xref: /linux/drivers/mmc/core/core.c (revision fea88a0c02822fbb91a0b8301bf9af04377876a3)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39 
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43 
44 static struct workqueue_struct *workqueue;
45 
46 /*
47  * Enabling software CRCs on the data blocks can be a significant (30%)
48  * performance cost, and for other reasons may not always be desired.
49  * So we allow it it to be disabled.
50  */
51 bool use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
53 
54 /*
55  * We normally treat cards as removed during suspend if they are not
56  * known to be on a non-removable bus, to avoid the risk of writing
57  * back data to a different card after resume.  Allow this to be
58  * overridden if necessary.
59  */
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 bool mmc_assume_removable;
62 #else
63 bool mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 	removable,
69 	"MMC/SD cards are removable and may be removed during suspend");
70 
71 /*
72  * Internal function. Schedule delayed work in the MMC work queue.
73  */
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 				     unsigned long delay)
76 {
77 	return queue_delayed_work(workqueue, work, delay);
78 }
79 
80 /*
81  * Internal function. Flush all scheduled work from the MMC work queue.
82  */
83 static void mmc_flush_scheduled_work(void)
84 {
85 	flush_workqueue(workqueue);
86 }
87 
88 #ifdef CONFIG_FAIL_MMC_REQUEST
89 
90 /*
91  * Internal function. Inject random data errors.
92  * If mmc_data is NULL no errors are injected.
93  */
94 static void mmc_should_fail_request(struct mmc_host *host,
95 				    struct mmc_request *mrq)
96 {
97 	struct mmc_command *cmd = mrq->cmd;
98 	struct mmc_data *data = mrq->data;
99 	static const int data_errors[] = {
100 		-ETIMEDOUT,
101 		-EILSEQ,
102 		-EIO,
103 	};
104 
105 	if (!data)
106 		return;
107 
108 	if (cmd->error || data->error ||
109 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 		return;
111 
112 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114 }
115 
116 #else /* CONFIG_FAIL_MMC_REQUEST */
117 
118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 					   struct mmc_request *mrq)
120 {
121 }
122 
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
124 
125 /**
126  *	mmc_request_done - finish processing an MMC request
127  *	@host: MMC host which completed request
128  *	@mrq: MMC request which request
129  *
130  *	MMC drivers should call this function when they have completed
131  *	their processing of a request.
132  */
133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134 {
135 	struct mmc_command *cmd = mrq->cmd;
136 	int err = cmd->error;
137 
138 	if (err && cmd->retries && mmc_host_is_spi(host)) {
139 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 			cmd->retries = 0;
141 	}
142 
143 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
144 		/*
145 		 * Request starter must handle retries - see
146 		 * mmc_wait_for_req_done().
147 		 */
148 		if (mrq->done)
149 			mrq->done(mrq);
150 	} else {
151 		mmc_should_fail_request(host, mrq);
152 
153 		led_trigger_event(host->led, LED_OFF);
154 
155 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 			mmc_hostname(host), cmd->opcode, err,
157 			cmd->resp[0], cmd->resp[1],
158 			cmd->resp[2], cmd->resp[3]);
159 
160 		if (mrq->data) {
161 			pr_debug("%s:     %d bytes transferred: %d\n",
162 				mmc_hostname(host),
163 				mrq->data->bytes_xfered, mrq->data->error);
164 		}
165 
166 		if (mrq->stop) {
167 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
168 				mmc_hostname(host), mrq->stop->opcode,
169 				mrq->stop->error,
170 				mrq->stop->resp[0], mrq->stop->resp[1],
171 				mrq->stop->resp[2], mrq->stop->resp[3]);
172 		}
173 
174 		if (mrq->done)
175 			mrq->done(mrq);
176 
177 		mmc_host_clk_release(host);
178 	}
179 }
180 
181 EXPORT_SYMBOL(mmc_request_done);
182 
183 static void
184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185 {
186 #ifdef CONFIG_MMC_DEBUG
187 	unsigned int i, sz;
188 	struct scatterlist *sg;
189 #endif
190 
191 	if (mrq->sbc) {
192 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
193 			 mmc_hostname(host), mrq->sbc->opcode,
194 			 mrq->sbc->arg, mrq->sbc->flags);
195 	}
196 
197 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
198 		 mmc_hostname(host), mrq->cmd->opcode,
199 		 mrq->cmd->arg, mrq->cmd->flags);
200 
201 	if (mrq->data) {
202 		pr_debug("%s:     blksz %d blocks %d flags %08x "
203 			"tsac %d ms nsac %d\n",
204 			mmc_hostname(host), mrq->data->blksz,
205 			mrq->data->blocks, mrq->data->flags,
206 			mrq->data->timeout_ns / 1000000,
207 			mrq->data->timeout_clks);
208 	}
209 
210 	if (mrq->stop) {
211 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
212 			 mmc_hostname(host), mrq->stop->opcode,
213 			 mrq->stop->arg, mrq->stop->flags);
214 	}
215 
216 	WARN_ON(!host->claimed);
217 
218 	mrq->cmd->error = 0;
219 	mrq->cmd->mrq = mrq;
220 	if (mrq->data) {
221 		BUG_ON(mrq->data->blksz > host->max_blk_size);
222 		BUG_ON(mrq->data->blocks > host->max_blk_count);
223 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
224 			host->max_req_size);
225 
226 #ifdef CONFIG_MMC_DEBUG
227 		sz = 0;
228 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
229 			sz += sg->length;
230 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
231 #endif
232 
233 		mrq->cmd->data = mrq->data;
234 		mrq->data->error = 0;
235 		mrq->data->mrq = mrq;
236 		if (mrq->stop) {
237 			mrq->data->stop = mrq->stop;
238 			mrq->stop->error = 0;
239 			mrq->stop->mrq = mrq;
240 		}
241 	}
242 	mmc_host_clk_hold(host);
243 	led_trigger_event(host->led, LED_FULL);
244 	host->ops->request(host, mrq);
245 }
246 
247 static void mmc_wait_done(struct mmc_request *mrq)
248 {
249 	complete(&mrq->completion);
250 }
251 
252 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
253 {
254 	init_completion(&mrq->completion);
255 	mrq->done = mmc_wait_done;
256 	if (mmc_card_removed(host->card)) {
257 		mrq->cmd->error = -ENOMEDIUM;
258 		complete(&mrq->completion);
259 		return -ENOMEDIUM;
260 	}
261 	mmc_start_request(host, mrq);
262 	return 0;
263 }
264 
265 static void mmc_wait_for_req_done(struct mmc_host *host,
266 				  struct mmc_request *mrq)
267 {
268 	struct mmc_command *cmd;
269 
270 	while (1) {
271 		wait_for_completion(&mrq->completion);
272 
273 		cmd = mrq->cmd;
274 		if (!cmd->error || !cmd->retries ||
275 		    mmc_card_removed(host->card))
276 			break;
277 
278 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
279 			 mmc_hostname(host), cmd->opcode, cmd->error);
280 		cmd->retries--;
281 		cmd->error = 0;
282 		host->ops->request(host, mrq);
283 	}
284 }
285 
286 /**
287  *	mmc_pre_req - Prepare for a new request
288  *	@host: MMC host to prepare command
289  *	@mrq: MMC request to prepare for
290  *	@is_first_req: true if there is no previous started request
291  *                     that may run in parellel to this call, otherwise false
292  *
293  *	mmc_pre_req() is called in prior to mmc_start_req() to let
294  *	host prepare for the new request. Preparation of a request may be
295  *	performed while another request is running on the host.
296  */
297 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
298 		 bool is_first_req)
299 {
300 	if (host->ops->pre_req) {
301 		mmc_host_clk_hold(host);
302 		host->ops->pre_req(host, mrq, is_first_req);
303 		mmc_host_clk_release(host);
304 	}
305 }
306 
307 /**
308  *	mmc_post_req - Post process a completed request
309  *	@host: MMC host to post process command
310  *	@mrq: MMC request to post process for
311  *	@err: Error, if non zero, clean up any resources made in pre_req
312  *
313  *	Let the host post process a completed request. Post processing of
314  *	a request may be performed while another reuqest is running.
315  */
316 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
317 			 int err)
318 {
319 	if (host->ops->post_req) {
320 		mmc_host_clk_hold(host);
321 		host->ops->post_req(host, mrq, err);
322 		mmc_host_clk_release(host);
323 	}
324 }
325 
326 /**
327  *	mmc_start_req - start a non-blocking request
328  *	@host: MMC host to start command
329  *	@areq: async request to start
330  *	@error: out parameter returns 0 for success, otherwise non zero
331  *
332  *	Start a new MMC custom command request for a host.
333  *	If there is on ongoing async request wait for completion
334  *	of that request and start the new one and return.
335  *	Does not wait for the new request to complete.
336  *
337  *      Returns the completed request, NULL in case of none completed.
338  *	Wait for the an ongoing request (previoulsy started) to complete and
339  *	return the completed request. If there is no ongoing request, NULL
340  *	is returned without waiting. NULL is not an error condition.
