xref: /linux/drivers/mmc/core/core.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39 
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43 
44 static struct workqueue_struct *workqueue;
45 
46 /*
47  * Enabling software CRCs on the data blocks can be a significant (30%)
48  * performance cost, and for other reasons may not always be desired.
49  * So we allow it it to be disabled.
50  */
51 int use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
53 
54 /*
55  * We normally treat cards as removed during suspend if they are not
56  * known to be on a non-removable bus, to avoid the risk of writing
57  * back data to a different card after resume.  Allow this to be
58  * overridden if necessary.
59  */
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 int mmc_assume_removable;
62 #else
63 int mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 	removable,
69 	"MMC/SD cards are removable and may be removed during suspend");
70 
71 /*
72  * Internal function. Schedule delayed work in the MMC work queue.
73  */
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 				     unsigned long delay)
76 {
77 	return queue_delayed_work(workqueue, work, delay);
78 }
79 
80 /*
81  * Internal function. Flush all scheduled work from the MMC work queue.
82  */
83 static void mmc_flush_scheduled_work(void)
84 {
85 	flush_workqueue(workqueue);
86 }
87 
88 #ifdef CONFIG_FAIL_MMC_REQUEST
89 
90 /*
91  * Internal function. Inject random data errors.
92  * If mmc_data is NULL no errors are injected.
93  */
94 static void mmc_should_fail_request(struct mmc_host *host,
95 				    struct mmc_request *mrq)
96 {
97 	struct mmc_command *cmd = mrq->cmd;
98 	struct mmc_data *data = mrq->data;
99 	static const int data_errors[] = {
100 		-ETIMEDOUT,
101 		-EILSEQ,
102 		-EIO,
103 	};
104 
105 	if (!data)
106 		return;
107 
108 	if (cmd->error || data->error ||
109 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 		return;
111 
112 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114 }
115 
116 #else /* CONFIG_FAIL_MMC_REQUEST */
117 
118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 					   struct mmc_request *mrq)
120 {
121 }
122 
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
124 
125 /**
126  *	mmc_request_done - finish processing an MMC request
127  *	@host: MMC host which completed request
128  *	@mrq: MMC request which request
129  *
130  *	MMC drivers should call this function when they have completed
131  *	their processing of a request.
132  */
133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134 {
135 	struct mmc_command *cmd = mrq->cmd;
136 	int err = cmd->error;
137 
138 	if (err && cmd->retries && mmc_host_is_spi(host)) {
139 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 			cmd->retries = 0;
141 	}
142 
143 	if (err && cmd->retries) {
144 		/*
145 		 * Request starter must handle retries - see
146 		 * mmc_wait_for_req_done().
147 		 */
148 		if (mrq->done)
149 			mrq->done(mrq);
150 	} else {
151 		mmc_should_fail_request(host, mrq);
152 
153 		led_trigger_event(host->led, LED_OFF);
154 
155 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 			mmc_hostname(host), cmd->opcode, err,
157 			cmd->resp[0], cmd->resp[1],
158 			cmd->resp[2], cmd->resp[3]);
159 
160 		if (mrq->data) {
161 			pr_debug("%s:     %d bytes transferred: %d\n",
162 				mmc_hostname(host),
163 				mrq->data->bytes_xfered, mrq->data->error);
164 		}
165 
166 		if (mrq->stop) {
167 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
168 				mmc_hostname(host), mrq->stop->opcode,
169 				mrq->stop->error,
170 				mrq->stop->resp[0], mrq->stop->resp[1],
171 				mrq->stop->resp[2], mrq->stop->resp[3]);
172 		}
173 
174 		if (mrq->done)
175 			mrq->done(mrq);
176 
177 		mmc_host_clk_release(host);
178 	}
179 }
180 
181 EXPORT_SYMBOL(mmc_request_done);
182 
183 static void
184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185 {
186 #ifdef CONFIG_MMC_DEBUG
187 	unsigned int i, sz;
188 	struct scatterlist *sg;
189 #endif
190 
191 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 		 mmc_hostname(host), mrq->cmd->opcode,
193 		 mrq->cmd->arg, mrq->cmd->flags);
194 
195 	if (mrq->data) {
196 		pr_debug("%s:     blksz %d blocks %d flags %08x "
197 			"tsac %d ms nsac %d\n",
198 			mmc_hostname(host), mrq->data->blksz,
199 			mrq->data->blocks, mrq->data->flags,
200 			mrq->data->timeout_ns / 1000000,
201 			mrq->data->timeout_clks);
202 	}
203 
204 	if (mrq->stop) {
205 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
206 			 mmc_hostname(host), mrq->stop->opcode,
207 			 mrq->stop->arg, mrq->stop->flags);
208 	}
209 
210 	WARN_ON(!host->claimed);
211 
212 	mrq->cmd->error = 0;
213 	mrq->cmd->mrq = mrq;
214 	if (mrq->data) {
215 		BUG_ON(mrq->data->blksz > host->max_blk_size);
216 		BUG_ON(mrq->data->blocks > host->max_blk_count);
217 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
218 			host->max_req_size);
219 
220 #ifdef CONFIG_MMC_DEBUG
221 		sz = 0;
222 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223 			sz += sg->length;
224 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225 #endif
226 
227 		mrq->cmd->data = mrq->data;
228 		mrq->data->error = 0;
229 		mrq->data->mrq = mrq;
230 		if (mrq->stop) {
231 			mrq->data->stop = mrq->stop;
232 			mrq->stop->error = 0;
233 			mrq->stop->mrq = mrq;
234 		}
235 	}
236 	mmc_host_clk_hold(host);
237 	led_trigger_event(host->led, LED_FULL);
238 	host->ops->request(host, mrq);
239 }
240 
241 static void mmc_wait_done(struct mmc_request *mrq)
242 {
243 	complete(&mrq->completion);
244 }
245 
246 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
247 {
248 	init_completion(&mrq->completion);
249 	mrq->done = mmc_wait_done;
250 	mmc_start_request(host, mrq);
251 }
252 
253 static void mmc_wait_for_req_done(struct mmc_host *host,
254 				  struct mmc_request *mrq)
255 {
256 	struct mmc_command *cmd;
257 
258 	while (1) {
259 		wait_for_completion(&mrq->completion);
260 
261 		cmd = mrq->cmd;
262 		if (!cmd->error || !cmd->retries)
263 			break;
264 
265 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
266 			 mmc_hostname(host), cmd->opcode, cmd->error);
267 		cmd->retries--;
268 		cmd->error = 0;
269 		host->ops->request(host, mrq);
270 	}
271 }
272 
273 /**
274  *	mmc_pre_req - Prepare for a new request
275  *	@host: MMC host to prepare command
276  *	@mrq: MMC request to prepare for
277  *	@is_first_req: true if there is no previous started request
278  *                     that may run in parellel to this call, otherwise false
279  *
280  *	mmc_pre_req() is called in prior to mmc_start_req() to let
281  *	host prepare for the new request. Preparation of a request may be
282  *	performed while another request is running on the host.
283  */
284 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
285 		 bool is_first_req)
286 {
287 	if (host->ops->pre_req)
288 		host->ops->pre_req(host, mrq, is_first_req);
289 }
290 
291 /**
292  *	mmc_post_req - Post process a completed request
293  *	@host: MMC host to post process command
294  *	@mrq: MMC request to post process for
295  *	@err: Error, if non zero, clean up any resources made in pre_req
296  *
297  *	Let the host post process a completed request. Post processing of
298  *	a request may be performed while another reuqest is running.
299  */
300 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
301 			 int err)
302 {
303 	if (host->ops->post_req)
304 		host->ops->post_req(host, mrq, err);
305 }
306 
307 /**
308  *	mmc_start_req - start a non-blocking request
309  *	@host: MMC host to start command
310  *	@areq: async request to start
311  *	@error: out parameter returns 0 for success, otherwise non zero
312  *
313  *	Start a new MMC custom command request for a host.
314  *	If there is on ongoing async request wait for completion
315  *	of that request and start the new one and return.
316  *	Does not wait for the new request to complete.
317  *
318  *      Returns the completed request, NULL in case of none completed.
319  *	Wait for the an ongoing request (previoulsy started) to complete and
320  *	return the completed request. If there is no ongoing request, NULL
321  *	is returned without waiting. NULL is not an error condition.
322  */
323 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
324 				    struct mmc_async_req *areq, int *error)
325 {
326 	int err = 0;
327 	struct mmc_async_req *data = host->areq;
328 
329 	/* Prepare a new request */
330 	if (areq)
331 		mmc_pre_req(host, areq->mrq, !host->areq);
332 
333 	if (host->areq) {
334 		mmc_wait_for_req_done(host, host->areq->mrq);
335 		err = host->areq->err_check(host->card, host->areq);
336 		if (err) {
337 			/* post process the completed failed request */
338 			mmc_post_req(host, host->areq->mrq, 0);
339 			if (areq)
340 				/*
341 				 * Cancel the new prepared request, because
342 				 * it can't run until the failed
343 				 * request has been properly handled.
