xref: /linux/drivers/mmc/core/core.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45 
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49 
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS	(250)
53 
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55 
56 /*
57  * Enabling software CRCs on the data blocks can be a significant (30%)
58  * performance cost, and for other reasons may not always be desired.
59  * So we allow it to be disabled.
60  */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63 
64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 				     unsigned long delay)
66 {
67 	/*
68 	 * We use the system_freezable_wq, because of two reasons.
69 	 * First, it allows several works (not the same work item) to be
70 	 * executed simultaneously. Second, the queue becomes frozen when
71 	 * userspace becomes frozen during system PM.
72 	 */
73 	return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75 
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77 
78 /*
79  * Internal function. Inject random data errors.
80  * If mmc_data is NULL no errors are injected.
81  */
82 static void mmc_should_fail_request(struct mmc_host *host,
83 				    struct mmc_request *mrq)
84 {
85 	struct mmc_command *cmd = mrq->cmd;
86 	struct mmc_data *data = mrq->data;
87 	static const int data_errors[] = {
88 		-ETIMEDOUT,
89 		-EILSEQ,
90 		-EIO,
91 	};
92 
93 	if (!data)
94 		return;
95 
96 	if ((cmd && cmd->error) || data->error ||
97 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 		return;
99 
100 	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102 }
103 
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105 
106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 					   struct mmc_request *mrq)
108 {
109 }
110 
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 
113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 		complete_all(&mrq->cmd_completion);
117 }
118 
119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 	if (!mrq->cap_cmd_during_tfr)
122 		return;
123 
124 	mmc_complete_cmd(mrq);
125 
126 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 		 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130 
131 /**
132  *	mmc_request_done - finish processing an MMC request
133  *	@host: MMC host which completed request
134  *	@mrq: MMC request which request
135  *
136  *	MMC drivers should call this function when they have completed
137  *	their processing of a request.
138  */
139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 	struct mmc_command *cmd = mrq->cmd;
142 	int err = cmd->error;
143 
144 	/* Flag re-tuning needed on CRC errors */
145 	if (!mmc_op_tuning(cmd->opcode) &&
146 	    !host->retune_crc_disable &&
147 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 	    (mrq->data && mrq->data->error == -EILSEQ) ||
149 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
150 		mmc_retune_needed(host);
151 
152 	if (err && cmd->retries && mmc_host_is_spi(host)) {
153 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 			cmd->retries = 0;
155 	}
156 
157 	if (host->ongoing_mrq == mrq)
158 		host->ongoing_mrq = NULL;
159 
160 	mmc_complete_cmd(mrq);
161 
162 	trace_mmc_request_done(host, mrq);
163 
164 	/*
165 	 * We list various conditions for the command to be considered
166 	 * properly done:
167 	 *
168 	 * - There was no error, OK fine then
169 	 * - We are not doing some kind of retry
170 	 * - The card was removed (...so just complete everything no matter
171 	 *   if there are errors or retries)
172 	 */
173 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 		mmc_should_fail_request(host, mrq);
175 
176 		if (!host->ongoing_mrq)
177 			led_trigger_event(host->led, LED_OFF);
178 
179 		if (mrq->sbc) {
180 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 				mmc_hostname(host), mrq->sbc->opcode,
182 				mrq->sbc->error,
183 				mrq->sbc->resp[0], mrq->sbc->resp[1],
184 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 		}
186 
187 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 			mmc_hostname(host), cmd->opcode, err,
189 			cmd->resp[0], cmd->resp[1],
190 			cmd->resp[2], cmd->resp[3]);
191 
192 		if (mrq->data) {
193 			pr_debug("%s:     %d bytes transferred: %d\n",
194 				mmc_hostname(host),
195 				mrq->data->bytes_xfered, mrq->data->error);
196 		}
197 
198 		if (mrq->stop) {
199 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
200 				mmc_hostname(host), mrq->stop->opcode,
201 				mrq->stop->error,
202 				mrq->stop->resp[0], mrq->stop->resp[1],
203 				mrq->stop->resp[2], mrq->stop->resp[3]);
204 		}
205 	}
206 	/*
207 	 * Request starter must handle retries - see
208 	 * mmc_wait_for_req_done().
209 	 */
210 	if (mrq->done)
211 		mrq->done(mrq);
212 }
213 
214 EXPORT_SYMBOL(mmc_request_done);
215 
216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 	int err;
219 
220 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
221 	err = mmc_retune(host);
222 	if (err) {
223 		mrq->cmd->error = err;
224 		mmc_request_done(host, mrq);
225 		return;
226 	}
227 
228 	/*
229 	 * For sdio rw commands we must wait for card busy otherwise some
230 	 * sdio devices won't work properly.
231 	 * And bypass I/O abort, reset and bus suspend operations.
232 	 */
233 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 	    host->ops->card_busy) {
235 		int tries = 500; /* Wait aprox 500ms at maximum */
236 
237 		while (host->ops->card_busy(host) && --tries)
238 			mmc_delay(1);
239 
240 		if (tries == 0) {
241 			mrq->cmd->error = -EBUSY;
242 			mmc_request_done(host, mrq);
243 			return;
244 		}
245 	}
246 
247 	if (mrq->cap_cmd_during_tfr) {
248 		host->ongoing_mrq = mrq;
249 		/*
250 		 * Retry path could come through here without having waiting on
251 		 * cmd_completion, so ensure it is reinitialised.
252 		 */
253 		reinit_completion(&mrq->cmd_completion);
254 	}
255 
256 	trace_mmc_request_start(host, mrq);
257 
258 	if (host->cqe_on)
259 		host->cqe_ops->cqe_off(host);
260 
261 	host->ops->request(host, mrq);
262 }
263 
264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 			     bool cqe)
266 {
267 	if (mrq->sbc) {
268 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 			 mmc_hostname(host), mrq->sbc->opcode,
270 			 mrq->sbc->arg, mrq->sbc->flags);
271 	}
272 
273 	if (mrq->cmd) {
274 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 			 mmc_hostname(host), cqe ? "CQE direct " : "",
276 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 	} else if (cqe) {
278 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 	}
281 
282 	if (mrq->data) {
283 		pr_debug("%s:     blksz %d blocks %d flags %08x "
284 			"tsac %d ms nsac %d\n",
285 			mmc_hostname(host), mrq->data->blksz,
286 			mrq->data->blocks, mrq->data->flags,
287 			mrq->data->timeout_ns / 1000000,
288 			mrq->data->timeout_clks);
289 	}
290 
291 	if (mrq->stop) {
292 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
293 			 mmc_hostname(host), mrq->stop->opcode,
294 			 mrq->stop->arg, mrq->stop->flags);
295 	}
296 }
297 
298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 	unsigned int i, sz = 0;
301 	struct scatterlist *sg;
302 
303 	if (mrq->cmd) {
304 		mrq->cmd->error = 0;
305 		mrq->cmd->mrq = mrq;
306 		mrq->cmd->data = mrq->data;
307 	}
308 	if (mrq->sbc) {
309 		mrq->sbc->error = 0;
310 		mrq->sbc->mrq = mrq;
311 	}
312 	if (mrq->data) {
313 		if (mrq->data->blksz > host->max_blk_size ||
314 		    mrq->data->blocks > host->max_blk_count ||
315 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 			return -EINVAL;
317 
318 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 			sz += sg->length;
320 		if (sz != mrq->data->blocks * mrq->data->blksz)
321 			return -EINVAL;
322 
323 		mrq->data->error = 0;
324 		mrq->data->mrq = mrq;
325 		if (mrq->stop) {
326 			mrq->data->stop = mrq->stop;
327 			mrq->stop->error = 0;
328 			mrq->stop->mrq = mrq;
329 		}
330 	}
331 
332 	return 0;
333 }
334 
335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 	int err;
338 
339 	if (mrq->cmd && mrq->cmd->has_ext_addr)
340 		mmc_send_ext_addr(host, mrq->cmd->ext_addr);
341 
342 	init_completion(&mrq->cmd_completion);
343 
344 	mmc_retune_hold(host);
345 
346 	if (mmc_card_removed(host->card))
347 		return -ENOMEDIUM;
348 
349 	mmc_mrq_pr_debug(host, mrq, false);
350 
351 	WARN_ON(!host->claimed);
352 
353 	err = mmc_mrq_prep(host, mrq);
354 	if (err)
355 		return err;
356 
357 	if (host->uhs2_sd_tran)
358 		mmc_uhs2_prepare_cmd(host, mrq);
359 
360 	led_trigger_event(host->led, LED_FULL);
361 	__mmc_start_request(host, mrq);
362 
363 	return 0;
364 }
365 EXPORT_SYMBOL(mmc_start_request);
366 
367 static void mmc_wait_done(struct mmc_request *mrq)
368 {
369 	complete(&mrq->completion);
370 }
371 
372 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
373 {
374 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
375 
376 	/*
377 	 * If there is an ongoing transfer, wait for the command line to become
378 	 * available.