341  */
342 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
343 				    struct mmc_async_req *areq, int *error)
344 {
345 	int err = 0;
346 	int start_err = 0;
347 	struct mmc_async_req *data = host->areq;
348 
349 	/* Prepare a new request */
350 	if (areq)
351 		mmc_pre_req(host, areq->mrq, !host->areq);
352 
353 	if (host->areq) {
354 		mmc_wait_for_req_done(host, host->areq->mrq);
355 		err = host->areq->err_check(host->card, host->areq);
356 	}
357 
358 	if (!err && areq)
359 		start_err = __mmc_start_req(host, areq->mrq);
360 
361 	if (host->areq)
362 		mmc_post_req(host, host->areq->mrq, 0);
363 
364 	 /* Cancel a prepared request if it was not started. */
365 	if ((err || start_err) && areq)
366 			mmc_post_req(host, areq->mrq, -EINVAL);
367 
368 	if (err)
369 		host->areq = NULL;
370 	else
371 		host->areq = areq;
372 
373 	if (error)
374 		*error = err;
375 	return data;
376 }
377 EXPORT_SYMBOL(mmc_start_req);
378 
379 /**
380  *	mmc_wait_for_req - start a request and wait for completion
381  *	@host: MMC host to start command
382  *	@mrq: MMC request to start
383  *
384  *	Start a new MMC custom command request for a host, and wait
385  *	for the command to complete. Does not attempt to parse the
386  *	response.
387  */
388 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
389 {
390 	__mmc_start_req(host, mrq);
391 	mmc_wait_for_req_done(host, mrq);
392 }
393 EXPORT_SYMBOL(mmc_wait_for_req);
394 
395 /**
396  *	mmc_interrupt_hpi - Issue for High priority Interrupt
397  *	@card: the MMC card associated with the HPI transfer
398  *
399  *	Issued High Priority Interrupt, and check for card status
400  *	util out-of prg-state.
401  */
402 int mmc_interrupt_hpi(struct mmc_card *card)
403 {
404 	int err;
405 	u32 status;
406 
407 	BUG_ON(!card);
408 
409 	if (!card->ext_csd.hpi_en) {
410 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
411 		return 1;
412 	}
413 
414 	mmc_claim_host(card->host);
415 	err = mmc_send_status(card, &status);
416 	if (err) {
417 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
418 		goto out;
419 	}
420 
421 	/*
422 	 * If the card status is in PRG-state, we can send the HPI command.
423 	 */
424 	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
425 		do {
426 			/*
427 			 * We don't know when the HPI command will finish
428 			 * processing, so we need to resend HPI until out
429 			 * of prg-state, and keep checking the card status
430 			 * with SEND_STATUS.  If a timeout error occurs when
431 			 * sending the HPI command, we are already out of
432 			 * prg-state.
433 			 */
434 			err = mmc_send_hpi_cmd(card, &status);
435 			if (err)
436 				pr_debug("%s: abort HPI (%d error)\n",
437 					 mmc_hostname(card->host), err);
438 
439 			err = mmc_send_status(card, &status);
440 			if (err)
441 				break;
442 		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
443 	} else
444 		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
445 
446 out:
447 	mmc_release_host(card->host);
448 	return err;
449 }
450 EXPORT_SYMBOL(mmc_interrupt_hpi);
451 
452 /**
453  *	mmc_wait_for_cmd - start a command and wait for completion
454  *	@host: MMC host to start command
455  *	@cmd: MMC command to start
456  *	@retries: maximum number of retries
457  *
458  *	Start a new MMC command for a host, and wait for the command
459  *	to complete.  Return any error that occurred while the command
460  *	was executing.  Do not attempt to parse the response.
461  */
462 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
463 {
464 	struct mmc_request mrq = {NULL};
465 
466 	WARN_ON(!host->claimed);
467 
468 	memset(cmd->resp, 0, sizeof(cmd->resp));
469 	cmd->retries = retries;
470 
471 	mrq.cmd = cmd;
472 	cmd->data = NULL;
473 
474 	mmc_wait_for_req(host, &mrq);
475 
476 	return cmd->error;
477 }
478 
479 EXPORT_SYMBOL(mmc_wait_for_cmd);
480 
481 /**
482  *	mmc_set_data_timeout - set the timeout for a data command
483  *	@data: data phase for command
484  *	@card: the MMC card associated with the data transfer
485  *
486  *	Computes the data timeout parameters according to the
487  *	correct algorithm given the card type.
488  */
489 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
490 {
491 	unsigned int mult;
492 
493 	/*
494 	 * SDIO cards only define an upper 1 s limit on access.
495 	 */
496 	if (mmc_card_sdio(card)) {
497 		data->timeout_ns = 1000000000;
498 		data->timeout_clks = 0;
499 		return;
500 	}
501 
502 	/*
503 	 * SD cards use a 100 multiplier rather than 10
504 	 */
505 	mult = mmc_card_sd(card) ? 100 : 10;
506 
507 	/*
508 	 * Scale up the multiplier (and therefore the timeout) by
509 	 * the r2w factor for writes.
510 	 */
511 	if (data->flags & MMC_DATA_WRITE)
512 		mult <<= card->csd.r2w_factor;
513 
514 	data->timeout_ns = card->csd.tacc_ns * mult;
515 	data->timeout_clks = card->csd.tacc_clks * mult;
516 
517 	/*
518 	 * SD cards also have an upper limit on the timeout.
519 	 */
520 	if (mmc_card_sd(card)) {
521 		unsigned int timeout_us, limit_us;
522 
523 		timeout_us = data->timeout_ns / 1000;
524 		if (mmc_host_clk_rate(card->host))
525 			timeout_us += data->timeout_clks * 1000 /
526 				(mmc_host_clk_rate(card->host) / 1000);
527 
528 		if (data->flags & MMC_DATA_WRITE)
529 			/*
530 			 * The MMC spec "It is strongly recommended
531 			 * for hosts to implement more than 500ms
532 			 * timeout value even if the card indicates
533 			 * the 250ms maximum busy length."  Even the
534 			 * previous value of 300ms is known to be
535 			 * insufficient for some cards.
536 			 */
537 			limit_us = 3000000;
538 		else
539 			limit_us = 100000;
540 
541 		/*
542 		 * SDHC cards always use these fixed values.
543 		 */
544 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
545 			data->timeout_ns = limit_us * 1000;
546 			data->timeout_clks = 0;
547 		}
548 	}
549 
550 	/*
551 	 * Some cards require longer data read timeout than indicated in CSD.
552 	 * Address this by setting the read timeout to a "reasonably high"
553 	 * value. For the cards tested, 300ms has proven enough. If necessary,
554 	 * this value can be increased if other problematic cards require this.
555 	 */
556 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
557 		data->timeout_ns = 300000000;
558 		data->timeout_clks = 0;
559 	}
560 
561 	/*
562 	 * Some cards need very high timeouts if driven in SPI mode.
563 	 * The worst observed timeout was 900ms after writing a
564 	 * continuous stream of data until the internal logic
565 	 * overflowed.
566 	 */
567 	if (mmc_host_is_spi(card->host)) {
568 		if (data->flags & MMC_DATA_WRITE) {
569 			if (data->timeout_ns < 1000000000)
570 				data->timeout_ns = 1000000000;	/* 1s */
571 		} else {
572 			if (data->timeout_ns < 100000000)
573 				data->timeout_ns =  100000000;	/* 100ms */
574 		}
575 	}
576 }
577 EXPORT_SYMBOL(mmc_set_data_timeout);
578 
579 /**
580  *	mmc_align_data_size - pads a transfer size to a more optimal value
581  *	@card: the MMC card associated with the data transfer
582  *	@sz: original transfer size
583  *
584  *	Pads the original data size with a number of extra bytes in
585  *	order to avoid controller bugs and/or performance hits
586  *	(e.g. some controllers revert to PIO for certain sizes).
587  *
588  *	Returns the improved size, which might be unmodified.
589  *
590  *	Note that this function is only relevant when issuing a
591  *	single scatter gather entry.
592  */
593 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
594 {
595 	/*
596 	 * FIXME: We don't have a system for the controller to tell
597 	 * the core about its problems yet, so for now we just 32-bit
598 	 * align the size.
599 	 */
600 	sz = ((sz + 3) / 4) * 4;
601 
602 	return sz;
603 }
604 EXPORT_SYMBOL(mmc_align_data_size);
605 
606 /**
607  *	__mmc_claim_host - exclusively claim a host
608  *	@host: mmc host to claim
609  *	@abort: whether or not the operation should be aborted
610  *
611  *	Claim a host for a set of operations.  If @abort is non null and
612  *	dereference a non-zero value then this will return prematurely with
613  *	that non-zero value without acquiring the lock.  Returns zero
614  *	with the lock held otherwise.
615  */
616 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
617 {
618 	DECLARE_WAITQUEUE(wait, current);
619 	unsigned long flags;
620 	int stop;
621 
622 	might_sleep();
623 
624 	add_wait_queue(&host->wq, &wait);
625 	spin_lock_irqsave(&host->lock, flags);
626 	while (1) {
627 		set_current_state(TASK_UNINTERRUPTIBLE);
628 		stop = abort ? atomic_read(abort) : 0;
629 		if (stop || !host->claimed || host->claimer == current)
630 			break;
631 		spin_unlock_irqrestore(&host->lock, flags);
632 		schedule();
633 		spin_lock_irqsave(&host->lock, flags);
634 	}
635 	set_current_state(TASK_RUNNING);
636 	if (!stop) {
637 		host->claimed = 1;
638 		host->claimer = current;
639 		host->claim_cnt += 1;
640 	} else
641 		wake_up(&host->wq);
642 	spin_unlock_irqrestore(&host->lock, flags);
643 	remove_wait_queue(&host->wq, &wait);
644 	if (host->ops->enable && !stop && host->claim_cnt == 1)
645 		host->ops->enable(host);
646 	return stop;
647 }
648 
649 EXPORT_SYMBOL(__mmc_claim_host);
650 
651 /**
652  *	mmc_try_claim_host - try exclusively to claim a host
653  *	@host: mmc host to claim
654  *
655  *	Returns %1 if the host is claimed, %0 otherwise.
