xref: /linux/drivers/mmc/core/core.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48 
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52 
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
55 
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
58 
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
69 static int mmc_schedule_delayed_work(struct delayed_work *work,
70 				     unsigned long delay)
71 {
72 	/*
73 	 * We use the system_freezable_wq, because of two reasons.
74 	 * First, it allows several works (not the same work item) to be
75 	 * executed simultaneously. Second, the queue becomes frozen when
76 	 * userspace becomes frozen during system PM.
77 	 */
78 	return queue_delayed_work(system_freezable_wq, work, delay);
79 }
80 
81 #ifdef CONFIG_FAIL_MMC_REQUEST
82 
83 /*
84  * Internal function. Inject random data errors.
85  * If mmc_data is NULL no errors are injected.
86  */
87 static void mmc_should_fail_request(struct mmc_host *host,
88 				    struct mmc_request *mrq)
89 {
90 	struct mmc_command *cmd = mrq->cmd;
91 	struct mmc_data *data = mrq->data;
92 	static const int data_errors[] = {
93 		-ETIMEDOUT,
94 		-EILSEQ,
95 		-EIO,
96 	};
97 
98 	if (!data)
99 		return;
100 
101 	if (cmd->error || data->error ||
102 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 		return;
104 
105 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107 }
108 
109 #else /* CONFIG_FAIL_MMC_REQUEST */
110 
111 static inline void mmc_should_fail_request(struct mmc_host *host,
112 					   struct mmc_request *mrq)
113 {
114 }
115 
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
117 
118 static inline void mmc_complete_cmd(struct mmc_request *mrq)
119 {
120 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 		complete_all(&mrq->cmd_completion);
122 }
123 
124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125 {
126 	if (!mrq->cap_cmd_during_tfr)
127 		return;
128 
129 	mmc_complete_cmd(mrq);
130 
131 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 		 mmc_hostname(host), mrq->cmd->opcode);
133 }
134 EXPORT_SYMBOL(mmc_command_done);
135 
136 /**
137  *	mmc_request_done - finish processing an MMC request
138  *	@host: MMC host which completed request
139  *	@mrq: MMC request which request
140  *
141  *	MMC drivers should call this function when they have completed
142  *	their processing of a request.
143  */
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 	struct mmc_command *cmd = mrq->cmd;
147 	int err = cmd->error;
148 
149 	/* Flag re-tuning needed on CRC errors */
150 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 	    (mrq->data && mrq->data->error == -EILSEQ) ||
154 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
155 		mmc_retune_needed(host);
156 
157 	if (err && cmd->retries && mmc_host_is_spi(host)) {
158 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 			cmd->retries = 0;
160 	}
161 
162 	if (host->ongoing_mrq == mrq)
163 		host->ongoing_mrq = NULL;
164 
165 	mmc_complete_cmd(mrq);
166 
167 	trace_mmc_request_done(host, mrq);
168 
169 	/*
170 	 * We list various conditions for the command to be considered
171 	 * properly done:
172 	 *
173 	 * - There was no error, OK fine then
174 	 * - We are not doing some kind of retry
175 	 * - The card was removed (...so just complete everything no matter
176 	 *   if there are errors or retries)
177 	 */
178 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 		mmc_should_fail_request(host, mrq);
180 
181 		if (!host->ongoing_mrq)
182 			led_trigger_event(host->led, LED_OFF);
183 
184 		if (mrq->sbc) {
185 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 				mmc_hostname(host), mrq->sbc->opcode,
187 				mrq->sbc->error,
188 				mrq->sbc->resp[0], mrq->sbc->resp[1],
189 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 		}
191 
192 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 			mmc_hostname(host), cmd->opcode, err,
194 			cmd->resp[0], cmd->resp[1],
195 			cmd->resp[2], cmd->resp[3]);
196 
197 		if (mrq->data) {
198 			pr_debug("%s:     %d bytes transferred: %d\n",
199 				mmc_hostname(host),
200 				mrq->data->bytes_xfered, mrq->data->error);
201 		}
202 
203 		if (mrq->stop) {
204 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
205 				mmc_hostname(host), mrq->stop->opcode,
206 				mrq->stop->error,
207 				mrq->stop->resp[0], mrq->stop->resp[1],
208 				mrq->stop->resp[2], mrq->stop->resp[3]);
209 		}
210 	}
211 	/*
212 	 * Request starter must handle retries - see
213 	 * mmc_wait_for_req_done().
214 	 */
215 	if (mrq->done)
216 		mrq->done(mrq);
217 }
218 
219 EXPORT_SYMBOL(mmc_request_done);
220 
221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222 {
223 	int err;
224 
225 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
226 	err = mmc_retune(host);
227 	if (err) {
228 		mrq->cmd->error = err;
229 		mmc_request_done(host, mrq);
230 		return;
231 	}
232 
233 	/*
234 	 * For sdio rw commands we must wait for card busy otherwise some
235 	 * sdio devices won't work properly.
236 	 * And bypass I/O abort, reset and bus suspend operations.
237 	 */
238 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 	    host->ops->card_busy) {
240 		int tries = 500; /* Wait aprox 500ms at maximum */
241 
242 		while (host->ops->card_busy(host) && --tries)
243 			mmc_delay(1);
244 
245 		if (tries == 0) {
246 			mrq->cmd->error = -EBUSY;
247 			mmc_request_done(host, mrq);
248 			return;
249 		}
250 	}
251 
252 	if (mrq->cap_cmd_during_tfr) {
253 		host->ongoing_mrq = mrq;
254 		/*
255 		 * Retry path could come through here without having waiting on
256 		 * cmd_completion, so ensure it is reinitialised.
257 		 */
258 		reinit_completion(&mrq->cmd_completion);
259 	}
260 
261 	trace_mmc_request_start(host, mrq);
262 
263 	if (host->cqe_on)
264 		host->cqe_ops->cqe_off(host);
265 
266 	host->ops->request(host, mrq);
267 }
268 
269 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
270 			     bool cqe)
271 {
272 	if (mrq->sbc) {
273 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 			 mmc_hostname(host), mrq->sbc->opcode,
275 			 mrq->sbc->arg, mrq->sbc->flags);
276 	}
277 
278 	if (mrq->cmd) {
279 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 			 mmc_hostname(host), cqe ? "CQE direct " : "",
281 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
282 	} else if (cqe) {
283 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
285 	}
286 
287 	if (mrq->data) {
288 		pr_debug("%s:     blksz %d blocks %d flags %08x "
289 			"tsac %d ms nsac %d\n",
290 			mmc_hostname(host), mrq->data->blksz,
291 			mrq->data->blocks, mrq->data->flags,
292 			mrq->data->timeout_ns / 1000000,
293 			mrq->data->timeout_clks);
294 	}
295 
296 	if (mrq->stop) {
297 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
298 			 mmc_hostname(host), mrq->stop->opcode,
299 			 mrq->stop->arg, mrq->stop->flags);
300 	}
301 }
302 
303 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
304 {
305 	unsigned int i, sz = 0;
306 	struct scatterlist *sg;
307 
308 	if (mrq->cmd) {
309 		mrq->cmd->error = 0;
310 		mrq->cmd->mrq = mrq;
311 		mrq->cmd->data = mrq->data;
312 	}
313 	if (mrq->sbc) {
314 		mrq->sbc->error = 0;
315 		mrq->sbc->mrq = mrq;
316 	}
317 	if (mrq->data) {
318 		if (mrq->data->blksz > host->max_blk_size ||
319 		    mrq->data->blocks > host->max_blk_count ||
320 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
321 			return -EINVAL;
322 
323 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
324 			sz += sg->length;
325 		if (sz != mrq->data->blocks * mrq->data->blksz)
326 			return -EINVAL;
327 
328 		mrq->data->error = 0;
329 		mrq->data->mrq = mrq;
330 		if (mrq->stop) {
331 			mrq->data->stop = mrq->stop;
332 			mrq->stop->error = 0;
333 			mrq->stop->mrq = mrq;
334 		}
335 	}
336 
337 	return 0;
338 }
339 
340 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
341 {
342 	int err;
343 
344 	mmc_retune_hold(host);
345 
346 	if (mmc_card_removed(host->card))
347 		return -ENOMEDIUM;
348 
349 	mmc_mrq_pr_debug(host, mrq, false);
350 
351 	WARN_ON(!host->claimed);
352 
353 	err = mmc_mrq_prep(host, mrq);
354 	if (err)
355 		return err;
356 
357 	led_trigger_event(host->led, LED_FULL);
358 	__mmc_start_request(host, mrq);
359 
360 	return 0;
361 }
362 EXPORT_SYMBOL(mmc_start_request);
363 
364 /*
365  * mmc_wait_data_done() - done callback for data request
366  * @mrq: done data request
367  *
368  * Wakes up mmc context, passed as a callback to host controller driver
369  */
370 static void mmc_wait_data_done(struct mmc_request *mrq)
371 {
372 	struct mmc_context_info *context_info = &mrq->host->context_info;
373 
374 	context_info->is_done_rcv = true;
375 	wake_up_interruptible(&context_info->wait);
376 }
377 
378 static void mmc_wait_done(struct mmc_request *mrq)
379 {
380 	complete(&mrq->completion);
381 }
382 
383 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
384 {
385 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
386 
387 	/*
388 	 * If there is an ongoing transfer, wait for the command line to become
389 	 * available.
390 	 */
391 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
392 		wait_for_completion(&ongoing_mrq->cmd_completion);
393 }
394 
395 /*
396  *__mmc_start_data_req() - starts data request
397  * @host: MMC host to start the request
398  * @mrq: data request to start
399  *
400  * Sets the done callback to be called when request is completed by the card.
401  * Starts data mmc request execution
402  * If an ongoing transfer is already in progress, wait for the command line
403  * to become available before sending another command.
404  */
405 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
406 {
407 	int err;
408 
409 	mmc_wait_ongoing_tfr_cmd(host);
410 
411 	mrq->done = mmc_wait_data_done;
412 	mrq->host = host;
413 
414 	init_completion(&mrq->cmd_completion);
415 
416 	err = mmc_start_request(host, mrq);
417 	if (err) {
418 		mrq->cmd->error = err;
419 		mmc_complete_cmd(mrq);
420 		mmc_wait_data_done(mrq);
421 	}
422 
423 	return err;
424 }
425 
426 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
427 {
428 	int err;
429 
430 	mmc_wait_ongoing_tfr_cmd(host);
431 
432 	init_completion(&mrq->completion);
433 	mrq->done = mmc_wait_done;
434 
435 	init_completion(&mrq->cmd_completion);
436 
437 	err = mmc_start_request(host, mrq);
438 	if (err) {
439 		mrq->cmd->error = err;
440 		mmc_complete_cmd(mrq);
441 		complete(&mrq->completion);
442 	}
443 
444 	return err;
445 }
446 
447 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
448 {
449 	struct mmc_command *cmd;
450 
451 	while (1) {
452 		wait_for_completion(&mrq->completion);
453 
454 		cmd = mrq->cmd;
455 
456 		/*
457 		 * If host has timed out waiting for the sanitize
458 		 * to complete, card might be still in programming state
459 		 * so let's try to bring the card out of programming
460 		 * state.