379 	 */
380 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
381 		wait_for_completion(&ongoing_mrq->cmd_completion);
382 }
383 
384 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
385 {
386 	int err;
387 
388 	mmc_wait_ongoing_tfr_cmd(host);
389 
390 	init_completion(&mrq->completion);
391 	mrq->done = mmc_wait_done;
392 
393 	err = mmc_start_request(host, mrq);
394 	if (err) {
395 		mrq->cmd->error = err;
396 		mmc_complete_cmd(mrq);
397 		complete(&mrq->completion);
398 	}
399 
400 	return err;
401 }
402 
403 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
404 {
405 	struct mmc_command *cmd;
406 
407 	while (1) {
408 		wait_for_completion(&mrq->completion);
409 
410 		cmd = mrq->cmd;
411 
412 		if (!cmd->error || !cmd->retries ||
413 		    mmc_card_removed(host->card))
414 			break;
415 
416 		mmc_retune_recheck(host);
417 
418 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
419 			 mmc_hostname(host), cmd->opcode, cmd->error);
420 		cmd->retries--;
421 		cmd->error = 0;
422 		__mmc_start_request(host, mrq);
423 	}
424 
425 	mmc_retune_release(host);
426 }
427 EXPORT_SYMBOL(mmc_wait_for_req_done);
428 
429 /*
430  * mmc_cqe_start_req - Start a CQE request.
431  * @host: MMC host to start the request
432  * @mrq: request to start
433  *
434  * Start the request, re-tuning if needed and it is possible. Returns an error
435  * code if the request fails to start or -EBUSY if CQE is busy.
436  */
437 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
438 {
439 	int err;
440 
441 	/*
442 	 * CQE cannot process re-tuning commands. Caller must hold retuning
443 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
444 	 * active requests i.e. this is the first.  Note, re-tuning will call
445 	 * ->cqe_off().
446 	 */
447 	err = mmc_retune(host);
448 	if (err)
449 		goto out_err;
450 
451 	mrq->host = host;
452 
453 	mmc_mrq_pr_debug(host, mrq, true);
454 
455 	err = mmc_mrq_prep(host, mrq);
456 	if (err)
457 		goto out_err;
458 
459 	if (host->uhs2_sd_tran)
460 		mmc_uhs2_prepare_cmd(host, mrq);
461 
462 	err = host->cqe_ops->cqe_request(host, mrq);
463 	if (err)
464 		goto out_err;
465 
466 	trace_mmc_request_start(host, mrq);
467 
468 	return 0;
469 
470 out_err:
471 	if (mrq->cmd) {
472 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
473 			 mmc_hostname(host), mrq->cmd->opcode, err);
474 	} else {
475 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
476 			 mmc_hostname(host), mrq->tag, err);
477 	}
478 	return err;
479 }
480 EXPORT_SYMBOL(mmc_cqe_start_req);
481 
482 /**
483  *	mmc_cqe_request_done - CQE has finished processing an MMC request
484  *	@host: MMC host which completed request
485  *	@mrq: MMC request which completed
486  *
487  *	CQE drivers should call this function when they have completed
488  *	their processing of a request.
489  */
490 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
491 {
492 	mmc_should_fail_request(host, mrq);
493 
494 	/* Flag re-tuning needed on CRC errors */
495 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
496 	    (mrq->data && mrq->data->error == -EILSEQ))
497 		mmc_retune_needed(host);
498 
499 	trace_mmc_request_done(host, mrq);
500 
501 	if (mrq->cmd) {
502 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
503 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
504 	} else {
505 		pr_debug("%s: CQE transfer done tag %d\n",
506 			 mmc_hostname(host), mrq->tag);
507 	}
508 
509 	if (mrq->data) {
510 		pr_debug("%s:     %d bytes transferred: %d\n",
511 			 mmc_hostname(host),
512 			 mrq->data->bytes_xfered, mrq->data->error);
513 	}
514 
515 	mrq->done(mrq);
516 }
517 EXPORT_SYMBOL(mmc_cqe_request_done);
518 
519 /**
520  *	mmc_cqe_post_req - CQE post process of a completed MMC request
521  *	@host: MMC host
522  *	@mrq: MMC request to be processed
523  */
524 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
525 {
526 	if (host->cqe_ops->cqe_post_req)
527 		host->cqe_ops->cqe_post_req(host, mrq);
528 }
529 EXPORT_SYMBOL(mmc_cqe_post_req);
530 
531 /* Arbitrary 1 second timeout */
532 #define MMC_CQE_RECOVERY_TIMEOUT	1000
533 
534 /*
535  * mmc_cqe_recovery - Recover from CQE errors.
536  * @host: MMC host to recover
537  *
538  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
539  * in eMMC, and discarding the queue in CQE. CQE must call
540  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
541  * fails to discard its queue.
542  */
543 int mmc_cqe_recovery(struct mmc_host *host)
544 {
545 	struct mmc_command cmd;
546 	int err;
547 
548 	mmc_retune_hold_now(host);
549 
550 	/*
551 	 * Recovery is expected seldom, if at all, but it reduces performance,
552 	 * so make sure it is not completely silent.
553 	 */
554 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
555 
556 	host->cqe_ops->cqe_recovery_start(host);
557 
558 	memset(&cmd, 0, sizeof(cmd));
559 	cmd.opcode       = MMC_STOP_TRANSMISSION;
560 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
561 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
562 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
564 
565 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
566 
567 	memset(&cmd, 0, sizeof(cmd));
568 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
569 	cmd.arg          = 1; /* Discard entire queue */
570 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
571 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
572 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
573 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
574 
575 	host->cqe_ops->cqe_recovery_finish(host);
576 
577 	if (err)
578 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
579 
580 	mmc_retune_release(host);
581 
582 	return err;
583 }
584 EXPORT_SYMBOL(mmc_cqe_recovery);
585 
586 /**
587  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
588  *	@host: MMC host
589  *	@mrq: MMC request
590  *
591  *	mmc_is_req_done() is used with requests that have
592  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
593  *	starting a request and before waiting for it to complete. That is,
594  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
595  *	and before mmc_wait_for_req_done(). If it is called at other times the
596  *	result is not meaningful.
597  */
598 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
599 {
600 	return completion_done(&mrq->completion);
601 }
602 EXPORT_SYMBOL(mmc_is_req_done);
603 
604 /**
605  *	mmc_wait_for_req - start a request and wait for completion
606  *	@host: MMC host to start command
607  *	@mrq: MMC request to start
608  *
609  *	Start a new MMC custom command request for a host, and wait
610  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
611  *	requests, the transfer is ongoing and the caller can issue further
612  *	commands that do not use the data lines, and then wait by calling
613  *	mmc_wait_for_req_done().
614  *	Does not attempt to parse the response.
615  */
616 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
617 {
618 	__mmc_start_req(host, mrq);
619 
620 	if (!mrq->cap_cmd_during_tfr)
621 		mmc_wait_for_req_done(host, mrq);
622 }
623 EXPORT_SYMBOL(mmc_wait_for_req);
624 
625 /**
626  *	mmc_wait_for_cmd - start a command and wait for completion
627  *	@host: MMC host to start command
628  *	@cmd: MMC command to start
629  *	@retries: maximum number of retries
630  *
631  *	Start a new MMC command for a host, and wait for the command
632  *	to complete.  Return any error that occurred while the command
633  *	was executing.  Do not attempt to parse the response.
634  */
635 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
636 {
637 	struct mmc_request mrq = {};
638 
639 	WARN_ON(!host->claimed);
640 
641 	memset(cmd->resp, 0, sizeof(cmd->resp));
642 	cmd->retries = retries;
643 
644 	mrq.cmd = cmd;
645 	cmd->data = NULL;
646 
647 	mmc_wait_for_req(host, &mrq);
648 
649 	return cmd->error;
650 }
651 
652 EXPORT_SYMBOL(mmc_wait_for_cmd);
653 
654 /**
655  *	mmc_set_data_timeout - set the timeout for a data command
656  *	@data: data phase for command
657  *	@card: the MMC card associated with the data transfer
658  *
659  *	Computes the data timeout parameters according to the
660  *	correct algorithm given the card type.
661  */
662 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
663 {
664 	unsigned int mult;
665 
666 	/*
667 	 * SDIO cards only define an upper 1 s limit on access.
668 	 */
669 	if (mmc_card_sdio(card)) {
670 		data->timeout_ns = 1000000000;
671 		data->timeout_clks = 0;
672 		return;
673 	}
674 
675 	/*
676 	 * SD cards use a 100 multiplier rather than 10
677 	 */
678 	mult = mmc_card_sd(card) ? 100 : 10;
679 
680 	/*
681 	 * Scale up the multiplier (and therefore the timeout) by
682 	 * the r2w factor for writes.
