1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "card.h" 44 #include "bus.h" 45 #include "host.h" 46 #include "sdio_bus.h" 47 #include "pwrseq.h" 48 49 #include "mmc_ops.h" 50 #include "sd_ops.h" 51 #include "sdio_ops.h" 52 53 /* If the device is not responding */ 54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 55 56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 58 59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 60 61 /* 62 * Enabling software CRCs on the data blocks can be a significant (30%) 63 * performance cost, and for other reasons may not always be desired. 64 * So we allow it it to be disabled. 65 */ 66 bool use_spi_crc = 1; 67 module_param(use_spi_crc, bool, 0); 68 69 static int mmc_schedule_delayed_work(struct delayed_work *work, 70 unsigned long delay) 71 { 72 /* 73 * We use the system_freezable_wq, because of two reasons. 74 * First, it allows several works (not the same work item) to be 75 * executed simultaneously. Second, the queue becomes frozen when 76 * userspace becomes frozen during system PM. 77 */ 78 return queue_delayed_work(system_freezable_wq, work, delay); 79 } 80 81 #ifdef CONFIG_FAIL_MMC_REQUEST 82 83 /* 84 * Internal function. Inject random data errors. 85 * If mmc_data is NULL no errors are injected. 86 */ 87 static void mmc_should_fail_request(struct mmc_host *host, 88 struct mmc_request *mrq) 89 { 90 struct mmc_command *cmd = mrq->cmd; 91 struct mmc_data *data = mrq->data; 92 static const int data_errors[] = { 93 -ETIMEDOUT, 94 -EILSEQ, 95 -EIO, 96 }; 97 98 if (!data) 99 return; 100 101 if (cmd->error || data->error || 102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 103 return; 104 105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 107 } 108 109 #else /* CONFIG_FAIL_MMC_REQUEST */ 110 111 static inline void mmc_should_fail_request(struct mmc_host *host, 112 struct mmc_request *mrq) 113 { 114 } 115 116 #endif /* CONFIG_FAIL_MMC_REQUEST */ 117 118 static inline void mmc_complete_cmd(struct mmc_request *mrq) 119 { 120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 121 complete_all(&mrq->cmd_completion); 122 } 123 124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 125 { 126 if (!mrq->cap_cmd_during_tfr) 127 return; 128 129 mmc_complete_cmd(mrq); 130 131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 132 mmc_hostname(host), mrq->cmd->opcode); 133 } 134 EXPORT_SYMBOL(mmc_command_done); 135 136 /** 137 * mmc_request_done - finish processing an MMC request 138 * @host: MMC host which completed request 139 * @mrq: MMC request which request 140 * 141 * MMC drivers should call this function when they have completed 142 * their processing of a request. 143 */ 144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 145 { 146 struct mmc_command *cmd = mrq->cmd; 147 int err = cmd->error; 148 149 /* Flag re-tuning needed on CRC errors */ 150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 153 (mrq->data && mrq->data->error == -EILSEQ) || 154 (mrq->stop && mrq->stop->error == -EILSEQ))) 155 mmc_retune_needed(host); 156 157 if (err && cmd->retries && mmc_host_is_spi(host)) { 158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 159 cmd->retries = 0; 160 } 161 162 if (host->ongoing_mrq == mrq) 163 host->ongoing_mrq = NULL; 164 165 mmc_complete_cmd(mrq); 166 167 trace_mmc_request_done(host, mrq); 168 169 /* 170 * We list various conditions for the command to be considered 171 * properly done: 172 * 173 * - There was no error, OK fine then 174 * - We are not doing some kind of retry 175 * - The card was removed (...so just complete everything no matter 176 * if there are errors or retries) 177 */ 178 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 179 mmc_should_fail_request(host, mrq); 180 181 if (!host->ongoing_mrq) 182 led_trigger_event(host->led, LED_OFF); 183 184 if (mrq->sbc) { 185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 186 mmc_hostname(host), mrq->sbc->opcode, 187 mrq->sbc->error, 188 mrq->sbc->resp[0], mrq->sbc->resp[1], 189 mrq->sbc->resp[2], mrq->sbc->resp[3]); 190 } 191 192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 193 mmc_hostname(host), cmd->opcode, err, 194 cmd->resp[0], cmd->resp[1], 195 cmd->resp[2], cmd->resp[3]); 196 197 if (mrq->data) { 198 pr_debug("%s: %d bytes transferred: %d\n", 199 mmc_hostname(host), 200 mrq->data->bytes_xfered, mrq->data->error); 201 } 202 203 if (mrq->stop) { 204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 205 mmc_hostname(host), mrq->stop->opcode, 206 mrq->stop->error, 207 mrq->stop->resp[0], mrq->stop->resp[1], 208 mrq->stop->resp[2], mrq->stop->resp[3]); 209 } 210 } 211 /* 212 * Request starter must handle retries - see 213 * mmc_wait_for_req_done(). 214 */ 215 if (mrq->done) 216 mrq->done(mrq); 217 } 218 219 EXPORT_SYMBOL(mmc_request_done); 220 221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 222 { 223 int err; 224 225 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 226 err = mmc_retune(host); 227 if (err) { 228 mrq->cmd->error = err; 229 mmc_request_done(host, mrq); 230 return; 231 } 232 233 /* 234 * For sdio rw commands we must wait for card busy otherwise some 235 * sdio devices won't work properly. 236 * And bypass I/O abort, reset and bus suspend operations. 237 */ 238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 239 host->ops->card_busy) { 240 int tries = 500; /* Wait aprox 500ms at maximum */ 241 242 while (host->ops->card_busy(host) && --tries) 243 mmc_delay(1); 244 245 if (tries == 0) { 246 mrq->cmd->error = -EBUSY; 247 mmc_request_done(host, mrq); 248 return; 249 } 250 } 251 252 if (mrq->cap_cmd_during_tfr) { 253 host->ongoing_mrq = mrq; 254 /* 255 * Retry path could come through here without having waiting on 256 * cmd_completion, so ensure it is reinitialised. 257 */ 258 reinit_completion(&mrq->cmd_completion); 259 } 260 261 trace_mmc_request_start(host, mrq); 262 263 if (host->cqe_on) 264 host->cqe_ops->cqe_off(host); 265 266 host->ops->request(host, mrq); 267 } 268 269 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, 270 bool cqe) 271 { 272 if (mrq->sbc) { 273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 274 mmc_hostname(host), mrq->sbc->opcode, 275 mrq->sbc->arg, mrq->sbc->flags); 276 } 277 278 if (mrq->cmd) { 279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", 280 mmc_hostname(host), cqe ? "CQE direct " : "", 281 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); 282 } else if (cqe) { 283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", 284 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); 285 } 286 287 if (mrq->data) { 288 pr_debug("%s: blksz %d blocks %d flags %08x " 289 "tsac %d ms nsac %d\n", 290 mmc_hostname(host), mrq->data->blksz, 291 mrq->data->blocks, mrq->data->flags, 292 mrq->data->timeout_ns / 1000000, 293 mrq->data->timeout_clks); 294 } 295 296 if (mrq->stop) { 297 pr_debug("%s: CMD%u arg %08x flags %08x\n", 298 mmc_hostname(host), mrq->stop->opcode, 299 mrq->stop->arg, mrq->stop->flags); 300 } 301 } 302 303 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 304 { 305 unsigned int i, sz = 0; 306 struct scatterlist *sg; 307 308 if (mrq->cmd) { 309 mrq->cmd->error = 0; 310 mrq->cmd->mrq = mrq; 311 mrq->cmd->data = mrq->data; 312 } 313 if (mrq->sbc) { 314 mrq->sbc->error = 0; 315 mrq->sbc->mrq = mrq; 316 } 317 if (mrq->data) { 318 if (mrq->data->blksz > host->max_blk_size || 319 mrq->data->blocks > host->max_blk_count || 320 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 321 return -EINVAL; 322 323 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 324 sz += sg->length; 325 if (sz != mrq->data->blocks * mrq->data->blksz) 326 return -EINVAL; 327 328 mrq->data->error = 0; 329 mrq->data->mrq = mrq; 330 if (mrq->stop) { 331 mrq->data->stop = mrq->stop; 332 mrq->stop->error = 0; 333 mrq->stop->mrq = mrq; 334 } 335 } 336 337 return 0; 338 } 339 340 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 341 { 342 int err; 343 344 mmc_retune_hold(host); 345 346 if (mmc_card_removed(host->card)) 347 return -ENOMEDIUM; 348 349 mmc_mrq_pr_debug(host, mrq, false); 350 351 WARN_ON(!host->claimed); 352 353 err = mmc_mrq_prep(host, mrq); 354 if (err) 355 return err; 356 357 led_trigger_event(host->led, LED_FULL); 358 __mmc_start_request(host, mrq); 359 360 return 0; 361 } 362 EXPORT_SYMBOL(mmc_start_request); 363 364 /* 365 * mmc_wait_data_done() - done callback for data request 366 * @mrq: done data request 367 * 368 * Wakes up mmc context, passed as a callback to host controller driver 369 */ 370 static void mmc_wait_data_done(struct mmc_request *mrq) 371 { 372 struct mmc_context_info *context_info = &mrq->host->context_info; 373 374 context_info->is_done_rcv = true; 375 wake_up_interruptible(&context_info->wait); 376 } 377 378 static void mmc_wait_done(struct mmc_request *mrq) 379 { 380 complete(&mrq->completion); 381 } 382 383 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 384 { 385 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 386 387 /* 388 * If there is an ongoing transfer, wait for the command line to become 389 * available. 390 */ 391 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 392 wait_for_completion(&ongoing_mrq->cmd_completion); 393 } 394 395 /* 396 *__mmc_start_data_req() - starts data request 397 * @host: MMC host to start the request 398 * @mrq: data request to start 399 * 400 * Sets the done callback to be called when request is completed by the card. 401 * Starts data mmc request execution 402 * If an ongoing transfer is already in progress, wait for the command line 403 * to become available before sending another command. 404 */ 405 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 406 { 407 int err; 408 409 mmc_wait_ongoing_tfr_cmd(host); 410 411 mrq->done = mmc_wait_data_done; 412 mrq->host = host; 413 414 init_completion(&mrq->cmd_completion); 415 416 err = mmc_start_request(host, mrq); 417 if (err) { 418 mrq->cmd->error = err; 419 mmc_complete_cmd(mrq); 420 mmc_wait_data_done(mrq); 421 } 422 423 return err; 424 } 425 426 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 427 { 428 int err; 429 430 mmc_wait_ongoing_tfr_cmd(host); 431 432 init_completion(&mrq->completion); 433 mrq->done = mmc_wait_done; 434 435 init_completion(&mrq->cmd_completion); 436 437 err = mmc_start_request(host, mrq); 438 if (err) { 439 mrq->cmd->error = err; 440 mmc_complete_cmd(mrq); 441 complete(&mrq->completion); 442 } 443 444 return err; 445 } 446 447 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 448 { 449 struct mmc_command *cmd; 450 451 while (1) { 452 wait_for_completion(&mrq->completion); 453 454 cmd = mrq->cmd; 455 456 /* 457 * If host has timed out waiting for the sanitize 458 * to complete, card might be still in programming state 459 * so let's try to bring the card out of programming 460 * state. 