461 		 */
462 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
463 			if (!mmc_interrupt_hpi(host->card)) {
464 				pr_warn("%s: %s: Interrupted sanitize\n",
465 					mmc_hostname(host), __func__);
466 				cmd->error = 0;
467 				break;
468 			} else {
469 				pr_err("%s: %s: Failed to interrupt sanitize\n",
470 				       mmc_hostname(host), __func__);
471 			}
472 		}
473 		if (!cmd->error || !cmd->retries ||
474 		    mmc_card_removed(host->card))
475 			break;
476 
477 		mmc_retune_recheck(host);
478 
479 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
480 			 mmc_hostname(host), cmd->opcode, cmd->error);
481 		cmd->retries--;
482 		cmd->error = 0;
483 		__mmc_start_request(host, mrq);
484 	}
485 
486 	mmc_retune_release(host);
487 }
488 EXPORT_SYMBOL(mmc_wait_for_req_done);
489 
490 /*
491  * mmc_cqe_start_req - Start a CQE request.
492  * @host: MMC host to start the request
493  * @mrq: request to start
494  *
495  * Start the request, re-tuning if needed and it is possible. Returns an error
496  * code if the request fails to start or -EBUSY if CQE is busy.
497  */
498 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
499 {
500 	int err;
501 
502 	/*
503 	 * CQE cannot process re-tuning commands. Caller must hold retuning
504 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
505 	 * active requests i.e. this is the first.  Note, re-tuning will call
506 	 * ->cqe_off().
507 	 */
508 	err = mmc_retune(host);
509 	if (err)
510 		goto out_err;
511 
512 	mrq->host = host;
513 
514 	mmc_mrq_pr_debug(host, mrq, true);
515 
516 	err = mmc_mrq_prep(host, mrq);
517 	if (err)
518 		goto out_err;
519 
520 	err = host->cqe_ops->cqe_request(host, mrq);
521 	if (err)
522 		goto out_err;
523 
524 	trace_mmc_request_start(host, mrq);
525 
526 	return 0;
527 
528 out_err:
529 	if (mrq->cmd) {
530 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
531 			 mmc_hostname(host), mrq->cmd->opcode, err);
532 	} else {
533 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
534 			 mmc_hostname(host), mrq->tag, err);
535 	}
536 	return err;
537 }
538 EXPORT_SYMBOL(mmc_cqe_start_req);
539 
540 /**
541  *	mmc_cqe_request_done - CQE has finished processing an MMC request
542  *	@host: MMC host which completed request
543  *	@mrq: MMC request which completed
544  *
545  *	CQE drivers should call this function when they have completed
546  *	their processing of a request.
547  */
548 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
549 {
550 	mmc_should_fail_request(host, mrq);
551 
552 	/* Flag re-tuning needed on CRC errors */
553 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
554 	    (mrq->data && mrq->data->error == -EILSEQ))
555 		mmc_retune_needed(host);
556 
557 	trace_mmc_request_done(host, mrq);
558 
559 	if (mrq->cmd) {
560 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
561 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
562 	} else {
563 		pr_debug("%s: CQE transfer done tag %d\n",
564 			 mmc_hostname(host), mrq->tag);
565 	}
566 
567 	if (mrq->data) {
568 		pr_debug("%s:     %d bytes transferred: %d\n",
569 			 mmc_hostname(host),
570 			 mrq->data->bytes_xfered, mrq->data->error);
571 	}
572 
573 	mrq->done(mrq);
574 }
575 EXPORT_SYMBOL(mmc_cqe_request_done);
576 
577 /**
578  *	mmc_cqe_post_req - CQE post process of a completed MMC request
579  *	@host: MMC host
580  *	@mrq: MMC request to be processed
581  */
582 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
583 {
584 	if (host->cqe_ops->cqe_post_req)
585 		host->cqe_ops->cqe_post_req(host, mrq);
586 }
587 EXPORT_SYMBOL(mmc_cqe_post_req);
588 
589 /* Arbitrary 1 second timeout */
590 #define MMC_CQE_RECOVERY_TIMEOUT	1000
591 
592 /*
593  * mmc_cqe_recovery - Recover from CQE errors.
594  * @host: MMC host to recover
595  *
596  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
597  * in eMMC, and discarding the queue in CQE. CQE must call
598  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
599  * fails to discard its queue.
600  */
601 int mmc_cqe_recovery(struct mmc_host *host)
602 {
603 	struct mmc_command cmd;
604 	int err;
605 
606 	mmc_retune_hold_now(host);
607 
608 	/*
609 	 * Recovery is expected seldom, if at all, but it reduces performance,
610 	 * so make sure it is not completely silent.
611 	 */
612 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
613 
614 	host->cqe_ops->cqe_recovery_start(host);
615 
616 	memset(&cmd, 0, sizeof(cmd));
617 	cmd.opcode       = MMC_STOP_TRANSMISSION,
618 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
619 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
620 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
621 	mmc_wait_for_cmd(host, &cmd, 0);
622 
623 	memset(&cmd, 0, sizeof(cmd));
624 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
625 	cmd.arg          = 1; /* Discard entire queue */
626 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
627 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
628 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
629 	err = mmc_wait_for_cmd(host, &cmd, 0);
630 
631 	host->cqe_ops->cqe_recovery_finish(host);
632 
633 	mmc_retune_release(host);
634 
635 	return err;
636 }
637 EXPORT_SYMBOL(mmc_cqe_recovery);
638 
639 /**
640  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
641  *	@host: MMC host
642  *	@mrq: MMC request
643  *
644  *	mmc_is_req_done() is used with requests that have
645  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
646  *	starting a request and before waiting for it to complete. That is,
647  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
648  *	and before mmc_wait_for_req_done(). If it is called at other times the
649  *	result is not meaningful.
650  */
651 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
652 {
653 	if (host->areq)
654 		return host->context_info.is_done_rcv;
655 	else
656 		return completion_done(&mrq->completion);
657 }
658 EXPORT_SYMBOL(mmc_is_req_done);
659 
660 /**
661  *	mmc_pre_req - Prepare for a new request
662  *	@host: MMC host to prepare command
663  *	@mrq: MMC request to prepare for
664  *
665  *	mmc_pre_req() is called in prior to mmc_start_req() to let
666  *	host prepare for the new request. Preparation of a request may be
667  *	performed while another request is running on the host.
668  */
669 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
670 {
671 	if (host->ops->pre_req)
672 		host->ops->pre_req(host, mrq);
673 }
674 
675 /**
676  *	mmc_post_req - Post process a completed request
677  *	@host: MMC host to post process command
678  *	@mrq: MMC request to post process for
679  *	@err: Error, if non zero, clean up any resources made in pre_req
680  *
681  *	Let the host post process a completed request. Post processing of
682  *	a request may be performed while another reuqest is running.
683  */
684 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
685 			 int err)
686 {
687 	if (host->ops->post_req)
688 		host->ops->post_req(host, mrq, err);
689 }
690 
691 /**
692  * mmc_finalize_areq() - finalize an asynchronous request
693  * @host: MMC host to finalize any ongoing request on
694  *
695  * Returns the status of the ongoing asynchronous request, but
696  * MMC_BLK_SUCCESS if no request was going on.
697  */
698 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
699 {
700 	struct mmc_context_info *context_info = &host->context_info;
701 	enum mmc_blk_status status;
702 
703 	if (!host->areq)
704 		return MMC_BLK_SUCCESS;
705 
706 	while (1) {
707 		wait_event_interruptible(context_info->wait,
708 				(context_info->is_done_rcv ||
709 				 context_info->is_new_req));
710 
711 		if (context_info->is_done_rcv) {
712 			struct mmc_command *cmd;
713 
714 			context_info->is_done_rcv = false;
715 			cmd = host->areq->mrq->cmd;
716 
717 			if (!cmd->error || !cmd->retries ||
718 			    mmc_card_removed(host->card)) {
719 				status = host->areq->err_check(host->card,
720 							       host->areq);
721 				break; /* return status */
722 			} else {
723 				mmc_retune_recheck(host);
724 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
725 					mmc_hostname(host),
726 					cmd->opcode, cmd->error);
727 				cmd->retries--;
728 				cmd->error = 0;
729 				__mmc_start_request(host, host->areq->mrq);
730 				continue; /* wait for done/new event again */
731 			}
732 		}
733 
734 		return MMC_BLK_NEW_REQUEST;
735 	}
736 
737 	mmc_retune_release(host);
738 
739 	/*
740 	 * Check BKOPS urgency for each R1 response
741 	 */
742 	if (host->card && mmc_card_mmc(host->card) &&
743 	    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
744 	     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
745 	    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
746 		mmc_start_bkops(host->card, true);
747 	}
748 
749 	return status;
750 }
751 
752 /**
753  *	mmc_start_areq - start an asynchronous request
754  *	@host: MMC host to start command
755  *	@areq: asynchronous request to start
756  *	@ret_stat: out parameter for status
757  *
758  *	Start a new MMC custom command request for a host.
759  *	If there is on ongoing async request wait for completion
760  *	of that request and start the new one and return.
761  *	Does not wait for the new request to complete.
762  *
763  *      Returns the completed request, NULL in case of none completed.
764  *	Wait for the an ongoing request (previoulsy started) to complete and
765  *	return the completed request. If there is no ongoing request, NULL
766  *	is returned without waiting. NULL is not an error condition.
767  */
768 struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
769 				     struct mmc_async_req *areq,
770 				     enum mmc_blk_status *ret_stat)
771 {
772 	enum mmc_blk_status status;
773 	int start_err = 0;
774 	struct mmc_async_req *previous = host->areq;
775 
776 	/* Prepare a new request */
777 	if (areq)
778 		mmc_pre_req(host, areq->mrq);
779 
780 	/* Finalize previous request */
781 	status = mmc_finalize_areq(host);
782 	if (ret_stat)
783 		*ret_stat = status;
784 
785 	/* The previous request is still going on... */
786 	if (status == MMC_BLK_NEW_REQUEST)
787 		return NULL;
788 
789 	/* Fine so far, start the new request! */
790 	if (status == MMC_BLK_SUCCESS && areq)
791 		start_err = __mmc_start_data_req(host, areq->mrq);
792 
793 	/* Postprocess the old request at this point */
794 	if (host->areq)
795 		mmc_post_req(host, host->areq->mrq, 0);
796 
797 	/* Cancel a prepared request if it was not started. */
798 	if ((status != MMC_BLK_SUCCESS || start_err) && areq)
799 		mmc_post_req(host, areq->mrq, -EINVAL);
800 
801 	if (status != MMC_BLK_SUCCESS)
802 		host->areq = NULL;
803 	else
804 		host->areq = areq;
805 
806 	return previous;
807 }
808 EXPORT_SYMBOL(mmc_start_areq);
809 
810 /**
811  *	mmc_wait_for_req - start a request and wait for completion
812  *	@host: MMC host to start command
813  *	@mrq: MMC request to start
814  *
815  *	Start a new MMC custom command request for a host, and wait
816  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
817  *	requests, the transfer is ongoing and the caller can issue further
818  *	commands that do not use the data lines, and then wait by calling
819  *	mmc_wait_for_req_done().
820  *	Does not attempt to parse the response.
821  */
822 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
823 {
824 	__mmc_start_req(host, mrq);
825 
826 	if (!mrq->cap_cmd_during_tfr)
827 		mmc_wait_for_req_done(host, mrq);
828 }
829 EXPORT_SYMBOL(mmc_wait_for_req);
830 
831 /**
832  *	mmc_wait_for_cmd - start a command and wait for completion
833  *	@host: MMC host to start command
834  *	@cmd: MMC command to start
835  *	@retries: maximum number of retries
836  *
837  *	Start a new MMC command for a host, and wait for the command
838  *	to complete.  Return any error that occurred while the command
839  *	was executing.  Do not attempt to parse the response.