683 	 */
684 	if (data->flags & MMC_DATA_WRITE)
685 		mult <<= card->csd.r2w_factor;
686 
687 	data->timeout_ns = card->csd.taac_ns * mult;
688 	data->timeout_clks = card->csd.taac_clks * mult;
689 
690 	/*
691 	 * SD cards also have an upper limit on the timeout.
692 	 */
693 	if (mmc_card_sd(card)) {
694 		unsigned int timeout_us, limit_us;
695 
696 		timeout_us = data->timeout_ns / 1000;
697 		if (card->host->ios.clock)
698 			timeout_us += data->timeout_clks * 1000 /
699 				(card->host->ios.clock / 1000);
700 
701 		if (data->flags & MMC_DATA_WRITE)
702 			/*
703 			 * The MMC spec "It is strongly recommended
704 			 * for hosts to implement more than 500ms
705 			 * timeout value even if the card indicates
706 			 * the 250ms maximum busy length."  Even the
707 			 * previous value of 300ms is known to be
708 			 * insufficient for some cards.
709 			 */
710 			limit_us = 3000000;
711 		else
712 			limit_us = 100000;
713 
714 		/*
715 		 * SDHC cards always use these fixed values.
716 		 */
717 		if (timeout_us > limit_us) {
718 			data->timeout_ns = limit_us * 1000;
719 			data->timeout_clks = 0;
720 		}
721 
722 		/* assign limit value if invalid */
723 		if (timeout_us == 0)
724 			data->timeout_ns = limit_us * 1000;
725 	}
726 
727 	/*
728 	 * Some cards require longer data read timeout than indicated in CSD.
729 	 * Address this by setting the read timeout to a "reasonably high"
730 	 * value. For the cards tested, 600ms has proven enough. If necessary,
731 	 * this value can be increased if other problematic cards require this.
732 	 */
733 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
734 		data->timeout_ns = 600000000;
735 		data->timeout_clks = 0;
736 	}
737 
738 	/*
739 	 * Some cards need very high timeouts if driven in SPI mode.
740 	 * The worst observed timeout was 900ms after writing a
741 	 * continuous stream of data until the internal logic
742 	 * overflowed.
743 	 */
744 	if (mmc_host_is_spi(card->host)) {
745 		if (data->flags & MMC_DATA_WRITE) {
746 			if (data->timeout_ns < 1000000000)
747 				data->timeout_ns = 1000000000;	/* 1s */
748 		} else {
749 			if (data->timeout_ns < 100000000)
750 				data->timeout_ns =  100000000;	/* 100ms */
751 		}
752 	}
753 }
754 EXPORT_SYMBOL(mmc_set_data_timeout);
755 
756 /*
757  * Allow claiming an already claimed host if the context is the same or there is
758  * no context but the task is the same.
759  */
760 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
761 				   struct task_struct *task)
762 {
763 	return host->claimer == ctx ||
764 	       (!ctx && task && host->claimer->task == task);
765 }
766 
767 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
768 				       struct mmc_ctx *ctx,
769 				       struct task_struct *task)
770 {
771 	if (!host->claimer) {
772 		if (ctx)
773 			host->claimer = ctx;
774 		else
775 			host->claimer = &host->default_ctx;
776 	}
777 	if (task)
778 		host->claimer->task = task;
779 }
780 
781 /**
782  *	__mmc_claim_host - exclusively claim a host
783  *	@host: mmc host to claim
784  *	@ctx: context that claims the host or NULL in which case the default
785  *	context will be used
786  *	@abort: whether or not the operation should be aborted
787  *
788  *	Claim a host for a set of operations.  If @abort is non null and
789  *	dereference a non-zero value then this will return prematurely with
790  *	that non-zero value without acquiring the lock.  Returns zero
791  *	with the lock held otherwise.
792  */
793 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
794 		     atomic_t *abort)
795 {
796 	struct task_struct *task = ctx ? NULL : current;
797 	DECLARE_WAITQUEUE(wait, current);
798 	unsigned long flags;
799 	int stop;
800 	bool pm = false;
801 
802 	might_sleep();
803 
804 	add_wait_queue(&host->wq, &wait);
805 	spin_lock_irqsave(&host->lock, flags);
806 	while (1) {
807 		set_current_state(TASK_UNINTERRUPTIBLE);
808 		stop = abort ? atomic_read(abort) : 0;
809 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
810 			break;
811 		spin_unlock_irqrestore(&host->lock, flags);
812 		schedule();
813 		spin_lock_irqsave(&host->lock, flags);
814 	}
815 	set_current_state(TASK_RUNNING);
816 	if (!stop) {
817 		host->claimed = 1;
818 		mmc_ctx_set_claimer(host, ctx, task);
819 		host->claim_cnt += 1;
820 		if (host->claim_cnt == 1)
821 			pm = true;
822 	} else
823 		wake_up(&host->wq);
824 	spin_unlock_irqrestore(&host->lock, flags);
825 	remove_wait_queue(&host->wq, &wait);
826 
827 	if (pm)
828 		pm_runtime_get_sync(mmc_dev(host));
829 
830 	return stop;
831 }
832 EXPORT_SYMBOL(__mmc_claim_host);
833 
834 /**
835  *	mmc_release_host - release a host
836  *	@host: mmc host to release
837  *
838  *	Release a MMC host, allowing others to claim the host
839  *	for their operations.
840  */
841 void mmc_release_host(struct mmc_host *host)
842 {
843 	unsigned long flags;
844 
845 	WARN_ON(!host->claimed);
846 
847 	spin_lock_irqsave(&host->lock, flags);
848 	if (--host->claim_cnt) {
849 		/* Release for nested claim */
850 		spin_unlock_irqrestore(&host->lock, flags);
851 	} else {
852 		host->claimed = 0;
853 		host->claimer->task = NULL;
854 		host->claimer = NULL;
855 		spin_unlock_irqrestore(&host->lock, flags);
856 		wake_up(&host->wq);
857 		pm_runtime_mark_last_busy(mmc_dev(host));
858 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
859 			pm_runtime_put_sync_suspend(mmc_dev(host));
860 		else
861 			pm_runtime_put_autosuspend(mmc_dev(host));
862 	}
863 }
864 EXPORT_SYMBOL(mmc_release_host);
865 
866 /*
867  * This is a helper function, which fetches a runtime pm reference for the
868  * card device and also claims the host.
869  */
870 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
871 {
872 	pm_runtime_get_sync(&card->dev);
873 	__mmc_claim_host(card->host, ctx, NULL);
874 }
875 EXPORT_SYMBOL(mmc_get_card);
876 
877 /*
878  * This is a helper function, which releases the host and drops the runtime
879  * pm reference for the card device.
880  */
881 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
882 {
883 	struct mmc_host *host = card->host;
884 
885 	WARN_ON(ctx && host->claimer != ctx);
886 
887 	mmc_release_host(host);
888 	pm_runtime_mark_last_busy(&card->dev);
889 	pm_runtime_put_autosuspend(&card->dev);
890 }
891 EXPORT_SYMBOL(mmc_put_card);
892 
893 /*
894  * Internal function that does the actual ios call to the host driver,
895  * optionally printing some debug output.
896  */
897 static inline void mmc_set_ios(struct mmc_host *host)
898 {
899 	struct mmc_ios *ios = &host->ios;
900 
901 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
902 		"width %u timing %u\n",
903 		 mmc_hostname(host), ios->clock, ios->bus_mode,
904 		 ios->power_mode, ios->chip_select, ios->vdd,
905 		 1 << ios->bus_width, ios->timing);
906 
907 	host->ops->set_ios(host, ios);
908 }
909 
910 /*
911  * Control chip select pin on a host.
912  */
913 void mmc_set_chip_select(struct mmc_host *host, int mode)
914 {
915 	host->ios.chip_select = mode;
916 	mmc_set_ios(host);
917 }
918 
919 /*
920  * Sets the host clock to the highest possible frequency that
921  * is below "hz".
922  */
923 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
924 {
925 	WARN_ON(hz && hz < host->f_min);
926 
927 	if (hz > host->f_max)
928 		hz = host->f_max;
929 
930 	host->ios.clock = hz;
931 	mmc_set_ios(host);
932 }
933 
934 int mmc_execute_tuning(struct mmc_card *card)
935 {
936 	struct mmc_host *host = card->host;
937 	u32 opcode;
938 	int err;
939 
940 	if (!host->ops->execute_tuning)
941 		return 0;
942 
943 	if (host->cqe_on)
944 		host->cqe_ops->cqe_off(host);
945 
946 	if (mmc_card_mmc(card))
947 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
948 	else
949 		opcode = MMC_SEND_TUNING_BLOCK;
950 
951 	err = host->ops->execute_tuning(host, opcode);
952 	if (!err) {
953 		mmc_retune_clear(host);
954 		mmc_retune_enable(host);
955 		return 0;
956 	}
957 
958 	/* Only print error when we don't check for card removal */
959 	if (!host->detect_change) {
960 		pr_err("%s: tuning execution failed: %d\n",
961 			mmc_hostname(host), err);
962 		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
963 	}
964 
965 	return err;
966 }
967 
968 /*
969  * Change the bus mode (open drain/push-pull) of a host.