461 */ 462 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 463 if (!mmc_interrupt_hpi(host->card)) { 464 pr_warn("%s: %s: Interrupted sanitize\n", 465 mmc_hostname(host), __func__); 466 cmd->error = 0; 467 break; 468 } else { 469 pr_err("%s: %s: Failed to interrupt sanitize\n", 470 mmc_hostname(host), __func__); 471 } 472 } 473 if (!cmd->error || !cmd->retries || 474 mmc_card_removed(host->card)) 475 break; 476 477 mmc_retune_recheck(host); 478 479 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 480 mmc_hostname(host), cmd->opcode, cmd->error); 481 cmd->retries--; 482 cmd->error = 0; 483 __mmc_start_request(host, mrq); 484 } 485 486 mmc_retune_release(host); 487 } 488 EXPORT_SYMBOL(mmc_wait_for_req_done); 489 490 /* 491 * mmc_cqe_start_req - Start a CQE request. 492 * @host: MMC host to start the request 493 * @mrq: request to start 494 * 495 * Start the request, re-tuning if needed and it is possible. Returns an error 496 * code if the request fails to start or -EBUSY if CQE is busy. 497 */ 498 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 499 { 500 int err; 501 502 /* 503 * CQE cannot process re-tuning commands. Caller must hold retuning 504 * while CQE is in use. Re-tuning can happen here only when CQE has no 505 * active requests i.e. this is the first. Note, re-tuning will call 506 * ->cqe_off(). 507 */ 508 err = mmc_retune(host); 509 if (err) 510 goto out_err; 511 512 mrq->host = host; 513 514 mmc_mrq_pr_debug(host, mrq, true); 515 516 err = mmc_mrq_prep(host, mrq); 517 if (err) 518 goto out_err; 519 520 err = host->cqe_ops->cqe_request(host, mrq); 521 if (err) 522 goto out_err; 523 524 trace_mmc_request_start(host, mrq); 525 526 return 0; 527 528 out_err: 529 if (mrq->cmd) { 530 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", 531 mmc_hostname(host), mrq->cmd->opcode, err); 532 } else { 533 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", 534 mmc_hostname(host), mrq->tag, err); 535 } 536 return err; 537 } 538 EXPORT_SYMBOL(mmc_cqe_start_req); 539 540 /** 541 * mmc_cqe_request_done - CQE has finished processing an MMC request 542 * @host: MMC host which completed request 543 * @mrq: MMC request which completed 544 * 545 * CQE drivers should call this function when they have completed 546 * their processing of a request. 547 */ 548 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) 549 { 550 mmc_should_fail_request(host, mrq); 551 552 /* Flag re-tuning needed on CRC errors */ 553 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || 554 (mrq->data && mrq->data->error == -EILSEQ)) 555 mmc_retune_needed(host); 556 557 trace_mmc_request_done(host, mrq); 558 559 if (mrq->cmd) { 560 pr_debug("%s: CQE req done (direct CMD%u): %d\n", 561 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); 562 } else { 563 pr_debug("%s: CQE transfer done tag %d\n", 564 mmc_hostname(host), mrq->tag); 565 } 566 567 if (mrq->data) { 568 pr_debug("%s: %d bytes transferred: %d\n", 569 mmc_hostname(host), 570 mrq->data->bytes_xfered, mrq->data->error); 571 } 572 573 mrq->done(mrq); 574 } 575 EXPORT_SYMBOL(mmc_cqe_request_done); 576 577 /** 578 * mmc_cqe_post_req - CQE post process of a completed MMC request 579 * @host: MMC host 580 * @mrq: MMC request to be processed 581 */ 582 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) 583 { 584 if (host->cqe_ops->cqe_post_req) 585 host->cqe_ops->cqe_post_req(host, mrq); 586 } 587 EXPORT_SYMBOL(mmc_cqe_post_req); 588 589 /* Arbitrary 1 second timeout */ 590 #define MMC_CQE_RECOVERY_TIMEOUT 1000 591 592 /* 593 * mmc_cqe_recovery - Recover from CQE errors. 594 * @host: MMC host to recover 595 * 596 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in 597 * in eMMC, and discarding the queue in CQE. CQE must call 598 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC 599 * fails to discard its queue. 600 */ 601 int mmc_cqe_recovery(struct mmc_host *host) 602 { 603 struct mmc_command cmd; 604 int err; 605 606 mmc_retune_hold_now(host); 607 608 /* 609 * Recovery is expected seldom, if at all, but it reduces performance, 610 * so make sure it is not completely silent. 611 */ 612 pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); 613 614 host->cqe_ops->cqe_recovery_start(host); 615 616 memset(&cmd, 0, sizeof(cmd)); 617 cmd.opcode = MMC_STOP_TRANSMISSION, 618 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC, 619 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 620 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, 621 mmc_wait_for_cmd(host, &cmd, 0); 622 623 memset(&cmd, 0, sizeof(cmd)); 624 cmd.opcode = MMC_CMDQ_TASK_MGMT; 625 cmd.arg = 1; /* Discard entire queue */ 626 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 627 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 628 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, 629 err = mmc_wait_for_cmd(host, &cmd, 0); 630 631 host->cqe_ops->cqe_recovery_finish(host); 632 633 mmc_retune_release(host); 634 635 return err; 636 } 637 EXPORT_SYMBOL(mmc_cqe_recovery); 638 639 /** 640 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 641 * @host: MMC host 642 * @mrq: MMC request 643 * 644 * mmc_is_req_done() is used with requests that have 645 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 646 * starting a request and before waiting for it to complete. That is, 647 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 648 * and before mmc_wait_for_req_done(). If it is called at other times the 649 * result is not meaningful. 650 */ 651 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 652 { 653 if (host->areq) 654 return host->context_info.is_done_rcv; 655 else 656 return completion_done(&mrq->completion); 657 } 658 EXPORT_SYMBOL(mmc_is_req_done); 659 660 /** 661 * mmc_pre_req - Prepare for a new request 662 * @host: MMC host to prepare command 663 * @mrq: MMC request to prepare for 664 * 665 * mmc_pre_req() is called in prior to mmc_start_req() to let 666 * host prepare for the new request. Preparation of a request may be 667 * performed while another request is running on the host. 668 */ 669 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq) 670 { 671 if (host->ops->pre_req) 672 host->ops->pre_req(host, mrq); 673 } 674 675 /** 676 * mmc_post_req - Post process a completed request 677 * @host: MMC host to post process command 678 * @mrq: MMC request to post process for 679 * @err: Error, if non zero, clean up any resources made in pre_req 680 * 681 * Let the host post process a completed request. Post processing of 682 * a request may be performed while another reuqest is running. 683 */ 684 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 685 int err) 686 { 687 if (host->ops->post_req) 688 host->ops->post_req(host, mrq, err); 689 } 690 691 /** 692 * mmc_finalize_areq() - finalize an asynchronous request 693 * @host: MMC host to finalize any ongoing request on 694 * 695 * Returns the status of the ongoing asynchronous request, but 696 * MMC_BLK_SUCCESS if no request was going on. 697 */ 698 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host) 699 { 700 struct mmc_context_info *context_info = &host->context_info; 701 enum mmc_blk_status status; 702 703 if (!host->areq) 704 return MMC_BLK_SUCCESS; 705 706 while (1) { 707 wait_event_interruptible(context_info->wait, 708 (context_info->is_done_rcv || 709 context_info->is_new_req)); 710 711 if (context_info->is_done_rcv) { 712 struct mmc_command *cmd; 713 714 context_info->is_done_rcv = false; 715 cmd = host->areq->mrq->cmd; 716 717 if (!cmd->error || !cmd->retries || 718 mmc_card_removed(host->card)) { 719 status = host->areq->err_check(host->card, 720 host->areq); 721 break; /* return status */ 722 } else { 723 mmc_retune_recheck(host); 724 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 725 mmc_hostname(host), 726 cmd->opcode, cmd->error); 727 cmd->retries--; 728 cmd->error = 0; 729 __mmc_start_request(host, host->areq->mrq); 730 continue; /* wait for done/new event again */ 731 } 732 } 733 734 return MMC_BLK_NEW_REQUEST; 735 } 736 737 mmc_retune_release(host); 738 739 /* 740 * Check BKOPS urgency for each R1 response 741 */ 742 if (host->card && mmc_card_mmc(host->card) && 743 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 744 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 745 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 746 mmc_start_bkops(host->card, true); 747 } 748 749 return status; 750 } 751 752 /** 753 * mmc_start_areq - start an asynchronous request 754 * @host: MMC host to start command 755 * @areq: asynchronous request to start 756 * @ret_stat: out parameter for status 757 * 758 * Start a new MMC custom command request for a host. 759 * If there is on ongoing async request wait for completion 760 * of that request and start the new one and return. 761 * Does not wait for the new request to complete. 762 * 763 * Returns the completed request, NULL in case of none completed. 764 * Wait for the an ongoing request (previoulsy started) to complete and 765 * return the completed request. If there is no ongoing request, NULL 766 * is returned without waiting. NULL is not an error condition. 767 */ 768 struct mmc_async_req *mmc_start_areq(struct mmc_host *host, 769 struct mmc_async_req *areq, 770 enum mmc_blk_status *ret_stat) 771 { 772 enum mmc_blk_status status; 773 int start_err = 0; 774 struct mmc_async_req *previous = host->areq; 775 776 /* Prepare a new request */ 777 if (areq) 778 mmc_pre_req(host, areq->mrq); 779 780 /* Finalize previous request */ 781 status = mmc_finalize_areq(host); 782 if (ret_stat) 783 *ret_stat = status; 784 785 /* The previous request is still going on... */ 786 if (status == MMC_BLK_NEW_REQUEST) 787 return NULL; 788 789 /* Fine so far, start the new request! */ 790 if (status == MMC_BLK_SUCCESS && areq) 791 start_err = __mmc_start_data_req(host, areq->mrq); 792 793 /* Postprocess the old request at this point */ 794 if (host->areq) 795 mmc_post_req(host, host->areq->mrq, 0); 796 797 /* Cancel a prepared request if it was not started. */ 798 if ((status != MMC_BLK_SUCCESS || start_err) && areq) 799 mmc_post_req(host, areq->mrq, -EINVAL); 800 801 if (status != MMC_BLK_SUCCESS) 802 host->areq = NULL; 803 else 804 host->areq = areq; 805 806 return previous; 807 } 808 EXPORT_SYMBOL(mmc_start_areq); 809 810 /** 811 * mmc_wait_for_req - start a request and wait for completion 812 * @host: MMC host to start command 813 * @mrq: MMC request to start 814 * 815 * Start a new MMC custom command request for a host, and wait 816 * for the command to complete. In the case of 'cap_cmd_during_tfr' 817 * requests, the transfer is ongoing and the caller can issue further 818 * commands that do not use the data lines, and then wait by calling 819 * mmc_wait_for_req_done(). 