840  */
841 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
842 {
843 	struct mmc_request mrq = {};
844 
845 	WARN_ON(!host->claimed);
846 
847 	memset(cmd->resp, 0, sizeof(cmd->resp));
848 	cmd->retries = retries;
849 
850 	mrq.cmd = cmd;
851 	cmd->data = NULL;
852 
853 	mmc_wait_for_req(host, &mrq);
854 
855 	return cmd->error;
856 }
857 
858 EXPORT_SYMBOL(mmc_wait_for_cmd);
859 
860 /**
861  *	mmc_set_data_timeout - set the timeout for a data command
862  *	@data: data phase for command
863  *	@card: the MMC card associated with the data transfer
864  *
865  *	Computes the data timeout parameters according to the
866  *	correct algorithm given the card type.
867  */
868 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
869 {
870 	unsigned int mult;
871 
872 	/*
873 	 * SDIO cards only define an upper 1 s limit on access.
874 	 */
875 	if (mmc_card_sdio(card)) {
876 		data->timeout_ns = 1000000000;
877 		data->timeout_clks = 0;
878 		return;
879 	}
880 
881 	/*
882 	 * SD cards use a 100 multiplier rather than 10
883 	 */
884 	mult = mmc_card_sd(card) ? 100 : 10;
885 
886 	/*
887 	 * Scale up the multiplier (and therefore the timeout) by
888 	 * the r2w factor for writes.
889 	 */
890 	if (data->flags & MMC_DATA_WRITE)
891 		mult <<= card->csd.r2w_factor;
892 
893 	data->timeout_ns = card->csd.taac_ns * mult;
894 	data->timeout_clks = card->csd.taac_clks * mult;
895 
896 	/*
897 	 * SD cards also have an upper limit on the timeout.
898 	 */
899 	if (mmc_card_sd(card)) {
900 		unsigned int timeout_us, limit_us;
901 
902 		timeout_us = data->timeout_ns / 1000;
903 		if (card->host->ios.clock)
904 			timeout_us += data->timeout_clks * 1000 /
905 				(card->host->ios.clock / 1000);
906 
907 		if (data->flags & MMC_DATA_WRITE)
908 			/*
909 			 * The MMC spec "It is strongly recommended
910 			 * for hosts to implement more than 500ms
911 			 * timeout value even if the card indicates
912 			 * the 250ms maximum busy length."  Even the
913 			 * previous value of 300ms is known to be
914 			 * insufficient for some cards.
915 			 */
916 			limit_us = 3000000;
917 		else
918 			limit_us = 100000;
919 
920 		/*
921 		 * SDHC cards always use these fixed values.
922 		 */
923 		if (timeout_us > limit_us) {
924 			data->timeout_ns = limit_us * 1000;
925 			data->timeout_clks = 0;
926 		}
927 
928 		/* assign limit value if invalid */
929 		if (timeout_us == 0)
930 			data->timeout_ns = limit_us * 1000;
931 	}
932 
933 	/*
934 	 * Some cards require longer data read timeout than indicated in CSD.
935 	 * Address this by setting the read timeout to a "reasonably high"
936 	 * value. For the cards tested, 600ms has proven enough. If necessary,
937 	 * this value can be increased if other problematic cards require this.
938 	 */
939 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
940 		data->timeout_ns = 600000000;
941 		data->timeout_clks = 0;
942 	}
943 
944 	/*
945 	 * Some cards need very high timeouts if driven in SPI mode.
946 	 * The worst observed timeout was 900ms after writing a
947 	 * continuous stream of data until the internal logic
948 	 * overflowed.
949 	 */
950 	if (mmc_host_is_spi(card->host)) {
951 		if (data->flags & MMC_DATA_WRITE) {
952 			if (data->timeout_ns < 1000000000)
953 				data->timeout_ns = 1000000000;	/* 1s */
954 		} else {
955 			if (data->timeout_ns < 100000000)
956 				data->timeout_ns =  100000000;	/* 100ms */
957 		}
958 	}
959 }
960 EXPORT_SYMBOL(mmc_set_data_timeout);
961 
962 /**
963  *	mmc_align_data_size - pads a transfer size to a more optimal value
964  *	@card: the MMC card associated with the data transfer
965  *	@sz: original transfer size
966  *
967  *	Pads the original data size with a number of extra bytes in
968  *	order to avoid controller bugs and/or performance hits
969  *	(e.g. some controllers revert to PIO for certain sizes).
970  *
971  *	Returns the improved size, which might be unmodified.
972  *
973  *	Note that this function is only relevant when issuing a
974  *	single scatter gather entry.
975  */
976 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
977 {
978 	/*
979 	 * FIXME: We don't have a system for the controller to tell
980 	 * the core about its problems yet, so for now we just 32-bit
981 	 * align the size.
982 	 */
983 	sz = ((sz + 3) / 4) * 4;
984 
985 	return sz;
986 }
987 EXPORT_SYMBOL(mmc_align_data_size);
988 
989 /*
990  * Allow claiming an already claimed host if the context is the same or there is
991  * no context but the task is the same.
992  */
993 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
994 				   struct task_struct *task)
995 {
996 	return host->claimer == ctx ||
997 	       (!ctx && task && host->claimer->task == task);
998 }
999 
1000 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
1001 				       struct mmc_ctx *ctx,
1002 				       struct task_struct *task)
1003 {
1004 	if (!host->claimer) {
1005 		if (ctx)
1006 			host->claimer = ctx;
1007 		else
1008 			host->claimer = &host->default_ctx;
1009 	}
1010 	if (task)
1011 		host->claimer->task = task;
1012 }
1013 
1014 /**
1015  *	__mmc_claim_host - exclusively claim a host
1016  *	@host: mmc host to claim
1017  *	@ctx: context that claims the host or NULL in which case the default
1018  *	context will be used
1019  *	@abort: whether or not the operation should be aborted
1020  *
1021  *	Claim a host for a set of operations.  If @abort is non null and
1022  *	dereference a non-zero value then this will return prematurely with
1023  *	that non-zero value without acquiring the lock.  Returns zero
1024  *	with the lock held otherwise.
1025  */
1026 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
1027 		     atomic_t *abort)
1028 {
1029 	struct task_struct *task = ctx ? NULL : current;
1030 	DECLARE_WAITQUEUE(wait, current);
1031 	unsigned long flags;
1032 	int stop;
1033 	bool pm = false;
1034 
1035 	might_sleep();
1036 
1037 	add_wait_queue(&host->wq, &wait);
1038 	spin_lock_irqsave(&host->lock, flags);
1039 	while (1) {
1040 		set_current_state(TASK_UNINTERRUPTIBLE);
1041 		stop = abort ? atomic_read(abort) : 0;
1042 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
1043 			break;
1044 		spin_unlock_irqrestore(&host->lock, flags);
1045 		schedule();
1046 		spin_lock_irqsave(&host->lock, flags);
1047 	}
1048 	set_current_state(TASK_RUNNING);
1049 	if (!stop) {
1050 		host->claimed = 1;
1051 		mmc_ctx_set_claimer(host, ctx, task);
1052 		host->claim_cnt += 1;
1053 		if (host->claim_cnt == 1)
1054 			pm = true;
1055 	} else
1056 		wake_up(&host->wq);
1057 	spin_unlock_irqrestore(&host->lock, flags);
1058 	remove_wait_queue(&host->wq, &wait);
1059 
1060 	if (pm)
1061 		pm_runtime_get_sync(mmc_dev(host));
1062 
1063 	return stop;
1064 }
1065 EXPORT_SYMBOL(__mmc_claim_host);
1066 
1067 /**
1068  *	mmc_release_host - release a host
1069  *	@host: mmc host to release
1070  *
1071  *	Release a MMC host, allowing others to claim the host
1072  *	for their operations.
1073  */
1074 void mmc_release_host(struct mmc_host *host)
1075 {
1076 	unsigned long flags;
1077 
1078 	WARN_ON(!host->claimed);
1079 
1080 	spin_lock_irqsave(&host->lock, flags);
1081 	if (--host->claim_cnt) {
1082 		/* Release for nested claim */
1083 		spin_unlock_irqrestore(&host->lock, flags);
1084 	} else {
1085 		host->claimed = 0;
1086 		host->claimer->task = NULL;
1087 		host->claimer = NULL;
1088 		spin_unlock_irqrestore(&host->lock, flags);
1089 		wake_up(&host->wq);
1090 		pm_runtime_mark_last_busy(mmc_dev(host));
1091 		pm_runtime_put_autosuspend(mmc_dev(host));
1092 	}
1093 }
1094 EXPORT_SYMBOL(mmc_release_host);
1095 
1096 /*
1097  * This is a helper function, which fetches a runtime pm reference for the
1098  * card device and also claims the host.
1099  */
1100 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
1101 {
1102 	pm_runtime_get_sync(&card->dev);
1103 	__mmc_claim_host(card->host, ctx, NULL);
1104 }
1105 EXPORT_SYMBOL(mmc_get_card);
1106 
1107 /*
1108  * This is a helper function, which releases the host and drops the runtime
1109  * pm reference for the card device.
1110  */
1111 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
1112 {
1113 	struct mmc_host *host = card->host;
1114 
1115 	WARN_ON(ctx && host->claimer != ctx);
1116 
1117 	mmc_release_host(host);
1118 	pm_runtime_mark_last_busy(&card->dev);
1119 	pm_runtime_put_autosuspend(&card->dev);
1120 }
1121 EXPORT_SYMBOL(mmc_put_card);
1122 
1123 /*
1124  * Internal function that does the actual ios call to the host driver,
1125  * optionally printing some debug output.
1126  */
1127 static inline void mmc_set_ios(struct mmc_host *host)
1128 {
1129 	struct mmc_ios *ios = &host->ios;
1130 
1131 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1132 		"width %u timing %u\n",
1133 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1134 		 ios->power_mode, ios->chip_select, ios->vdd,
1135 		 1 << ios->bus_width, ios->timing);
1136 
1137 	host->ops->set_ios(host, ios);
1138 }
1139 
1140 /*
1141  * Control chip select pin on a host.
1142  */
1143 void mmc_set_chip_select(struct mmc_host *host, int mode)
1144 {
1145 	host->ios.chip_select = mode;
1146 	mmc_set_ios(host);
1147 }
1148 
1149 /*
1150  * Sets the host clock to the highest possible frequency that
1151  * is below "hz".
1152  */
1153 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1154 {
1155 	WARN_ON(hz && hz < host->f_min);
1156 
1157 	if (hz > host->f_max)
1158 		hz = host->f_max;
1159 
1160 	host->ios.clock = hz;
1161 	mmc_set_ios(host);
1162 }
1163 
1164 int mmc_execute_tuning(struct mmc_card *card)
1165 {
1166 	struct mmc_host *host = card->host;
1167 	u32 opcode;
1168 	int err;
1169 
1170 	if (!host->ops->execute_tuning)
1171 		return 0;
1172 
1173 	if (host->cqe_on)
1174 		host->cqe_ops->cqe_off(host);
1175 
1176 	if (mmc_card_mmc(card))
1177 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1178 	else
1179 		opcode = MMC_SEND_TUNING_BLOCK;
1180 
1181 	err = host->ops->execute_tuning(host, opcode);
1182 
1183 	if (err)
1184 		pr_err("%s: tuning execution failed: %d\n",
1185 			mmc_hostname(host), err);
1186 	else
1187 		mmc_retune_enable(host);
1188 
1189 	return err;
1190 }
1191 
1192 /*
1193  * Change the bus mode (open drain/push-pull) of a host.