970  */
971 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
972 {
973 	host->ios.bus_mode = mode;
974 	mmc_set_ios(host);
975 }
976 
977 /*
978  * Change data bus width of a host.
979  */
980 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
981 {
982 	host->ios.bus_width = width;
983 	mmc_set_ios(host);
984 }
985 
986 /*
987  * Set initial state after a power cycle or a hw_reset.
988  */
989 void mmc_set_initial_state(struct mmc_host *host)
990 {
991 	if (host->cqe_on)
992 		host->cqe_ops->cqe_off(host);
993 
994 	mmc_retune_disable(host);
995 
996 	if (mmc_host_is_spi(host))
997 		host->ios.chip_select = MMC_CS_HIGH;
998 	else
999 		host->ios.chip_select = MMC_CS_DONTCARE;
1000 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1001 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1002 	host->ios.timing = MMC_TIMING_LEGACY;
1003 	host->ios.drv_type = 0;
1004 	host->ios.enhanced_strobe = false;
1005 
1006 	/*
1007 	 * Make sure we are in non-enhanced strobe mode before we
1008 	 * actually enable it in ext_csd.
1009 	 */
1010 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1011 	     host->ops->hs400_enhanced_strobe)
1012 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1013 
1014 	mmc_set_ios(host);
1015 
1016 	mmc_crypto_set_initial_state(host);
1017 }
1018 
1019 /**
1020  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021  * @vdd:	voltage (mV)
1022  * @low_bits:	prefer low bits in boundary cases
1023  *
1024  * This function returns the OCR bit number according to the provided @vdd
1025  * value. If conversion is not possible a negative errno value returned.
1026  *
1027  * Depending on the @low_bits flag the function prefers low or high OCR bits
1028  * on boundary voltages. For example,
1029  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1031  *
1032  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1033  */
1034 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1035 {
1036 	const int max_bit = ilog2(MMC_VDD_35_36);
1037 	int bit;
1038 
1039 	if (vdd < 1650 || vdd > 3600)
1040 		return -EINVAL;
1041 
1042 	if (vdd >= 1650 && vdd <= 1950)
1043 		return ilog2(MMC_VDD_165_195);
1044 
1045 	if (low_bits)
1046 		vdd -= 1;
1047 
1048 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1049 	bit = (vdd - 2000) / 100 + 8;
1050 	if (bit > max_bit)
1051 		return max_bit;
1052 	return bit;
1053 }
1054 
1055 /**
1056  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057  * @vdd_min:	minimum voltage value (mV)
1058  * @vdd_max:	maximum voltage value (mV)
1059  *
1060  * This function returns the OCR mask bits according to the provided @vdd_min
1061  * and @vdd_max values. If conversion is not possible the function returns 0.
1062  *
1063  * Notes wrt boundary cases:
1064  * This function sets the OCR bits for all boundary voltages, for example
1065  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066  * MMC_VDD_34_35 mask.
1067  */
1068 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1069 {
1070 	u32 mask = 0;
1071 
1072 	if (vdd_max < vdd_min)
1073 		return 0;
1074 
1075 	/* Prefer high bits for the boundary vdd_max values. */
1076 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1077 	if (vdd_max < 0)
1078 		return 0;
1079 
1080 	/* Prefer low bits for the boundary vdd_min values. */
1081 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1082 	if (vdd_min < 0)
1083 		return 0;
1084 
1085 	/* Fill the mask, from max bit to min bit. */
1086 	while (vdd_max >= vdd_min)
1087 		mask |= 1 << vdd_max--;
1088 
1089 	return mask;
1090 }
1091 
1092 static int mmc_of_get_func_num(struct device_node *node)
1093 {
1094 	u32 reg;
1095 	int ret;
1096 
1097 	ret = of_property_read_u32(node, "reg", &reg);
1098 	if (ret < 0)
1099 		return ret;
1100 
1101 	return reg;
1102 }
1103 
1104 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1105 		unsigned func_num)
1106 {
1107 	struct device_node *node;
1108 
1109 	if (!host->parent || !host->parent->of_node)
1110 		return NULL;
1111 
1112 	for_each_child_of_node(host->parent->of_node, node) {
1113 		if (mmc_of_get_func_num(node) == func_num)
1114 			return node;
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
1120 /*
1121  * Mask off any voltages we don't support and select
1122  * the lowest voltage
1123  */
1124 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1125 {
1126 	int bit;
1127 
1128 	/*
1129 	 * Sanity check the voltages that the card claims to
1130 	 * support.
1131 	 */
1132 	if (ocr & 0x7F) {
1133 		dev_warn(mmc_dev(host),
1134 		"card claims to support voltages below defined range\n");
1135 		ocr &= ~0x7F;
1136 	}
1137 
1138 	ocr &= host->ocr_avail;
1139 	if (!ocr) {
1140 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1141 		return 0;
1142 	}
1143 
1144 	if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1145 		bit = ffs(ocr) - 1;
1146 		ocr &= 3 << bit;
1147 		mmc_power_cycle(host, ocr);
1148 	} else {
1149 		bit = fls(ocr) - 1;
1150 		/*
1151 		 * The bit variable represents the highest voltage bit set in
1152 		 * the OCR register.
1153 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154 		 * we must shift the mask '3' with (bit - 1).
1155 		 */
1156 		ocr &= 3 << (bit - 1);
1157 		if (bit != host->ios.vdd)
1158 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1159 	}
1160 
1161 	return ocr;
1162 }
1163 
1164 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1165 {
1166 	int err = 0;
1167 	int old_signal_voltage = host->ios.signal_voltage;
1168 
1169 	host->ios.signal_voltage = signal_voltage;
1170 	if (host->ops->start_signal_voltage_switch)
1171 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1172 
1173 	if (err)
1174 		host->ios.signal_voltage = old_signal_voltage;
1175 
1176 	return err;
1177 
1178 }
1179 
1180 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1181 {
1182 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1184 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1185 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1186 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1187 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1188 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1189 }
1190 
1191 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1192 {
1193 	u32 clock;
1194 
1195 	/*
1196 	 * During a signal voltage level switch, the clock must be gated
1197 	 * for 5 ms according to the SD spec
1198 	 */
1199 	clock = host->ios.clock;
1200 	host->ios.clock = 0;
1201 	mmc_set_ios(host);
1202 
1203 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1204 		return -EAGAIN;
1205 
1206 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1207 	mmc_delay(10);
1208 	host->ios.clock = clock;
1209 	mmc_set_ios(host);
1210 
1211 	return 0;
1212 }
1213 
1214 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1215 {
1216 	struct mmc_command cmd = {};
1217 	int err = 0;
1218 
1219 	/*
1220 	 * If we cannot switch voltages, return failure so the caller
1221 	 * can continue without UHS mode
1222 	 */
1223 	if (!host->ops->start_signal_voltage_switch)
1224 		return -EPERM;
1225 	if (!host->ops->card_busy)
1226 		pr_warn("%s: cannot verify signal voltage switch\n",
1227 			mmc_hostname(host));
1228 
1229 	cmd.opcode = SD_SWITCH_VOLTAGE;
1230 	cmd.arg = 0;
1231 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1232 
1233 	err = mmc_wait_for_cmd(host, &cmd, 0);
1234 	if (err)
1235 		goto power_cycle;
1236 
1237 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1238 		return -EIO;
1239 
1240 	/*
1241 	 * The card should drive cmd and dat[0:3] low immediately
1242 	 * after the response of cmd11, but wait 1 ms to be sure
1243 	 */
1244 	mmc_delay(1);
1245 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1246 		err = -EAGAIN;
1247 		goto power_cycle;
1248 	}
1249 
1250 	if (mmc_host_set_uhs_voltage(host)) {
1251 		/*
1252 		 * Voltages may not have been switched, but we've already
1253 		 * sent CMD11, so a power cycle is required anyway
1254 		 */
1255 		err = -EAGAIN;
1256 		goto power_cycle;
1257 	}
1258 
1259 	/* Wait for at least 1 ms according to spec */
1260 	mmc_delay(1);
1261 
1262 	/*
1263 	 * Failure to switch is indicated by the card holding
1264 	 * dat[0:3] low
1265 	 */
1266 	if (host->ops->card_busy && host->ops->card_busy(host))
1267 		err = -EAGAIN;
1268 
1269 power_cycle:
1270 	if (err) {
1271 		pr_debug("%s: Signal voltage switch failed, "
1272 			"power cycling card\n", mmc_hostname(host));
1273 		mmc_power_cycle(host, ocr);
1274 	}
1275 
1276 	return err;
1277 }
1278 
1279 /*
1280  * Select timing parameters for host.