820 * Does not attempt to parse the response. 821 */ 822 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 823 { 824 __mmc_start_req(host, mrq); 825 826 if (!mrq->cap_cmd_during_tfr) 827 mmc_wait_for_req_done(host, mrq); 828 } 829 EXPORT_SYMBOL(mmc_wait_for_req); 830 831 /** 832 * mmc_wait_for_cmd - start a command and wait for completion 833 * @host: MMC host to start command 834 * @cmd: MMC command to start 835 * @retries: maximum number of retries 836 * 837 * Start a new MMC command for a host, and wait for the command 838 * to complete. Return any error that occurred while the command 839 * was executing. Do not attempt to parse the response. 840 */ 841 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 842 { 843 struct mmc_request mrq = {}; 844 845 WARN_ON(!host->claimed); 846 847 memset(cmd->resp, 0, sizeof(cmd->resp)); 848 cmd->retries = retries; 849 850 mrq.cmd = cmd; 851 cmd->data = NULL; 852 853 mmc_wait_for_req(host, &mrq); 854 855 return cmd->error; 856 } 857 858 EXPORT_SYMBOL(mmc_wait_for_cmd); 859 860 /** 861 * mmc_set_data_timeout - set the timeout for a data command 862 * @data: data phase for command 863 * @card: the MMC card associated with the data transfer 864 * 865 * Computes the data timeout parameters according to the 866 * correct algorithm given the card type. 867 */ 868 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 869 { 870 unsigned int mult; 871 872 /* 873 * SDIO cards only define an upper 1 s limit on access. 874 */ 875 if (mmc_card_sdio(card)) { 876 data->timeout_ns = 1000000000; 877 data->timeout_clks = 0; 878 return; 879 } 880 881 /* 882 * SD cards use a 100 multiplier rather than 10 883 */ 884 mult = mmc_card_sd(card) ? 100 : 10; 885 886 /* 887 * Scale up the multiplier (and therefore the timeout) by 888 * the r2w factor for writes. 889 */ 890 if (data->flags & MMC_DATA_WRITE) 891 mult <<= card->csd.r2w_factor; 892 893 data->timeout_ns = card->csd.taac_ns * mult; 894 data->timeout_clks = card->csd.taac_clks * mult; 895 896 /* 897 * SD cards also have an upper limit on the timeout. 898 */ 899 if (mmc_card_sd(card)) { 900 unsigned int timeout_us, limit_us; 901 902 timeout_us = data->timeout_ns / 1000; 903 if (card->host->ios.clock) 904 timeout_us += data->timeout_clks * 1000 / 905 (card->host->ios.clock / 1000); 906 907 if (data->flags & MMC_DATA_WRITE) 908 /* 909 * The MMC spec "It is strongly recommended 910 * for hosts to implement more than 500ms 911 * timeout value even if the card indicates 912 * the 250ms maximum busy length." Even the 913 * previous value of 300ms is known to be 914 * insufficient for some cards. 915 */ 916 limit_us = 3000000; 917 else 918 limit_us = 100000; 919 920 /* 921 * SDHC cards always use these fixed values. 922 */ 923 if (timeout_us > limit_us) { 924 data->timeout_ns = limit_us * 1000; 925 data->timeout_clks = 0; 926 } 927 928 /* assign limit value if invalid */ 929 if (timeout_us == 0) 930 data->timeout_ns = limit_us * 1000; 931 } 932 933 /* 934 * Some cards require longer data read timeout than indicated in CSD. 935 * Address this by setting the read timeout to a "reasonably high" 936 * value. For the cards tested, 600ms has proven enough. If necessary, 937 * this value can be increased if other problematic cards require this. 938 */ 939 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 940 data->timeout_ns = 600000000; 941 data->timeout_clks = 0; 942 } 943 944 /* 945 * Some cards need very high timeouts if driven in SPI mode. 946 * The worst observed timeout was 900ms after writing a 947 * continuous stream of data until the internal logic 948 * overflowed. 949 */ 950 if (mmc_host_is_spi(card->host)) { 951 if (data->flags & MMC_DATA_WRITE) { 952 if (data->timeout_ns < 1000000000) 953 data->timeout_ns = 1000000000; /* 1s */ 954 } else { 955 if (data->timeout_ns < 100000000) 956 data->timeout_ns = 100000000; /* 100ms */ 957 } 958 } 959 } 960 EXPORT_SYMBOL(mmc_set_data_timeout); 961 962 /** 963 * mmc_align_data_size - pads a transfer size to a more optimal value 964 * @card: the MMC card associated with the data transfer 965 * @sz: original transfer size 966 * 967 * Pads the original data size with a number of extra bytes in 968 * order to avoid controller bugs and/or performance hits 969 * (e.g. some controllers revert to PIO for certain sizes). 970 * 971 * Returns the improved size, which might be unmodified. 972 * 973 * Note that this function is only relevant when issuing a 974 * single scatter gather entry. 975 */ 976 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 977 { 978 /* 979 * FIXME: We don't have a system for the controller to tell 980 * the core about its problems yet, so for now we just 32-bit 981 * align the size. 982 */ 983 sz = ((sz + 3) / 4) * 4; 984 985 return sz; 986 } 987 EXPORT_SYMBOL(mmc_align_data_size); 988 989 /* 990 * Allow claiming an already claimed host if the context is the same or there is 991 * no context but the task is the same. 992 */ 993 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, 994 struct task_struct *task) 995 { 996 return host->claimer == ctx || 997 (!ctx && task && host->claimer->task == task); 998 } 999 1000 static inline void mmc_ctx_set_claimer(struct mmc_host *host, 1001 struct mmc_ctx *ctx, 1002 struct task_struct *task) 1003 { 1004 if (!host->claimer) { 1005 if (ctx) 1006 host->claimer = ctx; 1007 else 1008 host->claimer = &host->default_ctx; 1009 } 1010 if (task) 1011 host->claimer->task = task; 1012 } 1013 1014 /** 1015 * __mmc_claim_host - exclusively claim a host 1016 * @host: mmc host to claim 1017 * @ctx: context that claims the host or NULL in which case the default 1018 * context will be used 1019 * @abort: whether or not the operation should be aborted 1020 * 1021 * Claim a host for a set of operations. If @abort is non null and 1022 * dereference a non-zero value then this will return prematurely with 1023 * that non-zero value without acquiring the lock. Returns zero 1024 * with the lock held otherwise. 1025 */ 1026 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, 1027 atomic_t *abort) 1028 { 1029 struct task_struct *task = ctx ? NULL : current; 1030 DECLARE_WAITQUEUE(wait, current); 1031 unsigned long flags; 1032 int stop; 1033 bool pm = false; 1034 1035 might_sleep(); 1036 1037 add_wait_queue(&host->wq, &wait); 1038 spin_lock_irqsave(&host->lock, flags); 1039 while (1) { 1040 set_current_state(TASK_UNINTERRUPTIBLE); 1041 stop = abort ? atomic_read(abort) : 0; 1042 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) 1043 break; 1044 spin_unlock_irqrestore(&host->lock, flags); 1045 schedule(); 1046 spin_lock_irqsave(&host->lock, flags); 1047 } 1048 set_current_state(TASK_RUNNING); 1049 if (!stop) { 1050 host->claimed = 1; 1051 mmc_ctx_set_claimer(host, ctx, task); 1052 host->claim_cnt += 1; 1053 if (host->claim_cnt == 1) 1054 pm = true; 1055 } else 1056 wake_up(&host->wq); 1057 spin_unlock_irqrestore(&host->lock, flags); 1058 remove_wait_queue(&host->wq, &wait); 1059 1060 if (pm) 1061 pm_runtime_get_sync(mmc_dev(host)); 1062 1063 return stop; 1064 } 1065 EXPORT_SYMBOL(__mmc_claim_host); 1066 1067 /** 1068 * mmc_release_host - release a host 1069 * @host: mmc host to release 1070 * 1071 * Release a MMC host, allowing others to claim the host 1072 * for their operations. 1073 */ 1074 void mmc_release_host(struct mmc_host *host) 1075 { 1076 unsigned long flags; 1077 1078 WARN_ON(!host->claimed); 1079 1080 spin_lock_irqsave(&host->lock, flags); 1081 if (--host->claim_cnt) { 1082 /* Release for nested claim */ 1083 spin_unlock_irqrestore(&host->lock, flags); 1084 } else { 1085 host->claimed = 0; 1086 host->claimer->task = NULL; 1087 host->claimer = NULL; 1088 spin_unlock_irqrestore(&host->lock, flags); 1089 wake_up(&host->wq); 1090 pm_runtime_mark_last_busy(mmc_dev(host)); 1091 pm_runtime_put_autosuspend(mmc_dev(host)); 1092 } 1093 } 1094 EXPORT_SYMBOL(mmc_release_host); 1095 1096 /* 1097 * This is a helper function, which fetches a runtime pm reference for the 1098 * card device and also claims the host. 1099 */ 1100 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) 1101 { 1102 pm_runtime_get_sync(&card->dev); 1103 __mmc_claim_host(card->host, ctx, NULL); 1104 } 1105 EXPORT_SYMBOL(mmc_get_card); 1106 1107 /* 1108 * This is a helper function, which releases the host and drops the runtime 1109 * pm reference for the card device. 1110 */ 1111 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) 1112 { 1113 struct mmc_host *host = card->host; 1114 1115 WARN_ON(ctx && host->claimer != ctx); 1116 1117 mmc_release_host(host); 1118 pm_runtime_mark_last_busy(&card->dev); 1119 pm_runtime_put_autosuspend(&card->dev); 1120 } 1121 EXPORT_SYMBOL(mmc_put_card); 1122 1123 /* 1124 * Internal function that does the actual ios call to the host driver, 1125 * optionally printing some debug output. 1126 */ 1127 static inline void mmc_set_ios(struct mmc_host *host) 1128 { 1129 struct mmc_ios *ios = &host->ios; 1130 1131 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1132 "width %u timing %u\n", 1133 mmc_hostname(host), ios->clock, ios->bus_mode, 1134 ios->power_mode, ios->chip_select, ios->vdd, 1135 1 << ios->bus_width, ios->timing); 1136 1137 host->ops->set_ios(host, ios); 1138 } 1139 1140 /* 1141 * Control chip select pin on a host. 1142 */ 1143 void mmc_set_chip_select(struct mmc_host *host, int mode) 1144 { 1145 host->ios.chip_select = mode; 1146 mmc_set_ios(host); 1147 } 1148 1149 /* 1150 * Sets the host clock to the highest possible frequency that 1151 * is below "hz". 1152 */ 1153 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1154 { 1155 WARN_ON(hz && hz < host->f_min); 1156 1157 if (hz > host->f_max) 1158 hz = host->f_max; 1159 1160 host->ios.clock = hz; 1161 mmc_set_ios(host); 1162 } 1163 1164 int mmc_execute_tuning(struct mmc_card *card) 1165 { 1166 struct mmc_host *host = card->host; 1167 u32 opcode; 1168 int err; 1169 1170 if (!host->ops->execute_tuning) 1171 return 0; 1172 1173 if (host->cqe_on) 1174 host->cqe_ops->cqe_off(host); 1175 1176 if (mmc_card_mmc(card)) 1177 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1178 else 1179 opcode = MMC_SEND_TUNING_BLOCK; 1180 1181 err = host->ops->execute_tuning(host, opcode); 1182 1183 if (err) 1184 pr_err("%s: tuning execution failed: %d\n", 1185 mmc_hostname(host), err); 1186 else 1187 mmc_retune_enable(host); 1188 1189 return err; 1190 } 1191 1192 /* 1193 * Change the bus mode (open drain/push-pull) of a host. 1194 */ 1195 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1196 { 1197 host->ios.bus_mode = mode; 1198 mmc_set_ios(host); 1199 } 1200 1201 /* 1202 * Change data bus width of a host. 1203 */ 1204 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1205 { 1206 host->ios.bus_width = width; 1207 mmc_set_ios(host); 1208 } 1209 1210 /* 1211 * Set initial state after a power cycle or a hw_reset. 