344 				 */
345 				mmc_post_req(host, areq->mrq, -EINVAL);
346 
347 			host->areq = NULL;
348 			goto out;
349 		}
350 	}
351 
352 	if (areq)
353 		__mmc_start_req(host, areq->mrq);
354 
355 	if (host->areq)
356 		mmc_post_req(host, host->areq->mrq, 0);
357 
358 	host->areq = areq;
359  out:
360 	if (error)
361 		*error = err;
362 	return data;
363 }
364 EXPORT_SYMBOL(mmc_start_req);
365 
366 /**
367  *	mmc_wait_for_req - start a request and wait for completion
368  *	@host: MMC host to start command
369  *	@mrq: MMC request to start
370  *
371  *	Start a new MMC custom command request for a host, and wait
372  *	for the command to complete. Does not attempt to parse the
373  *	response.
374  */
375 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
376 {
377 	__mmc_start_req(host, mrq);
378 	mmc_wait_for_req_done(host, mrq);
379 }
380 EXPORT_SYMBOL(mmc_wait_for_req);
381 
382 /**
383  *	mmc_interrupt_hpi - Issue for High priority Interrupt
384  *	@card: the MMC card associated with the HPI transfer
385  *
386  *	Issued High Priority Interrupt, and check for card status
387  *	util out-of prg-state.
388  */
389 int mmc_interrupt_hpi(struct mmc_card *card)
390 {
391 	int err;
392 	u32 status;
393 
394 	BUG_ON(!card);
395 
396 	if (!card->ext_csd.hpi_en) {
397 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
398 		return 1;
399 	}
400 
401 	mmc_claim_host(card->host);
402 	err = mmc_send_status(card, &status);
403 	if (err) {
404 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
405 		goto out;
406 	}
407 
408 	/*
409 	 * If the card status is in PRG-state, we can send the HPI command.
410 	 */
411 	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
412 		do {
413 			/*
414 			 * We don't know when the HPI command will finish
415 			 * processing, so we need to resend HPI until out
416 			 * of prg-state, and keep checking the card status
417 			 * with SEND_STATUS.  If a timeout error occurs when
418 			 * sending the HPI command, we are already out of
419 			 * prg-state.
420 			 */
421 			err = mmc_send_hpi_cmd(card, &status);
422 			if (err)
423 				pr_debug("%s: abort HPI (%d error)\n",
424 					 mmc_hostname(card->host), err);
425 
426 			err = mmc_send_status(card, &status);
427 			if (err)
428 				break;
429 		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
430 	} else
431 		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
432 
433 out:
434 	mmc_release_host(card->host);
435 	return err;
436 }
437 EXPORT_SYMBOL(mmc_interrupt_hpi);
438 
439 /**
440  *	mmc_wait_for_cmd - start a command and wait for completion
441  *	@host: MMC host to start command
442  *	@cmd: MMC command to start
443  *	@retries: maximum number of retries
444  *
445  *	Start a new MMC command for a host, and wait for the command
446  *	to complete.  Return any error that occurred while the command
447  *	was executing.  Do not attempt to parse the response.
448  */
449 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
450 {
451 	struct mmc_request mrq = {NULL};
452 
453 	WARN_ON(!host->claimed);
454 
455 	memset(cmd->resp, 0, sizeof(cmd->resp));
456 	cmd->retries = retries;
457 
458 	mrq.cmd = cmd;
459 	cmd->data = NULL;
460 
461 	mmc_wait_for_req(host, &mrq);
462 
463 	return cmd->error;
464 }
465 
466 EXPORT_SYMBOL(mmc_wait_for_cmd);
467 
468 /**
469  *	mmc_set_data_timeout - set the timeout for a data command
470  *	@data: data phase for command
471  *	@card: the MMC card associated with the data transfer
472  *
473  *	Computes the data timeout parameters according to the
474  *	correct algorithm given the card type.
475  */
476 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
477 {
478 	unsigned int mult;
479 
480 	/*
481 	 * SDIO cards only define an upper 1 s limit on access.
482 	 */
483 	if (mmc_card_sdio(card)) {
484 		data->timeout_ns = 1000000000;
485 		data->timeout_clks = 0;
486 		return;
487 	}
488 
489 	/*
490 	 * SD cards use a 100 multiplier rather than 10
491 	 */
492 	mult = mmc_card_sd(card) ? 100 : 10;
493 
494 	/*
495 	 * Scale up the multiplier (and therefore the timeout) by
496 	 * the r2w factor for writes.
497 	 */
498 	if (data->flags & MMC_DATA_WRITE)
499 		mult <<= card->csd.r2w_factor;
500 
501 	data->timeout_ns = card->csd.tacc_ns * mult;
502 	data->timeout_clks = card->csd.tacc_clks * mult;
503 
504 	/*
505 	 * SD cards also have an upper limit on the timeout.
506 	 */
507 	if (mmc_card_sd(card)) {
508 		unsigned int timeout_us, limit_us;
509 
510 		timeout_us = data->timeout_ns / 1000;
511 		if (mmc_host_clk_rate(card->host))
512 			timeout_us += data->timeout_clks * 1000 /
513 				(mmc_host_clk_rate(card->host) / 1000);
514 
515 		if (data->flags & MMC_DATA_WRITE)
516 			/*
517 			 * The limit is really 250 ms, but that is
518 			 * insufficient for some crappy cards.
519 			 */
520 			limit_us = 300000;
521 		else
522 			limit_us = 100000;
523 
524 		/*
525 		 * SDHC cards always use these fixed values.
526 		 */
527 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
528 			data->timeout_ns = limit_us * 1000;
529 			data->timeout_clks = 0;
530 		}
531 	}
532 	/*
533 	 * Some cards need very high timeouts if driven in SPI mode.
534 	 * The worst observed timeout was 900ms after writing a
535 	 * continuous stream of data until the internal logic
536 	 * overflowed.
537 	 */
538 	if (mmc_host_is_spi(card->host)) {
539 		if (data->flags & MMC_DATA_WRITE) {
540 			if (data->timeout_ns < 1000000000)
541 				data->timeout_ns = 1000000000;	/* 1s */
542 		} else {
543 			if (data->timeout_ns < 100000000)
544 				data->timeout_ns =  100000000;	/* 100ms */
545 		}
546 	}
547 }
548 EXPORT_SYMBOL(mmc_set_data_timeout);
549 
550 /**
551  *	mmc_align_data_size - pads a transfer size to a more optimal value
552  *	@card: the MMC card associated with the data transfer
553  *	@sz: original transfer size
554  *
555  *	Pads the original data size with a number of extra bytes in
556  *	order to avoid controller bugs and/or performance hits
557  *	(e.g. some controllers revert to PIO for certain sizes).
558  *
559  *	Returns the improved size, which might be unmodified.
560  *
561  *	Note that this function is only relevant when issuing a
562  *	single scatter gather entry.
563  */
564 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
565 {
566 	/*
567 	 * FIXME: We don't have a system for the controller to tell
568 	 * the core about its problems yet, so for now we just 32-bit
569 	 * align the size.
570 	 */
571 	sz = ((sz + 3) / 4) * 4;
572 
573 	return sz;
574 }
575 EXPORT_SYMBOL(mmc_align_data_size);
576 
577 /**
578  *	mmc_host_enable - enable a host.
579  *	@host: mmc host to enable
580  *
581  *	Hosts that support power saving can use the 'enable' and 'disable'
582  *	methods to exit and enter power saving states. For more information
583  *	see comments for struct mmc_host_ops.
584  */
585 int mmc_host_enable(struct mmc_host *host)
586 {
587 	if (!(host->caps & MMC_CAP_DISABLE))
588 		return 0;
589 
590 	if (host->en_dis_recurs)
591 		return 0;
592 
593 	if (host->nesting_cnt++)
594 		return 0;
595 
596 	cancel_delayed_work_sync(&host->disable);
597 
598 	if (host->enabled)
599 		return 0;
600 
601 	if (host->ops->enable) {
602 		int err;
603 
604 		host->en_dis_recurs = 1;
605 		err = host->ops->enable(host);
606 		host->en_dis_recurs = 0;
607 
608 		if (err) {
609 			pr_debug("%s: enable error %d\n",
610 				 mmc_hostname(host), err);
611 			return err;
612 		}
613 	}
614 	host->enabled = 1;
615 	return 0;
616 }
617 EXPORT_SYMBOL(mmc_host_enable);
618 
619 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
620 {
621 	if (host->ops->disable) {
622 		int err;
623 
624 		host->en_dis_recurs = 1;
625 		err = host->ops->disable(host, lazy);
626 		host->en_dis_recurs = 0;
627 
628 		if (err < 0) {
629 			pr_debug("%s: disable error %d\n",
630 				 mmc_hostname(host), err);
631 			return err;
632 		}
633 		if (err > 0) {
634 			unsigned long delay = msecs_to_jiffies(err);
635 
636 			mmc_schedule_delayed_work(&host->disable, delay);
637 		}
638 	}
639 	host->enabled = 0;
640 	return 0;
641 }
642 
643 /**
644  *	mmc_host_disable - disable a host.