1281  */
1282 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1283 {
1284 	host->ios.timing = timing;
1285 	mmc_set_ios(host);
1286 }
1287 
1288 /*
1289  * Select appropriate driver type for host.
1290  */
1291 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1292 {
1293 	host->ios.drv_type = drv_type;
1294 	mmc_set_ios(host);
1295 }
1296 
1297 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1298 			      int card_drv_type, int *drv_type)
1299 {
1300 	struct mmc_host *host = card->host;
1301 	int host_drv_type = SD_DRIVER_TYPE_B;
1302 
1303 	*drv_type = 0;
1304 
1305 	if (!host->ops->select_drive_strength)
1306 		return 0;
1307 
1308 	/* Use SD definition of driver strength for hosts */
1309 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1310 		host_drv_type |= SD_DRIVER_TYPE_A;
1311 
1312 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1313 		host_drv_type |= SD_DRIVER_TYPE_C;
1314 
1315 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1316 		host_drv_type |= SD_DRIVER_TYPE_D;
1317 
1318 	/*
1319 	 * The drive strength that the hardware can support
1320 	 * depends on the board design.  Pass the appropriate
1321 	 * information and let the hardware specific code
1322 	 * return what is possible given the options
1323 	 */
1324 	return host->ops->select_drive_strength(card, max_dtr,
1325 						host_drv_type,
1326 						card_drv_type,
1327 						drv_type);
1328 }
1329 
1330 /*
1331  * Apply power to the MMC stack.  This is a two-stage process.
1332  * First, we enable power to the card without the clock running.
1333  * We then wait a bit for the power to stabilise.  Finally,
1334  * enable the bus drivers and clock to the card.
1335  *
1336  * We must _NOT_ enable the clock prior to power stablising.
1337  *
1338  * If a host does all the power sequencing itself, ignore the
1339  * initial MMC_POWER_UP stage.
1340  */
1341 void mmc_power_up(struct mmc_host *host, u32 ocr)
1342 {
1343 	if (host->ios.power_mode == MMC_POWER_ON)
1344 		return;
1345 
1346 	mmc_pwrseq_pre_power_on(host);
1347 
1348 	host->ios.vdd = fls(ocr) - 1;
1349 	host->ios.power_mode = MMC_POWER_UP;
1350 	/* Set initial state and call mmc_set_ios */
1351 	mmc_set_initial_state(host);
1352 
1353 	mmc_set_initial_signal_voltage(host);
1354 
1355 	/*
1356 	 * This delay should be sufficient to allow the power supply
1357 	 * to reach the minimum voltage.
1358 	 */
1359 	mmc_delay(host->ios.power_delay_ms);
1360 
1361 	mmc_pwrseq_post_power_on(host);
1362 
1363 	host->ios.clock = host->f_init;
1364 
1365 	host->ios.power_mode = MMC_POWER_ON;
1366 	mmc_set_ios(host);
1367 
1368 	/*
1369 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370 	 * time required to reach a stable voltage.
1371 	 */
1372 	mmc_delay(host->ios.power_delay_ms);
1373 }
1374 
1375 void mmc_power_off(struct mmc_host *host)
1376 {
1377 	if (host->ios.power_mode == MMC_POWER_OFF)
1378 		return;
1379 
1380 	mmc_pwrseq_power_off(host);
1381 
1382 	host->ios.clock = 0;
1383 	host->ios.vdd = 0;
1384 
1385 	host->ios.power_mode = MMC_POWER_OFF;
1386 	/* Set initial state and call mmc_set_ios */
1387 	mmc_set_initial_state(host);
1388 
1389 	/*
1390 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391 	 * XO-1.5, require a short delay after poweroff before the card
1392 	 * can be successfully turned on again.
1393 	 */
1394 	mmc_delay(1);
1395 }
1396 
1397 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1398 {
1399 	mmc_power_off(host);
1400 	/* Wait at least 1 ms according to SD spec */
1401 	mmc_delay(1);
1402 	mmc_power_up(host, ocr);
1403 }
1404 
1405 /*
1406  * Assign a mmc bus handler to a host. Only one bus handler may control a
1407  * host at any given time.
1408  */
1409 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1410 {
1411 	host->bus_ops = ops;
1412 }
1413 
1414 /*
1415  * Remove the current bus handler from a host.
1416  */
1417 void mmc_detach_bus(struct mmc_host *host)
1418 {
1419 	host->bus_ops = NULL;
1420 }
1421 
1422 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1423 {
1424 	/*
1425 	 * Prevent system sleep for 5s to allow user space to consume the
1426 	 * corresponding uevent. This is especially useful, when CD irq is used
1427 	 * as a system wakeup, but doesn't hurt in other cases.
1428 	 */
1429 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1430 		__pm_wakeup_event(host->ws, 5000);
1431 
1432 	host->detect_change = 1;
1433 	mmc_schedule_delayed_work(&host->detect, delay);
1434 }
1435 
1436 /**
1437  *	mmc_detect_change - process change of state on a MMC socket
1438  *	@host: host which changed state.
1439  *	@delay: optional delay to wait before detection (jiffies)
1440  *
1441  *	MMC drivers should call this when they detect a card has been
1442  *	inserted or removed. The MMC layer will confirm that any
1443  *	present card is still functional, and initialize any newly
1444  *	inserted.
1445  */
1446 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1447 {
1448 	_mmc_detect_change(host, delay, true);
1449 }
1450 EXPORT_SYMBOL(mmc_detect_change);
1451 
1452 void mmc_init_erase(struct mmc_card *card)
1453 {
1454 	unsigned int sz;
1455 
1456 	if (is_power_of_2(card->erase_size))
1457 		card->erase_shift = ffs(card->erase_size) - 1;
1458 	else
1459 		card->erase_shift = 0;
1460 
1461 	/*
1462 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1463 	 * card.  That is not desirable because it can take a long time
1464 	 * (minutes) potentially delaying more important I/O, and also the
1465 	 * timeout calculations become increasingly hugely over-estimated.
1466 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467 	 * to that size and alignment.
1468 	 *
1469 	 * For SD cards that define Allocation Unit size, limit erases to one
1470 	 * Allocation Unit at a time.
1471 	 * For MMC, have a stab at ai good value and for modern cards it will
1472 	 * end up being 4MiB. Note that if the value is too small, it can end
1473 	 * up taking longer to erase. Also note, erase_size is already set to
1474 	 * High Capacity Erase Size if available when this function is called.
1475 	 */
1476 	if (mmc_card_sd(card) && card->ssr.au) {
1477 		card->pref_erase = card->ssr.au;
1478 		card->erase_shift = ffs(card->ssr.au) - 1;
1479 	} else if (card->erase_size) {
1480 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1481 		if (sz < 128)
1482 			card->pref_erase = 512 * 1024 / 512;
1483 		else if (sz < 512)
1484 			card->pref_erase = 1024 * 1024 / 512;
1485 		else if (sz < 1024)
1486 			card->pref_erase = 2 * 1024 * 1024 / 512;
1487 		else
1488 			card->pref_erase = 4 * 1024 * 1024 / 512;
1489 		if (card->pref_erase < card->erase_size)
1490 			card->pref_erase = card->erase_size;
1491 		else {
1492 			sz = card->pref_erase % card->erase_size;
1493 			if (sz)
1494 				card->pref_erase += card->erase_size - sz;
1495 		}
1496 	} else
1497 		card->pref_erase = 0;
1498 }
1499 
1500 static bool is_trim_arg(unsigned int arg)
1501 {
1502 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1503 }
1504 
1505 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1506 				          unsigned int arg, unsigned int qty)
1507 {
1508 	unsigned int erase_timeout;
1509 
1510 	if (arg == MMC_DISCARD_ARG ||
1511 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1512 		erase_timeout = card->ext_csd.trim_timeout;
1513 	} else if (card->ext_csd.erase_group_def & 1) {
1514 		/* High Capacity Erase Group Size uses HC timeouts */
1515 		if (arg == MMC_TRIM_ARG)
1516 			erase_timeout = card->ext_csd.trim_timeout;
1517 		else
1518 			erase_timeout = card->ext_csd.hc_erase_timeout;
1519 	} else {
1520 		/* CSD Erase Group Size uses write timeout */
1521 		unsigned int mult = (10 << card->csd.r2w_factor);
1522 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1523 		unsigned int timeout_us;
1524 
1525 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526 		if (card->csd.taac_ns < 1000000)
1527 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1528 		else
1529 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1530 
1531 		/*
1532 		 * ios.clock is only a target.  The real clock rate might be
1533 		 * less but not that much less, so fudge it by multiplying by 2.