656  */
657 int mmc_try_claim_host(struct mmc_host *host)
658 {
659 	int claimed_host = 0;
660 	unsigned long flags;
661 
662 	spin_lock_irqsave(&host->lock, flags);
663 	if (!host->claimed || host->claimer == current) {
664 		host->claimed = 1;
665 		host->claimer = current;
666 		host->claim_cnt += 1;
667 		claimed_host = 1;
668 	}
669 	spin_unlock_irqrestore(&host->lock, flags);
670 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
671 		host->ops->enable(host);
672 	return claimed_host;
673 }
674 EXPORT_SYMBOL(mmc_try_claim_host);
675 
676 /**
677  *	mmc_release_host - release a host
678  *	@host: mmc host to release
679  *
680  *	Release a MMC host, allowing others to claim the host
681  *	for their operations.
682  */
683 void mmc_release_host(struct mmc_host *host)
684 {
685 	unsigned long flags;
686 
687 	WARN_ON(!host->claimed);
688 
689 	if (host->ops->disable && host->claim_cnt == 1)
690 		host->ops->disable(host);
691 
692 	spin_lock_irqsave(&host->lock, flags);
693 	if (--host->claim_cnt) {
694 		/* Release for nested claim */
695 		spin_unlock_irqrestore(&host->lock, flags);
696 	} else {
697 		host->claimed = 0;
698 		host->claimer = NULL;
699 		spin_unlock_irqrestore(&host->lock, flags);
700 		wake_up(&host->wq);
701 	}
702 }
703 EXPORT_SYMBOL(mmc_release_host);
704 
705 /*
706  * Internal function that does the actual ios call to the host driver,
707  * optionally printing some debug output.
708  */
709 static inline void mmc_set_ios(struct mmc_host *host)
710 {
711 	struct mmc_ios *ios = &host->ios;
712 
713 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
714 		"width %u timing %u\n",
715 		 mmc_hostname(host), ios->clock, ios->bus_mode,
716 		 ios->power_mode, ios->chip_select, ios->vdd,
717 		 ios->bus_width, ios->timing);
718 
719 	if (ios->clock > 0)
720 		mmc_set_ungated(host);
721 	host->ops->set_ios(host, ios);
722 }
723 
724 /*
725  * Control chip select pin on a host.
726  */
727 void mmc_set_chip_select(struct mmc_host *host, int mode)
728 {
729 	mmc_host_clk_hold(host);
730 	host->ios.chip_select = mode;
731 	mmc_set_ios(host);
732 	mmc_host_clk_release(host);
733 }
734 
735 /*
736  * Sets the host clock to the highest possible frequency that
737  * is below "hz".
738  */
739 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
740 {
741 	WARN_ON(hz < host->f_min);
742 
743 	if (hz > host->f_max)
744 		hz = host->f_max;
745 
746 	host->ios.clock = hz;
747 	mmc_set_ios(host);
748 }
749 
750 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
751 {
752 	mmc_host_clk_hold(host);
753 	__mmc_set_clock(host, hz);
754 	mmc_host_clk_release(host);
755 }
756 
757 #ifdef CONFIG_MMC_CLKGATE
758 /*
759  * This gates the clock by setting it to 0 Hz.
760  */
761 void mmc_gate_clock(struct mmc_host *host)
762 {
763 	unsigned long flags;
764 
765 	spin_lock_irqsave(&host->clk_lock, flags);
766 	host->clk_old = host->ios.clock;
767 	host->ios.clock = 0;
768 	host->clk_gated = true;
769 	spin_unlock_irqrestore(&host->clk_lock, flags);
770 	mmc_set_ios(host);
771 }
772 
773 /*
774  * This restores the clock from gating by using the cached
775  * clock value.
776  */
777 void mmc_ungate_clock(struct mmc_host *host)
778 {
779 	/*
780 	 * We should previously have gated the clock, so the clock shall
781 	 * be 0 here! The clock may however be 0 during initialization,
782 	 * when some request operations are performed before setting
783 	 * the frequency. When ungate is requested in that situation
784 	 * we just ignore the call.
785 	 */
786 	if (host->clk_old) {
787 		BUG_ON(host->ios.clock);
788 		/* This call will also set host->clk_gated to false */
789 		__mmc_set_clock(host, host->clk_old);
790 	}
791 }
792 
793 void mmc_set_ungated(struct mmc_host *host)
794 {
795 	unsigned long flags;
796 
797 	/*
798 	 * We've been given a new frequency while the clock is gated,
799 	 * so make sure we regard this as ungating it.
800 	 */
801 	spin_lock_irqsave(&host->clk_lock, flags);
802 	host->clk_gated = false;
803 	spin_unlock_irqrestore(&host->clk_lock, flags);
804 }
805 
806 #else
807 void mmc_set_ungated(struct mmc_host *host)
808 {
809 }
810 #endif
811 
812 /*
813  * Change the bus mode (open drain/push-pull) of a host.
814  */
815 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
816 {
817 	mmc_host_clk_hold(host);
818 	host->ios.bus_mode = mode;
819 	mmc_set_ios(host);
820 	mmc_host_clk_release(host);
821 }
822 
823 /*
824  * Change data bus width of a host.
825  */
826 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
827 {
828 	mmc_host_clk_hold(host);
829 	host->ios.bus_width = width;
830 	mmc_set_ios(host);
831 	mmc_host_clk_release(host);
832 }
833 
834 /**
835  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
836  * @vdd:	voltage (mV)
837  * @low_bits:	prefer low bits in boundary cases
838  *
839  * This function returns the OCR bit number according to the provided @vdd
840  * value. If conversion is not possible a negative errno value returned.
841  *
842  * Depending on the @low_bits flag the function prefers low or high OCR bits
843  * on boundary voltages. For example,
844  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
845  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
846  *
847  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
848  */
849 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
850 {
851 	const int max_bit = ilog2(MMC_VDD_35_36);
852 	int bit;
853 
854 	if (vdd < 1650 || vdd > 3600)
855 		return -EINVAL;
856 
857 	if (vdd >= 1650 && vdd <= 1950)
858 		return ilog2(MMC_VDD_165_195);
859 
860 	if (low_bits)
861 		vdd -= 1;
862 
863 	/* Base 2000 mV, step 100 mV, bit's base 8. */
864 	bit = (vdd - 2000) / 100 + 8;
865 	if (bit > max_bit)
866 		return max_bit;
867 	return bit;
868 }
869 
870 /**
871  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
872  * @vdd_min:	minimum voltage value (mV)
873  * @vdd_max:	maximum voltage value (mV)
874  *
875  * This function returns the OCR mask bits according to the provided @vdd_min
876  * and @vdd_max values. If conversion is not possible the function returns 0.
877  *
878  * Notes wrt boundary cases:
879  * This function sets the OCR bits for all boundary voltages, for example
880  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
881  * MMC_VDD_34_35 mask.
882  */
883 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
884 {
885 	u32 mask = 0;
886 
887 	if (vdd_max < vdd_min)
888 		return 0;
889 
890 	/* Prefer high bits for the boundary vdd_max values. */
891 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
892 	if (vdd_max < 0)
893 		return 0;
894 
895 	/* Prefer low bits for the boundary vdd_min values. */
896 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
897 	if (vdd_min < 0)
898 		return 0;
899 
900 	/* Fill the mask, from max bit to min bit. */
901 	while (vdd_max >= vdd_min)
902 		mask |= 1 << vdd_max--;
903 
904 	return mask;
905 }
906 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
907 
908 #ifdef CONFIG_REGULATOR
909 
910 /**
911  * mmc_regulator_get_ocrmask - return mask of supported voltages
912  * @supply: regulator to use
913  *
914  * This returns either a negative errno, or a mask of voltages that
915  * can be provided to MMC/SD/SDIO devices using the specified voltage
916  * regulator.  This would normally be called before registering the
917  * MMC host adapter.
918  */
919 int mmc_regulator_get_ocrmask(struct regulator *supply)
920 {
921 	int			result = 0;
922 	int			count;
923 	int			i;
924 
925 	count = regulator_count_voltages(supply);
926 	if (count < 0)
927 		return count;
928 
929 	for (i = 0; i < count; i++) {
930 		int		vdd_uV;
931 		int		vdd_mV;
932 
933 		vdd_uV = regulator_list_voltage(supply, i);
934 		if (vdd_uV <= 0)
935 			continue;
936 
937 		vdd_mV = vdd_uV / 1000;
938 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
939 	}
940 
941 	return result;
942 }
943 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
944 
945 /**
946  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
947  * @mmc: the host to regulate
948  * @supply: regulator to use
949  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
950  *
951  * Returns zero on success, else negative errno.
952  *
953  * MMC host drivers may use this to enable or disable a regulator using
954  * a particular supply voltage.  This would normally be called from the
955  * set_ios() method.