645  *	@host: mmc host to disable
646  *
647  *	Hosts that support power saving can use the 'enable' and 'disable'
648  *	methods to exit and enter power saving states. For more information
649  *	see comments for struct mmc_host_ops.
650  */
651 int mmc_host_disable(struct mmc_host *host)
652 {
653 	int err;
654 
655 	if (!(host->caps & MMC_CAP_DISABLE))
656 		return 0;
657 
658 	if (host->en_dis_recurs)
659 		return 0;
660 
661 	if (--host->nesting_cnt)
662 		return 0;
663 
664 	if (!host->enabled)
665 		return 0;
666 
667 	err = mmc_host_do_disable(host, 0);
668 	return err;
669 }
670 EXPORT_SYMBOL(mmc_host_disable);
671 
672 /**
673  *	__mmc_claim_host - exclusively claim a host
674  *	@host: mmc host to claim
675  *	@abort: whether or not the operation should be aborted
676  *
677  *	Claim a host for a set of operations.  If @abort is non null and
678  *	dereference a non-zero value then this will return prematurely with
679  *	that non-zero value without acquiring the lock.  Returns zero
680  *	with the lock held otherwise.
681  */
682 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
683 {
684 	DECLARE_WAITQUEUE(wait, current);
685 	unsigned long flags;
686 	int stop;
687 
688 	might_sleep();
689 
690 	add_wait_queue(&host->wq, &wait);
691 	spin_lock_irqsave(&host->lock, flags);
692 	while (1) {
693 		set_current_state(TASK_UNINTERRUPTIBLE);
694 		stop = abort ? atomic_read(abort) : 0;
695 		if (stop || !host->claimed || host->claimer == current)
696 			break;
697 		spin_unlock_irqrestore(&host->lock, flags);
698 		schedule();
699 		spin_lock_irqsave(&host->lock, flags);
700 	}
701 	set_current_state(TASK_RUNNING);
702 	if (!stop) {
703 		host->claimed = 1;
704 		host->claimer = current;
705 		host->claim_cnt += 1;
706 	} else
707 		wake_up(&host->wq);
708 	spin_unlock_irqrestore(&host->lock, flags);
709 	remove_wait_queue(&host->wq, &wait);
710 	if (!stop)
711 		mmc_host_enable(host);
712 	return stop;
713 }
714 
715 EXPORT_SYMBOL(__mmc_claim_host);
716 
717 /**
718  *	mmc_try_claim_host - try exclusively to claim a host
719  *	@host: mmc host to claim
720  *
721  *	Returns %1 if the host is claimed, %0 otherwise.
722  */
723 int mmc_try_claim_host(struct mmc_host *host)
724 {
725 	int claimed_host = 0;
726 	unsigned long flags;
727 
728 	spin_lock_irqsave(&host->lock, flags);
729 	if (!host->claimed || host->claimer == current) {
730 		host->claimed = 1;
731 		host->claimer = current;
732 		host->claim_cnt += 1;
733 		claimed_host = 1;
734 	}
735 	spin_unlock_irqrestore(&host->lock, flags);
736 	return claimed_host;
737 }
738 EXPORT_SYMBOL(mmc_try_claim_host);
739 
740 /**
741  *	mmc_do_release_host - release a claimed host
742  *	@host: mmc host to release
743  *
744  *	If you successfully claimed a host, this function will
745  *	release it again.
746  */
747 void mmc_do_release_host(struct mmc_host *host)
748 {
749 	unsigned long flags;
750 
751 	spin_lock_irqsave(&host->lock, flags);
752 	if (--host->claim_cnt) {
753 		/* Release for nested claim */
754 		spin_unlock_irqrestore(&host->lock, flags);
755 	} else {
756 		host->claimed = 0;
757 		host->claimer = NULL;
758 		spin_unlock_irqrestore(&host->lock, flags);
759 		wake_up(&host->wq);
760 	}
761 }
762 EXPORT_SYMBOL(mmc_do_release_host);
763 
764 void mmc_host_deeper_disable(struct work_struct *work)
765 {
766 	struct mmc_host *host =
767 		container_of(work, struct mmc_host, disable.work);
768 
769 	/* If the host is claimed then we do not want to disable it anymore */
770 	if (!mmc_try_claim_host(host))
771 		return;
772 	mmc_host_do_disable(host, 1);
773 	mmc_do_release_host(host);
774 }
775 
776 /**
777  *	mmc_host_lazy_disable - lazily disable a host.
778  *	@host: mmc host to disable
779  *
780  *	Hosts that support power saving can use the 'enable' and 'disable'
781  *	methods to exit and enter power saving states. For more information
782  *	see comments for struct mmc_host_ops.
783  */
784 int mmc_host_lazy_disable(struct mmc_host *host)
785 {
786 	if (!(host->caps & MMC_CAP_DISABLE))
787 		return 0;
788 
789 	if (host->en_dis_recurs)
790 		return 0;
791 
792 	if (--host->nesting_cnt)
793 		return 0;
794 
795 	if (!host->enabled)
796 		return 0;
797 
798 	if (host->disable_delay) {
799 		mmc_schedule_delayed_work(&host->disable,
800 				msecs_to_jiffies(host->disable_delay));
801 		return 0;
802 	} else
803 		return mmc_host_do_disable(host, 1);
804 }
805 EXPORT_SYMBOL(mmc_host_lazy_disable);
806 
807 /**
808  *	mmc_release_host - release a host
809  *	@host: mmc host to release
810  *
811  *	Release a MMC host, allowing others to claim the host
812  *	for their operations.
813  */
814 void mmc_release_host(struct mmc_host *host)
815 {
816 	WARN_ON(!host->claimed);
817 
818 	mmc_host_lazy_disable(host);
819 
820 	mmc_do_release_host(host);
821 }
822 
823 EXPORT_SYMBOL(mmc_release_host);
824 
825 /*
826  * Internal function that does the actual ios call to the host driver,
827  * optionally printing some debug output.
828  */
829 static inline void mmc_set_ios(struct mmc_host *host)
830 {
831 	struct mmc_ios *ios = &host->ios;
832 
833 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
834 		"width %u timing %u\n",
835 		 mmc_hostname(host), ios->clock, ios->bus_mode,
836 		 ios->power_mode, ios->chip_select, ios->vdd,
837 		 ios->bus_width, ios->timing);
838 
839 	if (ios->clock > 0)
840 		mmc_set_ungated(host);
841 	host->ops->set_ios(host, ios);
842 }
843 
844 /*
845  * Control chip select pin on a host.
846  */
847 void mmc_set_chip_select(struct mmc_host *host, int mode)
848 {
849 	mmc_host_clk_hold(host);
850 	host->ios.chip_select = mode;
851 	mmc_set_ios(host);
852 	mmc_host_clk_release(host);
853 }
854 
855 /*
856  * Sets the host clock to the highest possible frequency that
857  * is below "hz".
858  */
859 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
860 {
861 	WARN_ON(hz < host->f_min);
862 
863 	if (hz > host->f_max)
864 		hz = host->f_max;
865 
866 	host->ios.clock = hz;
867 	mmc_set_ios(host);
868 }
869 
870 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
871 {
872 	mmc_host_clk_hold(host);
873 	__mmc_set_clock(host, hz);
874 	mmc_host_clk_release(host);
875 }
876 
877 #ifdef CONFIG_MMC_CLKGATE
878 /*
879  * This gates the clock by setting it to 0 Hz.
880  */
881 void mmc_gate_clock(struct mmc_host *host)
882 {
883 	unsigned long flags;
884 
885 	spin_lock_irqsave(&host->clk_lock, flags);
886 	host->clk_old = host->ios.clock;
887 	host->ios.clock = 0;
888 	host->clk_gated = true;
889 	spin_unlock_irqrestore(&host->clk_lock, flags);
890 	mmc_set_ios(host);
891 }
892 
893 /*
894  * This restores the clock from gating by using the cached
895  * clock value.
896  */
897 void mmc_ungate_clock(struct mmc_host *host)
898 {
899 	/*
900 	 * We should previously have gated the clock, so the clock shall
901 	 * be 0 here! The clock may however be 0 during initialization,
902 	 * when some request operations are performed before setting
903 	 * the frequency. When ungate is requested in that situation
904 	 * we just ignore the call.
905 	 */
906 	if (host->clk_old) {
907 		BUG_ON(host->ios.clock);
908 		/* This call will also set host->clk_gated to false */
909 		__mmc_set_clock(host, host->clk_old);
910 	}
911 }
912 
913 void mmc_set_ungated(struct mmc_host *host)
914 {
915 	unsigned long flags;
916 
917 	/*
918 	 * We've been given a new frequency while the clock is gated,
919 	 * so make sure we regard this as ungating it.
920 	 */
921 	spin_lock_irqsave(&host->clk_lock, flags);
922 	host->clk_gated = false;
923 	spin_unlock_irqrestore(&host->clk_lock, flags);
924 }
925 
926 #else
927 void mmc_set_ungated(struct mmc_host *host)
928 {
929 }
930 #endif
931 
932 /*
933  * Change the bus mode (open drain/push-pull) of a host.