1212 */ 1213 void mmc_set_initial_state(struct mmc_host *host) 1214 { 1215 if (host->cqe_on) 1216 host->cqe_ops->cqe_off(host); 1217 1218 mmc_retune_disable(host); 1219 1220 if (mmc_host_is_spi(host)) 1221 host->ios.chip_select = MMC_CS_HIGH; 1222 else 1223 host->ios.chip_select = MMC_CS_DONTCARE; 1224 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1225 host->ios.bus_width = MMC_BUS_WIDTH_1; 1226 host->ios.timing = MMC_TIMING_LEGACY; 1227 host->ios.drv_type = 0; 1228 host->ios.enhanced_strobe = false; 1229 1230 /* 1231 * Make sure we are in non-enhanced strobe mode before we 1232 * actually enable it in ext_csd. 1233 */ 1234 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1235 host->ops->hs400_enhanced_strobe) 1236 host->ops->hs400_enhanced_strobe(host, &host->ios); 1237 1238 mmc_set_ios(host); 1239 } 1240 1241 /** 1242 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1243 * @vdd: voltage (mV) 1244 * @low_bits: prefer low bits in boundary cases 1245 * 1246 * This function returns the OCR bit number according to the provided @vdd 1247 * value. If conversion is not possible a negative errno value returned. 1248 * 1249 * Depending on the @low_bits flag the function prefers low or high OCR bits 1250 * on boundary voltages. For example, 1251 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1252 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1253 * 1254 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1255 */ 1256 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1257 { 1258 const int max_bit = ilog2(MMC_VDD_35_36); 1259 int bit; 1260 1261 if (vdd < 1650 || vdd > 3600) 1262 return -EINVAL; 1263 1264 if (vdd >= 1650 && vdd <= 1950) 1265 return ilog2(MMC_VDD_165_195); 1266 1267 if (low_bits) 1268 vdd -= 1; 1269 1270 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1271 bit = (vdd - 2000) / 100 + 8; 1272 if (bit > max_bit) 1273 return max_bit; 1274 return bit; 1275 } 1276 1277 /** 1278 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1279 * @vdd_min: minimum voltage value (mV) 1280 * @vdd_max: maximum voltage value (mV) 1281 * 1282 * This function returns the OCR mask bits according to the provided @vdd_min 1283 * and @vdd_max values. If conversion is not possible the function returns 0. 1284 * 1285 * Notes wrt boundary cases: 1286 * This function sets the OCR bits for all boundary voltages, for example 1287 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1288 * MMC_VDD_34_35 mask. 1289 */ 1290 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1291 { 1292 u32 mask = 0; 1293 1294 if (vdd_max < vdd_min) 1295 return 0; 1296 1297 /* Prefer high bits for the boundary vdd_max values. */ 1298 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1299 if (vdd_max < 0) 1300 return 0; 1301 1302 /* Prefer low bits for the boundary vdd_min values. */ 1303 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1304 if (vdd_min < 0) 1305 return 0; 1306 1307 /* Fill the mask, from max bit to min bit. */ 1308 while (vdd_max >= vdd_min) 1309 mask |= 1 << vdd_max--; 1310 1311 return mask; 1312 } 1313 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1314 1315 #ifdef CONFIG_OF 1316 1317 /** 1318 * mmc_of_parse_voltage - return mask of supported voltages 1319 * @np: The device node need to be parsed. 1320 * @mask: mask of voltages available for MMC/SD/SDIO 1321 * 1322 * Parse the "voltage-ranges" DT property, returning zero if it is not 1323 * found, negative errno if the voltage-range specification is invalid, 1324 * or one if the voltage-range is specified and successfully parsed. 1325 */ 1326 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1327 { 1328 const u32 *voltage_ranges; 1329 int num_ranges, i; 1330 1331 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1332 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1333 if (!voltage_ranges) { 1334 pr_debug("%pOF: voltage-ranges unspecified\n", np); 1335 return 0; 1336 } 1337 if (!num_ranges) { 1338 pr_err("%pOF: voltage-ranges empty\n", np); 1339 return -EINVAL; 1340 } 1341 1342 for (i = 0; i < num_ranges; i++) { 1343 const int j = i * 2; 1344 u32 ocr_mask; 1345 1346 ocr_mask = mmc_vddrange_to_ocrmask( 1347 be32_to_cpu(voltage_ranges[j]), 1348 be32_to_cpu(voltage_ranges[j + 1])); 1349 if (!ocr_mask) { 1350 pr_err("%pOF: voltage-range #%d is invalid\n", 1351 np, i); 1352 return -EINVAL; 1353 } 1354 *mask |= ocr_mask; 1355 } 1356 1357 return 1; 1358 } 1359 EXPORT_SYMBOL(mmc_of_parse_voltage); 1360 1361 #endif /* CONFIG_OF */ 1362 1363 static int mmc_of_get_func_num(struct device_node *node) 1364 { 1365 u32 reg; 1366 int ret; 1367 1368 ret = of_property_read_u32(node, "reg", ®); 1369 if (ret < 0) 1370 return ret; 1371 1372 return reg; 1373 } 1374 1375 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1376 unsigned func_num) 1377 { 1378 struct device_node *node; 1379 1380 if (!host->parent || !host->parent->of_node) 1381 return NULL; 1382 1383 for_each_child_of_node(host->parent->of_node, node) { 1384 if (mmc_of_get_func_num(node) == func_num) 1385 return node; 1386 } 1387 1388 return NULL; 1389 } 1390 1391 #ifdef CONFIG_REGULATOR 1392 1393 /** 1394 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1395 * @vdd_bit: OCR bit number 1396 * @min_uV: minimum voltage value (mV) 1397 * @max_uV: maximum voltage value (mV) 1398 * 1399 * This function returns the voltage range according to the provided OCR 1400 * bit number. If conversion is not possible a negative errno value returned. 1401 */ 1402 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1403 { 1404 int tmp; 1405 1406 if (!vdd_bit) 1407 return -EINVAL; 1408 1409 /* 1410 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1411 * bits this regulator doesn't quite support ... don't 1412 * be too picky, most cards and regulators are OK with 1413 * a 0.1V range goof (it's a small error percentage). 1414 */ 1415 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1416 if (tmp == 0) { 1417 *min_uV = 1650 * 1000; 1418 *max_uV = 1950 * 1000; 1419 } else { 1420 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1421 *max_uV = *min_uV + 100 * 1000; 1422 } 1423 1424 return 0; 1425 } 1426 1427 /** 1428 * mmc_regulator_get_ocrmask - return mask of supported voltages 1429 * @supply: regulator to use 1430 * 1431 * This returns either a negative errno, or a mask of voltages that 1432 * can be provided to MMC/SD/SDIO devices using the specified voltage 1433 * regulator. This would normally be called before registering the 1434 * MMC host adapter. 1435 */ 1436 int mmc_regulator_get_ocrmask(struct regulator *supply) 1437 { 1438 int result = 0; 1439 int count; 1440 int i; 1441 int vdd_uV; 1442 int vdd_mV; 1443 1444 count = regulator_count_voltages(supply); 1445 if (count < 0) 1446 return count; 1447 1448 for (i = 0; i < count; i++) { 1449 vdd_uV = regulator_list_voltage(supply, i); 1450 if (vdd_uV <= 0) 1451 continue; 1452 1453 vdd_mV = vdd_uV / 1000; 1454 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1455 } 1456 1457 if (!result) { 1458 vdd_uV = regulator_get_voltage(supply); 1459 if (vdd_uV <= 0) 1460 return vdd_uV; 1461 1462 vdd_mV = vdd_uV / 1000; 1463 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1464 } 1465 1466 return result; 1467 } 1468 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1469 1470 /** 1471 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1472 * @mmc: the host to regulate 1473 * @supply: regulator to use 1474 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1475 * 1476 * Returns zero on success, else negative errno. 1477 * 1478 * MMC host drivers may use this to enable or disable a regulator using 1479 * a particular supply voltage. This would normally be called from the 1480 * set_ios() method. 1481 */ 1482 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1483 struct regulator *supply, 1484 unsigned short vdd_bit) 1485 { 1486 int result = 0; 1487 int min_uV, max_uV; 1488 1489 if (vdd_bit) { 1490 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1491 1492 result = regulator_set_voltage(supply, min_uV, max_uV); 1493 if (result == 0 && !mmc->regulator_enabled) { 1494 result = regulator_enable(supply); 1495 if (!result) 1496 mmc->regulator_enabled = true; 1497 } 1498 } else if (mmc->regulator_enabled) { 1499 result = regulator_disable(supply); 1500 if (result == 0) 1501 mmc->regulator_enabled = false; 1502 } 1503 1504 if (result) 1505 dev_err(mmc_dev(mmc), 1506 "could not set regulator OCR (%d)\n", result); 1507 return result; 1508 } 1509 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1510 1511 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1512 int min_uV, int target_uV, 1513 int max_uV) 1514 { 1515 /* 1516 * Check if supported first to avoid errors since we may try several 1517 * signal levels during power up and don't want to show errors. 1518 */ 1519 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1520 return -EINVAL; 1521 1522 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1523 max_uV); 1524 } 1525 1526 /** 1527 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1528 * 1529 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1530 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1531 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1532 * SD card spec also define VQMMC in terms of VMMC. 1533 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1534 * 1535 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1536 * requested voltage. This is definitely a good idea for UHS where there's a 1537 * separate regulator on the card that's trying to make 1.8V and it's best if 1538 * we match. 1539 * 1540 * This function is expected to be used by a controller's 1541 * start_signal_voltage_switch() function. 