956  */
957 int mmc_regulator_set_ocr(struct mmc_host *mmc,
958 			struct regulator *supply,
959 			unsigned short vdd_bit)
960 {
961 	int			result = 0;
962 	int			min_uV, max_uV;
963 
964 	if (vdd_bit) {
965 		int		tmp;
966 		int		voltage;
967 
968 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
969 		 * bits this regulator doesn't quite support ... don't
970 		 * be too picky, most cards and regulators are OK with
971 		 * a 0.1V range goof (it's a small error percentage).
972 		 */
973 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
974 		if (tmp == 0) {
975 			min_uV = 1650 * 1000;
976 			max_uV = 1950 * 1000;
977 		} else {
978 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
979 			max_uV = min_uV + 100 * 1000;
980 		}
981 
982 		/* avoid needless changes to this voltage; the regulator
983 		 * might not allow this operation
984 		 */
985 		voltage = regulator_get_voltage(supply);
986 
987 		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
988 			min_uV = max_uV = voltage;
989 
990 		if (voltage < 0)
991 			result = voltage;
992 		else if (voltage < min_uV || voltage > max_uV)
993 			result = regulator_set_voltage(supply, min_uV, max_uV);
994 		else
995 			result = 0;
996 
997 		if (result == 0 && !mmc->regulator_enabled) {
998 			result = regulator_enable(supply);
999 			if (!result)
1000 				mmc->regulator_enabled = true;
1001 		}
1002 	} else if (mmc->regulator_enabled) {
1003 		result = regulator_disable(supply);
1004 		if (result == 0)
1005 			mmc->regulator_enabled = false;
1006 	}
1007 
1008 	if (result)
1009 		dev_err(mmc_dev(mmc),
1010 			"could not set regulator OCR (%d)\n", result);
1011 	return result;
1012 }
1013 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1014 
1015 #endif /* CONFIG_REGULATOR */
1016 
1017 /*
1018  * Mask off any voltages we don't support and select
1019  * the lowest voltage
1020  */
1021 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1022 {
1023 	int bit;
1024 
1025 	ocr &= host->ocr_avail;
1026 
1027 	bit = ffs(ocr);
1028 	if (bit) {
1029 		bit -= 1;
1030 
1031 		ocr &= 3 << bit;
1032 
1033 		mmc_host_clk_hold(host);
1034 		host->ios.vdd = bit;
1035 		mmc_set_ios(host);
1036 		mmc_host_clk_release(host);
1037 	} else {
1038 		pr_warning("%s: host doesn't support card's voltages\n",
1039 				mmc_hostname(host));
1040 		ocr = 0;
1041 	}
1042 
1043 	return ocr;
1044 }
1045 
1046 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1047 {
1048 	struct mmc_command cmd = {0};
1049 	int err = 0;
1050 
1051 	BUG_ON(!host);
1052 
1053 	/*
1054 	 * Send CMD11 only if the request is to switch the card to
1055 	 * 1.8V signalling.
1056 	 */
1057 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1058 		cmd.opcode = SD_SWITCH_VOLTAGE;
1059 		cmd.arg = 0;
1060 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1061 
1062 		err = mmc_wait_for_cmd(host, &cmd, 0);
1063 		if (err)
1064 			return err;
1065 
1066 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1067 			return -EIO;
1068 	}
1069 
1070 	host->ios.signal_voltage = signal_voltage;
1071 
1072 	if (host->ops->start_signal_voltage_switch) {
1073 		mmc_host_clk_hold(host);
1074 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1075 		mmc_host_clk_release(host);
1076 	}
1077 
1078 	return err;
1079 }
1080 
1081 /*
1082  * Select timing parameters for host.
1083  */
1084 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1085 {
1086 	mmc_host_clk_hold(host);
1087 	host->ios.timing = timing;
1088 	mmc_set_ios(host);
1089 	mmc_host_clk_release(host);
1090 }
1091 
1092 /*
1093  * Select appropriate driver type for host.
1094  */
1095 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1096 {
1097 	mmc_host_clk_hold(host);
1098 	host->ios.drv_type = drv_type;
1099 	mmc_set_ios(host);
1100 	mmc_host_clk_release(host);
1101 }
1102 
1103 static void mmc_poweroff_notify(struct mmc_host *host)
1104 {
1105 	struct mmc_card *card;
1106 	unsigned int timeout;
1107 	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1108 	int err = 0;
1109 
1110 	card = host->card;
1111 	mmc_claim_host(host);
1112 
1113 	/*
1114 	 * Send power notify command only if card
1115 	 * is mmc and notify state is powered ON
1116 	 */
1117 	if (card && mmc_card_mmc(card) &&
1118 	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1119 
1120 		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1121 			notify_type = EXT_CSD_POWER_OFF_SHORT;
1122 			timeout = card->ext_csd.generic_cmd6_time;
1123 			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1124 		} else {
1125 			notify_type = EXT_CSD_POWER_OFF_LONG;
1126 			timeout = card->ext_csd.power_off_longtime;
1127 			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1128 		}
1129 
1130 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1131 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1132 				 notify_type, timeout);
1133 
1134 		if (err && err != -EBADMSG)
1135 			pr_err("Device failed to respond within %d poweroff "
1136 			       "time. Forcefully powering down the device\n",
1137 			       timeout);
1138 
1139 		/* Set the card state to no notification after the poweroff */
1140 		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1141 	}
1142 	mmc_release_host(host);
1143 }
1144 
1145 /*
1146  * Apply power to the MMC stack.  This is a two-stage process.
1147  * First, we enable power to the card without the clock running.
1148  * We then wait a bit for the power to stabilise.  Finally,
1149  * enable the bus drivers and clock to the card.
1150  *
1151  * We must _NOT_ enable the clock prior to power stablising.
1152  *
1153  * If a host does all the power sequencing itself, ignore the
1154  * initial MMC_POWER_UP stage.
1155  */
1156 static void mmc_power_up(struct mmc_host *host)
1157 {
1158 	int bit;
1159 
1160 	mmc_host_clk_hold(host);
1161 
1162 	/* If ocr is set, we use it */
1163 	if (host->ocr)
1164 		bit = ffs(host->ocr) - 1;
1165 	else
1166 		bit = fls(host->ocr_avail) - 1;
1167 
1168 	host->ios.vdd = bit;
1169 	if (mmc_host_is_spi(host))
1170 		host->ios.chip_select = MMC_CS_HIGH;
1171 	else
1172 		host->ios.chip_select = MMC_CS_DONTCARE;
1173 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1174 	host->ios.power_mode = MMC_POWER_UP;
1175 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1176 	host->ios.timing = MMC_TIMING_LEGACY;
1177 	mmc_set_ios(host);
1178 
1179 	/*
1180 	 * This delay should be sufficient to allow the power supply
1181 	 * to reach the minimum voltage.
1182 	 */
1183 	mmc_delay(10);
1184 
1185 	host->ios.clock = host->f_init;
1186 
1187 	host->ios.power_mode = MMC_POWER_ON;
1188 	mmc_set_ios(host);
1189 
1190 	/*
1191 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1192 	 * time required to reach a stable voltage.
1193 	 */
1194 	mmc_delay(10);
1195 
1196 	mmc_host_clk_release(host);
1197 }
1198 
1199 void mmc_power_off(struct mmc_host *host)
1200 {
1201 	int err = 0;
1202 	mmc_host_clk_hold(host);
1203 
1204 	host->ios.clock = 0;
1205 	host->ios.vdd = 0;
1206 
1207 	/*
1208 	 * For eMMC 4.5 device send AWAKE command before
1209 	 * POWER_OFF_NOTIFY command, because in sleep state
1210 	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1211 	 */
1212 	if (host->card && mmc_card_is_sleep(host->card) &&
1213 	    host->bus_ops->resume) {
1214 		err = host->bus_ops->resume(host);
1215 
1216 		if (!err)
1217 			mmc_poweroff_notify(host);
1218 		else
1219 			pr_warning("%s: error %d during resume "
1220 				   "(continue with poweroff sequence)\n",
1221 				   mmc_hostname(host), err);
1222 	}
1223 
1224 	/*
1225 	 * Reset ocr mask to be the highest possible voltage supported for
1226 	 * this mmc host. This value will be used at next power up.
1227 	 */
1228 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1229 
1230 	if (!mmc_host_is_spi(host)) {
1231 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1232 		host->ios.chip_select = MMC_CS_DONTCARE;
1233 	}
1234 	host->ios.power_mode = MMC_POWER_OFF;
1235 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1236 	host->ios.timing = MMC_TIMING_LEGACY;
1237 	mmc_set_ios(host);
1238 
1239 	/*
1240 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1241 	 * XO-1.5, require a short delay after poweroff before the card
1242 	 * can be successfully turned on again.
1243 	 */
1244 	mmc_delay(1);
1245 
1246 	mmc_host_clk_release(host);
1247 }
1248 
1249 /*
1250  * Cleanup when the last reference to the bus operator is dropped.