934  */
935 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
936 {
937 	mmc_host_clk_hold(host);
938 	host->ios.bus_mode = mode;
939 	mmc_set_ios(host);
940 	mmc_host_clk_release(host);
941 }
942 
943 /*
944  * Change data bus width of a host.
945  */
946 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
947 {
948 	mmc_host_clk_hold(host);
949 	host->ios.bus_width = width;
950 	mmc_set_ios(host);
951 	mmc_host_clk_release(host);
952 }
953 
954 /**
955  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
956  * @vdd:	voltage (mV)
957  * @low_bits:	prefer low bits in boundary cases
958  *
959  * This function returns the OCR bit number according to the provided @vdd
960  * value. If conversion is not possible a negative errno value returned.
961  *
962  * Depending on the @low_bits flag the function prefers low or high OCR bits
963  * on boundary voltages. For example,
964  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
965  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
966  *
967  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
968  */
969 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
970 {
971 	const int max_bit = ilog2(MMC_VDD_35_36);
972 	int bit;
973 
974 	if (vdd < 1650 || vdd > 3600)
975 		return -EINVAL;
976 
977 	if (vdd >= 1650 && vdd <= 1950)
978 		return ilog2(MMC_VDD_165_195);
979 
980 	if (low_bits)
981 		vdd -= 1;
982 
983 	/* Base 2000 mV, step 100 mV, bit's base 8. */
984 	bit = (vdd - 2000) / 100 + 8;
985 	if (bit > max_bit)
986 		return max_bit;
987 	return bit;
988 }
989 
990 /**
991  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
992  * @vdd_min:	minimum voltage value (mV)
993  * @vdd_max:	maximum voltage value (mV)
994  *
995  * This function returns the OCR mask bits according to the provided @vdd_min
996  * and @vdd_max values. If conversion is not possible the function returns 0.
997  *
998  * Notes wrt boundary cases:
999  * This function sets the OCR bits for all boundary voltages, for example
1000  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1001  * MMC_VDD_34_35 mask.
1002  */
1003 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1004 {
1005 	u32 mask = 0;
1006 
1007 	if (vdd_max < vdd_min)
1008 		return 0;
1009 
1010 	/* Prefer high bits for the boundary vdd_max values. */
1011 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1012 	if (vdd_max < 0)
1013 		return 0;
1014 
1015 	/* Prefer low bits for the boundary vdd_min values. */
1016 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1017 	if (vdd_min < 0)
1018 		return 0;
1019 
1020 	/* Fill the mask, from max bit to min bit. */
1021 	while (vdd_max >= vdd_min)
1022 		mask |= 1 << vdd_max--;
1023 
1024 	return mask;
1025 }
1026 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1027 
1028 #ifdef CONFIG_REGULATOR
1029 
1030 /**
1031  * mmc_regulator_get_ocrmask - return mask of supported voltages
1032  * @supply: regulator to use
1033  *
1034  * This returns either a negative errno, or a mask of voltages that
1035  * can be provided to MMC/SD/SDIO devices using the specified voltage
1036  * regulator.  This would normally be called before registering the
1037  * MMC host adapter.
1038  */
1039 int mmc_regulator_get_ocrmask(struct regulator *supply)
1040 {
1041 	int			result = 0;
1042 	int			count;
1043 	int			i;
1044 
1045 	count = regulator_count_voltages(supply);
1046 	if (count < 0)
1047 		return count;
1048 
1049 	for (i = 0; i < count; i++) {
1050 		int		vdd_uV;
1051 		int		vdd_mV;
1052 
1053 		vdd_uV = regulator_list_voltage(supply, i);
1054 		if (vdd_uV <= 0)
1055 			continue;
1056 
1057 		vdd_mV = vdd_uV / 1000;
1058 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1059 	}
1060 
1061 	return result;
1062 }
1063 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
1064 
1065 /**
1066  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1067  * @mmc: the host to regulate
1068  * @supply: regulator to use
1069  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1070  *
1071  * Returns zero on success, else negative errno.
1072  *
1073  * MMC host drivers may use this to enable or disable a regulator using
1074  * a particular supply voltage.  This would normally be called from the
1075  * set_ios() method.
1076  */
1077 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1078 			struct regulator *supply,
1079 			unsigned short vdd_bit)
1080 {
1081 	int			result = 0;
1082 	int			min_uV, max_uV;
1083 
1084 	if (vdd_bit) {
1085 		int		tmp;
1086 		int		voltage;
1087 
1088 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
1089 		 * bits this regulator doesn't quite support ... don't
1090 		 * be too picky, most cards and regulators are OK with
1091 		 * a 0.1V range goof (it's a small error percentage).
1092 		 */
1093 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1094 		if (tmp == 0) {
1095 			min_uV = 1650 * 1000;
1096 			max_uV = 1950 * 1000;
1097 		} else {
1098 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1099 			max_uV = min_uV + 100 * 1000;
1100 		}
1101 
1102 		/* avoid needless changes to this voltage; the regulator
1103 		 * might not allow this operation
1104 		 */
1105 		voltage = regulator_get_voltage(supply);
1106 		if (voltage < 0)
1107 			result = voltage;
1108 		else if (voltage < min_uV || voltage > max_uV)
1109 			result = regulator_set_voltage(supply, min_uV, max_uV);
1110 		else
1111 			result = 0;
1112 
1113 		if (result == 0 && !mmc->regulator_enabled) {
1114 			result = regulator_enable(supply);
1115 			if (!result)
1116 				mmc->regulator_enabled = true;
1117 		}
1118 	} else if (mmc->regulator_enabled) {
1119 		result = regulator_disable(supply);
1120 		if (result == 0)
1121 			mmc->regulator_enabled = false;
1122 	}
1123 
1124 	if (result)
1125 		dev_err(mmc_dev(mmc),
1126 			"could not set regulator OCR (%d)\n", result);
1127 	return result;
1128 }
1129 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1130 
1131 #endif /* CONFIG_REGULATOR */
1132 
1133 /*
1134  * Mask off any voltages we don't support and select
1135  * the lowest voltage
1136  */
1137 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1138 {
1139 	int bit;
1140 
1141 	ocr &= host->ocr_avail;
1142 
1143 	bit = ffs(ocr);
1144 	if (bit) {
1145 		bit -= 1;
1146 
1147 		ocr &= 3 << bit;
1148 
1149 		mmc_host_clk_hold(host);
1150 		host->ios.vdd = bit;
1151 		mmc_set_ios(host);
1152 		mmc_host_clk_release(host);
1153 	} else {
1154 		pr_warning("%s: host doesn't support card's voltages\n",
1155 				mmc_hostname(host));
1156 		ocr = 0;
1157 	}
1158 
1159 	return ocr;
1160 }
1161 
1162 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1163 {
1164 	struct mmc_command cmd = {0};
1165 	int err = 0;
1166 
1167 	BUG_ON(!host);
1168 
1169 	/*
1170 	 * Send CMD11 only if the request is to switch the card to
1171 	 * 1.8V signalling.
1172 	 */
1173 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1174 		cmd.opcode = SD_SWITCH_VOLTAGE;
1175 		cmd.arg = 0;
1176 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1177 
1178 		err = mmc_wait_for_cmd(host, &cmd, 0);
1179 		if (err)
1180 			return err;
1181 
1182 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1183 			return -EIO;
1184 	}
1185 
1186 	host->ios.signal_voltage = signal_voltage;
1187 
1188 	if (host->ops->start_signal_voltage_switch)
1189 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1190 
1191 	return err;
1192 }
1193 
1194 /*
1195  * Select timing parameters for host.
1196  */
1197 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1198 {
1199 	mmc_host_clk_hold(host);
1200 	host->ios.timing = timing;
1201 	mmc_set_ios(host);
1202 	mmc_host_clk_release(host);
1203 }
1204 
1205 /*
1206  * Select appropriate driver type for host.
1207  */
1208 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1209 {
1210 	mmc_host_clk_hold(host);
1211 	host->ios.drv_type = drv_type;
1212 	mmc_set_ios(host);
1213 	mmc_host_clk_release(host);
1214 }
1215 
1216 /*
1217  * Apply power to the MMC stack.  This is a two-stage process.
1218  * First, we enable power to the card without the clock running.
1219  * We then wait a bit for the power to stabilise.  Finally,
1220  * enable the bus drivers and clock to the card.
1221  *
1222  * We must _NOT_ enable the clock prior to power stablising.
1223  *
1224  * If a host does all the power sequencing itself, ignore the
1225  * initial MMC_POWER_UP stage.