1542 */ 1543 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1544 { 1545 struct device *dev = mmc_dev(mmc); 1546 int ret, volt, min_uV, max_uV; 1547 1548 /* If no vqmmc supply then we can't change the voltage */ 1549 if (IS_ERR(mmc->supply.vqmmc)) 1550 return -EINVAL; 1551 1552 switch (ios->signal_voltage) { 1553 case MMC_SIGNAL_VOLTAGE_120: 1554 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1555 1100000, 1200000, 1300000); 1556 case MMC_SIGNAL_VOLTAGE_180: 1557 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1558 1700000, 1800000, 1950000); 1559 case MMC_SIGNAL_VOLTAGE_330: 1560 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1561 if (ret < 0) 1562 return ret; 1563 1564 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1565 __func__, volt, max_uV); 1566 1567 min_uV = max(volt - 300000, 2700000); 1568 max_uV = min(max_uV + 200000, 3600000); 1569 1570 /* 1571 * Due to a limitation in the current implementation of 1572 * regulator_set_voltage_triplet() which is taking the lowest 1573 * voltage possible if below the target, search for a suitable 1574 * voltage in two steps and try to stay close to vmmc 1575 * with a 0.3V tolerance at first. 1576 */ 1577 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1578 min_uV, volt, max_uV)) 1579 return 0; 1580 1581 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1582 2700000, volt, 3600000); 1583 default: 1584 return -EINVAL; 1585 } 1586 } 1587 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1588 1589 #endif /* CONFIG_REGULATOR */ 1590 1591 /** 1592 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host 1593 * @mmc: the host to regulate 1594 * 1595 * Returns 0 or errno. errno should be handled, it is either a critical error 1596 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all 1597 * regulators have been found because they all are optional. If you require 1598 * certain regulators, you need to check separately in your driver if they got 1599 * populated after calling this function. 1600 */ 1601 int mmc_regulator_get_supply(struct mmc_host *mmc) 1602 { 1603 struct device *dev = mmc_dev(mmc); 1604 int ret; 1605 1606 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1607 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1608 1609 if (IS_ERR(mmc->supply.vmmc)) { 1610 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1611 return -EPROBE_DEFER; 1612 dev_dbg(dev, "No vmmc regulator found\n"); 1613 } else { 1614 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1615 if (ret > 0) 1616 mmc->ocr_avail = ret; 1617 else 1618 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1619 } 1620 1621 if (IS_ERR(mmc->supply.vqmmc)) { 1622 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1623 return -EPROBE_DEFER; 1624 dev_dbg(dev, "No vqmmc regulator found\n"); 1625 } 1626 1627 return 0; 1628 } 1629 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1630 1631 /* 1632 * Mask off any voltages we don't support and select 1633 * the lowest voltage 1634 */ 1635 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1636 { 1637 int bit; 1638 1639 /* 1640 * Sanity check the voltages that the card claims to 1641 * support. 1642 */ 1643 if (ocr & 0x7F) { 1644 dev_warn(mmc_dev(host), 1645 "card claims to support voltages below defined range\n"); 1646 ocr &= ~0x7F; 1647 } 1648 1649 ocr &= host->ocr_avail; 1650 if (!ocr) { 1651 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1652 return 0; 1653 } 1654 1655 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1656 bit = ffs(ocr) - 1; 1657 ocr &= 3 << bit; 1658 mmc_power_cycle(host, ocr); 1659 } else { 1660 bit = fls(ocr) - 1; 1661 ocr &= 3 << bit; 1662 if (bit != host->ios.vdd) 1663 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1664 } 1665 1666 return ocr; 1667 } 1668 1669 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1670 { 1671 int err = 0; 1672 int old_signal_voltage = host->ios.signal_voltage; 1673 1674 host->ios.signal_voltage = signal_voltage; 1675 if (host->ops->start_signal_voltage_switch) 1676 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1677 1678 if (err) 1679 host->ios.signal_voltage = old_signal_voltage; 1680 1681 return err; 1682 1683 } 1684 1685 int mmc_host_set_uhs_voltage(struct mmc_host *host) 1686 { 1687 u32 clock; 1688 1689 /* 1690 * During a signal voltage level switch, the clock must be gated 1691 * for 5 ms according to the SD spec 1692 */ 1693 clock = host->ios.clock; 1694 host->ios.clock = 0; 1695 mmc_set_ios(host); 1696 1697 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1698 return -EAGAIN; 1699 1700 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1701 mmc_delay(10); 1702 host->ios.clock = clock; 1703 mmc_set_ios(host); 1704 1705 return 0; 1706 } 1707 1708 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1709 { 1710 struct mmc_command cmd = {}; 1711 int err = 0; 1712 1713 /* 1714 * If we cannot switch voltages, return failure so the caller 1715 * can continue without UHS mode 1716 */ 1717 if (!host->ops->start_signal_voltage_switch) 1718 return -EPERM; 1719 if (!host->ops->card_busy) 1720 pr_warn("%s: cannot verify signal voltage switch\n", 1721 mmc_hostname(host)); 1722 1723 cmd.opcode = SD_SWITCH_VOLTAGE; 1724 cmd.arg = 0; 1725 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1726 1727 err = mmc_wait_for_cmd(host, &cmd, 0); 1728 if (err) 1729 return err; 1730 1731 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1732 return -EIO; 1733 1734 /* 1735 * The card should drive cmd and dat[0:3] low immediately 1736 * after the response of cmd11, but wait 1 ms to be sure 1737 */ 1738 mmc_delay(1); 1739 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1740 err = -EAGAIN; 1741 goto power_cycle; 1742 } 1743 1744 if (mmc_host_set_uhs_voltage(host)) { 1745 /* 1746 * Voltages may not have been switched, but we've already 1747 * sent CMD11, so a power cycle is required anyway 1748 */ 1749 err = -EAGAIN; 1750 goto power_cycle; 1751 } 1752 1753 /* Wait for at least 1 ms according to spec */ 1754 mmc_delay(1); 1755 1756 /* 1757 * Failure to switch is indicated by the card holding 1758 * dat[0:3] low 1759 */ 1760 if (host->ops->card_busy && host->ops->card_busy(host)) 1761 err = -EAGAIN; 1762 1763 power_cycle: 1764 if (err) { 1765 pr_debug("%s: Signal voltage switch failed, " 1766 "power cycling card\n", mmc_hostname(host)); 1767 mmc_power_cycle(host, ocr); 1768 } 1769 1770 return err; 1771 } 1772 1773 /* 1774 * Select timing parameters for host. 1775 */ 1776 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1777 { 1778 host->ios.timing = timing; 1779 mmc_set_ios(host); 1780 } 1781 1782 /* 1783 * Select appropriate driver type for host. 1784 */ 1785 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1786 { 1787 host->ios.drv_type = drv_type; 1788 mmc_set_ios(host); 1789 } 1790 1791 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1792 int card_drv_type, int *drv_type) 1793 { 1794 struct mmc_host *host = card->host; 1795 int host_drv_type = SD_DRIVER_TYPE_B; 1796 1797 *drv_type = 0; 1798 1799 if (!host->ops->select_drive_strength) 1800 return 0; 1801 1802 /* Use SD definition of driver strength for hosts */ 1803 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1804 host_drv_type |= SD_DRIVER_TYPE_A; 1805 1806 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1807 host_drv_type |= SD_DRIVER_TYPE_C; 1808 1809 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1810 host_drv_type |= SD_DRIVER_TYPE_D; 1811 1812 /* 1813 * The drive strength that the hardware can support 1814 * depends on the board design. Pass the appropriate 1815 * information and let the hardware specific code 1816 * return what is possible given the options 1817 */ 1818 return host->ops->select_drive_strength(card, max_dtr, 1819 host_drv_type, 1820 card_drv_type, 1821 drv_type); 1822 } 1823 1824 /* 1825 * Apply power to the MMC stack. This is a two-stage process. 1826 * First, we enable power to the card without the clock running. 1827 * We then wait a bit for the power to stabilise. Finally, 1828 * enable the bus drivers and clock to the card. 1829 * 1830 * We must _NOT_ enable the clock prior to power stablising. 1831 * 1832 * If a host does all the power sequencing itself, ignore the 1833 * initial MMC_POWER_UP stage. 1834 */ 1835 void mmc_power_up(struct mmc_host *host, u32 ocr) 1836 { 1837 if (host->ios.power_mode == MMC_POWER_ON) 1838 return; 1839 1840 mmc_pwrseq_pre_power_on(host); 1841 1842 host->ios.vdd = fls(ocr) - 1; 1843 host->ios.power_mode = MMC_POWER_UP; 1844 /* Set initial state and call mmc_set_ios */ 1845 mmc_set_initial_state(host); 1846 1847 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1848 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1849 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1850 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1851 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1852 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1853 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1854 1855 /* 1856 * This delay should be sufficient to allow the power supply 1857 * to reach the minimum voltage. 1858 */ 1859 mmc_delay(10); 1860 1861 mmc_pwrseq_post_power_on(host); 1862 1863 host->ios.clock = host->f_init; 1864 1865 host->ios.power_mode = MMC_POWER_ON; 1866 mmc_set_ios(host); 1867 1868 /* 1869 * This delay must be at least 74 clock sizes, or 1 ms, or the 1870 * time required to reach a stable voltage. 1871 */ 1872 mmc_delay(10); 1873 } 1874 1875 void mmc_power_off(struct mmc_host *host) 1876 { 1877 if (host->ios.power_mode == MMC_POWER_OFF) 1878 return; 1879 1880 mmc_pwrseq_power_off(host); 1881 1882 host->ios.clock = 0; 1883 host->ios.vdd = 0; 1884 1885 host->ios.power_mode = MMC_POWER_OFF; 1886 /* Set initial state and call mmc_set_ios */ 1887 mmc_set_initial_state(host); 1888 1889 /* 1890 * Some configurations, such as the 802.11 SDIO card in the OLPC 1891 * XO-1.5, require a short delay after poweroff before the card 1892 * can be successfully turned on again. 1893 */ 1894 mmc_delay(1); 1895 } 1896 1897 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1898 { 1899 mmc_power_off(host); 1900 /* Wait at least 1 ms according to SD spec */ 1901 mmc_delay(1); 1902 mmc_power_up(host, ocr); 1903 } 1904 1905 /* 1906 * Cleanup when the last reference to the bus operator is dropped. 1907 */ 1908 static void __mmc_release_bus(struct mmc_host *host) 1909 { 1910 WARN_ON(!host->bus_dead); 1911 1912 host->bus_ops = NULL; 1913 } 1914 1915 /* 1916 * Increase reference count of bus operator 1917 */ 1918 static inline void mmc_bus_get(struct mmc_host *host) 1919 { 1920 unsigned long flags; 1921 1922 spin_lock_irqsave(&host->lock, flags); 1923 host->bus_refs++; 1924 spin_unlock_irqrestore(&host->lock, flags); 1925 } 1926 1927 /* 1928 * Decrease reference count of bus operator and free it if 1929 * it is the last reference. 