1194  */
1195 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1196 {
1197 	host->ios.bus_mode = mode;
1198 	mmc_set_ios(host);
1199 }
1200 
1201 /*
1202  * Change data bus width of a host.
1203  */
1204 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1205 {
1206 	host->ios.bus_width = width;
1207 	mmc_set_ios(host);
1208 }
1209 
1210 /*
1211  * Set initial state after a power cycle or a hw_reset.
1212  */
1213 void mmc_set_initial_state(struct mmc_host *host)
1214 {
1215 	if (host->cqe_on)
1216 		host->cqe_ops->cqe_off(host);
1217 
1218 	mmc_retune_disable(host);
1219 
1220 	if (mmc_host_is_spi(host))
1221 		host->ios.chip_select = MMC_CS_HIGH;
1222 	else
1223 		host->ios.chip_select = MMC_CS_DONTCARE;
1224 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1225 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1226 	host->ios.timing = MMC_TIMING_LEGACY;
1227 	host->ios.drv_type = 0;
1228 	host->ios.enhanced_strobe = false;
1229 
1230 	/*
1231 	 * Make sure we are in non-enhanced strobe mode before we
1232 	 * actually enable it in ext_csd.
1233 	 */
1234 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1235 	     host->ops->hs400_enhanced_strobe)
1236 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1237 
1238 	mmc_set_ios(host);
1239 }
1240 
1241 /**
1242  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1243  * @vdd:	voltage (mV)
1244  * @low_bits:	prefer low bits in boundary cases
1245  *
1246  * This function returns the OCR bit number according to the provided @vdd
1247  * value. If conversion is not possible a negative errno value returned.
1248  *
1249  * Depending on the @low_bits flag the function prefers low or high OCR bits
1250  * on boundary voltages. For example,
1251  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1252  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1253  *
1254  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1255  */
1256 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1257 {
1258 	const int max_bit = ilog2(MMC_VDD_35_36);
1259 	int bit;
1260 
1261 	if (vdd < 1650 || vdd > 3600)
1262 		return -EINVAL;
1263 
1264 	if (vdd >= 1650 && vdd <= 1950)
1265 		return ilog2(MMC_VDD_165_195);
1266 
1267 	if (low_bits)
1268 		vdd -= 1;
1269 
1270 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1271 	bit = (vdd - 2000) / 100 + 8;
1272 	if (bit > max_bit)
1273 		return max_bit;
1274 	return bit;
1275 }
1276 
1277 /**
1278  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1279  * @vdd_min:	minimum voltage value (mV)
1280  * @vdd_max:	maximum voltage value (mV)
1281  *
1282  * This function returns the OCR mask bits according to the provided @vdd_min
1283  * and @vdd_max values. If conversion is not possible the function returns 0.
1284  *
1285  * Notes wrt boundary cases:
1286  * This function sets the OCR bits for all boundary voltages, for example
1287  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1288  * MMC_VDD_34_35 mask.
1289  */
1290 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1291 {
1292 	u32 mask = 0;
1293 
1294 	if (vdd_max < vdd_min)
1295 		return 0;
1296 
1297 	/* Prefer high bits for the boundary vdd_max values. */
1298 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1299 	if (vdd_max < 0)
1300 		return 0;
1301 
1302 	/* Prefer low bits for the boundary vdd_min values. */
1303 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1304 	if (vdd_min < 0)
1305 		return 0;
1306 
1307 	/* Fill the mask, from max bit to min bit. */
1308 	while (vdd_max >= vdd_min)
1309 		mask |= 1 << vdd_max--;
1310 
1311 	return mask;
1312 }
1313 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1314 
1315 #ifdef CONFIG_OF
1316 
1317 /**
1318  * mmc_of_parse_voltage - return mask of supported voltages
1319  * @np: The device node need to be parsed.
1320  * @mask: mask of voltages available for MMC/SD/SDIO
1321  *
1322  * Parse the "voltage-ranges" DT property, returning zero if it is not
1323  * found, negative errno if the voltage-range specification is invalid,
1324  * or one if the voltage-range is specified and successfully parsed.
1325  */
1326 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1327 {
1328 	const u32 *voltage_ranges;
1329 	int num_ranges, i;
1330 
1331 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1332 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1333 	if (!voltage_ranges) {
1334 		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1335 		return 0;
1336 	}
1337 	if (!num_ranges) {
1338 		pr_err("%pOF: voltage-ranges empty\n", np);
1339 		return -EINVAL;
1340 	}
1341 
1342 	for (i = 0; i < num_ranges; i++) {
1343 		const int j = i * 2;
1344 		u32 ocr_mask;
1345 
1346 		ocr_mask = mmc_vddrange_to_ocrmask(
1347 				be32_to_cpu(voltage_ranges[j]),
1348 				be32_to_cpu(voltage_ranges[j + 1]));
1349 		if (!ocr_mask) {
1350 			pr_err("%pOF: voltage-range #%d is invalid\n",
1351 				np, i);
1352 			return -EINVAL;
1353 		}
1354 		*mask |= ocr_mask;
1355 	}
1356 
1357 	return 1;
1358 }
1359 EXPORT_SYMBOL(mmc_of_parse_voltage);
1360 
1361 #endif /* CONFIG_OF */
1362 
1363 static int mmc_of_get_func_num(struct device_node *node)
1364 {
1365 	u32 reg;
1366 	int ret;
1367 
1368 	ret = of_property_read_u32(node, "reg", &reg);
1369 	if (ret < 0)
1370 		return ret;
1371 
1372 	return reg;
1373 }
1374 
1375 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1376 		unsigned func_num)
1377 {
1378 	struct device_node *node;
1379 
1380 	if (!host->parent || !host->parent->of_node)
1381 		return NULL;
1382 
1383 	for_each_child_of_node(host->parent->of_node, node) {
1384 		if (mmc_of_get_func_num(node) == func_num)
1385 			return node;
1386 	}
1387 
1388 	return NULL;
1389 }
1390 
1391 #ifdef CONFIG_REGULATOR
1392 
1393 /**
1394  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1395  * @vdd_bit:	OCR bit number
1396  * @min_uV:	minimum voltage value (mV)
1397  * @max_uV:	maximum voltage value (mV)
1398  *
1399  * This function returns the voltage range according to the provided OCR
1400  * bit number. If conversion is not possible a negative errno value returned.
1401  */
1402 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1403 {
1404 	int		tmp;
1405 
1406 	if (!vdd_bit)
1407 		return -EINVAL;
1408 
1409 	/*
1410 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1411 	 * bits this regulator doesn't quite support ... don't
1412 	 * be too picky, most cards and regulators are OK with
1413 	 * a 0.1V range goof (it's a small error percentage).
1414 	 */
1415 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1416 	if (tmp == 0) {
1417 		*min_uV = 1650 * 1000;
1418 		*max_uV = 1950 * 1000;
1419 	} else {
1420 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1421 		*max_uV = *min_uV + 100 * 1000;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 /**
1428  * mmc_regulator_get_ocrmask - return mask of supported voltages
1429  * @supply: regulator to use
1430  *
1431  * This returns either a negative errno, or a mask of voltages that
1432  * can be provided to MMC/SD/SDIO devices using the specified voltage
1433  * regulator.  This would normally be called before registering the
1434  * MMC host adapter.
1435  */
1436 int mmc_regulator_get_ocrmask(struct regulator *supply)
1437 {
1438 	int			result = 0;
1439 	int			count;
1440 	int			i;
1441 	int			vdd_uV;
1442 	int			vdd_mV;
1443 
1444 	count = regulator_count_voltages(supply);
1445 	if (count < 0)
1446 		return count;
1447 
1448 	for (i = 0; i < count; i++) {
1449 		vdd_uV = regulator_list_voltage(supply, i);
1450 		if (vdd_uV <= 0)
1451 			continue;
1452 
1453 		vdd_mV = vdd_uV / 1000;
1454 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1455 	}
1456 
1457 	if (!result) {
1458 		vdd_uV = regulator_get_voltage(supply);
1459 		if (vdd_uV <= 0)
1460 			return vdd_uV;
1461 
1462 		vdd_mV = vdd_uV / 1000;
1463 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1464 	}
1465 
1466 	return result;
1467 }
1468 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1469 
1470 /**
1471  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1472  * @mmc: the host to regulate
1473  * @supply: regulator to use
1474  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1475  *
1476  * Returns zero on success, else negative errno.
1477  *
1478  * MMC host drivers may use this to enable or disable a regulator using
1479  * a particular supply voltage.  This would normally be called from the
1480  * set_ios() method.
1481  */
1482 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1483 			struct regulator *supply,
1484 			unsigned short vdd_bit)
1485 {
1486 	int			result = 0;
1487 	int			min_uV, max_uV;
1488 
1489 	if (vdd_bit) {
1490 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1491 
1492 		result = regulator_set_voltage(supply, min_uV, max_uV);
1493 		if (result == 0 && !mmc->regulator_enabled) {
1494 			result = regulator_enable(supply);
1495 			if (!result)
1496 				mmc->regulator_enabled = true;
1497 		}
1498 	} else if (mmc->regulator_enabled) {
1499 		result = regulator_disable(supply);
1500 		if (result == 0)
1501 			mmc->regulator_enabled = false;
1502 	}
1503 
1504 	if (result)
1505 		dev_err(mmc_dev(mmc),
1506 			"could not set regulator OCR (%d)\n", result);
1507 	return result;
1508 }
1509 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1510 
1511 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1512 						  int min_uV, int target_uV,
1513 						  int max_uV)
1514 {
1515 	/*
1516 	 * Check if supported first to avoid errors since we may try several
1517 	 * signal levels during power up and don't want to show errors.
1518 	 */
1519 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1520 		return -EINVAL;
1521 
1522 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1523 					     max_uV);
1524 }
1525 
1526 /**
1527  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1528  *
1529  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1530  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1531  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1532  * SD card spec also define VQMMC in terms of VMMC.
1533  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1534  *
1535  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1536  * requested voltage.  This is definitely a good idea for UHS where there's a
1537  * separate regulator on the card that's trying to make 1.8V and it's best if
1538  * we match.
1539  *
1540  * This function is expected to be used by a controller's
1541  * start_signal_voltage_switch() function.
1542  */
1543 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1544 {
1545 	struct device *dev = mmc_dev(mmc);
1546 	int ret, volt, min_uV, max_uV;
1547 
1548 	/* If no vqmmc supply then we can't change the voltage */
1549 	if (IS_ERR(mmc->supply.vqmmc))
1550 		return -EINVAL;
1551 
1552 	switch (ios->signal_voltage) {
1553 	case MMC_SIGNAL_VOLTAGE_120:
1554 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1555 						1100000, 1200000, 1300000);
1556 	case MMC_SIGNAL_VOLTAGE_180:
1557 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1558 						1700000, 1800000, 1950000);
1559 	case MMC_SIGNAL_VOLTAGE_330:
1560 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1561 		if (ret < 0)
1562 			return ret;
1563 
1564 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1565 			__func__, volt, max_uV);
1566 
1567 		min_uV = max(volt - 300000, 2700000);
1568 		max_uV = min(max_uV + 200000, 3600000);
1569 
1570 		/*
1571 		 * Due to a limitation in the current implementation of
1572 		 * regulator_set_voltage_triplet() which is taking the lowest
1573 		 * voltage possible if below the target, search for a suitable
1574 		 * voltage in two steps and try to stay close to vmmc
1575 		 * with a 0.3V tolerance at first.