1251  */
1252 static void __mmc_release_bus(struct mmc_host *host)
1253 {
1254 	BUG_ON(!host);
1255 	BUG_ON(host->bus_refs);
1256 	BUG_ON(!host->bus_dead);
1257 
1258 	host->bus_ops = NULL;
1259 }
1260 
1261 /*
1262  * Increase reference count of bus operator
1263  */
1264 static inline void mmc_bus_get(struct mmc_host *host)
1265 {
1266 	unsigned long flags;
1267 
1268 	spin_lock_irqsave(&host->lock, flags);
1269 	host->bus_refs++;
1270 	spin_unlock_irqrestore(&host->lock, flags);
1271 }
1272 
1273 /*
1274  * Decrease reference count of bus operator and free it if
1275  * it is the last reference.
1276  */
1277 static inline void mmc_bus_put(struct mmc_host *host)
1278 {
1279 	unsigned long flags;
1280 
1281 	spin_lock_irqsave(&host->lock, flags);
1282 	host->bus_refs--;
1283 	if ((host->bus_refs == 0) && host->bus_ops)
1284 		__mmc_release_bus(host);
1285 	spin_unlock_irqrestore(&host->lock, flags);
1286 }
1287 
1288 /*
1289  * Assign a mmc bus handler to a host. Only one bus handler may control a
1290  * host at any given time.
1291  */
1292 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1293 {
1294 	unsigned long flags;
1295 
1296 	BUG_ON(!host);
1297 	BUG_ON(!ops);
1298 
1299 	WARN_ON(!host->claimed);
1300 
1301 	spin_lock_irqsave(&host->lock, flags);
1302 
1303 	BUG_ON(host->bus_ops);
1304 	BUG_ON(host->bus_refs);
1305 
1306 	host->bus_ops = ops;
1307 	host->bus_refs = 1;
1308 	host->bus_dead = 0;
1309 
1310 	spin_unlock_irqrestore(&host->lock, flags);
1311 }
1312 
1313 /*
1314  * Remove the current bus handler from a host.
1315  */
1316 void mmc_detach_bus(struct mmc_host *host)
1317 {
1318 	unsigned long flags;
1319 
1320 	BUG_ON(!host);
1321 
1322 	WARN_ON(!host->claimed);
1323 	WARN_ON(!host->bus_ops);
1324 
1325 	spin_lock_irqsave(&host->lock, flags);
1326 
1327 	host->bus_dead = 1;
1328 
1329 	spin_unlock_irqrestore(&host->lock, flags);
1330 
1331 	mmc_bus_put(host);
1332 }
1333 
1334 /**
1335  *	mmc_detect_change - process change of state on a MMC socket
1336  *	@host: host which changed state.
1337  *	@delay: optional delay to wait before detection (jiffies)
1338  *
1339  *	MMC drivers should call this when they detect a card has been
1340  *	inserted or removed. The MMC layer will confirm that any
1341  *	present card is still functional, and initialize any newly
1342  *	inserted.
1343  */
1344 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1345 {
1346 #ifdef CONFIG_MMC_DEBUG
1347 	unsigned long flags;
1348 	spin_lock_irqsave(&host->lock, flags);
1349 	WARN_ON(host->removed);
1350 	spin_unlock_irqrestore(&host->lock, flags);
1351 #endif
1352 	host->detect_change = 1;
1353 	mmc_schedule_delayed_work(&host->detect, delay);
1354 }
1355 
1356 EXPORT_SYMBOL(mmc_detect_change);
1357 
1358 void mmc_init_erase(struct mmc_card *card)
1359 {
1360 	unsigned int sz;
1361 
1362 	if (is_power_of_2(card->erase_size))
1363 		card->erase_shift = ffs(card->erase_size) - 1;
1364 	else
1365 		card->erase_shift = 0;
1366 
1367 	/*
1368 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1369 	 * card.  That is not desirable because it can take a long time
1370 	 * (minutes) potentially delaying more important I/O, and also the
1371 	 * timeout calculations become increasingly hugely over-estimated.
1372 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1373 	 * to that size and alignment.
1374 	 *
1375 	 * For SD cards that define Allocation Unit size, limit erases to one
1376 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1377 	 * Erase Size, whether it is switched on or not, limit to that size.
1378 	 * Otherwise just have a stab at a good value.  For modern cards it
1379 	 * will end up being 4MiB.  Note that if the value is too small, it
1380 	 * can end up taking longer to erase.
1381 	 */
1382 	if (mmc_card_sd(card) && card->ssr.au) {
1383 		card->pref_erase = card->ssr.au;
1384 		card->erase_shift = ffs(card->ssr.au) - 1;
1385 	} else if (card->ext_csd.hc_erase_size) {
1386 		card->pref_erase = card->ext_csd.hc_erase_size;
1387 	} else {
1388 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1389 		if (sz < 128)
1390 			card->pref_erase = 512 * 1024 / 512;
1391 		else if (sz < 512)
1392 			card->pref_erase = 1024 * 1024 / 512;
1393 		else if (sz < 1024)
1394 			card->pref_erase = 2 * 1024 * 1024 / 512;
1395 		else
1396 			card->pref_erase = 4 * 1024 * 1024 / 512;
1397 		if (card->pref_erase < card->erase_size)
1398 			card->pref_erase = card->erase_size;
1399 		else {
1400 			sz = card->pref_erase % card->erase_size;
1401 			if (sz)
1402 				card->pref_erase += card->erase_size - sz;
1403 		}
1404 	}
1405 }
1406 
1407 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1408 				          unsigned int arg, unsigned int qty)
1409 {
1410 	unsigned int erase_timeout;
1411 
1412 	if (card->ext_csd.erase_group_def & 1) {
1413 		/* High Capacity Erase Group Size uses HC timeouts */
1414 		if (arg == MMC_TRIM_ARG)
1415 			erase_timeout = card->ext_csd.trim_timeout;
1416 		else
1417 			erase_timeout = card->ext_csd.hc_erase_timeout;
1418 	} else {
1419 		/* CSD Erase Group Size uses write timeout */
1420 		unsigned int mult = (10 << card->csd.r2w_factor);
1421 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1422 		unsigned int timeout_us;
1423 
1424 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1425 		if (card->csd.tacc_ns < 1000000)
1426 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1427 		else
1428 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1429 
1430 		/*
1431 		 * ios.clock is only a target.  The real clock rate might be
1432 		 * less but not that much less, so fudge it by multiplying by 2.
1433 		 */
1434 		timeout_clks <<= 1;
1435 		timeout_us += (timeout_clks * 1000) /
1436 			      (mmc_host_clk_rate(card->host) / 1000);
1437 
1438 		erase_timeout = timeout_us / 1000;
1439 
1440 		/*
1441 		 * Theoretically, the calculation could underflow so round up
1442 		 * to 1ms in that case.
1443 		 */
1444 		if (!erase_timeout)
1445 			erase_timeout = 1;
1446 	}
1447 
1448 	/* Multiplier for secure operations */
1449 	if (arg & MMC_SECURE_ARGS) {
1450 		if (arg == MMC_SECURE_ERASE_ARG)
1451 			erase_timeout *= card->ext_csd.sec_erase_mult;
1452 		else
1453 			erase_timeout *= card->ext_csd.sec_trim_mult;
1454 	}
1455 
1456 	erase_timeout *= qty;
1457 
1458 	/*
1459 	 * Ensure at least a 1 second timeout for SPI as per
1460 	 * 'mmc_set_data_timeout()'
1461 	 */
1462 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1463 		erase_timeout = 1000;
1464 
1465 	return erase_timeout;
1466 }
1467 
1468 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1469 					 unsigned int arg,
1470 					 unsigned int qty)
1471 {
1472 	unsigned int erase_timeout;
1473 
1474 	if (card->ssr.erase_timeout) {
1475 		/* Erase timeout specified in SD Status Register (SSR) */
1476 		erase_timeout = card->ssr.erase_timeout * qty +
1477 				card->ssr.erase_offset;
1478 	} else {
1479 		/*
1480 		 * Erase timeout not specified in SD Status Register (SSR) so
1481 		 * use 250ms per write block.
1482 		 */
1483 		erase_timeout = 250 * qty;
1484 	}
1485 
1486 	/* Must not be less than 1 second */
1487 	if (erase_timeout < 1000)
1488 		erase_timeout = 1000;
1489 
1490 	return erase_timeout;
1491 }
1492 
1493 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1494 				      unsigned int arg,
1495 				      unsigned int qty)
1496 {
1497 	if (mmc_card_sd(card))
1498 		return mmc_sd_erase_timeout(card, arg, qty);
1499 	else
1500 		return mmc_mmc_erase_timeout(card, arg, qty);
1501 }
1502 
1503 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1504 			unsigned int to, unsigned int arg)
1505 {
1506 	struct mmc_command cmd = {0};
1507 	unsigned int qty = 0;
1508 	int err;
1509 
1510 	/*
1511 	 * qty is used to calculate the erase timeout which depends on how many
1512 	 * erase groups (or allocation units in SD terminology) are affected.
1513 	 * We count erasing part of an erase group as one erase group.
1514 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1515 	 * erase group size is almost certainly also power of 2, but it does not
1516 	 * seem to insist on that in the JEDEC standard, so we fall back to
1517 	 * division in that case.  SD may not specify an allocation unit size,
1518 	 * in which case the timeout is based on the number of write blocks.
1519 	 *
1520 	 * Note that the timeout for secure trim 2 will only be correct if the
1521 	 * number of erase groups specified is the same as the total of all
1522 	 * preceding secure trim 1 commands.  Since the power may have been
1523 	 * lost since the secure trim 1 commands occurred, it is generally
1524 	 * impossible to calculate the secure trim 2 timeout correctly.