1534 		 */
1535 		timeout_clks <<= 1;
1536 		timeout_us += (timeout_clks * 1000) /
1537 			      (card->host->ios.clock / 1000);
1538 
1539 		erase_timeout = timeout_us / 1000;
1540 
1541 		/*
1542 		 * Theoretically, the calculation could underflow so round up
1543 		 * to 1ms in that case.
1544 		 */
1545 		if (!erase_timeout)
1546 			erase_timeout = 1;
1547 	}
1548 
1549 	/* Multiplier for secure operations */
1550 	if (arg & MMC_SECURE_ARGS) {
1551 		if (arg == MMC_SECURE_ERASE_ARG)
1552 			erase_timeout *= card->ext_csd.sec_erase_mult;
1553 		else
1554 			erase_timeout *= card->ext_csd.sec_trim_mult;
1555 	}
1556 
1557 	erase_timeout *= qty;
1558 
1559 	/*
1560 	 * Ensure at least a 1 second timeout for SPI as per
1561 	 * 'mmc_set_data_timeout()'
1562 	 */
1563 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1564 		erase_timeout = 1000;
1565 
1566 	return erase_timeout;
1567 }
1568 
1569 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1570 					 unsigned int arg,
1571 					 unsigned int qty)
1572 {
1573 	unsigned int erase_timeout;
1574 
1575 	/* for DISCARD none of the below calculation applies.
1576 	 * the busy timeout is 250msec per discard command.
1577 	 */
1578 	if (arg == SD_DISCARD_ARG)
1579 		return SD_DISCARD_TIMEOUT_MS;
1580 
1581 	if (card->ssr.erase_timeout) {
1582 		/* Erase timeout specified in SD Status Register (SSR) */
1583 		erase_timeout = card->ssr.erase_timeout * qty +
1584 				card->ssr.erase_offset;
1585 	} else {
1586 		/*
1587 		 * Erase timeout not specified in SD Status Register (SSR) so
1588 		 * use 250ms per write block.
1589 		 */
1590 		erase_timeout = 250 * qty;
1591 	}
1592 
1593 	/* Must not be less than 1 second */
1594 	if (erase_timeout < 1000)
1595 		erase_timeout = 1000;
1596 
1597 	return erase_timeout;
1598 }
1599 
1600 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 				      unsigned int arg,
1602 				      unsigned int qty)
1603 {
1604 	if (mmc_card_sd(card))
1605 		return mmc_sd_erase_timeout(card, arg, qty);
1606 	else
1607 		return mmc_mmc_erase_timeout(card, arg, qty);
1608 }
1609 
1610 static int mmc_do_erase(struct mmc_card *card, sector_t from,
1611 			sector_t to, unsigned int arg)
1612 {
1613 	struct mmc_command cmd = {};
1614 	unsigned int qty = 0, busy_timeout = 0;
1615 	bool use_r1b_resp;
1616 	int err;
1617 
1618 	mmc_retune_hold(card->host);
1619 
1620 	/*
1621 	 * qty is used to calculate the erase timeout which depends on how many
1622 	 * erase groups (or allocation units in SD terminology) are affected.
1623 	 * We count erasing part of an erase group as one erase group.
1624 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1625 	 * erase group size is almost certainly also power of 2, but it does not
1626 	 * seem to insist on that in the JEDEC standard, so we fall back to
1627 	 * division in that case.  SD may not specify an allocation unit size,
1628 	 * in which case the timeout is based on the number of write blocks.
1629 	 *
1630 	 * Note that the timeout for secure trim 2 will only be correct if the
1631 	 * number of erase groups specified is the same as the total of all
1632 	 * preceding secure trim 1 commands.  Since the power may have been
1633 	 * lost since the secure trim 1 commands occurred, it is generally
1634 	 * impossible to calculate the secure trim 2 timeout correctly.
1635 	 */
1636 	if (card->erase_shift)
1637 		qty += ((to >> card->erase_shift) -
1638 			(from >> card->erase_shift)) + 1;
1639 	else if (mmc_card_sd(card))
1640 		qty += to - from + 1;
1641 	else
1642 		qty += (mmc_sector_div(to, card->erase_size) -
1643 			mmc_sector_div(from, card->erase_size)) + 1;
1644 
1645 	if (!mmc_card_blockaddr(card)) {
1646 		from <<= 9;
1647 		to <<= 9;
1648 	}
1649 
1650 	if (mmc_card_sd(card))
1651 		cmd.opcode = SD_ERASE_WR_BLK_START;
1652 	else
1653 		cmd.opcode = MMC_ERASE_GROUP_START;
1654 	cmd.arg = from;
1655 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1656 
1657 	if (mmc_card_ult_capacity(card)) {
1658 		cmd.ext_addr = from >> 32;
1659 		cmd.has_ext_addr = true;
1660 	}
1661 
1662 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 	if (err) {
1664 		pr_err("mmc_erase: group start error %d, "
1665 		       "status %#x\n", err, cmd.resp[0]);
1666 		err = -EIO;
1667 		goto out;
1668 	}
1669 
1670 	memset(&cmd, 0, sizeof(struct mmc_command));
1671 	if (mmc_card_sd(card))
1672 		cmd.opcode = SD_ERASE_WR_BLK_END;
1673 	else
1674 		cmd.opcode = MMC_ERASE_GROUP_END;
1675 	cmd.arg = to;
1676 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1677 
1678 	if (mmc_card_ult_capacity(card)) {
1679 		cmd.ext_addr = to >> 32;
1680 		cmd.has_ext_addr = true;
1681 	}
1682 
1683 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 	if (err) {
1685 		pr_err("mmc_erase: group end error %d, status %#x\n",
1686 		       err, cmd.resp[0]);
1687 		err = -EIO;
1688 		goto out;
1689 	}
1690 
1691 	memset(&cmd, 0, sizeof(struct mmc_command));
1692 	cmd.opcode = MMC_ERASE;
1693 	cmd.arg = arg;
1694 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1695 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1696 
1697 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1698 	if (err) {
1699 		pr_err("mmc_erase: erase error %d, status %#x\n",
1700 		       err, cmd.resp[0]);
1701 		err = -EIO;
1702 		goto out;
1703 	}
1704 
1705 	if (mmc_host_is_spi(card->host))
1706 		goto out;
1707 
1708 	/*
1709 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1710 	 * shall be avoided.
1711 	 */
1712 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1713 		goto out;
1714 
1715 	/* Let's poll to find out when the erase operation completes. */
1716 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1717 
1718 out:
1719 	mmc_retune_release(card->host);
1720 	return err;
1721 }
1722 
1723 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1724 					 sector_t *from,
1725 					 sector_t *to,
1726 					 unsigned int nr)
1727 {
1728 	sector_t from_new = *from;
1729 	unsigned int nr_new = nr, rem;
1730 
1731 	/*
1732 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733 	 * to align the erase size efficiently.
1734 	 */
1735 	if (is_power_of_2(card->erase_size)) {
1736 		sector_t temp = from_new;
1737 
1738 		from_new = round_up(temp, card->erase_size);
1739 		rem = from_new - temp;
1740 
1741 		if (nr_new > rem)
1742 			nr_new -= rem;
1743 		else
1744 			return 0;
1745 
1746 		nr_new = round_down(nr_new, card->erase_size);
1747 	} else {
1748 		rem = mmc_sector_mod(from_new, card->erase_size);
1749 		if (rem) {
1750 			rem = card->erase_size - rem;
1751 			from_new += rem;
1752 			if (nr_new > rem)
1753 				nr_new -= rem;
1754 			else
1755 				return 0;
1756 		}
1757 
1758 		rem = nr_new % card->erase_size;
1759 		if (rem)
1760 			nr_new -= rem;
1761 	}
1762 
1763 	if (nr_new == 0)
1764 		return 0;
1765 
1766 	*to = from_new + nr_new;
1767 	*from = from_new;
1768 
1769 	return nr_new;
1770 }
1771 
1772 /**
1773  * mmc_erase - erase sectors.
1774  * @card: card to erase
1775  * @from: first sector to erase
1776  * @nr: number of sectors to erase
1777  * @arg: erase command argument
1778  *
1779  * Caller must claim host before calling this function.
1780  */
1781 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1782 	      unsigned int arg)
1783 {
1784 	unsigned int rem;
1785 	sector_t to = from + nr;
1786 
1787 	int err;
1788 
1789 	if (!(card->csd.cmdclass & CCC_ERASE))
1790 		return -EOPNOTSUPP;
1791 
1792 	if (!card->erase_size)
1793 		return -EOPNOTSUPP;
1794 
1795 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1796 		return -EOPNOTSUPP;
1797 
1798 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1799 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1800 		return -EOPNOTSUPP;
1801 
1802 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1803 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1804 		return -EOPNOTSUPP;
1805 
1806 	if (arg == MMC_SECURE_ERASE_ARG) {
1807 		if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1808 			return -EINVAL;
1809 	}
1810 
1811 	if (arg == MMC_ERASE_ARG)
1812 		nr = mmc_align_erase_size(card, &from, &to, nr);
1813 
1814 	if (nr == 0)
1815 		return 0;
1816 
1817 	if (to <= from)
1818 		return -EINVAL;
1819 
1820 	/* 'from' and 'to' are inclusive */
1821 	to -= 1;
1822 
1823 	/*
1824 	 * Special case where only one erase-group fits in the timeout budget:
1825 	 * If the region crosses an erase-group boundary on this particular
1826 	 * case, we will be trimming more than one erase-group which, does not
1827 	 * fit in the timeout budget of the controller, so we need to split it
1828 	 * and call mmc_do_erase() twice if necessary. This special case is
1829 	 * identified by the card->eg_boundary flag.