1576 		 */
1577 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1578 						min_uV, volt, max_uV))
1579 			return 0;
1580 
1581 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1582 						2700000, volt, 3600000);
1583 	default:
1584 		return -EINVAL;
1585 	}
1586 }
1587 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1588 
1589 #endif /* CONFIG_REGULATOR */
1590 
1591 /**
1592  * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1593  * @mmc: the host to regulate
1594  *
1595  * Returns 0 or errno. errno should be handled, it is either a critical error
1596  * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1597  * regulators have been found because they all are optional. If you require
1598  * certain regulators, you need to check separately in your driver if they got
1599  * populated after calling this function.
1600  */
1601 int mmc_regulator_get_supply(struct mmc_host *mmc)
1602 {
1603 	struct device *dev = mmc_dev(mmc);
1604 	int ret;
1605 
1606 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1607 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1608 
1609 	if (IS_ERR(mmc->supply.vmmc)) {
1610 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1611 			return -EPROBE_DEFER;
1612 		dev_dbg(dev, "No vmmc regulator found\n");
1613 	} else {
1614 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1615 		if (ret > 0)
1616 			mmc->ocr_avail = ret;
1617 		else
1618 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1619 	}
1620 
1621 	if (IS_ERR(mmc->supply.vqmmc)) {
1622 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1623 			return -EPROBE_DEFER;
1624 		dev_dbg(dev, "No vqmmc regulator found\n");
1625 	}
1626 
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1630 
1631 /*
1632  * Mask off any voltages we don't support and select
1633  * the lowest voltage
1634  */
1635 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1636 {
1637 	int bit;
1638 
1639 	/*
1640 	 * Sanity check the voltages that the card claims to
1641 	 * support.
1642 	 */
1643 	if (ocr & 0x7F) {
1644 		dev_warn(mmc_dev(host),
1645 		"card claims to support voltages below defined range\n");
1646 		ocr &= ~0x7F;
1647 	}
1648 
1649 	ocr &= host->ocr_avail;
1650 	if (!ocr) {
1651 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1652 		return 0;
1653 	}
1654 
1655 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1656 		bit = ffs(ocr) - 1;
1657 		ocr &= 3 << bit;
1658 		mmc_power_cycle(host, ocr);
1659 	} else {
1660 		bit = fls(ocr) - 1;
1661 		ocr &= 3 << bit;
1662 		if (bit != host->ios.vdd)
1663 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1664 	}
1665 
1666 	return ocr;
1667 }
1668 
1669 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1670 {
1671 	int err = 0;
1672 	int old_signal_voltage = host->ios.signal_voltage;
1673 
1674 	host->ios.signal_voltage = signal_voltage;
1675 	if (host->ops->start_signal_voltage_switch)
1676 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1677 
1678 	if (err)
1679 		host->ios.signal_voltage = old_signal_voltage;
1680 
1681 	return err;
1682 
1683 }
1684 
1685 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1686 {
1687 	u32 clock;
1688 
1689 	/*
1690 	 * During a signal voltage level switch, the clock must be gated
1691 	 * for 5 ms according to the SD spec
1692 	 */
1693 	clock = host->ios.clock;
1694 	host->ios.clock = 0;
1695 	mmc_set_ios(host);
1696 
1697 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1698 		return -EAGAIN;
1699 
1700 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1701 	mmc_delay(10);
1702 	host->ios.clock = clock;
1703 	mmc_set_ios(host);
1704 
1705 	return 0;
1706 }
1707 
1708 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1709 {
1710 	struct mmc_command cmd = {};
1711 	int err = 0;
1712 
1713 	/*
1714 	 * If we cannot switch voltages, return failure so the caller
1715 	 * can continue without UHS mode
1716 	 */
1717 	if (!host->ops->start_signal_voltage_switch)
1718 		return -EPERM;
1719 	if (!host->ops->card_busy)
1720 		pr_warn("%s: cannot verify signal voltage switch\n",
1721 			mmc_hostname(host));
1722 
1723 	cmd.opcode = SD_SWITCH_VOLTAGE;
1724 	cmd.arg = 0;
1725 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1726 
1727 	err = mmc_wait_for_cmd(host, &cmd, 0);
1728 	if (err)
1729 		return err;
1730 
1731 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1732 		return -EIO;
1733 
1734 	/*
1735 	 * The card should drive cmd and dat[0:3] low immediately
1736 	 * after the response of cmd11, but wait 1 ms to be sure
1737 	 */
1738 	mmc_delay(1);
1739 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1740 		err = -EAGAIN;
1741 		goto power_cycle;
1742 	}
1743 
1744 	if (mmc_host_set_uhs_voltage(host)) {
1745 		/*
1746 		 * Voltages may not have been switched, but we've already
1747 		 * sent CMD11, so a power cycle is required anyway
1748 		 */
1749 		err = -EAGAIN;
1750 		goto power_cycle;
1751 	}
1752 
1753 	/* Wait for at least 1 ms according to spec */
1754 	mmc_delay(1);
1755 
1756 	/*
1757 	 * Failure to switch is indicated by the card holding
1758 	 * dat[0:3] low
1759 	 */
1760 	if (host->ops->card_busy && host->ops->card_busy(host))
1761 		err = -EAGAIN;
1762 
1763 power_cycle:
1764 	if (err) {
1765 		pr_debug("%s: Signal voltage switch failed, "
1766 			"power cycling card\n", mmc_hostname(host));
1767 		mmc_power_cycle(host, ocr);
1768 	}
1769 
1770 	return err;
1771 }
1772 
1773 /*
1774  * Select timing parameters for host.
1775  */
1776 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1777 {
1778 	host->ios.timing = timing;
1779 	mmc_set_ios(host);
1780 }
1781 
1782 /*
1783  * Select appropriate driver type for host.
1784  */
1785 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1786 {
1787 	host->ios.drv_type = drv_type;
1788 	mmc_set_ios(host);
1789 }
1790 
1791 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1792 			      int card_drv_type, int *drv_type)
1793 {
1794 	struct mmc_host *host = card->host;
1795 	int host_drv_type = SD_DRIVER_TYPE_B;
1796 
1797 	*drv_type = 0;
1798 
1799 	if (!host->ops->select_drive_strength)
1800 		return 0;
1801 
1802 	/* Use SD definition of driver strength for hosts */
1803 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1804 		host_drv_type |= SD_DRIVER_TYPE_A;
1805 
1806 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1807 		host_drv_type |= SD_DRIVER_TYPE_C;
1808 
1809 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1810 		host_drv_type |= SD_DRIVER_TYPE_D;
1811 
1812 	/*
1813 	 * The drive strength that the hardware can support
1814 	 * depends on the board design.  Pass the appropriate
1815 	 * information and let the hardware specific code
1816 	 * return what is possible given the options
1817 	 */
1818 	return host->ops->select_drive_strength(card, max_dtr,
1819 						host_drv_type,
1820 						card_drv_type,
1821 						drv_type);
1822 }
1823 
1824 /*
1825  * Apply power to the MMC stack.  This is a two-stage process.
1826  * First, we enable power to the card without the clock running.
1827  * We then wait a bit for the power to stabilise.  Finally,
1828  * enable the bus drivers and clock to the card.
1829  *
1830  * We must _NOT_ enable the clock prior to power stablising.
1831  *
1832  * If a host does all the power sequencing itself, ignore the
1833  * initial MMC_POWER_UP stage.
1834  */
1835 void mmc_power_up(struct mmc_host *host, u32 ocr)
1836 {
1837 	if (host->ios.power_mode == MMC_POWER_ON)
1838 		return;
1839 
1840 	mmc_pwrseq_pre_power_on(host);
1841 
1842 	host->ios.vdd = fls(ocr) - 1;
1843 	host->ios.power_mode = MMC_POWER_UP;
1844 	/* Set initial state and call mmc_set_ios */
1845 	mmc_set_initial_state(host);
1846 
1847 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1848 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1849 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1850 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1851 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1852 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1853 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1854 
1855 	/*
1856 	 * This delay should be sufficient to allow the power supply
1857 	 * to reach the minimum voltage.
1858 	 */
1859 	mmc_delay(10);
1860 
1861 	mmc_pwrseq_post_power_on(host);
1862 
1863 	host->ios.clock = host->f_init;
1864 
1865 	host->ios.power_mode = MMC_POWER_ON;
1866 	mmc_set_ios(host);
1867 
1868 	/*
1869 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1870 	 * time required to reach a stable voltage.
1871 	 */
1872 	mmc_delay(10);
1873 }
1874 
1875 void mmc_power_off(struct mmc_host *host)
1876 {
1877 	if (host->ios.power_mode == MMC_POWER_OFF)
1878 		return;
1879 
1880 	mmc_pwrseq_power_off(host);
1881 
1882 	host->ios.clock = 0;
1883 	host->ios.vdd = 0;
1884 
1885 	host->ios.power_mode = MMC_POWER_OFF;
1886 	/* Set initial state and call mmc_set_ios */
1887 	mmc_set_initial_state(host);
1888 
1889 	/*
1890 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1891 	 * XO-1.5, require a short delay after poweroff before the card
1892 	 * can be successfully turned on again.
1893 	 */
1894 	mmc_delay(1);
1895 }
1896 
1897 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1898 {
1899 	mmc_power_off(host);
1900 	/* Wait at least 1 ms according to SD spec */
1901 	mmc_delay(1);
1902 	mmc_power_up(host, ocr);
1903 }
1904 
1905 /*
1906  * Cleanup when the last reference to the bus operator is dropped.
1907  */
1908 static void __mmc_release_bus(struct mmc_host *host)
1909 {
1910 	WARN_ON(!host->bus_dead);
1911 
1912 	host->bus_ops = NULL;
1913 }
1914 
1915 /*
1916  * Increase reference count of bus operator
1917  */
1918 static inline void mmc_bus_get(struct mmc_host *host)
1919 {
1920 	unsigned long flags;
1921 
1922 	spin_lock_irqsave(&host->lock, flags);
1923 	host->bus_refs++;
1924 	spin_unlock_irqrestore(&host->lock, flags);
1925 }
1926 
1927 /*
1928  * Decrease reference count of bus operator and free it if
1929  * it is the last reference.
1930  */
1931 static inline void mmc_bus_put(struct mmc_host *host)
1932 {
1933 	unsigned long flags;
1934 
1935 	spin_lock_irqsave(&host->lock, flags);
1936 	host->bus_refs--;
1937 	if ((host->bus_refs == 0) && host->bus_ops)
1938 		__mmc_release_bus(host);
1939 	spin_unlock_irqrestore(&host->lock, flags);
1940 }
1941 
1942 /*
1943  * Assign a mmc bus handler to a host. Only one bus handler may control a
1944  * host at any given time.
1945  */
1946 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1947 {
1948 	unsigned long flags;
1949 
1950 	WARN_ON(!host->claimed);
1951 
1952 	spin_lock_irqsave(&host->lock, flags);
1953 
1954 	WARN_ON(host->bus_ops);
1955 	WARN_ON(host->bus_refs);
1956 
1957 	host->bus_ops = ops;
1958 	host->bus_refs = 1;
1959 	host->bus_dead = 0;
1960 
1961 	spin_unlock_irqrestore(&host->lock, flags);
1962 }
1963 
1964 /*
1965  * Remove the current bus handler from a host.