1226  */
1227 static void mmc_power_up(struct mmc_host *host)
1228 {
1229 	int bit;
1230 
1231 	mmc_host_clk_hold(host);
1232 
1233 	/* If ocr is set, we use it */
1234 	if (host->ocr)
1235 		bit = ffs(host->ocr) - 1;
1236 	else
1237 		bit = fls(host->ocr_avail) - 1;
1238 
1239 	host->ios.vdd = bit;
1240 	if (mmc_host_is_spi(host))
1241 		host->ios.chip_select = MMC_CS_HIGH;
1242 	else
1243 		host->ios.chip_select = MMC_CS_DONTCARE;
1244 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1245 	host->ios.power_mode = MMC_POWER_UP;
1246 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1247 	host->ios.timing = MMC_TIMING_LEGACY;
1248 	mmc_set_ios(host);
1249 
1250 	/*
1251 	 * This delay should be sufficient to allow the power supply
1252 	 * to reach the minimum voltage.
1253 	 */
1254 	mmc_delay(10);
1255 
1256 	host->ios.clock = host->f_init;
1257 
1258 	host->ios.power_mode = MMC_POWER_ON;
1259 	mmc_set_ios(host);
1260 
1261 	/*
1262 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1263 	 * time required to reach a stable voltage.
1264 	 */
1265 	mmc_delay(10);
1266 
1267 	mmc_host_clk_release(host);
1268 }
1269 
1270 void mmc_power_off(struct mmc_host *host)
1271 {
1272 	struct mmc_card *card;
1273 	unsigned int notify_type;
1274 	unsigned int timeout;
1275 	int err;
1276 
1277 	mmc_host_clk_hold(host);
1278 
1279 	card = host->card;
1280 	host->ios.clock = 0;
1281 	host->ios.vdd = 0;
1282 
1283 	if (card && mmc_card_mmc(card) &&
1284 	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1285 
1286 		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1287 			notify_type = EXT_CSD_POWER_OFF_SHORT;
1288 			timeout = card->ext_csd.generic_cmd6_time;
1289 			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1290 		} else {
1291 			notify_type = EXT_CSD_POWER_OFF_LONG;
1292 			timeout = card->ext_csd.power_off_longtime;
1293 			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1294 		}
1295 
1296 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1297 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1298 				 notify_type, timeout);
1299 
1300 		if (err && err != -EBADMSG)
1301 			pr_err("Device failed to respond within %d poweroff "
1302 			       "time. Forcefully powering down the device\n",
1303 			       timeout);
1304 
1305 		/* Set the card state to no notification after the poweroff */
1306 		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1307 	}
1308 
1309 	/*
1310 	 * Reset ocr mask to be the highest possible voltage supported for
1311 	 * this mmc host. This value will be used at next power up.
1312 	 */
1313 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1314 
1315 	if (!mmc_host_is_spi(host)) {
1316 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1317 		host->ios.chip_select = MMC_CS_DONTCARE;
1318 	}
1319 	host->ios.power_mode = MMC_POWER_OFF;
1320 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1321 	host->ios.timing = MMC_TIMING_LEGACY;
1322 	mmc_set_ios(host);
1323 
1324 	/*
1325 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1326 	 * XO-1.5, require a short delay after poweroff before the card
1327 	 * can be successfully turned on again.
1328 	 */
1329 	mmc_delay(1);
1330 
1331 	mmc_host_clk_release(host);
1332 }
1333 
1334 /*
1335  * Cleanup when the last reference to the bus operator is dropped.
1336  */
1337 static void __mmc_release_bus(struct mmc_host *host)
1338 {
1339 	BUG_ON(!host);
1340 	BUG_ON(host->bus_refs);
1341 	BUG_ON(!host->bus_dead);
1342 
1343 	host->bus_ops = NULL;
1344 }
1345 
1346 /*
1347  * Increase reference count of bus operator
1348  */
1349 static inline void mmc_bus_get(struct mmc_host *host)
1350 {
1351 	unsigned long flags;
1352 
1353 	spin_lock_irqsave(&host->lock, flags);
1354 	host->bus_refs++;
1355 	spin_unlock_irqrestore(&host->lock, flags);
1356 }
1357 
1358 /*
1359  * Decrease reference count of bus operator and free it if
1360  * it is the last reference.
1361  */
1362 static inline void mmc_bus_put(struct mmc_host *host)
1363 {
1364 	unsigned long flags;
1365 
1366 	spin_lock_irqsave(&host->lock, flags);
1367 	host->bus_refs--;
1368 	if ((host->bus_refs == 0) && host->bus_ops)
1369 		__mmc_release_bus(host);
1370 	spin_unlock_irqrestore(&host->lock, flags);
1371 }
1372 
1373 /*
1374  * Assign a mmc bus handler to a host. Only one bus handler may control a
1375  * host at any given time.
1376  */
1377 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1378 {
1379 	unsigned long flags;
1380 
1381 	BUG_ON(!host);
1382 	BUG_ON(!ops);
1383 
1384 	WARN_ON(!host->claimed);
1385 
1386 	spin_lock_irqsave(&host->lock, flags);
1387 
1388 	BUG_ON(host->bus_ops);
1389 	BUG_ON(host->bus_refs);
1390 
1391 	host->bus_ops = ops;
1392 	host->bus_refs = 1;
1393 	host->bus_dead = 0;
1394 
1395 	spin_unlock_irqrestore(&host->lock, flags);
1396 }
1397 
1398 /*
1399  * Remove the current bus handler from a host.
1400  */
1401 void mmc_detach_bus(struct mmc_host *host)
1402 {
1403 	unsigned long flags;
1404 
1405 	BUG_ON(!host);
1406 
1407 	WARN_ON(!host->claimed);
1408 	WARN_ON(!host->bus_ops);
1409 
1410 	spin_lock_irqsave(&host->lock, flags);
1411 
1412 	host->bus_dead = 1;
1413 
1414 	spin_unlock_irqrestore(&host->lock, flags);
1415 
1416 	mmc_bus_put(host);
1417 }
1418 
1419 /**
1420  *	mmc_detect_change - process change of state on a MMC socket
1421  *	@host: host which changed state.
1422  *	@delay: optional delay to wait before detection (jiffies)
1423  *
1424  *	MMC drivers should call this when they detect a card has been
1425  *	inserted or removed. The MMC layer will confirm that any
1426  *	present card is still functional, and initialize any newly
1427  *	inserted.
1428  */
1429 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1430 {
1431 #ifdef CONFIG_MMC_DEBUG
1432 	unsigned long flags;
1433 	spin_lock_irqsave(&host->lock, flags);
1434 	WARN_ON(host->removed);
1435 	spin_unlock_irqrestore(&host->lock, flags);
1436 #endif
1437 
1438 	mmc_schedule_delayed_work(&host->detect, delay);
1439 }
1440 
1441 EXPORT_SYMBOL(mmc_detect_change);
1442 
1443 void mmc_init_erase(struct mmc_card *card)
1444 {
1445 	unsigned int sz;
1446 
1447 	if (is_power_of_2(card->erase_size))
1448 		card->erase_shift = ffs(card->erase_size) - 1;
1449 	else
1450 		card->erase_shift = 0;
1451 
1452 	/*
1453 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1454 	 * card.  That is not desirable because it can take a long time
1455 	 * (minutes) potentially delaying more important I/O, and also the
1456 	 * timeout calculations become increasingly hugely over-estimated.
1457 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1458 	 * to that size and alignment.
1459 	 *
1460 	 * For SD cards that define Allocation Unit size, limit erases to one
1461 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1462 	 * Erase Size, whether it is switched on or not, limit to that size.
1463 	 * Otherwise just have a stab at a good value.  For modern cards it
1464 	 * will end up being 4MiB.  Note that if the value is too small, it
1465 	 * can end up taking longer to erase.
1466 	 */
1467 	if (mmc_card_sd(card) && card->ssr.au) {
1468 		card->pref_erase = card->ssr.au;
1469 		card->erase_shift = ffs(card->ssr.au) - 1;
1470 	} else if (card->ext_csd.hc_erase_size) {
1471 		card->pref_erase = card->ext_csd.hc_erase_size;
1472 	} else {
1473 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1474 		if (sz < 128)
1475 			card->pref_erase = 512 * 1024 / 512;
1476 		else if (sz < 512)
1477 			card->pref_erase = 1024 * 1024 / 512;
1478 		else if (sz < 1024)
1479 			card->pref_erase = 2 * 1024 * 1024 / 512;
1480 		else
1481 			card->pref_erase = 4 * 1024 * 1024 / 512;
1482 		if (card->pref_erase < card->erase_size)
1483 			card->pref_erase = card->erase_size;
1484 		else {
1485 			sz = card->pref_erase % card->erase_size;
1486 			if (sz)
1487 				card->pref_erase += card->erase_size - sz;
1488 		}
1489 	}
1490 }
1491 
1492 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1493 				          unsigned int arg, unsigned int qty)
1494 {
1495 	unsigned int erase_timeout;
1496 
1497 	if (card->ext_csd.erase_group_def & 1) {
1498 		/* High Capacity Erase Group Size uses HC timeouts */
1499 		if (arg == MMC_TRIM_ARG)
1500 			erase_timeout = card->ext_csd.trim_timeout;
1501 		else
1502 			erase_timeout = card->ext_csd.hc_erase_timeout;
1503 	} else {
1504 		/* CSD Erase Group Size uses write timeout */
1505 		unsigned int mult = (10 << card->csd.r2w_factor);
1506 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1507 		unsigned int timeout_us;
1508 
1509 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1510 		if (card->csd.tacc_ns < 1000000)
1511 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1512 		else
1513 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1514 
1515 		/*
1516 		 * ios.clock is only a target.  The real clock rate might be
1517 		 * less but not that much less, so fudge it by multiplying by 2.