1930 */ 1931 static inline void mmc_bus_put(struct mmc_host *host) 1932 { 1933 unsigned long flags; 1934 1935 spin_lock_irqsave(&host->lock, flags); 1936 host->bus_refs--; 1937 if ((host->bus_refs == 0) && host->bus_ops) 1938 __mmc_release_bus(host); 1939 spin_unlock_irqrestore(&host->lock, flags); 1940 } 1941 1942 /* 1943 * Assign a mmc bus handler to a host. Only one bus handler may control a 1944 * host at any given time. 1945 */ 1946 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1947 { 1948 unsigned long flags; 1949 1950 WARN_ON(!host->claimed); 1951 1952 spin_lock_irqsave(&host->lock, flags); 1953 1954 WARN_ON(host->bus_ops); 1955 WARN_ON(host->bus_refs); 1956 1957 host->bus_ops = ops; 1958 host->bus_refs = 1; 1959 host->bus_dead = 0; 1960 1961 spin_unlock_irqrestore(&host->lock, flags); 1962 } 1963 1964 /* 1965 * Remove the current bus handler from a host. 1966 */ 1967 void mmc_detach_bus(struct mmc_host *host) 1968 { 1969 unsigned long flags; 1970 1971 WARN_ON(!host->claimed); 1972 WARN_ON(!host->bus_ops); 1973 1974 spin_lock_irqsave(&host->lock, flags); 1975 1976 host->bus_dead = 1; 1977 1978 spin_unlock_irqrestore(&host->lock, flags); 1979 1980 mmc_bus_put(host); 1981 } 1982 1983 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1984 bool cd_irq) 1985 { 1986 /* 1987 * If the device is configured as wakeup, we prevent a new sleep for 1988 * 5 s to give provision for user space to consume the event. 1989 */ 1990 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1991 device_can_wakeup(mmc_dev(host))) 1992 pm_wakeup_event(mmc_dev(host), 5000); 1993 1994 host->detect_change = 1; 1995 mmc_schedule_delayed_work(&host->detect, delay); 1996 } 1997 1998 /** 1999 * mmc_detect_change - process change of state on a MMC socket 2000 * @host: host which changed state. 2001 * @delay: optional delay to wait before detection (jiffies) 2002 * 2003 * MMC drivers should call this when they detect a card has been 2004 * inserted or removed. The MMC layer will confirm that any 2005 * present card is still functional, and initialize any newly 2006 * inserted. 2007 */ 2008 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 2009 { 2010 _mmc_detect_change(host, delay, true); 2011 } 2012 EXPORT_SYMBOL(mmc_detect_change); 2013 2014 void mmc_init_erase(struct mmc_card *card) 2015 { 2016 unsigned int sz; 2017 2018 if (is_power_of_2(card->erase_size)) 2019 card->erase_shift = ffs(card->erase_size) - 1; 2020 else 2021 card->erase_shift = 0; 2022 2023 /* 2024 * It is possible to erase an arbitrarily large area of an SD or MMC 2025 * card. That is not desirable because it can take a long time 2026 * (minutes) potentially delaying more important I/O, and also the 2027 * timeout calculations become increasingly hugely over-estimated. 2028 * Consequently, 'pref_erase' is defined as a guide to limit erases 2029 * to that size and alignment. 2030 * 2031 * For SD cards that define Allocation Unit size, limit erases to one 2032 * Allocation Unit at a time. 2033 * For MMC, have a stab at ai good value and for modern cards it will 2034 * end up being 4MiB. Note that if the value is too small, it can end 2035 * up taking longer to erase. Also note, erase_size is already set to 2036 * High Capacity Erase Size if available when this function is called. 2037 */ 2038 if (mmc_card_sd(card) && card->ssr.au) { 2039 card->pref_erase = card->ssr.au; 2040 card->erase_shift = ffs(card->ssr.au) - 1; 2041 } else if (card->erase_size) { 2042 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 2043 if (sz < 128) 2044 card->pref_erase = 512 * 1024 / 512; 2045 else if (sz < 512) 2046 card->pref_erase = 1024 * 1024 / 512; 2047 else if (sz < 1024) 2048 card->pref_erase = 2 * 1024 * 1024 / 512; 2049 else 2050 card->pref_erase = 4 * 1024 * 1024 / 512; 2051 if (card->pref_erase < card->erase_size) 2052 card->pref_erase = card->erase_size; 2053 else { 2054 sz = card->pref_erase % card->erase_size; 2055 if (sz) 2056 card->pref_erase += card->erase_size - sz; 2057 } 2058 } else 2059 card->pref_erase = 0; 2060 } 2061 2062 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 2063 unsigned int arg, unsigned int qty) 2064 { 2065 unsigned int erase_timeout; 2066 2067 if (arg == MMC_DISCARD_ARG || 2068 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 2069 erase_timeout = card->ext_csd.trim_timeout; 2070 } else if (card->ext_csd.erase_group_def & 1) { 2071 /* High Capacity Erase Group Size uses HC timeouts */ 2072 if (arg == MMC_TRIM_ARG) 2073 erase_timeout = card->ext_csd.trim_timeout; 2074 else 2075 erase_timeout = card->ext_csd.hc_erase_timeout; 2076 } else { 2077 /* CSD Erase Group Size uses write timeout */ 2078 unsigned int mult = (10 << card->csd.r2w_factor); 2079 unsigned int timeout_clks = card->csd.taac_clks * mult; 2080 unsigned int timeout_us; 2081 2082 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ 2083 if (card->csd.taac_ns < 1000000) 2084 timeout_us = (card->csd.taac_ns * mult) / 1000; 2085 else 2086 timeout_us = (card->csd.taac_ns / 1000) * mult; 2087 2088 /* 2089 * ios.clock is only a target. The real clock rate might be 2090 * less but not that much less, so fudge it by multiplying by 2. 2091 */ 2092 timeout_clks <<= 1; 2093 timeout_us += (timeout_clks * 1000) / 2094 (card->host->ios.clock / 1000); 2095 2096 erase_timeout = timeout_us / 1000; 2097 2098 /* 2099 * Theoretically, the calculation could underflow so round up 2100 * to 1ms in that case. 2101 */ 2102 if (!erase_timeout) 2103 erase_timeout = 1; 2104 } 2105 2106 /* Multiplier for secure operations */ 2107 if (arg & MMC_SECURE_ARGS) { 2108 if (arg == MMC_SECURE_ERASE_ARG) 2109 erase_timeout *= card->ext_csd.sec_erase_mult; 2110 else 2111 erase_timeout *= card->ext_csd.sec_trim_mult; 2112 } 2113 2114 erase_timeout *= qty; 2115 2116 /* 2117 * Ensure at least a 1 second timeout for SPI as per 2118 * 'mmc_set_data_timeout()' 2119 */ 2120 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2121 erase_timeout = 1000; 2122 2123 return erase_timeout; 2124 } 2125 2126 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2127 unsigned int arg, 2128 unsigned int qty) 2129 { 2130 unsigned int erase_timeout; 2131 2132 if (card->ssr.erase_timeout) { 2133 /* Erase timeout specified in SD Status Register (SSR) */ 2134 erase_timeout = card->ssr.erase_timeout * qty + 2135 card->ssr.erase_offset; 2136 } else { 2137 /* 2138 * Erase timeout not specified in SD Status Register (SSR) so 2139 * use 250ms per write block. 2140 */ 2141 erase_timeout = 250 * qty; 2142 } 2143 2144 /* Must not be less than 1 second */ 2145 if (erase_timeout < 1000) 2146 erase_timeout = 1000; 2147 2148 return erase_timeout; 2149 } 2150 2151 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2152 unsigned int arg, 2153 unsigned int qty) 2154 { 2155 if (mmc_card_sd(card)) 2156 return mmc_sd_erase_timeout(card, arg, qty); 2157 else 2158 return mmc_mmc_erase_timeout(card, arg, qty); 2159 } 2160 2161 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2162 unsigned int to, unsigned int arg) 2163 { 2164 struct mmc_command cmd = {}; 2165 unsigned int qty = 0, busy_timeout = 0; 2166 bool use_r1b_resp = false; 2167 unsigned long timeout; 2168 int err; 2169 2170 mmc_retune_hold(card->host); 2171 2172 /* 2173 * qty is used to calculate the erase timeout which depends on how many 2174 * erase groups (or allocation units in SD terminology) are affected. 2175 * We count erasing part of an erase group as one erase group. 2176 * For SD, the allocation units are always a power of 2. For MMC, the 2177 * erase group size is almost certainly also power of 2, but it does not 2178 * seem to insist on that in the JEDEC standard, so we fall back to 2179 * division in that case. SD may not specify an allocation unit size, 2180 * in which case the timeout is based on the number of write blocks. 2181 * 2182 * Note that the timeout for secure trim 2 will only be correct if the 2183 * number of erase groups specified is the same as the total of all 2184 * preceding secure trim 1 commands. Since the power may have been 2185 * lost since the secure trim 1 commands occurred, it is generally 2186 * impossible to calculate the secure trim 2 timeout correctly. 2187 */ 2188 if (card->erase_shift) 2189 qty += ((to >> card->erase_shift) - 2190 (from >> card->erase_shift)) + 1; 2191 else if (mmc_card_sd(card)) 2192 qty += to - from + 1; 2193 else 2194 qty += ((to / card->erase_size) - 2195 (from / card->erase_size)) + 1; 2196 2197 if (!mmc_card_blockaddr(card)) { 2198 from <<= 9; 2199 to <<= 9; 2200 } 2201 2202 if (mmc_card_sd(card)) 2203 cmd.opcode = SD_ERASE_WR_BLK_START; 2204 else 2205 cmd.opcode = MMC_ERASE_GROUP_START; 2206 cmd.arg = from; 2207 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2208 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2209 if (err) { 2210 pr_err("mmc_erase: group start error %d, " 2211 "status %#x\n", err, cmd.resp[0]); 2212 err = -EIO; 2213 goto out; 2214 } 2215 2216 memset(&cmd, 0, sizeof(struct mmc_command)); 2217 if (mmc_card_sd(card)) 2218 cmd.opcode = SD_ERASE_WR_BLK_END; 2219 else 2220 cmd.opcode = MMC_ERASE_GROUP_END; 2221 cmd.arg = to; 2222 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2223 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2224 if (err) { 2225 pr_err("mmc_erase: group end error %d, status %#x\n", 2226 err, cmd.resp[0]); 2227 err = -EIO; 2228 goto out; 2229 } 2230 2231 memset(&cmd, 0, sizeof(struct mmc_command)); 2232 cmd.opcode = MMC_ERASE; 2233 cmd.arg = arg; 2234 busy_timeout = mmc_erase_timeout(card, arg, qty); 2235 /* 2236 * If the host controller supports busy signalling and the timeout for 2237 * the erase operation does not exceed the max_busy_timeout, we should 2238 * use R1B response. Or we need to prevent the host from doing hw busy 2239 * detection, which is done by converting to a R1 response instead. 2240 */ 2241 if (card->host->max_busy_timeout && 2242 busy_timeout > card->host->max_busy_timeout) { 2243 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2244 } else { 2245 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2246 cmd.busy_timeout = busy_timeout; 2247 use_r1b_resp = true; 2248 } 2249 2250 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2251 if (err) { 2252 pr_err("mmc_erase: erase error %d, status %#x\n", 2253 err, cmd.resp[0]); 2254 err = -EIO; 2255 goto out; 2256 } 2257 2258 if (mmc_host_is_spi(card->host)) 2259 goto out; 2260 2261 /* 2262 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2263 * shall be avoided. 