637 1638 if (oldcard) { 1639 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) { 1640 pr_debug("%s: Perhaps the card was replaced\n", 1641 mmc_hostname(host)); 1642 err = -ENOENT; 1643 goto err; 1644 } 1645 1646 card = oldcard; 1647 } else { 1648 /* 1649 * Allocate card structure. 1650 */ 1651 card = mmc_alloc_card(host, &mmc_type); 1652 if (IS_ERR(card)) { 1653 err = PTR_ERR(card); 1654 goto err; 1655 } 1656 1657 card->ocr = ocr; 1658 card->type = MMC_TYPE_MMC; 1659 card->rca = 1; 1660 memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); 1661 } 1662 1663 /* 1664 * Call the optional HC's init_card function to handle quirks. 1665 */ 1666 if (host->ops->init_card) 1667 host->ops->init_card(host, card); 1668 1669 /* 1670 * For native busses: set card RCA and quit open drain mode. 1671 */ 1672 if (!mmc_host_is_spi(host)) { 1673 err = mmc_set_relative_addr(card); 1674 if (err) 1675 goto free_card; 1676 1677 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); 1678 } 1679 1680 if (!oldcard) { 1681 /* 1682 * Fetch CSD from card. 1683 */ 1684 err = mmc_send_csd(card, card->raw_csd); 1685 if (err) 1686 goto free_card; 1687 1688 err = mmc_decode_csd(card); 1689 if (err) 1690 goto free_card; 1691 err = mmc_decode_cid(card); 1692 if (err) 1693 goto free_card; 1694 } 1695 1696 /* 1697 * handling only for cards supporting DSR and hosts requesting 1698 * DSR configuration 1699 */ 1700 if (card->csd.dsr_imp && host->dsr_req) 1701 mmc_set_dsr(host); 1702 1703 /* 1704 * Select card, as all following commands rely on that. 1705 */ 1706 if (!mmc_host_is_spi(host)) { 1707 err = mmc_select_card(card); 1708 if (err) 1709 goto free_card; 1710 } 1711 1712 if (!oldcard) { 1713 /* Read extended CSD. */ 1714 err = mmc_read_ext_csd(card); 1715 if (err) 1716 goto free_card; 1717 1718 /* 1719 * If doing byte addressing, check if required to do sector 1720 * addressing. Handle the case of <2GB cards needing sector 1721 * addressing. See section 8.1 JEDEC Standard JED84-A441; 1722 * ocr register has bit 30 set for sector addressing. 1723 */ 1724 if (rocr & BIT(30)) 1725 mmc_card_set_blockaddr(card); 1726 1727 /* Erase size depends on CSD and Extended CSD */ 1728 mmc_set_erase_size(card); 1729 } 1730 1731 /* 1732 * Reselect the card type since host caps could have been changed when 1733 * debugging even if the card is not new. 1734 */ 1735 mmc_select_card_type(card); 1736 1737 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */ 1738 if (card->ext_csd.rev >= 3) { 1739 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1740 EXT_CSD_ERASE_GROUP_DEF, 1, 1741 card->ext_csd.generic_cmd6_time); 1742 1743 if (err && err != -EBADMSG) 1744 goto free_card; 1745 1746 if (err) { 1747 /* 1748 * Just disable enhanced area off & sz 1749 * will try to enable ERASE_GROUP_DEF 1750 * during next time reinit 1751 */ 1752 card->ext_csd.enhanced_area_offset = -EINVAL; 1753 card->ext_csd.enhanced_area_size = -EINVAL; 1754 } else { 1755 card->ext_csd.erase_group_def = 1; 1756 /* 1757 * enable ERASE_GRP_DEF successfully. 1758 * This will affect the erase size, so 1759 * here need to reset erase size 1760 */ 1761 mmc_set_erase_size(card); 1762 } 1763 } 1764 mmc_set_wp_grp_size(card); 1765 /* 1766 * Ensure eMMC user default partition is enabled 1767 */ 1768 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) { 1769 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 1770 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, 1771 card->ext_csd.part_config, 1772 card->ext_csd.part_time); 1773 if (err && err != -EBADMSG) 1774 goto free_card; 1775 } 1776 1777 /* 1778 * Enable power_off_notification byte in the ext_csd register 1779 */ 