1518 		 */
1519 		timeout_clks <<= 1;
1520 		timeout_us += (timeout_clks * 1000) /
1521 			      (mmc_host_clk_rate(card->host) / 1000);
1522 
1523 		erase_timeout = timeout_us / 1000;
1524 
1525 		/*
1526 		 * Theoretically, the calculation could underflow so round up
1527 		 * to 1ms in that case.
1528 		 */
1529 		if (!erase_timeout)
1530 			erase_timeout = 1;
1531 	}
1532 
1533 	/* Multiplier for secure operations */
1534 	if (arg & MMC_SECURE_ARGS) {
1535 		if (arg == MMC_SECURE_ERASE_ARG)
1536 			erase_timeout *= card->ext_csd.sec_erase_mult;
1537 		else
1538 			erase_timeout *= card->ext_csd.sec_trim_mult;
1539 	}
1540 
1541 	erase_timeout *= qty;
1542 
1543 	/*
1544 	 * Ensure at least a 1 second timeout for SPI as per
1545 	 * 'mmc_set_data_timeout()'
1546 	 */
1547 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1548 		erase_timeout = 1000;
1549 
1550 	return erase_timeout;
1551 }
1552 
1553 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1554 					 unsigned int arg,
1555 					 unsigned int qty)
1556 {
1557 	unsigned int erase_timeout;
1558 
1559 	if (card->ssr.erase_timeout) {
1560 		/* Erase timeout specified in SD Status Register (SSR) */
1561 		erase_timeout = card->ssr.erase_timeout * qty +
1562 				card->ssr.erase_offset;
1563 	} else {
1564 		/*
1565 		 * Erase timeout not specified in SD Status Register (SSR) so
1566 		 * use 250ms per write block.
1567 		 */
1568 		erase_timeout = 250 * qty;
1569 	}
1570 
1571 	/* Must not be less than 1 second */
1572 	if (erase_timeout < 1000)
1573 		erase_timeout = 1000;
1574 
1575 	return erase_timeout;
1576 }
1577 
1578 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1579 				      unsigned int arg,
1580 				      unsigned int qty)
1581 {
1582 	if (mmc_card_sd(card))
1583 		return mmc_sd_erase_timeout(card, arg, qty);
1584 	else
1585 		return mmc_mmc_erase_timeout(card, arg, qty);
1586 }
1587 
1588 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1589 			unsigned int to, unsigned int arg)
1590 {
1591 	struct mmc_command cmd = {0};
1592 	unsigned int qty = 0;
1593 	int err;
1594 
1595 	/*
1596 	 * qty is used to calculate the erase timeout which depends on how many
1597 	 * erase groups (or allocation units in SD terminology) are affected.
1598 	 * We count erasing part of an erase group as one erase group.
1599 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1600 	 * erase group size is almost certainly also power of 2, but it does not
1601 	 * seem to insist on that in the JEDEC standard, so we fall back to
1602 	 * division in that case.  SD may not specify an allocation unit size,
1603 	 * in which case the timeout is based on the number of write blocks.
1604 	 *
1605 	 * Note that the timeout for secure trim 2 will only be correct if the
1606 	 * number of erase groups specified is the same as the total of all
1607 	 * preceding secure trim 1 commands.  Since the power may have been
1608 	 * lost since the secure trim 1 commands occurred, it is generally
1609 	 * impossible to calculate the secure trim 2 timeout correctly.
1610 	 */
1611 	if (card->erase_shift)
1612 		qty += ((to >> card->erase_shift) -
1613 			(from >> card->erase_shift)) + 1;
1614 	else if (mmc_card_sd(card))
1615 		qty += to - from + 1;
1616 	else
1617 		qty += ((to / card->erase_size) -
1618 			(from / card->erase_size)) + 1;
1619 
1620 	if (!mmc_card_blockaddr(card)) {
1621 		from <<= 9;
1622 		to <<= 9;
1623 	}
1624 
1625 	if (mmc_card_sd(card))
1626 		cmd.opcode = SD_ERASE_WR_BLK_START;
1627 	else
1628 		cmd.opcode = MMC_ERASE_GROUP_START;
1629 	cmd.arg = from;
1630 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1631 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1632 	if (err) {
1633 		pr_err("mmc_erase: group start error %d, "
1634 		       "status %#x\n", err, cmd.resp[0]);
1635 		err = -EIO;
1636 		goto out;
1637 	}
1638 
1639 	memset(&cmd, 0, sizeof(struct mmc_command));
1640 	if (mmc_card_sd(card))
1641 		cmd.opcode = SD_ERASE_WR_BLK_END;
1642 	else
1643 		cmd.opcode = MMC_ERASE_GROUP_END;
1644 	cmd.arg = to;
1645 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1646 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1647 	if (err) {
1648 		pr_err("mmc_erase: group end error %d, status %#x\n",
1649 		       err, cmd.resp[0]);
1650 		err = -EIO;
1651 		goto out;
1652 	}
1653 
1654 	memset(&cmd, 0, sizeof(struct mmc_command));
1655 	cmd.opcode = MMC_ERASE;
1656 	cmd.arg = arg;
1657 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1658 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1659 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1660 	if (err) {
1661 		pr_err("mmc_erase: erase error %d, status %#x\n",
1662 		       err, cmd.resp[0]);
1663 		err = -EIO;
1664 		goto out;
1665 	}
1666 
1667 	if (mmc_host_is_spi(card->host))
1668 		goto out;
1669 
1670 	do {
1671 		memset(&cmd, 0, sizeof(struct mmc_command));
1672 		cmd.opcode = MMC_SEND_STATUS;
1673 		cmd.arg = card->rca << 16;
1674 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1675 		/* Do not retry else we can't see errors */
1676 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1678 			pr_err("error %d requesting status %#x\n",
1679 				err, cmd.resp[0]);
1680 			err = -EIO;
1681 			goto out;
1682 		}
1683 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1684 		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1685 out:
1686 	return err;
1687 }
1688 
1689 /**
1690  * mmc_erase - erase sectors.
1691  * @card: card to erase
1692  * @from: first sector to erase
1693  * @nr: number of sectors to erase
1694  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1695  *
1696  * Caller must claim host before calling this function.
1697  */
1698 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1699 	      unsigned int arg)
1700 {
1701 	unsigned int rem, to = from + nr;
1702 
1703 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1704 	    !(card->csd.cmdclass & CCC_ERASE))
1705 		return -EOPNOTSUPP;
1706 
1707 	if (!card->erase_size)
1708 		return -EOPNOTSUPP;
1709 
1710 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1711 		return -EOPNOTSUPP;
1712 
1713 	if ((arg & MMC_SECURE_ARGS) &&
1714 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1715 		return -EOPNOTSUPP;
1716 
1717 	if ((arg & MMC_TRIM_ARGS) &&
1718 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1719 		return -EOPNOTSUPP;
1720 
1721 	if (arg == MMC_SECURE_ERASE_ARG) {
1722 		if (from % card->erase_size || nr % card->erase_size)
1723 			return -EINVAL;
1724 	}
1725 
1726 	if (arg == MMC_ERASE_ARG) {
1727 		rem = from % card->erase_size;
1728 		if (rem) {
1729 			rem = card->erase_size - rem;
1730 			from += rem;
1731 			if (nr > rem)
1732 				nr -= rem;
1733 			else
1734 				return 0;
1735 		}
1736 		rem = nr % card->erase_size;
1737 		if (rem)
1738 			nr -= rem;
1739 	}
1740 
1741 	if (nr == 0)
1742 		return 0;
1743 
1744 	to = from + nr;
1745 
1746 	if (to <= from)
1747 		return -EINVAL;
1748 
1749 	/* 'from' and 'to' are inclusive */
1750 	to -= 1;
1751 
1752 	return mmc_do_erase(card, from, to, arg);
1753 }
1754 EXPORT_SYMBOL(mmc_erase);
1755 
1756 int mmc_can_erase(struct mmc_card *card)
1757 {
1758 	if ((card->host->caps & MMC_CAP_ERASE) &&
1759 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1760 		return 1;
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL(mmc_can_erase);
1764 
1765 int mmc_can_trim(struct mmc_card *card)
1766 {
1767 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1768 		return 1;
1769 	if (mmc_can_discard(card))
1770 		return 1;
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL(mmc_can_trim);
1774 
1775 int mmc_can_discard(struct mmc_card *card)
1776 {
1777 	/*
1778 	 * As there's no way to detect the discard support bit at v4.5
1779 	 * use the s/w feature support filed.