2264 */ 2265 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2266 goto out; 2267 2268 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2269 do { 2270 memset(&cmd, 0, sizeof(struct mmc_command)); 2271 cmd.opcode = MMC_SEND_STATUS; 2272 cmd.arg = card->rca << 16; 2273 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2274 /* Do not retry else we can't see errors */ 2275 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2276 if (err || (cmd.resp[0] & 0xFDF92000)) { 2277 pr_err("error %d requesting status %#x\n", 2278 err, cmd.resp[0]); 2279 err = -EIO; 2280 goto out; 2281 } 2282 2283 /* Timeout if the device never becomes ready for data and 2284 * never leaves the program state. 2285 */ 2286 if (time_after(jiffies, timeout)) { 2287 pr_err("%s: Card stuck in programming state! %s\n", 2288 mmc_hostname(card->host), __func__); 2289 err = -EIO; 2290 goto out; 2291 } 2292 2293 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2294 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2295 out: 2296 mmc_retune_release(card->host); 2297 return err; 2298 } 2299 2300 static unsigned int mmc_align_erase_size(struct mmc_card *card, 2301 unsigned int *from, 2302 unsigned int *to, 2303 unsigned int nr) 2304 { 2305 unsigned int from_new = *from, nr_new = nr, rem; 2306 2307 /* 2308 * When the 'card->erase_size' is power of 2, we can use round_up/down() 2309 * to align the erase size efficiently. 2310 */ 2311 if (is_power_of_2(card->erase_size)) { 2312 unsigned int temp = from_new; 2313 2314 from_new = round_up(temp, card->erase_size); 2315 rem = from_new - temp; 2316 2317 if (nr_new > rem) 2318 nr_new -= rem; 2319 else 2320 return 0; 2321 2322 nr_new = round_down(nr_new, card->erase_size); 2323 } else { 2324 rem = from_new % card->erase_size; 2325 if (rem) { 2326 rem = card->erase_size - rem; 2327 from_new += rem; 2328 if (nr_new > rem) 2329 nr_new -= rem; 2330 else 2331 return 0; 2332 } 2333 2334 rem = nr_new % card->erase_size; 2335 if (rem) 2336 nr_new -= rem; 2337 } 2338 2339 if (nr_new == 0) 2340 return 0; 2341 2342 *to = from_new + nr_new; 2343 *from = from_new; 2344 2345 return nr_new; 2346 } 2347 2348 /** 2349 * mmc_erase - erase sectors. 2350 * @card: card to erase 2351 * @from: first sector to erase 2352 * @nr: number of sectors to erase 2353 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2354 * 2355 * Caller must claim host before calling this function. 2356 */ 2357 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2358 unsigned int arg) 2359 { 2360 unsigned int rem, to = from + nr; 2361 int err; 2362 2363 if (!(card->host->caps & MMC_CAP_ERASE) || 2364 !(card->csd.cmdclass & CCC_ERASE)) 2365 return -EOPNOTSUPP; 2366 2367 if (!card->erase_size) 2368 return -EOPNOTSUPP; 2369 2370 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2371 return -EOPNOTSUPP; 2372 2373 if ((arg & MMC_SECURE_ARGS) && 2374 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2375 return -EOPNOTSUPP; 2376 2377 if ((arg & MMC_TRIM_ARGS) && 2378 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2379 return -EOPNOTSUPP; 2380 2381 if (arg == MMC_SECURE_ERASE_ARG) { 2382 if (from % card->erase_size || nr % card->erase_size) 2383 return -EINVAL; 2384 } 2385 2386 if (arg == MMC_ERASE_ARG) 2387 nr = mmc_align_erase_size(card, &from, &to, nr); 2388 2389 if (nr == 0) 2390 return 0; 2391 2392 if (to <= from) 2393 return -EINVAL; 2394 2395 /* 'from' and 'to' are inclusive */ 2396 to -= 1; 2397 2398 /* 2399 * Special case where only one erase-group fits in the timeout budget: 2400 * If the region crosses an erase-group boundary on this particular 2401 * case, we will be trimming more than one erase-group which, does not 2402 * fit in the timeout budget of the controller, so we need to split it 2403 * and call mmc_do_erase() twice if necessary. This special case is 2404 * identified by the card->eg_boundary flag. 2405 */ 2406 rem = card->erase_size - (from % card->erase_size); 2407 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2408 err = mmc_do_erase(card, from, from + rem - 1, arg); 2409 from += rem; 2410 if ((err) || (to <= from)) 2411 return err; 2412 } 2413 2414 return mmc_do_erase(card, from, to, arg); 2415 } 2416 EXPORT_SYMBOL(mmc_erase); 2417 2418 int mmc_can_erase(struct mmc_card *card) 2419 { 2420 if ((card->host->caps & MMC_CAP_ERASE) && 2421 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2422 return 1; 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(mmc_can_erase); 2426 2427 int mmc_can_trim(struct mmc_card *card) 2428 { 2429 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2430 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2431 return 1; 2432 return 0; 2433 } 2434 EXPORT_SYMBOL(mmc_can_trim); 2435 2436 int mmc_can_discard(struct mmc_card *card) 2437 { 2438 /* 2439 * As there's no way to detect the discard support bit at v4.5 2440 * use the s/w feature support filed. 2441 */ 2442 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2443 return 1; 2444 return 0; 2445 } 2446 EXPORT_SYMBOL(mmc_can_discard); 2447 2448 int mmc_can_sanitize(struct mmc_card *card) 2449 { 2450 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2451 return 0; 2452 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2453 return 1; 2454 return 0; 2455 } 2456 EXPORT_SYMBOL(mmc_can_sanitize); 2457 2458 int mmc_can_secure_erase_trim(struct mmc_card *card) 2459 { 2460 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2461 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2462 return 1; 2463 return 0; 2464 } 2465 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2466 2467 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2468 unsigned int nr) 2469 { 2470 if (!card->erase_size) 2471 return 0; 2472 if (from % card->erase_size || nr % card->erase_size) 2473 return 0; 2474 return 1; 2475 } 2476 EXPORT_SYMBOL(mmc_erase_group_aligned); 2477 2478 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2479 unsigned int arg) 2480 { 2481 struct mmc_host *host = card->host; 2482 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2483 unsigned int last_timeout = 0; 2484 unsigned int max_busy_timeout = host->max_busy_timeout ? 2485 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 2486 2487 if (card->erase_shift) { 2488 max_qty = UINT_MAX >> card->erase_shift; 2489 min_qty = card->pref_erase >> card->erase_shift; 2490 } else if (mmc_card_sd(card)) { 2491 max_qty = UINT_MAX; 2492 min_qty = card->pref_erase; 2493 } else { 2494 max_qty = UINT_MAX / card->erase_size; 2495 min_qty = card->pref_erase / card->erase_size; 2496 } 2497 2498 /* 2499 * We should not only use 'host->max_busy_timeout' as the limitation 2500 * when deciding the max discard sectors. We should set a balance value 2501 * to improve the erase speed, and it can not get too long timeout at 2502 * the same time. 2503 * 2504 * Here we set 'card->pref_erase' as the minimal discard sectors no 2505 * matter what size of 'host->max_busy_timeout', but if the 2506 * 'host->max_busy_timeout' is large enough for more discard sectors, 2507 * then we can continue to increase the max discard sectors until we 2508 * get a balance value. In cases when the 'host->max_busy_timeout' 2509 * isn't specified, use the default max erase timeout. 2510 */ 2511 do { 2512 y = 0; 2513 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2514 timeout = mmc_erase_timeout(card, arg, qty + x); 2515 2516 if (qty + x > min_qty && timeout > max_busy_timeout) 2517 break; 2518 2519 if (timeout < last_timeout) 2520 break; 2521 last_timeout = timeout; 2522 y = x; 2523 } 2524 qty += y; 2525 } while (y); 2526 2527 if (!qty) 2528 return 0; 2529 2530 /* 2531 * When specifying a sector range to trim, chances are we might cross 2532 * an erase-group boundary even if the amount of sectors is less than 2533 * one erase-group. 2534 * If we can only fit one erase-group in the controller timeout budget, 2535 * we have to care that erase-group boundaries are not crossed by a 2536 * single trim operation. We flag that special case with "eg_boundary". 2537 * In all other cases we can just decrement qty and pretend that we 2538 * always touch (qty + 1) erase-groups as a simple optimization. 2539 */ 2540 if (qty == 1) 2541 card->eg_boundary = 1; 2542 else 2543 qty--; 2544 2545 /* Convert qty to sectors */ 2546 if (card->erase_shift) 2547 max_discard = qty << card->erase_shift; 2548 else if (mmc_card_sd(card)) 2549 max_discard = qty + 1; 2550 else 2551 max_discard = qty * card->erase_size; 2552 2553 return max_discard; 2554 } 2555 2556 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2557 { 2558 struct mmc_host *host = card->host; 2559 unsigned int max_discard, max_trim; 2560 2561 /* 2562 * Without erase_group_def set, MMC erase timeout depends on clock 2563 * frequence which can change. In that case, the best choice is 2564 * just the preferred erase size. 2565 */ 2566 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2567 return card->pref_erase; 2568 2569 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2570 if (mmc_can_trim(card)) { 2571 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2572 if (max_trim < max_discard) 2573 max_discard = max_trim; 2574 } else if (max_discard < card->erase_size) { 2575 max_discard = 0; 2576 } 2577 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2578 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2579 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2580 return max_discard; 2581 } 2582 EXPORT_SYMBOL(mmc_calc_max_discard); 2583 2584 bool mmc_card_is_blockaddr(struct mmc_card *card) 2585 { 2586 return card ? mmc_card_blockaddr(card) : false; 2587 } 2588 EXPORT_SYMBOL(mmc_card_is_blockaddr); 2589 2590 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2591 { 2592 struct mmc_command cmd = {}; 2593 2594 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2595 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2596 return 0; 2597 2598 cmd.opcode = MMC_SET_BLOCKLEN; 2599 cmd.arg = blocklen; 2600 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2601 return mmc_wait_for_cmd(card->host, &cmd, 5); 2602 } 2603 EXPORT_SYMBOL(mmc_set_blocklen); 2604 2605 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2606 bool is_rel_write) 2607 { 2608 struct mmc_command cmd = {}; 2609 2610 cmd.opcode = MMC_SET_BLOCK_COUNT; 2611 cmd.arg = blockcount & 0x0000FFFF; 2612 if (is_rel_write) 2613 cmd.arg |= 1 << 31; 2614 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2615 return mmc_wait_for_cmd(card->host, &cmd, 5); 2616 } 2617 EXPORT_SYMBOL(mmc_set_blockcount); 2618 2619 static void mmc_hw_reset_for_init(struct mmc_host *host) 2620 { 2621 mmc_pwrseq_reset(host); 2622 2623 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2624 return; 2625 host->ops->hw_reset(host); 2626 } 2627 2628 int mmc_hw_reset(struct mmc_host *host) 2629 { 2630 int ret; 2631 2632 if (!host->card) 2633 return -EINVAL; 2634 2635 mmc_bus_get(host); 2636 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2637 mmc_bus_put(host); 2638 return -EOPNOTSUPP; 2639 } 2640 2641 ret = host->bus_ops->reset(host); 2642 mmc_bus_put(host); 2643 2644 if (ret) 2645 pr_warn("%s: tried to reset card, got error %d\n", 2646 mmc_hostname(host), ret); 2647 2648 return ret; 2649 } 2650 EXPORT_SYMBOL(mmc_hw_reset); 2651 2652 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2653 { 2654 host->f_init = freq; 2655 2656 pr_debug("%s: %s: trying to init card at %u Hz\n", 2657 mmc_hostname(host), __func__, host->f_init); 2658 2659 mmc_power_up(host, host->ocr_avail); 2660 2661 /* 2662 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2663 * do a hardware reset if possible. 