1525 	 */
1526 	if (card->erase_shift)
1527 		qty += ((to >> card->erase_shift) -
1528 			(from >> card->erase_shift)) + 1;
1529 	else if (mmc_card_sd(card))
1530 		qty += to - from + 1;
1531 	else
1532 		qty += ((to / card->erase_size) -
1533 			(from / card->erase_size)) + 1;
1534 
1535 	if (!mmc_card_blockaddr(card)) {
1536 		from <<= 9;
1537 		to <<= 9;
1538 	}
1539 
1540 	if (mmc_card_sd(card))
1541 		cmd.opcode = SD_ERASE_WR_BLK_START;
1542 	else
1543 		cmd.opcode = MMC_ERASE_GROUP_START;
1544 	cmd.arg = from;
1545 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1546 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1547 	if (err) {
1548 		pr_err("mmc_erase: group start error %d, "
1549 		       "status %#x\n", err, cmd.resp[0]);
1550 		err = -EIO;
1551 		goto out;
1552 	}
1553 
1554 	memset(&cmd, 0, sizeof(struct mmc_command));
1555 	if (mmc_card_sd(card))
1556 		cmd.opcode = SD_ERASE_WR_BLK_END;
1557 	else
1558 		cmd.opcode = MMC_ERASE_GROUP_END;
1559 	cmd.arg = to;
1560 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1561 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1562 	if (err) {
1563 		pr_err("mmc_erase: group end error %d, status %#x\n",
1564 		       err, cmd.resp[0]);
1565 		err = -EIO;
1566 		goto out;
1567 	}
1568 
1569 	memset(&cmd, 0, sizeof(struct mmc_command));
1570 	cmd.opcode = MMC_ERASE;
1571 	cmd.arg = arg;
1572 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1573 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1574 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1575 	if (err) {
1576 		pr_err("mmc_erase: erase error %d, status %#x\n",
1577 		       err, cmd.resp[0]);
1578 		err = -EIO;
1579 		goto out;
1580 	}
1581 
1582 	if (mmc_host_is_spi(card->host))
1583 		goto out;
1584 
1585 	do {
1586 		memset(&cmd, 0, sizeof(struct mmc_command));
1587 		cmd.opcode = MMC_SEND_STATUS;
1588 		cmd.arg = card->rca << 16;
1589 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1590 		/* Do not retry else we can't see errors */
1591 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1592 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1593 			pr_err("error %d requesting status %#x\n",
1594 				err, cmd.resp[0]);
1595 			err = -EIO;
1596 			goto out;
1597 		}
1598 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1599 		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1600 out:
1601 	return err;
1602 }
1603 
1604 /**
1605  * mmc_erase - erase sectors.
1606  * @card: card to erase
1607  * @from: first sector to erase
1608  * @nr: number of sectors to erase
1609  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1610  *
1611  * Caller must claim host before calling this function.
1612  */
1613 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1614 	      unsigned int arg)
1615 {
1616 	unsigned int rem, to = from + nr;
1617 
1618 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1619 	    !(card->csd.cmdclass & CCC_ERASE))
1620 		return -EOPNOTSUPP;
1621 
1622 	if (!card->erase_size)
1623 		return -EOPNOTSUPP;
1624 
1625 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1626 		return -EOPNOTSUPP;
1627 
1628 	if ((arg & MMC_SECURE_ARGS) &&
1629 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1630 		return -EOPNOTSUPP;
1631 
1632 	if ((arg & MMC_TRIM_ARGS) &&
1633 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1634 		return -EOPNOTSUPP;
1635 
1636 	if (arg == MMC_SECURE_ERASE_ARG) {
1637 		if (from % card->erase_size || nr % card->erase_size)
1638 			return -EINVAL;
1639 	}
1640 
1641 	if (arg == MMC_ERASE_ARG) {
1642 		rem = from % card->erase_size;
1643 		if (rem) {
1644 			rem = card->erase_size - rem;
1645 			from += rem;
1646 			if (nr > rem)
1647 				nr -= rem;
1648 			else
1649 				return 0;
1650 		}
1651 		rem = nr % card->erase_size;
1652 		if (rem)
1653 			nr -= rem;
1654 	}
1655 
1656 	if (nr == 0)
1657 		return 0;
1658 
1659 	to = from + nr;
1660 
1661 	if (to <= from)
1662 		return -EINVAL;
1663 
1664 	/* 'from' and 'to' are inclusive */
1665 	to -= 1;
1666 
1667 	return mmc_do_erase(card, from, to, arg);
1668 }
1669 EXPORT_SYMBOL(mmc_erase);
1670 
1671 int mmc_can_erase(struct mmc_card *card)
1672 {
1673 	if ((card->host->caps & MMC_CAP_ERASE) &&
1674 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1675 		return 1;
1676 	return 0;
1677 }
1678 EXPORT_SYMBOL(mmc_can_erase);
1679 
1680 int mmc_can_trim(struct mmc_card *card)
1681 {
1682 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1683 		return 1;
1684 	if (mmc_can_discard(card))
1685 		return 1;
1686 	return 0;
1687 }
1688 EXPORT_SYMBOL(mmc_can_trim);
1689 
1690 int mmc_can_discard(struct mmc_card *card)
1691 {
1692 	/*
1693 	 * As there's no way to detect the discard support bit at v4.5
1694 	 * use the s/w feature support filed.
1695 	 */
1696 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1697 		return 1;
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL(mmc_can_discard);
1701 
1702 int mmc_can_sanitize(struct mmc_card *card)
1703 {
1704 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1705 		return 1;
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL(mmc_can_sanitize);
1709 
1710 int mmc_can_secure_erase_trim(struct mmc_card *card)
1711 {
1712 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1713 		return 1;
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1717 
1718 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1719 			    unsigned int nr)
1720 {
1721 	if (!card->erase_size)
1722 		return 0;
1723 	if (from % card->erase_size || nr % card->erase_size)
1724 		return 0;
1725 	return 1;
1726 }
1727 EXPORT_SYMBOL(mmc_erase_group_aligned);
1728 
1729 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1730 					    unsigned int arg)
1731 {
1732 	struct mmc_host *host = card->host;
1733 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1734 	unsigned int last_timeout = 0;
1735 
1736 	if (card->erase_shift)
1737 		max_qty = UINT_MAX >> card->erase_shift;
1738 	else if (mmc_card_sd(card))
1739 		max_qty = UINT_MAX;
1740 	else
1741 		max_qty = UINT_MAX / card->erase_size;
1742 
1743 	/* Find the largest qty with an OK timeout */
1744 	do {
1745 		y = 0;
1746 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1747 			timeout = mmc_erase_timeout(card, arg, qty + x);
1748 			if (timeout > host->max_discard_to)
1749 				break;
1750 			if (timeout < last_timeout)
1751 				break;
1752 			last_timeout = timeout;
1753 			y = x;
1754 		}
1755 		qty += y;
1756 	} while (y);
1757 
1758 	if (!qty)
1759 		return 0;
1760 
1761 	if (qty == 1)
1762 		return 1;
1763 
1764 	/* Convert qty to sectors */
1765 	if (card->erase_shift)
1766 		max_discard = --qty << card->erase_shift;
1767 	else if (mmc_card_sd(card))
1768 		max_discard = qty;
1769 	else
1770 		max_discard = --qty * card->erase_size;
1771 
1772 	return max_discard;
1773 }
1774 
1775 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1776 {
1777 	struct mmc_host *host = card->host;
1778 	unsigned int max_discard, max_trim;
1779 
1780 	if (!host->max_discard_to)
1781 		return UINT_MAX;
1782 
1783 	/*
1784 	 * Without erase_group_def set, MMC erase timeout depends on clock
1785 	 * frequence which can change.  In that case, the best choice is
1786 	 * just the preferred erase size.