1780 if (card->ext_csd.rev >= 6) { 1781 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1782 EXT_CSD_POWER_OFF_NOTIFICATION, 1783 EXT_CSD_POWER_ON, 1784 card->ext_csd.generic_cmd6_time); 1785 if (err && err != -EBADMSG) 1786 goto free_card; 1787 1788 /* 1789 * The err can be -EBADMSG or 0, 1790 * so check for success and update the flag 1791 */ 1792 if (!err) 1793 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON; 1794 } 1795 1796 /* set erase_arg */ 1797 if (mmc_can_discard(card)) 1798 card->erase_arg = MMC_DISCARD_ARG; 1799 else if (mmc_can_trim(card)) 1800 card->erase_arg = MMC_TRIM_ARG; 1801 else 1802 card->erase_arg = MMC_ERASE_ARG; 1803 1804 /* 1805 * Select timing interface 1806 */ 1807 err = mmc_select_timing(card); 1808 if (err) 1809 goto free_card; 1810 1811 if (mmc_card_hs200(card)) { 1812 host->doing_init_tune = 1; 1813 1814 err = mmc_hs200_tuning(card); 1815 if (!err) 1816 err = mmc_select_hs400(card); 1817 1818 host->doing_init_tune = 0; 1819 1820 if (err) 1821 goto free_card; 1822 } else if (mmc_card_hs400es(card)) { 1823 if (host->ops->execute_hs400_tuning) { 1824 err = host->ops->execute_hs400_tuning(host, card); 1825 if (err) 1826 goto free_card; 1827 } 1828 } else { 1829 /* Select the desired bus width optionally */ 1830 err = mmc_select_bus_width(card); 1831 if (err > 0 && mmc_card_hs(card)) { 1832 err = mmc_select_hs_ddr(card); 1833 if (err) 1834 goto free_card; 1835 } 1836 } 1837 1838 /* 1839 * Choose the power class with selected bus interface 1840 */ 1841 mmc_select_powerclass(card); 1842 1843 /* 1844 * Enable HPI feature (if supported) 1845 */ 1846 if (card->ext_csd.hpi) { 1847 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1848 EXT_CSD_HPI_MGMT, 1, 1849 card->ext_csd.generic_cmd6_time); 1850 if (err && err != -EBADMSG) 1851 goto free_card; 1852 if (err) { 1853 pr_warn("%s: Enabling HPI failed\n", 1854 mmc_hostname(card->host)); 1855 card->ext_csd.hpi_en = 0; 1856 } else { 1857 card->ext_csd.hpi_en = 1; 1858 } 1859 } 1860 1861 /* 1862 * If cache size is higher than 0, this indicates the existence of cache 1863 * and it can be turned on. Note that some eMMCs from Micron has been 1864 * reported to need ~800 ms timeout, while enabling the cache after 1865 * sudden power failure tests. Let's extend the timeout to a minimum of 1866 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards. 1867 */ 1868 if (card->ext_csd.cache_size > 0) { 1869 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS; 1870 1871 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms); 1872 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1873 EXT_CSD_CACHE_CTRL, 1, timeout_ms); 1874 if (err && err != -EBADMSG) 1875 goto free_card; 1876 1877 /* 1878 * Only if no error, cache is turned on successfully. 1879 */ 1880 if (err) { 1881 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n", 1882 mmc_hostname(card->host), err); 1883 card->ext_csd.cache_ctrl = 0; 1884 } else { 1885 card->ext_csd.cache_ctrl = 1; 1886 } 1887 } 1888 1889 /* 1890 * Enable Command Queue if supported. Note that Packed Commands cannot 1891 * be used with Command Queue. 1892 */ 1893 card->ext_csd.cmdq_en = false; 1894 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) { 1895 err = mmc_cmdq_enable(card); 1896 if (err && err != -EBADMSG) 1897 goto free_card; 1898 if (err) { 1899 pr_warn("%s: Enabling CMDQ failed\n", 1900 mmc_hostname(card->host)); 1901 card->ext_csd.cmdq_support = false; 1902 card->ext_csd.cmdq_depth = 0; 1903 } 1904 } 1905 /* 1906 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be 1907 * disabled for a time, so a flag is needed to indicate to re-enable the 1908 * Command Queue. 