2664 */ 2665 mmc_hw_reset_for_init(host); 2666 2667 /* 2668 * sdio_reset sends CMD52 to reset card. Since we do not know 2669 * if the card is being re-initialized, just send it. CMD52 2670 * should be ignored by SD/eMMC cards. 2671 * Skip it if we already know that we do not support SDIO commands 2672 */ 2673 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2674 sdio_reset(host); 2675 2676 mmc_go_idle(host); 2677 2678 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2679 mmc_send_if_cond(host, host->ocr_avail); 2680 2681 /* Order's important: probe SDIO, then SD, then MMC */ 2682 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2683 if (!mmc_attach_sdio(host)) 2684 return 0; 2685 2686 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2687 if (!mmc_attach_sd(host)) 2688 return 0; 2689 2690 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2691 if (!mmc_attach_mmc(host)) 2692 return 0; 2693 2694 mmc_power_off(host); 2695 return -EIO; 2696 } 2697 2698 int _mmc_detect_card_removed(struct mmc_host *host) 2699 { 2700 int ret; 2701 2702 if (!host->card || mmc_card_removed(host->card)) 2703 return 1; 2704 2705 ret = host->bus_ops->alive(host); 2706 2707 /* 2708 * Card detect status and alive check may be out of sync if card is 2709 * removed slowly, when card detect switch changes while card/slot 2710 * pads are still contacted in hardware (refer to "SD Card Mechanical 2711 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2712 * detect work 200ms later for this case. 2713 */ 2714 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2715 mmc_detect_change(host, msecs_to_jiffies(200)); 2716 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2717 } 2718 2719 if (ret) { 2720 mmc_card_set_removed(host->card); 2721 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2722 } 2723 2724 return ret; 2725 } 2726 2727 int mmc_detect_card_removed(struct mmc_host *host) 2728 { 2729 struct mmc_card *card = host->card; 2730 int ret; 2731 2732 WARN_ON(!host->claimed); 2733 2734 if (!card) 2735 return 1; 2736 2737 if (!mmc_card_is_removable(host)) 2738 return 0; 2739 2740 ret = mmc_card_removed(card); 2741 /* 2742 * The card will be considered unchanged unless we have been asked to 2743 * detect a change or host requires polling to provide card detection. 2744 */ 2745 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2746 return ret; 2747 2748 host->detect_change = 0; 2749 if (!ret) { 2750 ret = _mmc_detect_card_removed(host); 2751 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2752 /* 2753 * Schedule a detect work as soon as possible to let a 2754 * rescan handle the card removal. 2755 */ 2756 cancel_delayed_work(&host->detect); 2757 _mmc_detect_change(host, 0, false); 2758 } 2759 } 2760 2761 return ret; 2762 } 2763 EXPORT_SYMBOL(mmc_detect_card_removed); 2764 2765 void mmc_rescan(struct work_struct *work) 2766 { 2767 struct mmc_host *host = 2768 container_of(work, struct mmc_host, detect.work); 2769 int i; 2770 2771 if (host->rescan_disable) 2772 return; 2773 2774 /* If there is a non-removable card registered, only scan once */ 2775 if (!mmc_card_is_removable(host) && host->rescan_entered) 2776 return; 2777 host->rescan_entered = 1; 2778 2779 if (host->trigger_card_event && host->ops->card_event) { 2780 mmc_claim_host(host); 2781 host->ops->card_event(host); 2782 mmc_release_host(host); 2783 host->trigger_card_event = false; 2784 } 2785 2786 mmc_bus_get(host); 2787 2788 /* 2789 * if there is a _removable_ card registered, check whether it is 2790 * still present 2791 */ 2792 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2793 host->bus_ops->detect(host); 2794 2795 host->detect_change = 0; 2796 2797 /* 2798 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2799 * the card is no longer present. 2800 */ 2801 mmc_bus_put(host); 2802 mmc_bus_get(host); 2803 2804 /* if there still is a card present, stop here */ 2805 if (host->bus_ops != NULL) { 2806 mmc_bus_put(host); 2807 goto out; 2808 } 2809 2810 /* 2811 * Only we can add a new handler, so it's safe to 2812 * release the lock here. 2813 */ 2814 mmc_bus_put(host); 2815 2816 mmc_claim_host(host); 2817 if (mmc_card_is_removable(host) && host->ops->get_cd && 2818 host->ops->get_cd(host) == 0) { 2819 mmc_power_off(host); 2820 mmc_release_host(host); 2821 goto out; 2822 } 2823 2824 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2825 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2826 break; 2827 if (freqs[i] <= host->f_min) 2828 break; 2829 } 2830 mmc_release_host(host); 2831 2832 out: 2833 if (host->caps & MMC_CAP_NEEDS_POLL) 2834 mmc_schedule_delayed_work(&host->detect, HZ); 2835 } 2836 2837 void mmc_start_host(struct mmc_host *host) 2838 { 2839 host->f_init = max(freqs[0], host->f_min); 2840 host->rescan_disable = 0; 2841 host->ios.power_mode = MMC_POWER_UNDEFINED; 2842 2843 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2844 mmc_claim_host(host); 2845 mmc_power_up(host, host->ocr_avail); 2846 mmc_release_host(host); 2847 } 2848 2849 mmc_gpiod_request_cd_irq(host); 2850 _mmc_detect_change(host, 0, false); 2851 } 2852 2853 void mmc_stop_host(struct mmc_host *host) 2854 { 2855 if (host->slot.cd_irq >= 0) { 2856 if (host->slot.cd_wake_enabled) 2857 disable_irq_wake(host->slot.cd_irq); 2858 disable_irq(host->slot.cd_irq); 2859 } 2860 2861 host->rescan_disable = 1; 2862 cancel_delayed_work_sync(&host->detect); 2863 2864 /* clear pm flags now and let card drivers set them as needed */ 2865 host->pm_flags = 0; 2866 2867 mmc_bus_get(host); 2868 if (host->bus_ops && !host->bus_dead) { 2869 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2870 host->bus_ops->remove(host); 2871 mmc_claim_host(host); 2872 mmc_detach_bus(host); 2873 mmc_power_off(host); 2874 mmc_release_host(host); 2875 mmc_bus_put(host); 2876 return; 2877 } 2878 mmc_bus_put(host); 2879 2880 mmc_claim_host(host); 2881 mmc_power_off(host); 2882 mmc_release_host(host); 2883 } 2884 2885 int mmc_power_save_host(struct mmc_host *host) 2886 { 2887 int ret = 0; 2888 2889 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__); 2890 2891 mmc_bus_get(host); 2892 2893 if (!host->bus_ops || host->bus_dead) { 2894 mmc_bus_put(host); 2895 return -EINVAL; 2896 } 2897 2898 if (host->bus_ops->power_save) 2899 ret = host->bus_ops->power_save(host); 2900 2901 mmc_bus_put(host); 2902 2903 mmc_power_off(host); 2904 2905 return ret; 2906 } 2907 EXPORT_SYMBOL(mmc_power_save_host); 2908 2909 int mmc_power_restore_host(struct mmc_host *host) 2910 { 2911 int ret; 2912 2913 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__); 2914 2915 mmc_bus_get(host); 2916 2917 if (!host->bus_ops || host->bus_dead) { 2918 mmc_bus_put(host); 2919 return -EINVAL; 2920 } 2921 2922 mmc_power_up(host, host->card->ocr); 2923 ret = host->bus_ops->power_restore(host); 2924 2925 mmc_bus_put(host); 2926 2927 return ret; 2928 } 2929 EXPORT_SYMBOL(mmc_power_restore_host); 2930 2931 #ifdef CONFIG_PM_SLEEP 2932 /* Do the card removal on suspend if card is assumed removeable 2933 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2934 to sync the card. 2935 */ 2936 static int mmc_pm_notify(struct notifier_block *notify_block, 2937 unsigned long mode, void *unused) 2938 { 2939 struct mmc_host *host = container_of( 2940 notify_block, struct mmc_host, pm_notify); 2941 unsigned long flags; 2942 int err = 0; 2943 2944 switch (mode) { 2945 case PM_HIBERNATION_PREPARE: 2946 case PM_SUSPEND_PREPARE: 2947 case PM_RESTORE_PREPARE: 2948 spin_lock_irqsave(&host->lock, flags); 2949 host->rescan_disable = 1; 2950 spin_unlock_irqrestore(&host->lock, flags); 2951 cancel_delayed_work_sync(&host->detect); 2952 2953 if (!host->bus_ops) 2954 break; 2955 2956 /* Validate prerequisites for suspend */ 2957 if (host->bus_ops->pre_suspend) 2958 err = host->bus_ops->pre_suspend(host); 2959 if (!err) 2960 break; 2961 2962 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2963 host->bus_ops->remove(host); 2964 mmc_claim_host(host); 2965 mmc_detach_bus(host); 2966 mmc_power_off(host); 2967 mmc_release_host(host); 2968 host->pm_flags = 0; 2969 break; 2970 2971 case PM_POST_SUSPEND: 2972 case PM_POST_HIBERNATION: 2973 case PM_POST_RESTORE: 2974 2975 spin_lock_irqsave(&host->lock, flags); 2976 host->rescan_disable = 0; 2977 spin_unlock_irqrestore(&host->lock, flags); 2978 _mmc_detect_change(host, 0, false); 2979 2980 } 2981 2982 return 0; 2983 } 2984 2985 void mmc_register_pm_notifier(struct mmc_host *host) 2986 { 2987 host->pm_notify.notifier_call = mmc_pm_notify; 2988 register_pm_notifier(&host->pm_notify); 2989 } 2990 2991 void mmc_unregister_pm_notifier(struct mmc_host *host) 2992 { 2993 unregister_pm_notifier(&host->pm_notify); 2994 } 2995 #endif 2996 2997 /** 2998 * mmc_init_context_info() - init synchronization context 2999 * @host: mmc host 3000 * 3001 * Init struct context_info needed to implement asynchronous 3002 * request mechanism, used by mmc core, host driver and mmc requests 3003 * supplier. 3004 */ 3005 void mmc_init_context_info(struct mmc_host *host) 3006 { 3007 host->context_info.is_new_req = false; 3008 host->context_info.is_done_rcv = false; 3009 host->context_info.is_waiting_last_req = false; 3010 init_waitqueue_head(&host->context_info.wait); 3011 } 3012 3013 static int __init mmc_init(void) 3014 { 3015 int ret; 3016 3017 ret = mmc_register_bus(); 3018 if (ret) 3019 return ret; 3020 3021 ret = mmc_register_host_class(); 3022 if (ret) 3023 goto unregister_bus; 3024 3025 ret = sdio_register_bus(); 3026 if (ret) 3027 goto unregister_host_class; 3028 3029 return 0; 3030 3031 unregister_host_class: 3032 mmc_unregister_host_class(); 3033 unregister_bus: 3034 mmc_unregister_bus(); 3035 return ret; 3036 } 3037 3038 static void __exit mmc_exit(void) 3039 { 3040 sdio_unregister_bus(); 3041 mmc_unregister_host_class(); 3042 mmc_unregister_bus(); 3043 } 3044 3045 subsys_initcall(mmc_init); 3046 module_exit(mmc_exit); 3047 3048 MODULE_LICENSE("GPL"); 3049