1830 	 */
1831 	rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1832 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1833 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1834 		from += rem;
1835 		if ((err) || (to <= from))
1836 			return err;
1837 	}
1838 
1839 	return mmc_do_erase(card, from, to, arg);
1840 }
1841 EXPORT_SYMBOL(mmc_erase);
1842 
1843 int mmc_can_erase(struct mmc_card *card)
1844 {
1845 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1846 		return 1;
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(mmc_can_erase);
1850 
1851 int mmc_can_trim(struct mmc_card *card)
1852 {
1853 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1854 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1855 		return 1;
1856 	return 0;
1857 }
1858 EXPORT_SYMBOL(mmc_can_trim);
1859 
1860 int mmc_can_discard(struct mmc_card *card)
1861 {
1862 	/*
1863 	 * As there's no way to detect the discard support bit at v4.5
1864 	 * use the s/w feature support filed.
1865 	 */
1866 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1867 		return 1;
1868 	return 0;
1869 }
1870 EXPORT_SYMBOL(mmc_can_discard);
1871 
1872 int mmc_can_sanitize(struct mmc_card *card)
1873 {
1874 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1875 		return 0;
1876 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1877 		return 1;
1878 	return 0;
1879 }
1880 
1881 int mmc_can_secure_erase_trim(struct mmc_card *card)
1882 {
1883 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1884 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1885 		return 1;
1886 	return 0;
1887 }
1888 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1889 
1890 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1891 			    unsigned int nr)
1892 {
1893 	if (!card->erase_size)
1894 		return 0;
1895 	if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1896 		return 0;
1897 	return 1;
1898 }
1899 EXPORT_SYMBOL(mmc_erase_group_aligned);
1900 
1901 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1902 					    unsigned int arg)
1903 {
1904 	struct mmc_host *host = card->host;
1905 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1906 	unsigned int last_timeout = 0;
1907 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1908 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1909 
1910 	if (card->erase_shift) {
1911 		max_qty = UINT_MAX >> card->erase_shift;
1912 		min_qty = card->pref_erase >> card->erase_shift;
1913 	} else if (mmc_card_sd(card)) {
1914 		max_qty = UINT_MAX;
1915 		min_qty = card->pref_erase;
1916 	} else {
1917 		max_qty = UINT_MAX / card->erase_size;
1918 		min_qty = card->pref_erase / card->erase_size;
1919 	}
1920 
1921 	/*
1922 	 * We should not only use 'host->max_busy_timeout' as the limitation
1923 	 * when deciding the max discard sectors. We should set a balance value
1924 	 * to improve the erase speed, and it can not get too long timeout at
1925 	 * the same time.
1926 	 *
1927 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928 	 * matter what size of 'host->max_busy_timeout', but if the
1929 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930 	 * then we can continue to increase the max discard sectors until we
1931 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1932 	 * isn't specified, use the default max erase timeout.
1933 	 */
1934 	do {
1935 		y = 0;
1936 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1937 			timeout = mmc_erase_timeout(card, arg, qty + x);
1938 
1939 			if (qty + x > min_qty && timeout > max_busy_timeout)
1940 				break;
1941 
1942 			if (timeout < last_timeout)
1943 				break;
1944 			last_timeout = timeout;
1945 			y = x;
1946 		}
1947 		qty += y;
1948 	} while (y);
1949 
1950 	if (!qty)
1951 		return 0;
1952 
1953 	/*
1954 	 * When specifying a sector range to trim, chances are we might cross
1955 	 * an erase-group boundary even if the amount of sectors is less than
1956 	 * one erase-group.
1957 	 * If we can only fit one erase-group in the controller timeout budget,
1958 	 * we have to care that erase-group boundaries are not crossed by a
1959 	 * single trim operation. We flag that special case with "eg_boundary".
1960 	 * In all other cases we can just decrement qty and pretend that we
1961 	 * always touch (qty + 1) erase-groups as a simple optimization.
1962 	 */
1963 	if (qty == 1)
1964 		card->eg_boundary = 1;
1965 	else
1966 		qty--;
1967 
1968 	/* Convert qty to sectors */
1969 	if (card->erase_shift)
1970 		max_discard = qty << card->erase_shift;
1971 	else if (mmc_card_sd(card))
1972 		max_discard = qty + 1;
1973 	else
1974 		max_discard = qty * card->erase_size;
1975 
1976 	return max_discard;
1977 }
1978 
1979 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1980 {
1981 	struct mmc_host *host = card->host;
1982 	unsigned int max_discard, max_trim;
1983 
1984 	/*
1985 	 * Without erase_group_def set, MMC erase timeout depends on clock
1986 	 * frequence which can change.  In that case, the best choice is
1987 	 * just the preferred erase size.
1988 	 */
1989 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1990 		return card->pref_erase;
1991 
1992 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1993 	if (mmc_can_trim(card)) {
1994 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1995 		if (max_trim < max_discard || max_discard == 0)
1996 			max_discard = max_trim;
1997 	} else if (max_discard < card->erase_size) {
1998 		max_discard = 0;
1999 	}
2000 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2002 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2003 	return max_discard;
2004 }
2005 EXPORT_SYMBOL(mmc_calc_max_discard);
2006 
2007 bool mmc_card_is_blockaddr(struct mmc_card *card)
2008 {
2009 	return card ? mmc_card_blockaddr(card) : false;
2010 }
2011 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2012 
2013 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2014 {
2015 	struct mmc_command cmd = {};
2016 
2017 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2018 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2019 		return 0;
2020 
2021 	cmd.opcode = MMC_SET_BLOCKLEN;
2022 	cmd.arg = blocklen;
2023 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2025 }
2026 EXPORT_SYMBOL(mmc_set_blocklen);
2027 
2028 static void mmc_hw_reset_for_init(struct mmc_host *host)
2029 {
2030 	mmc_pwrseq_reset(host);
2031 
2032 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2033 		return;
2034 	host->ops->card_hw_reset(host);
2035 }
2036 
2037 /**
2038  * mmc_hw_reset - reset the card in hardware
2039  * @card: card to be reset
2040  *
2041  * Hard reset the card. This function is only for upper layers, like the
2042  * block layer or card drivers. You cannot use it in host drivers (struct
2043  * mmc_card might be gone then).
2044  *
2045  * Return: 0 on success, -errno on failure
2046  */
2047 int mmc_hw_reset(struct mmc_card *card)
2048 {
2049 	struct mmc_host *host = card->host;
2050 	int ret;
2051 
2052 	ret = host->bus_ops->hw_reset(host);
2053 	if (ret < 0)
2054 		pr_warn("%s: tried to HW reset card, got error %d\n",
2055 			mmc_hostname(host), ret);
2056 
2057 	return ret;
2058 }
2059 EXPORT_SYMBOL(mmc_hw_reset);
2060 
2061 int mmc_sw_reset(struct mmc_card *card)
2062 {
2063 	struct mmc_host *host = card->host;
2064 	int ret;
2065 
2066 	if (!host->bus_ops->sw_reset)
2067 		return -EOPNOTSUPP;
2068 
2069 	ret = host->bus_ops->sw_reset(host);
2070 	if (ret)
2071 		pr_warn("%s: tried to SW reset card, got error %d\n",
2072 			mmc_hostname(host), ret);
2073 
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL(mmc_sw_reset);
2077 
2078 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2079 {
2080 	host->f_init = freq;
2081 
2082 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2083 		mmc_hostname(host), __func__, host->f_init);
2084 
2085 	mmc_power_up(host, host->ocr_avail);
2086 
2087 	/*
2088 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089 	 * do a hardware reset if possible.
2090 	 */
2091 	mmc_hw_reset_for_init(host);
2092 
2093 	/*
2094 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2095 	 * if the card is being re-initialized, just send it.  CMD52
2096 	 * should be ignored by SD/eMMC cards.