1909 */ 1910 card->reenable_cmdq = card->ext_csd.cmdq_en; 1911 1912 if (host->cqe_ops && !host->cqe_enabled) { 1913 err = host->cqe_ops->cqe_enable(host, card); 1914 if (!err) { 1915 host->cqe_enabled = true; 1916 1917 if (card->ext_csd.cmdq_en) { 1918 pr_info("%s: Command Queue Engine enabled\n", 1919 mmc_hostname(host)); 1920 } else { 1921 host->hsq_enabled = true; 1922 pr_info("%s: Host Software Queue enabled\n", 1923 mmc_hostname(host)); 1924 } 1925 } 1926 } 1927 1928 if (host->caps2 & MMC_CAP2_AVOID_3_3V && 1929 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) { 1930 pr_err("%s: Host failed to negotiate down from 3.3V\n", 1931 mmc_hostname(host)); 1932 err = -EINVAL; 1933 goto free_card; 1934 } 1935 1936 if (!oldcard) 1937 host->card = card; 1938 1939 return 0; 1940 1941 free_card: 1942 if (!oldcard) 1943 mmc_remove_card(card); 1944 err: 1945 return err; 1946 } 1947 1948 static int mmc_can_sleep(struct mmc_card *card) 1949 { 1950 return card->ext_csd.rev >= 3; 1951 } 1952 1953 static int mmc_sleep_busy_cb(void *cb_data, bool *busy) 1954 { 1955 struct mmc_host *host = cb_data; 1956 1957 *busy = host->ops->card_busy(host); 1958 return 0; 1959 } 1960 1961 static int mmc_sleep(struct mmc_host *host) 1962 { 1963 struct mmc_command cmd = {}; 1964 struct mmc_card *card = host->card; 1965 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000); 1966 bool use_r1b_resp; 1967 int err; 1968 1969 /* Re-tuning can't be done once the card is deselected */ 1970 mmc_retune_hold(host); 1971 1972 err = mmc_deselect_cards(host); 1973 if (err) 1974 goto out_release; 1975 1976 cmd.opcode = MMC_SLEEP_AWAKE; 1977 cmd.arg = card->rca << 16; 1978 cmd.arg |= 1 << 15; 1979 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms); 1980 1981 err = mmc_wait_for_cmd(host, &cmd, 0); 1982 if (err) 1983 goto out_release; 1984 1985 /* 1986 * If the host does not wait while the card signals busy, then we can 1987 * try to poll, but only if the host supports HW polling, as the 1988 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need 1989 * to wait the sleep/awake timeout. 1990 */ 1991 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) 1992 goto out_release; 1993 1994 if (!host->ops->card_busy) { 1995 mmc_delay(timeout_ms); 1996 goto out_release; 1997 } 1998 1999 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host); 2000 2001 out_release: 2002 mmc_retune_release(host); 2003 return err; 2004 } 2005 2006 static int mmc_can_poweroff_notify(const struct mmc_card *card) 2007 { 2008 return card && 2009 mmc_card_mmc(card) && 2010 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON); 2011 } 2012 2013 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type) 2014 { 2015 unsigned int timeout = card->ext_csd.generic_cmd6_time; 2016 int err; 2017 2018 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */ 2019 if (notify_type == EXT_CSD_POWER_OFF_LONG) 2020 timeout = card->ext_csd.power_off_longtime; 2021 2022 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2023 EXT_CSD_POWER_OFF_NOTIFICATION, 2024 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES); 2025 if (err) 2026 pr_err("%s: Power Off Notification timed out, %u\n", 2027 mmc_hostname(card->host), timeout); 2028 2029 /* Disable the power off notification after the switch operation. */ 2030 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION; 2031 2032 return err; 2033 } 2034 2035 /* 2036 * Host is being removed. Free up the current card. 2037 */ 2038 static void mmc_remove(struct mmc_host *host) 2039 { 2040 mmc_remove_card(host->card); 2041 host->card = NULL; 2042 } 2043 2044 /* 2045 * Card detection - card is alive. 