1966  */
1967 void mmc_detach_bus(struct mmc_host *host)
1968 {
1969 	unsigned long flags;
1970 
1971 	WARN_ON(!host->claimed);
1972 	WARN_ON(!host->bus_ops);
1973 
1974 	spin_lock_irqsave(&host->lock, flags);
1975 
1976 	host->bus_dead = 1;
1977 
1978 	spin_unlock_irqrestore(&host->lock, flags);
1979 
1980 	mmc_bus_put(host);
1981 }
1982 
1983 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1984 				bool cd_irq)
1985 {
1986 	/*
1987 	 * If the device is configured as wakeup, we prevent a new sleep for
1988 	 * 5 s to give provision for user space to consume the event.
1989 	 */
1990 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1991 		device_can_wakeup(mmc_dev(host)))
1992 		pm_wakeup_event(mmc_dev(host), 5000);
1993 
1994 	host->detect_change = 1;
1995 	mmc_schedule_delayed_work(&host->detect, delay);
1996 }
1997 
1998 /**
1999  *	mmc_detect_change - process change of state on a MMC socket
2000  *	@host: host which changed state.
2001  *	@delay: optional delay to wait before detection (jiffies)
2002  *
2003  *	MMC drivers should call this when they detect a card has been
2004  *	inserted or removed. The MMC layer will confirm that any
2005  *	present card is still functional, and initialize any newly
2006  *	inserted.
2007  */
2008 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
2009 {
2010 	_mmc_detect_change(host, delay, true);
2011 }
2012 EXPORT_SYMBOL(mmc_detect_change);
2013 
2014 void mmc_init_erase(struct mmc_card *card)
2015 {
2016 	unsigned int sz;
2017 
2018 	if (is_power_of_2(card->erase_size))
2019 		card->erase_shift = ffs(card->erase_size) - 1;
2020 	else
2021 		card->erase_shift = 0;
2022 
2023 	/*
2024 	 * It is possible to erase an arbitrarily large area of an SD or MMC
2025 	 * card.  That is not desirable because it can take a long time
2026 	 * (minutes) potentially delaying more important I/O, and also the
2027 	 * timeout calculations become increasingly hugely over-estimated.
2028 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
2029 	 * to that size and alignment.
2030 	 *
2031 	 * For SD cards that define Allocation Unit size, limit erases to one
2032 	 * Allocation Unit at a time.
2033 	 * For MMC, have a stab at ai good value and for modern cards it will
2034 	 * end up being 4MiB. Note that if the value is too small, it can end
2035 	 * up taking longer to erase. Also note, erase_size is already set to
2036 	 * High Capacity Erase Size if available when this function is called.
2037 	 */
2038 	if (mmc_card_sd(card) && card->ssr.au) {
2039 		card->pref_erase = card->ssr.au;
2040 		card->erase_shift = ffs(card->ssr.au) - 1;
2041 	} else if (card->erase_size) {
2042 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2043 		if (sz < 128)
2044 			card->pref_erase = 512 * 1024 / 512;
2045 		else if (sz < 512)
2046 			card->pref_erase = 1024 * 1024 / 512;
2047 		else if (sz < 1024)
2048 			card->pref_erase = 2 * 1024 * 1024 / 512;
2049 		else
2050 			card->pref_erase = 4 * 1024 * 1024 / 512;
2051 		if (card->pref_erase < card->erase_size)
2052 			card->pref_erase = card->erase_size;
2053 		else {
2054 			sz = card->pref_erase % card->erase_size;
2055 			if (sz)
2056 				card->pref_erase += card->erase_size - sz;
2057 		}
2058 	} else
2059 		card->pref_erase = 0;
2060 }
2061 
2062 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2063 				          unsigned int arg, unsigned int qty)
2064 {
2065 	unsigned int erase_timeout;
2066 
2067 	if (arg == MMC_DISCARD_ARG ||
2068 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2069 		erase_timeout = card->ext_csd.trim_timeout;
2070 	} else if (card->ext_csd.erase_group_def & 1) {
2071 		/* High Capacity Erase Group Size uses HC timeouts */
2072 		if (arg == MMC_TRIM_ARG)
2073 			erase_timeout = card->ext_csd.trim_timeout;
2074 		else
2075 			erase_timeout = card->ext_csd.hc_erase_timeout;
2076 	} else {
2077 		/* CSD Erase Group Size uses write timeout */
2078 		unsigned int mult = (10 << card->csd.r2w_factor);
2079 		unsigned int timeout_clks = card->csd.taac_clks * mult;
2080 		unsigned int timeout_us;
2081 
2082 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
2083 		if (card->csd.taac_ns < 1000000)
2084 			timeout_us = (card->csd.taac_ns * mult) / 1000;
2085 		else
2086 			timeout_us = (card->csd.taac_ns / 1000) * mult;
2087 
2088 		/*
2089 		 * ios.clock is only a target.  The real clock rate might be
2090 		 * less but not that much less, so fudge it by multiplying by 2.
2091 		 */
2092 		timeout_clks <<= 1;
2093 		timeout_us += (timeout_clks * 1000) /
2094 			      (card->host->ios.clock / 1000);
2095 
2096 		erase_timeout = timeout_us / 1000;
2097 
2098 		/*
2099 		 * Theoretically, the calculation could underflow so round up
2100 		 * to 1ms in that case.
2101 		 */
2102 		if (!erase_timeout)
2103 			erase_timeout = 1;
2104 	}
2105 
2106 	/* Multiplier for secure operations */
2107 	if (arg & MMC_SECURE_ARGS) {
2108 		if (arg == MMC_SECURE_ERASE_ARG)
2109 			erase_timeout *= card->ext_csd.sec_erase_mult;
2110 		else
2111 			erase_timeout *= card->ext_csd.sec_trim_mult;
2112 	}
2113 
2114 	erase_timeout *= qty;
2115 
2116 	/*
2117 	 * Ensure at least a 1 second timeout for SPI as per
2118 	 * 'mmc_set_data_timeout()'
2119 	 */
2120 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2121 		erase_timeout = 1000;
2122 
2123 	return erase_timeout;
2124 }
2125 
2126 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2127 					 unsigned int arg,
2128 					 unsigned int qty)
2129 {
2130 	unsigned int erase_timeout;
2131 
2132 	if (card->ssr.erase_timeout) {
2133 		/* Erase timeout specified in SD Status Register (SSR) */
2134 		erase_timeout = card->ssr.erase_timeout * qty +
2135 				card->ssr.erase_offset;
2136 	} else {
2137 		/*
2138 		 * Erase timeout not specified in SD Status Register (SSR) so
2139 		 * use 250ms per write block.
2140 		 */
2141 		erase_timeout = 250 * qty;
2142 	}
2143 
2144 	/* Must not be less than 1 second */
2145 	if (erase_timeout < 1000)
2146 		erase_timeout = 1000;
2147 
2148 	return erase_timeout;
2149 }
2150 
2151 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2152 				      unsigned int arg,
2153 				      unsigned int qty)
2154 {
2155 	if (mmc_card_sd(card))
2156 		return mmc_sd_erase_timeout(card, arg, qty);
2157 	else
2158 		return mmc_mmc_erase_timeout(card, arg, qty);
2159 }
2160 
2161 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2162 			unsigned int to, unsigned int arg)
2163 {
2164 	struct mmc_command cmd = {};
2165 	unsigned int qty = 0, busy_timeout = 0;
2166 	bool use_r1b_resp = false;
2167 	unsigned long timeout;
2168 	int err;
2169 
2170 	mmc_retune_hold(card->host);
2171 
2172 	/*
2173 	 * qty is used to calculate the erase timeout which depends on how many
2174 	 * erase groups (or allocation units in SD terminology) are affected.
2175 	 * We count erasing part of an erase group as one erase group.
2176 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2177 	 * erase group size is almost certainly also power of 2, but it does not
2178 	 * seem to insist on that in the JEDEC standard, so we fall back to
2179 	 * division in that case.  SD may not specify an allocation unit size,
2180 	 * in which case the timeout is based on the number of write blocks.
2181 	 *
2182 	 * Note that the timeout for secure trim 2 will only be correct if the
2183 	 * number of erase groups specified is the same as the total of all
2184 	 * preceding secure trim 1 commands.  Since the power may have been
2185 	 * lost since the secure trim 1 commands occurred, it is generally
2186 	 * impossible to calculate the secure trim 2 timeout correctly.
2187 	 */
2188 	if (card->erase_shift)
2189 		qty += ((to >> card->erase_shift) -
2190 			(from >> card->erase_shift)) + 1;
2191 	else if (mmc_card_sd(card))
2192 		qty += to - from + 1;
2193 	else
2194 		qty += ((to / card->erase_size) -
2195 			(from / card->erase_size)) + 1;
2196 
2197 	if (!mmc_card_blockaddr(card)) {
2198 		from <<= 9;
2199 		to <<= 9;
2200 	}
2201 
2202 	if (mmc_card_sd(card))
2203 		cmd.opcode = SD_ERASE_WR_BLK_START;
2204 	else
2205 		cmd.opcode = MMC_ERASE_GROUP_START;
2206 	cmd.arg = from;
2207 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2208 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2209 	if (err) {
2210 		pr_err("mmc_erase: group start error %d, "
2211 		       "status %#x\n", err, cmd.resp[0]);
2212 		err = -EIO;
2213 		goto out;
2214 	}
2215 
2216 	memset(&cmd, 0, sizeof(struct mmc_command));
2217 	if (mmc_card_sd(card))
2218 		cmd.opcode = SD_ERASE_WR_BLK_END;
2219 	else
2220 		cmd.opcode = MMC_ERASE_GROUP_END;
2221 	cmd.arg = to;
2222 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2223 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2224 	if (err) {
2225 		pr_err("mmc_erase: group end error %d, status %#x\n",
2226 		       err, cmd.resp[0]);
2227 		err = -EIO;
2228 		goto out;
2229 	}
2230 
2231 	memset(&cmd, 0, sizeof(struct mmc_command));
2232 	cmd.opcode = MMC_ERASE;
2233 	cmd.arg = arg;
2234 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2235 	/*
2236 	 * If the host controller supports busy signalling and the timeout for
2237 	 * the erase operation does not exceed the max_busy_timeout, we should
2238 	 * use R1B response. Or we need to prevent the host from doing hw busy
2239 	 * detection, which is done by converting to a R1 response instead.
2240 	 */
2241 	if (card->host->max_busy_timeout &&
2242 	    busy_timeout > card->host->max_busy_timeout) {
2243 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2244 	} else {
2245 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2246 		cmd.busy_timeout = busy_timeout;
2247 		use_r1b_resp = true;
2248 	}
2249 
2250 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2251 	if (err) {
2252 		pr_err("mmc_erase: erase error %d, status %#x\n",
2253 		       err, cmd.resp[0]);
2254 		err = -EIO;
2255 		goto out;
2256 	}
2257 
2258 	if (mmc_host_is_spi(card->host))
2259 		goto out;
2260 
2261 	/*
2262 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2263 	 * shall be avoided.
2264 	 */
2265 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2266 		goto out;
2267 
2268 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2269 	do {
2270 		memset(&cmd, 0, sizeof(struct mmc_command));
2271 		cmd.opcode = MMC_SEND_STATUS;
2272 		cmd.arg = card->rca << 16;
2273 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2274 		/* Do not retry else we can't see errors */
2275 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2276 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2277 			pr_err("error %d requesting status %#x\n",
2278 				err, cmd.resp[0]);
2279 			err = -EIO;
2280 			goto out;
2281 		}
2282 
2283 		/* Timeout if the device never becomes ready for data and
2284 		 * never leaves the program state.