2097 	 * Skip it if we already know that we do not support SDIO commands
2098 	 */
2099 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2100 		sdio_reset(host);
2101 
2102 	mmc_go_idle(host);
2103 
2104 	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2105 		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2106 			goto out;
2107 		if (mmc_card_sd_express(host))
2108 			return 0;
2109 	}
2110 
2111 	/* Order's important: probe SDIO, then SD, then MMC */
2112 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2113 		if (!mmc_attach_sdio(host))
2114 			return 0;
2115 
2116 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2117 		if (!mmc_attach_sd(host))
2118 			return 0;
2119 
2120 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2121 		if (!mmc_attach_mmc(host))
2122 			return 0;
2123 
2124 out:
2125 	mmc_power_off(host);
2126 	return -EIO;
2127 }
2128 
2129 int _mmc_detect_card_removed(struct mmc_host *host)
2130 {
2131 	int ret;
2132 
2133 	if (!host->card || mmc_card_removed(host->card))
2134 		return 1;
2135 
2136 	ret = host->bus_ops->alive(host);
2137 
2138 	/*
2139 	 * Card detect status and alive check may be out of sync if card is
2140 	 * removed slowly, when card detect switch changes while card/slot
2141 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143 	 * detect work 200ms later for this case.
2144 	 */
2145 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2146 		mmc_detect_change(host, msecs_to_jiffies(200));
2147 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2148 	}
2149 
2150 	if (ret) {
2151 		mmc_card_set_removed(host->card);
2152 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2153 	}
2154 
2155 	return ret;
2156 }
2157 
2158 int mmc_detect_card_removed(struct mmc_host *host)
2159 {
2160 	struct mmc_card *card = host->card;
2161 	int ret;
2162 
2163 	WARN_ON(!host->claimed);
2164 
2165 	if (!card)
2166 		return 1;
2167 
2168 	if (!mmc_card_is_removable(host))
2169 		return 0;
2170 
2171 	ret = mmc_card_removed(card);
2172 	/*
2173 	 * The card will be considered unchanged unless we have been asked to
2174 	 * detect a change or host requires polling to provide card detection.
2175 	 */
2176 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2177 		return ret;
2178 
2179 	host->detect_change = 0;
2180 	if (!ret) {
2181 		ret = _mmc_detect_card_removed(host);
2182 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2183 			/*
2184 			 * Schedule a detect work as soon as possible to let a
2185 			 * rescan handle the card removal.
2186 			 */
2187 			cancel_delayed_work(&host->detect);
2188 			_mmc_detect_change(host, 0, false);
2189 		}
2190 	}
2191 
2192 	return ret;
2193 }
2194 EXPORT_SYMBOL(mmc_detect_card_removed);
2195 
2196 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2197 {
2198 	unsigned int boot_sectors_num;
2199 
2200 	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2201 		return -EOPNOTSUPP;
2202 
2203 	/* filter out unrelated cards */
2204 	if (card->ext_csd.rev < 3 ||
2205 	    !mmc_card_mmc(card) ||
2206 	    !mmc_card_is_blockaddr(card) ||
2207 	     mmc_card_is_removable(card->host))
2208 		return -ENOENT;
2209 
2210 	/*
2211 	 * eMMC storage has two special boot partitions in addition to the
2212 	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213 	 * accesses, this means that the partition table addresses are shifted
2214 	 * by the size of boot partitions.  In accordance with the eMMC
2215 	 * specification, the boot partition size is calculated as follows:
2216 	 *
2217 	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2218 	 *
2219 	 * Calculate number of sectors occupied by the both boot partitions.
2220 	 */
2221 	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2222 			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2223 
2224 	/* Defined by NVIDIA and used by Android devices. */
2225 	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2226 
2227 	return 0;
2228 }
2229 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2230 
2231 void mmc_rescan(struct work_struct *work)
2232 {
2233 	struct mmc_host *host =
2234 		container_of(work, struct mmc_host, detect.work);
2235 	int i;
2236 
2237 	if (host->rescan_disable)
2238 		return;
2239 
2240 	/* If there is a non-removable card registered, only scan once */
2241 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2242 		return;
2243 	host->rescan_entered = 1;
2244 
2245 	if (host->trigger_card_event && host->ops->card_event) {
2246 		mmc_claim_host(host);
2247 		host->ops->card_event(host);
2248 		mmc_release_host(host);
2249 		host->trigger_card_event = false;
2250 	}
2251 
2252 	/* Verify a registered card to be functional, else remove it. */
2253 	if (host->bus_ops)
2254 		host->bus_ops->detect(host);
2255 
2256 	host->detect_change = 0;
2257 
2258 	/* if there still is a card present, stop here */
2259 	if (host->bus_ops != NULL)
2260 		goto out;
2261 
2262 	mmc_claim_host(host);
2263 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2264 			host->ops->get_cd(host) == 0) {
2265 		mmc_power_off(host);
2266 		mmc_release_host(host);
2267 		goto out;
2268 	}
2269 
2270 	/* If an SD express card is present, then leave it as is. */
2271 	if (mmc_card_sd_express(host)) {
2272 		mmc_release_host(host);
2273 		goto out;
2274 	}
2275 
2276 	/*
2277 	 * Ideally we should favor initialization of legacy SD cards and defer
2278 	 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279 	 * announce their support for UHS-II in the response to the ACMD41,
2280 	 * while initializing the legacy SD interface. Therefore, let's start
2281 	 * with UHS-II for now.
2282 	 */
2283 	if (!mmc_attach_sd_uhs2(host)) {
2284 		mmc_release_host(host);
2285 		goto out;
2286 	}
2287 
2288 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2289 		unsigned int freq = freqs[i];
2290 		if (freq > host->f_max) {
2291 			if (i + 1 < ARRAY_SIZE(freqs))
2292 				continue;
2293 			freq = host->f_max;
2294 		}
2295 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2296 			break;
2297 		if (freqs[i] <= host->f_min)
2298 			break;
2299 	}
2300 
2301 	/* A non-removable card should have been detected by now. */
2302 	if (!mmc_card_is_removable(host) && !host->bus_ops)
2303 		pr_info("%s: Failed to initialize a non-removable card",
2304 			mmc_hostname(host));
2305 
2306 	/*
2307 	 * Ignore the command timeout errors observed during
2308 	 * the card init as those are excepted.
2309 	 */
2310 	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2311 	mmc_release_host(host);
2312 
2313  out:
2314 	if (host->caps & MMC_CAP_NEEDS_POLL)
2315 		mmc_schedule_delayed_work(&host->detect, HZ);
2316 }
2317 
2318 void mmc_start_host(struct mmc_host *host)
2319 {
2320 	bool power_up = !(host->caps2 &
2321 			 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2322 
2323 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2324 	host->rescan_disable = 0;
2325 
2326 	if (power_up) {
2327 		mmc_claim_host(host);
2328 		mmc_power_up(host, host->ocr_avail);
2329 		mmc_release_host(host);
2330 	}
2331 
2332 	mmc_gpiod_request_cd_irq(host);
2333 	_mmc_detect_change(host, 0, false);
2334 }
2335 
2336 void __mmc_stop_host(struct mmc_host *host)
2337 {
2338 	if (host->slot.cd_irq >= 0) {
2339 		mmc_gpio_set_cd_wake(host, false);
2340 		disable_irq(host->slot.cd_irq);
2341 	}
2342 
2343 	host->rescan_disable = 1;
2344 	cancel_delayed_work_sync(&host->detect);
2345 }
2346 
2347 void mmc_stop_host(struct mmc_host *host)
2348 {
2349 	__mmc_stop_host(host);
2350 
2351 	/* clear pm flags now and let card drivers set them as needed */
2352 	host->pm_flags = 0;
2353 
2354 	if (host->bus_ops) {
2355 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2356 		host->bus_ops->remove(host);
2357 		mmc_claim_host(host);
2358 		mmc_detach_bus(host);
2359 		mmc_power_off(host);
2360 		mmc_release_host(host);
2361 		return;
2362 	}
2363 
2364 	mmc_claim_host(host);
2365 	mmc_power_off(host);
2366 	mmc_release_host(host);
2367 }
2368 
2369 static int __init mmc_init(void)
2370 {
2371 	int ret;
2372 
2373 	ret = mmc_register_bus();
2374 	if (ret)
2375 		return ret;
2376 
2377 	ret = mmc_register_host_class();
2378 	if (ret)
2379 		goto unregister_bus;
2380 
2381 	ret = sdio_register_bus();
2382 	if (ret)
2383 		goto unregister_host_class;
2384 
2385 	return 0;
2386 
2387 unregister_host_class:
2388 	mmc_unregister_host_class();
2389 unregister_bus:
2390 	mmc_unregister_bus();
2391 	return ret;
2392 }
2393 
2394 static void __exit mmc_exit(void)
2395 {
2396 	sdio_unregister_bus();
2397 	mmc_unregister_host_class();
2398 	mmc_unregister_bus();
2399 }
2400 
2401 subsys_initcall(mmc_init);
2402 module_exit(mmc_exit);
2403 
2404 MODULE_DESCRIPTION("MMC core driver");
2405 MODULE_LICENSE("GPL");
2406