2046 */ 2047 static int mmc_alive(struct mmc_host *host) 2048 { 2049 return mmc_send_status(host->card, NULL); 2050 } 2051 2052 /* 2053 * Card detection callback from host. 2054 */ 2055 static void mmc_detect(struct mmc_host *host) 2056 { 2057 int err; 2058 2059 mmc_get_card(host->card, NULL); 2060 2061 /* 2062 * Just check if our card has been removed. 2063 */ 2064 err = _mmc_detect_card_removed(host); 2065 2066 mmc_put_card(host->card, NULL); 2067 2068 if (err) { 2069 mmc_remove(host); 2070 2071 mmc_claim_host(host); 2072 mmc_detach_bus(host); 2073 mmc_power_off(host); 2074 mmc_release_host(host); 2075 } 2076 } 2077 2078 static bool _mmc_cache_enabled(struct mmc_host *host) 2079 { 2080 return host->card->ext_csd.cache_size > 0 && 2081 host->card->ext_csd.cache_ctrl & 1; 2082 } 2083 2084 /* 2085 * Flush the internal cache of the eMMC to non-volatile storage. 2086 */ 2087 static int _mmc_flush_cache(struct mmc_host *host) 2088 { 2089 int err = 0; 2090 2091 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag) 2092 return 0; 2093 2094 if (_mmc_cache_enabled(host)) { 2095 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL, 2096 EXT_CSD_FLUSH_CACHE, 1, 2097 CACHE_FLUSH_TIMEOUT_MS); 2098 if (err) 2099 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err); 2100 else 2101 host->card->written_flag = false; 2102 } 2103 2104 return err; 2105 } 2106 2107 static int _mmc_suspend(struct mmc_host *host, bool is_suspend) 2108 { 2109 int err = 0; 2110 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT : 2111 EXT_CSD_POWER_OFF_LONG; 2112 2113 mmc_claim_host(host); 2114 2115 if (mmc_card_suspended(host->card)) 2116 goto out; 2117 2118 err = _mmc_flush_cache(host); 2119 if (err) 2120 goto out; 2121 2122 if (mmc_can_poweroff_notify(host->card) && 2123 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend || 2124 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND))) 2125 err = mmc_poweroff_notify(host->card, notify_type); 2126 else if (mmc_can_sleep(host->card)) 2127 err = mmc_sleep(host); 2128 else if (!mmc_host_is_spi(host)) 2129 err = mmc_deselect_cards(host); 2130 2131 if (!err) { 2132 mmc_power_off(host); 2133 mmc_card_set_suspended(host->card); 2134 } 2135 out: 2136 mmc_release_host(host); 2137 return err; 2138 } 2139 2140 /* 2141 * Suspend callback 2142 */ 2143 static int mmc_suspend(struct mmc_host *host) 2144 { 2145 int err; 2146 2147 err = _mmc_suspend(host, true); 2148 if (!err) { 2149 pm_runtime_disable(&host->card->dev); 2150 pm_runtime_set_suspended(&host->card->dev); 2151 } 2152 2153 return err; 2154 } 2155 2156 /* 2157 * This function tries to determine if the same card is still present 2158 * and, if so, restore all state to it. 2159 */ 2160 static int _mmc_resume(struct mmc_host *host) 2161 { 2162 int err = 0; 2163 2164 mmc_claim_host(host); 2165 2166 if (!mmc_card_suspended(host->card)) 2167 goto out; 2168 2169 mmc_power_up(host, host->card->ocr); 2170 err = mmc_init_card(host, host->card->ocr, host->card); 2171 mmc_card_clr_suspended(host->card); 2172 2173 out: 2174 mmc_release_host(host); 2175 return err; 2176 } 2177 2178 /* 2179 * Shutdown callback 2180 */ 2181 static int mmc_shutdown(struct mmc_host *host) 2182 { 2183 int err = 0; 2184 2185 /* 2186 * In a specific case for poweroff notify, we need to resume the card 2187 * before we can shutdown it properly. 2188 */ 2189 if (mmc_can_poweroff_notify(host->card) && 2190 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE)) 2191 err = _mmc_resume(host); 2192 2193 if (!err) 2194 err = _mmc_suspend(host, false); 2195 2196 return err; 2197 } 2198 2199 /* 2200 * Callback for resume. 