1780 	 */
1781 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1782 		return 1;
1783 	return 0;
1784 }
1785 EXPORT_SYMBOL(mmc_can_discard);
1786 
1787 int mmc_can_sanitize(struct mmc_card *card)
1788 {
1789 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1790 		return 1;
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(mmc_can_sanitize);
1794 
1795 int mmc_can_secure_erase_trim(struct mmc_card *card)
1796 {
1797 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1798 		return 1;
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1802 
1803 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1804 			    unsigned int nr)
1805 {
1806 	if (!card->erase_size)
1807 		return 0;
1808 	if (from % card->erase_size || nr % card->erase_size)
1809 		return 0;
1810 	return 1;
1811 }
1812 EXPORT_SYMBOL(mmc_erase_group_aligned);
1813 
1814 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1815 					    unsigned int arg)
1816 {
1817 	struct mmc_host *host = card->host;
1818 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1819 	unsigned int last_timeout = 0;
1820 
1821 	if (card->erase_shift)
1822 		max_qty = UINT_MAX >> card->erase_shift;
1823 	else if (mmc_card_sd(card))
1824 		max_qty = UINT_MAX;
1825 	else
1826 		max_qty = UINT_MAX / card->erase_size;
1827 
1828 	/* Find the largest qty with an OK timeout */
1829 	do {
1830 		y = 0;
1831 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1832 			timeout = mmc_erase_timeout(card, arg, qty + x);
1833 			if (timeout > host->max_discard_to)
1834 				break;
1835 			if (timeout < last_timeout)
1836 				break;
1837 			last_timeout = timeout;
1838 			y = x;
1839 		}
1840 		qty += y;
1841 	} while (y);
1842 
1843 	if (!qty)
1844 		return 0;
1845 
1846 	if (qty == 1)
1847 		return 1;
1848 
1849 	/* Convert qty to sectors */
1850 	if (card->erase_shift)
1851 		max_discard = --qty << card->erase_shift;
1852 	else if (mmc_card_sd(card))
1853 		max_discard = qty;
1854 	else
1855 		max_discard = --qty * card->erase_size;
1856 
1857 	return max_discard;
1858 }
1859 
1860 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1861 {
1862 	struct mmc_host *host = card->host;
1863 	unsigned int max_discard, max_trim;
1864 
1865 	if (!host->max_discard_to)
1866 		return UINT_MAX;
1867 
1868 	/*
1869 	 * Without erase_group_def set, MMC erase timeout depends on clock
1870 	 * frequence which can change.  In that case, the best choice is
1871 	 * just the preferred erase size.
1872 	 */
1873 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1874 		return card->pref_erase;
1875 
1876 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1877 	if (mmc_can_trim(card)) {
1878 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1879 		if (max_trim < max_discard)
1880 			max_discard = max_trim;
1881 	} else if (max_discard < card->erase_size) {
1882 		max_discard = 0;
1883 	}
1884 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1885 		 mmc_hostname(host), max_discard, host->max_discard_to);
1886 	return max_discard;
1887 }
1888 EXPORT_SYMBOL(mmc_calc_max_discard);
1889 
1890 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1891 {
1892 	struct mmc_command cmd = {0};
1893 
1894 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1895 		return 0;
1896 
1897 	cmd.opcode = MMC_SET_BLOCKLEN;
1898 	cmd.arg = blocklen;
1899 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1900 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1901 }
1902 EXPORT_SYMBOL(mmc_set_blocklen);
1903 
1904 static void mmc_hw_reset_for_init(struct mmc_host *host)
1905 {
1906 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1907 		return;
1908 	mmc_host_clk_hold(host);
1909 	host->ops->hw_reset(host);
1910 	mmc_host_clk_release(host);
1911 }
1912 
1913 int mmc_can_reset(struct mmc_card *card)
1914 {
1915 	u8 rst_n_function;
1916 
1917 	if (!mmc_card_mmc(card))
1918 		return 0;
1919 	rst_n_function = card->ext_csd.rst_n_function;
1920 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1921 		return 0;
1922 	return 1;
1923 }
1924 EXPORT_SYMBOL(mmc_can_reset);
1925 
1926 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1927 {
1928 	struct mmc_card *card = host->card;
1929 
1930 	if (!host->bus_ops->power_restore)
1931 		return -EOPNOTSUPP;
1932 
1933 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1934 		return -EOPNOTSUPP;
1935 
1936 	if (!card)
1937 		return -EINVAL;
1938 
1939 	if (!mmc_can_reset(card))
1940 		return -EOPNOTSUPP;
1941 
1942 	mmc_host_clk_hold(host);
1943 	mmc_set_clock(host, host->f_init);
1944 
1945 	host->ops->hw_reset(host);
1946 
1947 	/* If the reset has happened, then a status command will fail */
1948 	if (check) {
1949 		struct mmc_command cmd = {0};
1950 		int err;
1951 
1952 		cmd.opcode = MMC_SEND_STATUS;
1953 		if (!mmc_host_is_spi(card->host))
1954 			cmd.arg = card->rca << 16;
1955 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1956 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1957 		if (!err) {
1958 			mmc_host_clk_release(host);
1959 			return -ENOSYS;
1960 		}
1961 	}
1962 
1963 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1964 	if (mmc_host_is_spi(host)) {
1965 		host->ios.chip_select = MMC_CS_HIGH;
1966 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1967 	} else {
1968 		host->ios.chip_select = MMC_CS_DONTCARE;
1969 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1970 	}
1971 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1972 	host->ios.timing = MMC_TIMING_LEGACY;
1973 	mmc_set_ios(host);
1974 
1975 	mmc_host_clk_release(host);
1976 
1977 	return host->bus_ops->power_restore(host);
1978 }
1979 
1980 int mmc_hw_reset(struct mmc_host *host)
1981 {
1982 	return mmc_do_hw_reset(host, 0);
1983 }
1984 EXPORT_SYMBOL(mmc_hw_reset);
1985 
1986 int mmc_hw_reset_check(struct mmc_host *host)
1987 {
1988 	return mmc_do_hw_reset(host, 1);
1989 }
1990 EXPORT_SYMBOL(mmc_hw_reset_check);
1991 
1992 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1993 {
1994 	host->f_init = freq;
1995 
1996 #ifdef CONFIG_MMC_DEBUG
1997 	pr_info("%s: %s: trying to init card at %u Hz\n",
1998 		mmc_hostname(host), __func__, host->f_init);
1999 #endif
2000 	mmc_power_up(host);
2001 
2002 	/*
2003 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2004 	 * do a hardware reset if possible.
2005 	 */
2006 	mmc_hw_reset_for_init(host);
2007 
2008 	/*
2009 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2010 	 * if the card is being re-initialized, just send it.  CMD52
2011 	 * should be ignored by SD/eMMC cards.
2012 	 */
2013 	sdio_reset(host);
2014 	mmc_go_idle(host);
2015 
2016 	mmc_send_if_cond(host, host->ocr_avail);
2017 
2018 	/* Order's important: probe SDIO, then SD, then MMC */
2019 	if (!mmc_attach_sdio(host))
2020 		return 0;
2021 	if (!mmc_attach_sd(host))
2022 		return 0;
2023 	if (!mmc_attach_mmc(host))
2024 		return 0;
2025 
2026 	mmc_power_off(host);
2027 	return -EIO;
2028 }
2029 
2030 void mmc_rescan(struct work_struct *work)
2031 {
2032 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2033 	struct mmc_host *host =
2034 		container_of(work, struct mmc_host, detect.work);
2035 	int i;
2036 
2037 	if (host->rescan_disable)
2038 		return;
2039 
2040 	mmc_bus_get(host);
2041 
2042 	/*
2043 	 * if there is a _removable_ card registered, check whether it is
2044 	 * still present
2045 	 */
2046 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2047 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2048 		host->bus_ops->detect(host);
2049 
2050 	/*
2051 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2052 	 * the card is no longer present.
2053 	 */
2054 	mmc_bus_put(host);
2055 	mmc_bus_get(host);
2056 
2057 	/* if there still is a card present, stop here */
2058 	if (host->bus_ops != NULL) {
2059 		mmc_bus_put(host);
2060 		goto out;
2061 	}
2062 
2063 	/*
2064 	 * Only we can add a new handler, so it's safe to
2065 	 * release the lock here.