1787 	 */
1788 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1789 		return card->pref_erase;
1790 
1791 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1792 	if (mmc_can_trim(card)) {
1793 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1794 		if (max_trim < max_discard)
1795 			max_discard = max_trim;
1796 	} else if (max_discard < card->erase_size) {
1797 		max_discard = 0;
1798 	}
1799 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1800 		 mmc_hostname(host), max_discard, host->max_discard_to);
1801 	return max_discard;
1802 }
1803 EXPORT_SYMBOL(mmc_calc_max_discard);
1804 
1805 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1806 {
1807 	struct mmc_command cmd = {0};
1808 
1809 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1810 		return 0;
1811 
1812 	cmd.opcode = MMC_SET_BLOCKLEN;
1813 	cmd.arg = blocklen;
1814 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1815 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1816 }
1817 EXPORT_SYMBOL(mmc_set_blocklen);
1818 
1819 static void mmc_hw_reset_for_init(struct mmc_host *host)
1820 {
1821 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1822 		return;
1823 	mmc_host_clk_hold(host);
1824 	host->ops->hw_reset(host);
1825 	mmc_host_clk_release(host);
1826 }
1827 
1828 int mmc_can_reset(struct mmc_card *card)
1829 {
1830 	u8 rst_n_function;
1831 
1832 	if (!mmc_card_mmc(card))
1833 		return 0;
1834 	rst_n_function = card->ext_csd.rst_n_function;
1835 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1836 		return 0;
1837 	return 1;
1838 }
1839 EXPORT_SYMBOL(mmc_can_reset);
1840 
1841 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1842 {
1843 	struct mmc_card *card = host->card;
1844 
1845 	if (!host->bus_ops->power_restore)
1846 		return -EOPNOTSUPP;
1847 
1848 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1849 		return -EOPNOTSUPP;
1850 
1851 	if (!card)
1852 		return -EINVAL;
1853 
1854 	if (!mmc_can_reset(card))
1855 		return -EOPNOTSUPP;
1856 
1857 	mmc_host_clk_hold(host);
1858 	mmc_set_clock(host, host->f_init);
1859 
1860 	host->ops->hw_reset(host);
1861 
1862 	/* If the reset has happened, then a status command will fail */
1863 	if (check) {
1864 		struct mmc_command cmd = {0};
1865 		int err;
1866 
1867 		cmd.opcode = MMC_SEND_STATUS;
1868 		if (!mmc_host_is_spi(card->host))
1869 			cmd.arg = card->rca << 16;
1870 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1871 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1872 		if (!err) {
1873 			mmc_host_clk_release(host);
1874 			return -ENOSYS;
1875 		}
1876 	}
1877 
1878 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1879 	if (mmc_host_is_spi(host)) {
1880 		host->ios.chip_select = MMC_CS_HIGH;
1881 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1882 	} else {
1883 		host->ios.chip_select = MMC_CS_DONTCARE;
1884 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1885 	}
1886 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1887 	host->ios.timing = MMC_TIMING_LEGACY;
1888 	mmc_set_ios(host);
1889 
1890 	mmc_host_clk_release(host);
1891 
1892 	return host->bus_ops->power_restore(host);
1893 }
1894 
1895 int mmc_hw_reset(struct mmc_host *host)
1896 {
1897 	return mmc_do_hw_reset(host, 0);
1898 }
1899 EXPORT_SYMBOL(mmc_hw_reset);
1900 
1901 int mmc_hw_reset_check(struct mmc_host *host)
1902 {
1903 	return mmc_do_hw_reset(host, 1);
1904 }
1905 EXPORT_SYMBOL(mmc_hw_reset_check);
1906 
1907 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1908 {
1909 	host->f_init = freq;
1910 
1911 #ifdef CONFIG_MMC_DEBUG
1912 	pr_info("%s: %s: trying to init card at %u Hz\n",
1913 		mmc_hostname(host), __func__, host->f_init);
1914 #endif
1915 	mmc_power_up(host);
1916 
1917 	/*
1918 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1919 	 * do a hardware reset if possible.
1920 	 */
1921 	mmc_hw_reset_for_init(host);
1922 
1923 	/* Initialization should be done at 3.3 V I/O voltage. */
1924 	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1925 
1926 	/*
1927 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1928 	 * if the card is being re-initialized, just send it.  CMD52
1929 	 * should be ignored by SD/eMMC cards.
1930 	 */
1931 	sdio_reset(host);
1932 	mmc_go_idle(host);
1933 
1934 	mmc_send_if_cond(host, host->ocr_avail);
1935 
1936 	/* Order's important: probe SDIO, then SD, then MMC */
1937 	if (!mmc_attach_sdio(host))
1938 		return 0;
1939 	if (!mmc_attach_sd(host))
1940 		return 0;
1941 	if (!mmc_attach_mmc(host))
1942 		return 0;
1943 
1944 	mmc_power_off(host);
1945 	return -EIO;
1946 }
1947 
1948 int _mmc_detect_card_removed(struct mmc_host *host)
1949 {
1950 	int ret;
1951 
1952 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1953 		return 0;
1954 
1955 	if (!host->card || mmc_card_removed(host->card))
1956 		return 1;
1957 
1958 	ret = host->bus_ops->alive(host);
1959 	if (ret) {
1960 		mmc_card_set_removed(host->card);
1961 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
1962 	}
1963 
1964 	return ret;
1965 }
1966 
1967 int mmc_detect_card_removed(struct mmc_host *host)
1968 {
1969 	struct mmc_card *card = host->card;
1970 	int ret;
1971 
1972 	WARN_ON(!host->claimed);
1973 
1974 	if (!card)
1975 		return 1;
1976 
1977 	ret = mmc_card_removed(card);
1978 	/*
1979 	 * The card will be considered unchanged unless we have been asked to
1980 	 * detect a change or host requires polling to provide card detection.
1981 	 */
1982 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1983 	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1984 		return ret;
1985 
1986 	host->detect_change = 0;
1987 	if (!ret) {
1988 		ret = _mmc_detect_card_removed(host);
1989 		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
1990 			/*
1991 			 * Schedule a detect work as soon as possible to let a
1992 			 * rescan handle the card removal.
1993 			 */
1994 			cancel_delayed_work(&host->detect);
1995 			mmc_detect_change(host, 0);
1996 		}
1997 	}
1998 
1999 	return ret;
2000 }
2001 EXPORT_SYMBOL(mmc_detect_card_removed);
2002 
2003 void mmc_rescan(struct work_struct *work)
2004 {
2005 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2006 	struct mmc_host *host =
2007 		container_of(work, struct mmc_host, detect.work);
2008 	int i;
2009 
2010 	if (host->rescan_disable)
2011 		return;
2012 
2013 	mmc_bus_get(host);
2014 
2015 	/*
2016 	 * if there is a _removable_ card registered, check whether it is
2017 	 * still present
2018 	 */
2019 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2020 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2021 		host->bus_ops->detect(host);
2022 
2023 	host->detect_change = 0;
2024 
2025 	/*
2026 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2027 	 * the card is no longer present.
2028 	 */
2029 	mmc_bus_put(host);
2030 	mmc_bus_get(host);
2031 
2032 	/* if there still is a card present, stop here */
2033 	if (host->bus_ops != NULL) {
2034 		mmc_bus_put(host);
2035 		goto out;
2036 	}
2037 
2038 	/*
2039 	 * Only we can add a new handler, so it's safe to
2040 	 * release the lock here.
2041 	 */
2042 	mmc_bus_put(host);
2043 
2044 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2045 		goto out;
2046 
2047 	mmc_claim_host(host);
2048 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2049 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2050 			break;
2051 		if (freqs[i] <= host->f_min)
2052 			break;
2053 	}
2054 	mmc_release_host(host);
2055 
2056  out:
2057 	if (host->caps & MMC_CAP_NEEDS_POLL)
2058 		mmc_schedule_delayed_work(&host->detect, HZ);
2059 }
2060 
2061 void mmc_start_host(struct mmc_host *host)
2062 {
2063 	mmc_power_off(host);
2064 	mmc_detect_change(host, 0);
2065 }
2066 
2067 void mmc_stop_host(struct mmc_host *host)
2068 {
2069 #ifdef CONFIG_MMC_DEBUG
2070 	unsigned long flags;
2071 	spin_lock_irqsave(&host->lock, flags);
2072 	host->removed = 1;
2073 	spin_unlock_irqrestore(&host->lock, flags);
2074 #endif
2075 
2076 	cancel_delayed_work_sync(&host->detect);
2077 	mmc_flush_scheduled_work();
2078 
2079 	/* clear pm flags now and let card drivers set them as needed */
2080 	host->pm_flags = 0;
2081 
2082 	mmc_bus_get(host);
2083 	if (host->bus_ops && !host->bus_dead) {
2084 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2085 		if (host->bus_ops->remove)
2086 			host->bus_ops->remove(host);
2087 
2088 		mmc_claim_host(host);
2089 		mmc_detach_bus(host);
2090 		mmc_power_off(host);
2091 		mmc_release_host(host);
2092 		mmc_bus_put(host);
2093 		return;
2094 	}
2095 	mmc_bus_put(host);
2096 
2097 	BUG_ON(host->card);
2098 
2099 	mmc_power_off(host);
2100 }
2101 
2102 int mmc_power_save_host(struct mmc_host *host)
2103 {
2104 	int ret = 0;
2105 
2106 #ifdef CONFIG_MMC_DEBUG
2107 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2108 #endif
2109 
2110 	mmc_bus_get(host);
2111 
2112 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2113 		mmc_bus_put(host);
2114 		return -EINVAL;
2115 	}
2116 
2117 	if (host->bus_ops->power_save)
2118 		ret = host->bus_ops->power_save(host);
2119 
2120 	mmc_bus_put(host);
2121 
2122 	mmc_power_off(host);
2123 
2124 	return ret;
2125 }
2126 EXPORT_SYMBOL(mmc_power_save_host);
2127 
2128 int mmc_power_restore_host(struct mmc_host *host)
2129 {
2130 	int ret;
2131 
2132 #ifdef CONFIG_MMC_DEBUG
2133 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2134 #endif
2135 
2136 	mmc_bus_get(host);
2137 
2138 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2139 		mmc_bus_put(host);
2140 		return -EINVAL;
2141 	}
2142 
2143 	mmc_power_up(host);
2144 	ret = host->bus_ops->power_restore(host);
2145 
2146 	mmc_bus_put(host);
2147 
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL(mmc_power_restore_host);
2151 
2152 int mmc_card_awake(struct mmc_host *host)
2153 {
2154 	int err = -ENOSYS;
2155 
2156 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2157 		return 0;
2158 
2159 	mmc_bus_get(host);
2160 
2161 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2162 		err = host->bus_ops->awake(host);
2163 
2164 	mmc_bus_put(host);
2165 
2166 	return err;
2167 }
2168 EXPORT_SYMBOL(mmc_card_awake);
2169 
2170 int mmc_card_sleep(struct mmc_host *host)
2171 {
2172 	int err = -ENOSYS;
2173 
2174 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2175 		return 0;
2176 
2177 	mmc_bus_get(host);
2178 
2179 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2180 		err = host->bus_ops->sleep(host);
2181 
2182 	mmc_bus_put(host);
2183 
2184 	return err;
2185 }
2186 EXPORT_SYMBOL(mmc_card_sleep);
2187 
2188 int mmc_card_can_sleep(struct mmc_host *host)
2189 {
2190 	struct mmc_card *card = host->card;
2191 
2192 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2193 		return 1;
2194 	return 0;
2195 }
2196 EXPORT_SYMBOL(mmc_card_can_sleep);
2197 
2198 /*
2199  * Flush the cache to the non-volatile storage.