2285 		 */
2286 		if (time_after(jiffies, timeout)) {
2287 			pr_err("%s: Card stuck in programming state! %s\n",
2288 				mmc_hostname(card->host), __func__);
2289 			err =  -EIO;
2290 			goto out;
2291 		}
2292 
2293 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2294 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2295 out:
2296 	mmc_retune_release(card->host);
2297 	return err;
2298 }
2299 
2300 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2301 					 unsigned int *from,
2302 					 unsigned int *to,
2303 					 unsigned int nr)
2304 {
2305 	unsigned int from_new = *from, nr_new = nr, rem;
2306 
2307 	/*
2308 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2309 	 * to align the erase size efficiently.
2310 	 */
2311 	if (is_power_of_2(card->erase_size)) {
2312 		unsigned int temp = from_new;
2313 
2314 		from_new = round_up(temp, card->erase_size);
2315 		rem = from_new - temp;
2316 
2317 		if (nr_new > rem)
2318 			nr_new -= rem;
2319 		else
2320 			return 0;
2321 
2322 		nr_new = round_down(nr_new, card->erase_size);
2323 	} else {
2324 		rem = from_new % card->erase_size;
2325 		if (rem) {
2326 			rem = card->erase_size - rem;
2327 			from_new += rem;
2328 			if (nr_new > rem)
2329 				nr_new -= rem;
2330 			else
2331 				return 0;
2332 		}
2333 
2334 		rem = nr_new % card->erase_size;
2335 		if (rem)
2336 			nr_new -= rem;
2337 	}
2338 
2339 	if (nr_new == 0)
2340 		return 0;
2341 
2342 	*to = from_new + nr_new;
2343 	*from = from_new;
2344 
2345 	return nr_new;
2346 }
2347 
2348 /**
2349  * mmc_erase - erase sectors.
2350  * @card: card to erase
2351  * @from: first sector to erase
2352  * @nr: number of sectors to erase
2353  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2354  *
2355  * Caller must claim host before calling this function.
2356  */
2357 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2358 	      unsigned int arg)
2359 {
2360 	unsigned int rem, to = from + nr;
2361 	int err;
2362 
2363 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2364 	    !(card->csd.cmdclass & CCC_ERASE))
2365 		return -EOPNOTSUPP;
2366 
2367 	if (!card->erase_size)
2368 		return -EOPNOTSUPP;
2369 
2370 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2371 		return -EOPNOTSUPP;
2372 
2373 	if ((arg & MMC_SECURE_ARGS) &&
2374 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2375 		return -EOPNOTSUPP;
2376 
2377 	if ((arg & MMC_TRIM_ARGS) &&
2378 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2379 		return -EOPNOTSUPP;
2380 
2381 	if (arg == MMC_SECURE_ERASE_ARG) {
2382 		if (from % card->erase_size || nr % card->erase_size)
2383 			return -EINVAL;
2384 	}
2385 
2386 	if (arg == MMC_ERASE_ARG)
2387 		nr = mmc_align_erase_size(card, &from, &to, nr);
2388 
2389 	if (nr == 0)
2390 		return 0;
2391 
2392 	if (to <= from)
2393 		return -EINVAL;
2394 
2395 	/* 'from' and 'to' are inclusive */
2396 	to -= 1;
2397 
2398 	/*
2399 	 * Special case where only one erase-group fits in the timeout budget:
2400 	 * If the region crosses an erase-group boundary on this particular
2401 	 * case, we will be trimming more than one erase-group which, does not
2402 	 * fit in the timeout budget of the controller, so we need to split it
2403 	 * and call mmc_do_erase() twice if necessary. This special case is
2404 	 * identified by the card->eg_boundary flag.
2405 	 */
2406 	rem = card->erase_size - (from % card->erase_size);
2407 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2408 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2409 		from += rem;
2410 		if ((err) || (to <= from))
2411 			return err;
2412 	}
2413 
2414 	return mmc_do_erase(card, from, to, arg);
2415 }
2416 EXPORT_SYMBOL(mmc_erase);
2417 
2418 int mmc_can_erase(struct mmc_card *card)
2419 {
2420 	if ((card->host->caps & MMC_CAP_ERASE) &&
2421 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2422 		return 1;
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(mmc_can_erase);
2426 
2427 int mmc_can_trim(struct mmc_card *card)
2428 {
2429 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2430 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2431 		return 1;
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL(mmc_can_trim);
2435 
2436 int mmc_can_discard(struct mmc_card *card)
2437 {
2438 	/*
2439 	 * As there's no way to detect the discard support bit at v4.5
2440 	 * use the s/w feature support filed.
2441 	 */
2442 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2443 		return 1;
2444 	return 0;
2445 }
2446 EXPORT_SYMBOL(mmc_can_discard);
2447 
2448 int mmc_can_sanitize(struct mmc_card *card)
2449 {
2450 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2451 		return 0;
2452 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2453 		return 1;
2454 	return 0;
2455 }
2456 EXPORT_SYMBOL(mmc_can_sanitize);
2457 
2458 int mmc_can_secure_erase_trim(struct mmc_card *card)
2459 {
2460 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2461 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2462 		return 1;
2463 	return 0;
2464 }
2465 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2466 
2467 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2468 			    unsigned int nr)
2469 {
2470 	if (!card->erase_size)
2471 		return 0;
2472 	if (from % card->erase_size || nr % card->erase_size)
2473 		return 0;
2474 	return 1;
2475 }
2476 EXPORT_SYMBOL(mmc_erase_group_aligned);
2477 
2478 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2479 					    unsigned int arg)
2480 {
2481 	struct mmc_host *host = card->host;
2482 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2483 	unsigned int last_timeout = 0;
2484 	unsigned int max_busy_timeout = host->max_busy_timeout ?
2485 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2486 
2487 	if (card->erase_shift) {
2488 		max_qty = UINT_MAX >> card->erase_shift;
2489 		min_qty = card->pref_erase >> card->erase_shift;
2490 	} else if (mmc_card_sd(card)) {
2491 		max_qty = UINT_MAX;
2492 		min_qty = card->pref_erase;
2493 	} else {
2494 		max_qty = UINT_MAX / card->erase_size;
2495 		min_qty = card->pref_erase / card->erase_size;
2496 	}
2497 
2498 	/*
2499 	 * We should not only use 'host->max_busy_timeout' as the limitation
2500 	 * when deciding the max discard sectors. We should set a balance value
2501 	 * to improve the erase speed, and it can not get too long timeout at
2502 	 * the same time.
2503 	 *
2504 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2505 	 * matter what size of 'host->max_busy_timeout', but if the
2506 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2507 	 * then we can continue to increase the max discard sectors until we
2508 	 * get a balance value. In cases when the 'host->max_busy_timeout'
2509 	 * isn't specified, use the default max erase timeout.
2510 	 */
2511 	do {
2512 		y = 0;
2513 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2514 			timeout = mmc_erase_timeout(card, arg, qty + x);
2515 
2516 			if (qty + x > min_qty && timeout > max_busy_timeout)
2517 				break;
2518 
2519 			if (timeout < last_timeout)
2520 				break;
2521 			last_timeout = timeout;
2522 			y = x;
2523 		}
2524 		qty += y;
2525 	} while (y);
2526 
2527 	if (!qty)
2528 		return 0;
2529 
2530 	/*
2531 	 * When specifying a sector range to trim, chances are we might cross
2532 	 * an erase-group boundary even if the amount of sectors is less than
2533 	 * one erase-group.
2534 	 * If we can only fit one erase-group in the controller timeout budget,
2535 	 * we have to care that erase-group boundaries are not crossed by a
2536 	 * single trim operation. We flag that special case with "eg_boundary".
2537 	 * In all other cases we can just decrement qty and pretend that we
2538 	 * always touch (qty + 1) erase-groups as a simple optimization.
2539 	 */
2540 	if (qty == 1)
2541 		card->eg_boundary = 1;
2542 	else
2543 		qty--;
2544 
2545 	/* Convert qty to sectors */
2546 	if (card->erase_shift)
2547 		max_discard = qty << card->erase_shift;
2548 	else if (mmc_card_sd(card))
2549 		max_discard = qty + 1;
2550 	else
2551 		max_discard = qty * card->erase_size;
2552 
2553 	return max_discard;
2554 }
2555 
2556 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2557 {
2558 	struct mmc_host *host = card->host;
2559 	unsigned int max_discard, max_trim;
2560 
2561 	/*
2562 	 * Without erase_group_def set, MMC erase timeout depends on clock
2563 	 * frequence which can change.  In that case, the best choice is
2564 	 * just the preferred erase size.
2565 	 */
2566 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2567 		return card->pref_erase;
2568 
2569 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2570 	if (mmc_can_trim(card)) {
2571 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2572 		if (max_trim < max_discard)
2573 			max_discard = max_trim;
2574 	} else if (max_discard < card->erase_size) {
2575 		max_discard = 0;
2576 	}
2577 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2578 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2579 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2580 	return max_discard;
2581 }
2582 EXPORT_SYMBOL(mmc_calc_max_discard);
2583 
2584 bool mmc_card_is_blockaddr(struct mmc_card *card)
2585 {
2586 	return card ? mmc_card_blockaddr(card) : false;
2587 }
2588 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2589 
2590 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2591 {
2592 	struct mmc_command cmd = {};
2593 
2594 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2595 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2596 		return 0;
2597 
2598 	cmd.opcode = MMC_SET_BLOCKLEN;
2599 	cmd.arg = blocklen;
2600 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2601 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2602 }
2603 EXPORT_SYMBOL(mmc_set_blocklen);
2604 
2605 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2606 			bool is_rel_write)
2607 {
2608 	struct mmc_command cmd = {};
2609 
2610 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2611 	cmd.arg = blockcount & 0x0000FFFF;
2612 	if (is_rel_write)
2613 		cmd.arg |= 1 << 31;
2614 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2615 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2616 }
2617 EXPORT_SYMBOL(mmc_set_blockcount);
2618 
2619 static void mmc_hw_reset_for_init(struct mmc_host *host)
2620 {
2621 	mmc_pwrseq_reset(host);
2622 
2623 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2624 		return;
2625 	host->ops->hw_reset(host);
2626 }
2627 
2628 int mmc_hw_reset(struct mmc_host *host)
2629 {
2630 	int ret;
2631 
2632 	if (!host->card)
2633 		return -EINVAL;
2634 
2635 	mmc_bus_get(host);
2636 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2637 		mmc_bus_put(host);
2638 		return -EOPNOTSUPP;
2639 	}
2640 
2641 	ret = host->bus_ops->reset(host);
2642 	mmc_bus_put(host);
2643 
2644 	if (ret)
2645 		pr_warn("%s: tried to reset card, got error %d\n",
2646 			mmc_hostname(host), ret);
2647 
2648 	return ret;
2649 }
2650 EXPORT_SYMBOL(mmc_hw_reset);
2651 
2652 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2653 {
2654 	host->f_init = freq;
2655 
2656 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2657 		mmc_hostname(host), __func__, host->f_init);
2658 
2659 	mmc_power_up(host, host->ocr_avail);
2660 
2661 	/*
2662 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2663 	 * do a hardware reset if possible.