2201 */ 2202 static int mmc_resume(struct mmc_host *host) 2203 { 2204 pm_runtime_enable(&host->card->dev); 2205 return 0; 2206 } 2207 2208 /* 2209 * Callback for runtime_suspend. 2210 */ 2211 static int mmc_runtime_suspend(struct mmc_host *host) 2212 { 2213 int err; 2214 2215 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM)) 2216 return 0; 2217 2218 err = _mmc_suspend(host, true); 2219 if (err) 2220 pr_err("%s: error %d doing aggressive suspend\n", 2221 mmc_hostname(host), err); 2222 2223 return err; 2224 } 2225 2226 /* 2227 * Callback for runtime_resume. 2228 */ 2229 static int mmc_runtime_resume(struct mmc_host *host) 2230 { 2231 int err; 2232 2233 err = _mmc_resume(host); 2234 if (err && err != -ENOMEDIUM) 2235 pr_err("%s: error %d doing runtime resume\n", 2236 mmc_hostname(host), err); 2237 2238 return 0; 2239 } 2240 2241 static int mmc_can_reset(struct mmc_card *card) 2242 { 2243 u8 rst_n_function; 2244 2245 rst_n_function = card->ext_csd.rst_n_function; 2246 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2247 return 0; 2248 return 1; 2249 } 2250 2251 static int _mmc_hw_reset(struct mmc_host *host) 2252 { 2253 struct mmc_card *card = host->card; 2254 2255 /* 2256 * In the case of recovery, we can't expect flushing the cache to work 2257 * always, but we have a go and ignore errors. 2258 */ 2259 _mmc_flush_cache(host); 2260 2261 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset && 2262 mmc_can_reset(card)) { 2263 /* If the card accept RST_n signal, send it. */ 2264 mmc_set_clock(host, host->f_init); 2265 host->ops->card_hw_reset(host); 2266 /* Set initial state and call mmc_set_ios */ 2267 mmc_set_initial_state(host); 2268 } else { 2269 /* Do a brute force power cycle */ 2270 mmc_power_cycle(host, card->ocr); 2271 mmc_pwrseq_reset(host); 2272 } 2273 return mmc_init_card(host, card->ocr, card); 2274 } 2275 2276 static const struct mmc_bus_ops mmc_ops = { 2277 .remove = mmc_remove, 2278 .detect = mmc_detect, 2279 .suspend = mmc_suspend, 2280 .resume = mmc_resume, 2281 .runtime_suspend = mmc_runtime_suspend, 2282 .runtime_resume = mmc_runtime_resume, 2283 .alive = mmc_alive, 2284 .shutdown = mmc_shutdown, 2285 .hw_reset = _mmc_hw_reset, 2286 .cache_enabled = _mmc_cache_enabled, 2287 .flush_cache = _mmc_flush_cache, 2288 }; 2289 2290 /* 2291 * Starting point for MMC card init. 2292 */ 2293 int mmc_attach_mmc(struct mmc_host *host) 2294 { 2295 int err; 2296 u32 ocr, rocr; 2297 2298 WARN_ON(!host->claimed); 2299 2300 /* Set correct bus mode for MMC before attempting attach */ 2301 if (!mmc_host_is_spi(host)) 2302 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN); 2303 2304 err = mmc_send_op_cond(host, 0, &ocr); 2305 if (err) 2306 return err; 2307 2308 mmc_attach_bus(host, &mmc_ops); 2309 if (host->ocr_avail_mmc) 2310 host->ocr_avail = host->ocr_avail_mmc; 2311 2312 /* 2313 * We need to get OCR a different way for SPI. 2314 */ 2315 if (mmc_host_is_spi(host)) { 2316 err = mmc_spi_read_ocr(host, 1, &ocr); 2317 if (err) 2318 goto err; 2319 } 2320 2321 rocr = mmc_select_voltage(host, ocr); 2322 2323 /* 2324 * Can we support the voltage of the card? 2325 */ 2326 if (!rocr) { 2327 err = -EINVAL; 2328 goto err; 2329 } 2330 2331 /* 2332 * Detect and init the card. 2333 */ 2334 err = mmc_init_card(host, rocr, NULL); 2335 if (err) 2336 goto err; 2337 2338 mmc_release_host(host); 2339 err = mmc_add_card(host->card); 2340 if (err) 2341 goto remove_card; 2342 2343 mmc_claim_host(host); 2344 return 0; 2345 2346 remove_card: 2347 mmc_remove_card(host->card); 2348 mmc_claim_host(host); 2349 host->card = NULL; 2350 err: 2351 mmc_detach_bus(host); 2352 2353 pr_err("%s: error %d whilst initialising MMC card\n", 2354 mmc_hostname(host), err); 2355 2356 return err; 2357 } 2358