2200  */
2201 int mmc_flush_cache(struct mmc_card *card)
2202 {
2203 	struct mmc_host *host = card->host;
2204 	int err = 0;
2205 
2206 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2207 		return err;
2208 
2209 	if (mmc_card_mmc(card) &&
2210 			(card->ext_csd.cache_size > 0) &&
2211 			(card->ext_csd.cache_ctrl & 1)) {
2212 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2213 				EXT_CSD_FLUSH_CACHE, 1, 0);
2214 		if (err)
2215 			pr_err("%s: cache flush error %d\n",
2216 					mmc_hostname(card->host), err);
2217 	}
2218 
2219 	return err;
2220 }
2221 EXPORT_SYMBOL(mmc_flush_cache);
2222 
2223 /*
2224  * Turn the cache ON/OFF.
2225  * Turning the cache OFF shall trigger flushing of the data
2226  * to the non-volatile storage.
2227  */
2228 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2229 {
2230 	struct mmc_card *card = host->card;
2231 	unsigned int timeout;
2232 	int err = 0;
2233 
2234 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2235 			mmc_card_is_removable(host))
2236 		return err;
2237 
2238 	if (card && mmc_card_mmc(card) &&
2239 			(card->ext_csd.cache_size > 0)) {
2240 		enable = !!enable;
2241 
2242 		if (card->ext_csd.cache_ctrl ^ enable) {
2243 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2244 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2245 					EXT_CSD_CACHE_CTRL, enable, timeout);
2246 			if (err)
2247 				pr_err("%s: cache %s error %d\n",
2248 						mmc_hostname(card->host),
2249 						enable ? "on" : "off",
2250 						err);
2251 			else
2252 				card->ext_csd.cache_ctrl = enable;
2253 		}
2254 	}
2255 
2256 	return err;
2257 }
2258 EXPORT_SYMBOL(mmc_cache_ctrl);
2259 
2260 #ifdef CONFIG_PM
2261 
2262 /**
2263  *	mmc_suspend_host - suspend a host
2264  *	@host: mmc host
2265  */
2266 int mmc_suspend_host(struct mmc_host *host)
2267 {
2268 	int err = 0;
2269 
2270 	cancel_delayed_work(&host->detect);
2271 	mmc_flush_scheduled_work();
2272 	if (mmc_try_claim_host(host)) {
2273 		err = mmc_cache_ctrl(host, 0);
2274 		mmc_release_host(host);
2275 	} else {
2276 		err = -EBUSY;
2277 	}
2278 
2279 	if (err)
2280 		goto out;
2281 
2282 	mmc_bus_get(host);
2283 	if (host->bus_ops && !host->bus_dead) {
2284 
2285 		/*
2286 		 * A long response time is not acceptable for device drivers
2287 		 * when doing suspend. Prevent mmc_claim_host in the suspend
2288 		 * sequence, to potentially wait "forever" by trying to
2289 		 * pre-claim the host.
2290 		 */
2291 		if (mmc_try_claim_host(host)) {
2292 			if (host->bus_ops->suspend) {
2293 				err = host->bus_ops->suspend(host);
2294 			}
2295 			mmc_release_host(host);
2296 
2297 			if (err == -ENOSYS || !host->bus_ops->resume) {
2298 				/*
2299 				 * We simply "remove" the card in this case.
2300 				 * It will be redetected on resume.  (Calling
2301 				 * bus_ops->remove() with a claimed host can
2302 				 * deadlock.)
2303 				 */
2304 				if (host->bus_ops->remove)
2305 					host->bus_ops->remove(host);
2306 				mmc_claim_host(host);
2307 				mmc_detach_bus(host);
2308 				mmc_power_off(host);
2309 				mmc_release_host(host);
2310 				host->pm_flags = 0;
2311 				err = 0;
2312 			}
2313 		} else {
2314 			err = -EBUSY;
2315 		}
2316 	}
2317 	mmc_bus_put(host);
2318 
2319 	if (!err && !mmc_card_keep_power(host))
2320 		mmc_power_off(host);
2321 
2322 out:
2323 	return err;
2324 }
2325 
2326 EXPORT_SYMBOL(mmc_suspend_host);
2327 
2328 /**
2329  *	mmc_resume_host - resume a previously suspended host
2330  *	@host: mmc host
2331  */
2332 int mmc_resume_host(struct mmc_host *host)
2333 {
2334 	int err = 0;
2335 
2336 	mmc_bus_get(host);
2337 	if (host->bus_ops && !host->bus_dead) {
2338 		if (!mmc_card_keep_power(host)) {
2339 			mmc_power_up(host);
2340 			mmc_select_voltage(host, host->ocr);
2341 			/*
2342 			 * Tell runtime PM core we just powered up the card,
2343 			 * since it still believes the card is powered off.
2344 			 * Note that currently runtime PM is only enabled
2345 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2346 			 */
2347 			if (mmc_card_sdio(host->card) &&
2348 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2349 				pm_runtime_disable(&host->card->dev);
2350 				pm_runtime_set_active(&host->card->dev);
2351 				pm_runtime_enable(&host->card->dev);
2352 			}
2353 		}
2354 		BUG_ON(!host->bus_ops->resume);
2355 		err = host->bus_ops->resume(host);
2356 		if (err) {
2357 			pr_warning("%s: error %d during resume "
2358 					    "(card was removed?)\n",
2359 					    mmc_hostname(host), err);
2360 			err = 0;
2361 		}
2362 	}
2363 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2364 	mmc_bus_put(host);
2365 
2366 	return err;
2367 }
2368 EXPORT_SYMBOL(mmc_resume_host);
2369 
2370 /* Do the card removal on suspend if card is assumed removeable
2371  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372    to sync the card.
2373 */
2374 int mmc_pm_notify(struct notifier_block *notify_block,
2375 					unsigned long mode, void *unused)
2376 {
2377 	struct mmc_host *host = container_of(
2378 		notify_block, struct mmc_host, pm_notify);
2379 	unsigned long flags;
2380 
2381 
2382 	switch (mode) {
2383 	case PM_HIBERNATION_PREPARE:
2384 	case PM_SUSPEND_PREPARE:
2385 
2386 		spin_lock_irqsave(&host->lock, flags);
2387 		host->rescan_disable = 1;
2388 		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2389 		spin_unlock_irqrestore(&host->lock, flags);
2390 		cancel_delayed_work_sync(&host->detect);
2391 
2392 		if (!host->bus_ops || host->bus_ops->suspend)
2393 			break;
2394 
2395 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2396 		if (host->bus_ops->remove)
2397 			host->bus_ops->remove(host);
2398 
2399 		mmc_claim_host(host);
2400 		mmc_detach_bus(host);
2401 		mmc_power_off(host);
2402 		mmc_release_host(host);
2403 		host->pm_flags = 0;
2404 		break;
2405 
2406 	case PM_POST_SUSPEND:
2407 	case PM_POST_HIBERNATION:
2408 	case PM_POST_RESTORE:
2409 
2410 		spin_lock_irqsave(&host->lock, flags);
2411 		host->rescan_disable = 0;
2412 		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2413 		spin_unlock_irqrestore(&host->lock, flags);
2414 		mmc_detect_change(host, 0);
2415 
2416 	}
2417 
2418 	return 0;
2419 }
2420 #endif
2421 
2422 static int __init mmc_init(void)
2423 {
2424 	int ret;
2425 
2426 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2427 	if (!workqueue)
2428 		return -ENOMEM;
2429 
2430 	ret = mmc_register_bus();
2431 	if (ret)
2432 		goto destroy_workqueue;
2433 
2434 	ret = mmc_register_host_class();
2435 	if (ret)
2436 		goto unregister_bus;
2437 
2438 	ret = sdio_register_bus();
2439 	if (ret)
2440 		goto unregister_host_class;
2441 
2442 	return 0;
2443 
2444 unregister_host_class:
2445 	mmc_unregister_host_class();
2446 unregister_bus:
2447 	mmc_unregister_bus();
2448 destroy_workqueue:
2449 	destroy_workqueue(workqueue);
2450 
2451 	return ret;
2452 }
2453 
2454 static void __exit mmc_exit(void)
2455 {
2456 	sdio_unregister_bus();
2457 	mmc_unregister_host_class();
2458 	mmc_unregister_bus();
2459 	destroy_workqueue(workqueue);
2460 }
2461 
2462 subsys_initcall(mmc_init);
2463 module_exit(mmc_exit);
2464 
2465 MODULE_LICENSE("GPL");
2466