2664 	 */
2665 	mmc_hw_reset_for_init(host);
2666 
2667 	/*
2668 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2669 	 * if the card is being re-initialized, just send it.  CMD52
2670 	 * should be ignored by SD/eMMC cards.
2671 	 * Skip it if we already know that we do not support SDIO commands
2672 	 */
2673 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2674 		sdio_reset(host);
2675 
2676 	mmc_go_idle(host);
2677 
2678 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2679 		mmc_send_if_cond(host, host->ocr_avail);
2680 
2681 	/* Order's important: probe SDIO, then SD, then MMC */
2682 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2683 		if (!mmc_attach_sdio(host))
2684 			return 0;
2685 
2686 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2687 		if (!mmc_attach_sd(host))
2688 			return 0;
2689 
2690 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2691 		if (!mmc_attach_mmc(host))
2692 			return 0;
2693 
2694 	mmc_power_off(host);
2695 	return -EIO;
2696 }
2697 
2698 int _mmc_detect_card_removed(struct mmc_host *host)
2699 {
2700 	int ret;
2701 
2702 	if (!host->card || mmc_card_removed(host->card))
2703 		return 1;
2704 
2705 	ret = host->bus_ops->alive(host);
2706 
2707 	/*
2708 	 * Card detect status and alive check may be out of sync if card is
2709 	 * removed slowly, when card detect switch changes while card/slot
2710 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2711 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2712 	 * detect work 200ms later for this case.
2713 	 */
2714 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2715 		mmc_detect_change(host, msecs_to_jiffies(200));
2716 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2717 	}
2718 
2719 	if (ret) {
2720 		mmc_card_set_removed(host->card);
2721 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2722 	}
2723 
2724 	return ret;
2725 }
2726 
2727 int mmc_detect_card_removed(struct mmc_host *host)
2728 {
2729 	struct mmc_card *card = host->card;
2730 	int ret;
2731 
2732 	WARN_ON(!host->claimed);
2733 
2734 	if (!card)
2735 		return 1;
2736 
2737 	if (!mmc_card_is_removable(host))
2738 		return 0;
2739 
2740 	ret = mmc_card_removed(card);
2741 	/*
2742 	 * The card will be considered unchanged unless we have been asked to
2743 	 * detect a change or host requires polling to provide card detection.
2744 	 */
2745 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2746 		return ret;
2747 
2748 	host->detect_change = 0;
2749 	if (!ret) {
2750 		ret = _mmc_detect_card_removed(host);
2751 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2752 			/*
2753 			 * Schedule a detect work as soon as possible to let a
2754 			 * rescan handle the card removal.
2755 			 */
2756 			cancel_delayed_work(&host->detect);
2757 			_mmc_detect_change(host, 0, false);
2758 		}
2759 	}
2760 
2761 	return ret;
2762 }
2763 EXPORT_SYMBOL(mmc_detect_card_removed);
2764 
2765 void mmc_rescan(struct work_struct *work)
2766 {
2767 	struct mmc_host *host =
2768 		container_of(work, struct mmc_host, detect.work);
2769 	int i;
2770 
2771 	if (host->rescan_disable)
2772 		return;
2773 
2774 	/* If there is a non-removable card registered, only scan once */
2775 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2776 		return;
2777 	host->rescan_entered = 1;
2778 
2779 	if (host->trigger_card_event && host->ops->card_event) {
2780 		mmc_claim_host(host);
2781 		host->ops->card_event(host);
2782 		mmc_release_host(host);
2783 		host->trigger_card_event = false;
2784 	}
2785 
2786 	mmc_bus_get(host);
2787 
2788 	/*
2789 	 * if there is a _removable_ card registered, check whether it is
2790 	 * still present
2791 	 */
2792 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2793 		host->bus_ops->detect(host);
2794 
2795 	host->detect_change = 0;
2796 
2797 	/*
2798 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2799 	 * the card is no longer present.
2800 	 */
2801 	mmc_bus_put(host);
2802 	mmc_bus_get(host);
2803 
2804 	/* if there still is a card present, stop here */
2805 	if (host->bus_ops != NULL) {
2806 		mmc_bus_put(host);
2807 		goto out;
2808 	}
2809 
2810 	/*
2811 	 * Only we can add a new handler, so it's safe to
2812 	 * release the lock here.
2813 	 */
2814 	mmc_bus_put(host);
2815 
2816 	mmc_claim_host(host);
2817 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2818 			host->ops->get_cd(host) == 0) {
2819 		mmc_power_off(host);
2820 		mmc_release_host(host);
2821 		goto out;
2822 	}
2823 
2824 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2825 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2826 			break;
2827 		if (freqs[i] <= host->f_min)
2828 			break;
2829 	}
2830 	mmc_release_host(host);
2831 
2832  out:
2833 	if (host->caps & MMC_CAP_NEEDS_POLL)
2834 		mmc_schedule_delayed_work(&host->detect, HZ);
2835 }
2836 
2837 void mmc_start_host(struct mmc_host *host)
2838 {
2839 	host->f_init = max(freqs[0], host->f_min);
2840 	host->rescan_disable = 0;
2841 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2842 
2843 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2844 		mmc_claim_host(host);
2845 		mmc_power_up(host, host->ocr_avail);
2846 		mmc_release_host(host);
2847 	}
2848 
2849 	mmc_gpiod_request_cd_irq(host);
2850 	_mmc_detect_change(host, 0, false);
2851 }
2852 
2853 void mmc_stop_host(struct mmc_host *host)
2854 {
2855 	if (host->slot.cd_irq >= 0) {
2856 		if (host->slot.cd_wake_enabled)
2857 			disable_irq_wake(host->slot.cd_irq);
2858 		disable_irq(host->slot.cd_irq);
2859 	}
2860 
2861 	host->rescan_disable = 1;
2862 	cancel_delayed_work_sync(&host->detect);
2863 
2864 	/* clear pm flags now and let card drivers set them as needed */
2865 	host->pm_flags = 0;
2866 
2867 	mmc_bus_get(host);
2868 	if (host->bus_ops && !host->bus_dead) {
2869 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2870 		host->bus_ops->remove(host);
2871 		mmc_claim_host(host);
2872 		mmc_detach_bus(host);
2873 		mmc_power_off(host);
2874 		mmc_release_host(host);
2875 		mmc_bus_put(host);
2876 		return;
2877 	}
2878 	mmc_bus_put(host);
2879 
2880 	mmc_claim_host(host);
2881 	mmc_power_off(host);
2882 	mmc_release_host(host);
2883 }
2884 
2885 int mmc_power_save_host(struct mmc_host *host)
2886 {
2887 	int ret = 0;
2888 
2889 	pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2890 
2891 	mmc_bus_get(host);
2892 
2893 	if (!host->bus_ops || host->bus_dead) {
2894 		mmc_bus_put(host);
2895 		return -EINVAL;
2896 	}
2897 
2898 	if (host->bus_ops->power_save)
2899 		ret = host->bus_ops->power_save(host);
2900 
2901 	mmc_bus_put(host);
2902 
2903 	mmc_power_off(host);
2904 
2905 	return ret;
2906 }
2907 EXPORT_SYMBOL(mmc_power_save_host);
2908 
2909 int mmc_power_restore_host(struct mmc_host *host)
2910 {
2911 	int ret;
2912 
2913 	pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2914 
2915 	mmc_bus_get(host);
2916 
2917 	if (!host->bus_ops || host->bus_dead) {
2918 		mmc_bus_put(host);
2919 		return -EINVAL;
2920 	}
2921 
2922 	mmc_power_up(host, host->card->ocr);
2923 	ret = host->bus_ops->power_restore(host);
2924 
2925 	mmc_bus_put(host);
2926 
2927 	return ret;
2928 }
2929 EXPORT_SYMBOL(mmc_power_restore_host);
2930 
2931 #ifdef CONFIG_PM_SLEEP
2932 /* Do the card removal on suspend if card is assumed removeable
2933  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2934    to sync the card.
2935 */
2936 static int mmc_pm_notify(struct notifier_block *notify_block,
2937 			unsigned long mode, void *unused)
2938 {
2939 	struct mmc_host *host = container_of(
2940 		notify_block, struct mmc_host, pm_notify);
2941 	unsigned long flags;
2942 	int err = 0;
2943 
2944 	switch (mode) {
2945 	case PM_HIBERNATION_PREPARE:
2946 	case PM_SUSPEND_PREPARE:
2947 	case PM_RESTORE_PREPARE:
2948 		spin_lock_irqsave(&host->lock, flags);
2949 		host->rescan_disable = 1;
2950 		spin_unlock_irqrestore(&host->lock, flags);
2951 		cancel_delayed_work_sync(&host->detect);
2952 
2953 		if (!host->bus_ops)
2954 			break;
2955 
2956 		/* Validate prerequisites for suspend */
2957 		if (host->bus_ops->pre_suspend)
2958 			err = host->bus_ops->pre_suspend(host);
2959 		if (!err)
2960 			break;
2961 
2962 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2963 		host->bus_ops->remove(host);
2964 		mmc_claim_host(host);
2965 		mmc_detach_bus(host);
2966 		mmc_power_off(host);
2967 		mmc_release_host(host);
2968 		host->pm_flags = 0;
2969 		break;
2970 
2971 	case PM_POST_SUSPEND:
2972 	case PM_POST_HIBERNATION:
2973 	case PM_POST_RESTORE:
2974 
2975 		spin_lock_irqsave(&host->lock, flags);
2976 		host->rescan_disable = 0;
2977 		spin_unlock_irqrestore(&host->lock, flags);
2978 		_mmc_detect_change(host, 0, false);
2979 
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 void mmc_register_pm_notifier(struct mmc_host *host)
2986 {
2987 	host->pm_notify.notifier_call = mmc_pm_notify;
2988 	register_pm_notifier(&host->pm_notify);
2989 }
2990 
2991 void mmc_unregister_pm_notifier(struct mmc_host *host)
2992 {
2993 	unregister_pm_notifier(&host->pm_notify);
2994 }
2995 #endif
2996 
2997 /**
2998  * mmc_init_context_info() - init synchronization context
2999  * @host: mmc host
3000  *
3001  * Init struct context_info needed to implement asynchronous
3002  * request mechanism, used by mmc core, host driver and mmc requests
3003  * supplier.
3004  */
3005 void mmc_init_context_info(struct mmc_host *host)
3006 {
3007 	host->context_info.is_new_req = false;
3008 	host->context_info.is_done_rcv = false;
3009 	host->context_info.is_waiting_last_req = false;
3010 	init_waitqueue_head(&host->context_info.wait);
3011 }
3012 
3013 static int __init mmc_init(void)
3014 {
3015 	int ret;
3016 
3017 	ret = mmc_register_bus();
3018 	if (ret)
3019 		return ret;
3020 
3021 	ret = mmc_register_host_class();
3022 	if (ret)
3023 		goto unregister_bus;
3024 
3025 	ret = sdio_register_bus();
3026 	if (ret)
3027 		goto unregister_host_class;
3028 
3029 	return 0;
3030 
3031 unregister_host_class:
3032 	mmc_unregister_host_class();
3033 unregister_bus:
3034 	mmc_unregister_bus();
3035 	return ret;
3036 }
3037 
3038 static void __exit mmc_exit(void)
3039 {
3040 	sdio_unregister_bus();
3041 	mmc_unregister_host_class();
3042 	mmc_unregister_bus();
3043 }
3044 
3045 subsys_initcall(mmc_init);
3046 module_exit(mmc_exit);
3047 
3048 MODULE_LICENSE("GPL");
3049