2066 	 */
2067 	mmc_bus_put(host);
2068 
2069 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2070 		goto out;
2071 
2072 	mmc_claim_host(host);
2073 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2074 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2075 			break;
2076 		if (freqs[i] <= host->f_min)
2077 			break;
2078 	}
2079 	mmc_release_host(host);
2080 
2081  out:
2082 	if (host->caps & MMC_CAP_NEEDS_POLL)
2083 		mmc_schedule_delayed_work(&host->detect, HZ);
2084 }
2085 
2086 void mmc_start_host(struct mmc_host *host)
2087 {
2088 	mmc_power_off(host);
2089 	mmc_detect_change(host, 0);
2090 }
2091 
2092 void mmc_stop_host(struct mmc_host *host)
2093 {
2094 #ifdef CONFIG_MMC_DEBUG
2095 	unsigned long flags;
2096 	spin_lock_irqsave(&host->lock, flags);
2097 	host->removed = 1;
2098 	spin_unlock_irqrestore(&host->lock, flags);
2099 #endif
2100 
2101 	if (host->caps & MMC_CAP_DISABLE)
2102 		cancel_delayed_work(&host->disable);
2103 	cancel_delayed_work_sync(&host->detect);
2104 	mmc_flush_scheduled_work();
2105 
2106 	/* clear pm flags now and let card drivers set them as needed */
2107 	host->pm_flags = 0;
2108 
2109 	mmc_bus_get(host);
2110 	if (host->bus_ops && !host->bus_dead) {
2111 		if (host->bus_ops->remove)
2112 			host->bus_ops->remove(host);
2113 
2114 		mmc_claim_host(host);
2115 		mmc_detach_bus(host);
2116 		mmc_power_off(host);
2117 		mmc_release_host(host);
2118 		mmc_bus_put(host);
2119 		return;
2120 	}
2121 	mmc_bus_put(host);
2122 
2123 	BUG_ON(host->card);
2124 
2125 	mmc_power_off(host);
2126 }
2127 
2128 int mmc_power_save_host(struct mmc_host *host)
2129 {
2130 	int ret = 0;
2131 
2132 #ifdef CONFIG_MMC_DEBUG
2133 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2134 #endif
2135 
2136 	mmc_bus_get(host);
2137 
2138 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2139 		mmc_bus_put(host);
2140 		return -EINVAL;
2141 	}
2142 
2143 	if (host->bus_ops->power_save)
2144 		ret = host->bus_ops->power_save(host);
2145 
2146 	mmc_bus_put(host);
2147 
2148 	mmc_power_off(host);
2149 
2150 	return ret;
2151 }
2152 EXPORT_SYMBOL(mmc_power_save_host);
2153 
2154 int mmc_power_restore_host(struct mmc_host *host)
2155 {
2156 	int ret;
2157 
2158 #ifdef CONFIG_MMC_DEBUG
2159 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2160 #endif
2161 
2162 	mmc_bus_get(host);
2163 
2164 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2165 		mmc_bus_put(host);
2166 		return -EINVAL;
2167 	}
2168 
2169 	mmc_power_up(host);
2170 	ret = host->bus_ops->power_restore(host);
2171 
2172 	mmc_bus_put(host);
2173 
2174 	return ret;
2175 }
2176 EXPORT_SYMBOL(mmc_power_restore_host);
2177 
2178 int mmc_card_awake(struct mmc_host *host)
2179 {
2180 	int err = -ENOSYS;
2181 
2182 	mmc_bus_get(host);
2183 
2184 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2185 		err = host->bus_ops->awake(host);
2186 
2187 	mmc_bus_put(host);
2188 
2189 	return err;
2190 }
2191 EXPORT_SYMBOL(mmc_card_awake);
2192 
2193 int mmc_card_sleep(struct mmc_host *host)
2194 {
2195 	int err = -ENOSYS;
2196 
2197 	mmc_bus_get(host);
2198 
2199 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2200 		err = host->bus_ops->sleep(host);
2201 
2202 	mmc_bus_put(host);
2203 
2204 	return err;
2205 }
2206 EXPORT_SYMBOL(mmc_card_sleep);
2207 
2208 int mmc_card_can_sleep(struct mmc_host *host)
2209 {
2210 	struct mmc_card *card = host->card;
2211 
2212 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2213 		return 1;
2214 	return 0;
2215 }
2216 EXPORT_SYMBOL(mmc_card_can_sleep);
2217 
2218 /*
2219  * Flush the cache to the non-volatile storage.
2220  */
2221 int mmc_flush_cache(struct mmc_card *card)
2222 {
2223 	struct mmc_host *host = card->host;
2224 	int err = 0;
2225 
2226 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2227 		return err;
2228 
2229 	if (mmc_card_mmc(card) &&
2230 			(card->ext_csd.cache_size > 0) &&
2231 			(card->ext_csd.cache_ctrl & 1)) {
2232 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2233 				EXT_CSD_FLUSH_CACHE, 1, 0);
2234 		if (err)
2235 			pr_err("%s: cache flush error %d\n",
2236 					mmc_hostname(card->host), err);
2237 	}
2238 
2239 	return err;
2240 }
2241 EXPORT_SYMBOL(mmc_flush_cache);
2242 
2243 /*
2244  * Turn the cache ON/OFF.
2245  * Turning the cache OFF shall trigger flushing of the data
2246  * to the non-volatile storage.
2247  */
2248 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2249 {
2250 	struct mmc_card *card = host->card;
2251 	int err = 0;
2252 
2253 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2254 			mmc_card_is_removable(host))
2255 		return err;
2256 
2257 	if (card && mmc_card_mmc(card) &&
2258 			(card->ext_csd.cache_size > 0)) {
2259 		enable = !!enable;
2260 
2261 		if (card->ext_csd.cache_ctrl ^ enable)
2262 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2263 					EXT_CSD_CACHE_CTRL, enable, 0);
2264 		if (err)
2265 			pr_err("%s: cache %s error %d\n",
2266 					mmc_hostname(card->host),
2267 					enable ? "on" : "off",
2268 					err);
2269 		else
2270 			card->ext_csd.cache_ctrl = enable;
2271 	}
2272 
2273 	return err;
2274 }
2275 EXPORT_SYMBOL(mmc_cache_ctrl);
2276 
2277 #ifdef CONFIG_PM
2278 
2279 /**
2280  *	mmc_suspend_host - suspend a host
2281  *	@host: mmc host
2282  */
2283 int mmc_suspend_host(struct mmc_host *host)
2284 {
2285 	int err = 0;
2286 
2287 	if (host->caps & MMC_CAP_DISABLE)
2288 		cancel_delayed_work(&host->disable);
2289 	cancel_delayed_work(&host->detect);
2290 	mmc_flush_scheduled_work();
2291 	err = mmc_cache_ctrl(host, 0);
2292 	if (err)
2293 		goto out;
2294 
2295 	mmc_bus_get(host);
2296 	if (host->bus_ops && !host->bus_dead) {
2297 
2298 		/*
2299 		 * A long response time is not acceptable for device drivers
2300 		 * when doing suspend. Prevent mmc_claim_host in the suspend
2301 		 * sequence, to potentially wait "forever" by trying to
2302 		 * pre-claim the host.
2303 		 */
2304 		if (mmc_try_claim_host(host)) {
2305 			if (host->bus_ops->suspend)
2306 				err = host->bus_ops->suspend(host);
2307 			if (err == -ENOSYS || !host->bus_ops->resume) {
2308 				/*
2309 				 * We simply "remove" the card in this case.
2310 				 * It will be redetected on resume.
2311 				 */
2312 				if (host->bus_ops->remove)
2313 					host->bus_ops->remove(host);
2314 				mmc_claim_host(host);
2315 				mmc_detach_bus(host);
2316 				mmc_power_off(host);
2317 				mmc_release_host(host);
2318 				host->pm_flags = 0;
2319 				err = 0;
2320 			}
2321 			mmc_do_release_host(host);
2322 		} else {
2323 			err = -EBUSY;
2324 		}
2325 	}
2326 	mmc_bus_put(host);
2327 
2328 	if (!err && !mmc_card_keep_power(host))
2329 		mmc_power_off(host);
2330 
2331 out:
2332 	return err;
2333 }
2334 
2335 EXPORT_SYMBOL(mmc_suspend_host);
2336 
2337 /**
2338  *	mmc_resume_host - resume a previously suspended host
2339  *	@host: mmc host
2340  */
2341 int mmc_resume_host(struct mmc_host *host)
2342 {
2343 	int err = 0;
2344 
2345 	mmc_bus_get(host);
2346 	if (host->bus_ops && !host->bus_dead) {
2347 		if (!mmc_card_keep_power(host)) {
2348 			mmc_power_up(host);
2349 			mmc_select_voltage(host, host->ocr);
2350 			/*
2351 			 * Tell runtime PM core we just powered up the card,
2352 			 * since it still believes the card is powered off.
2353 			 * Note that currently runtime PM is only enabled
2354 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2355 			 */
2356 			if (mmc_card_sdio(host->card) &&
2357 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2358 				pm_runtime_disable(&host->card->dev);
2359 				pm_runtime_set_active(&host->card->dev);
2360 				pm_runtime_enable(&host->card->dev);
2361 			}
2362 		}
2363 		BUG_ON(!host->bus_ops->resume);
2364 		err = host->bus_ops->resume(host);
2365 		if (err) {
2366 			pr_warning("%s: error %d during resume "
2367 					    "(card was removed?)\n",
2368 					    mmc_hostname(host), err);
2369 			err = 0;
2370 		}
2371 	}
2372 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2373 	mmc_bus_put(host);
2374 
2375 	return err;
2376 }
2377 EXPORT_SYMBOL(mmc_resume_host);
2378 
2379 /* Do the card removal on suspend if card is assumed removeable
2380  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2381    to sync the card.
2382 */
2383 int mmc_pm_notify(struct notifier_block *notify_block,
2384 					unsigned long mode, void *unused)
2385 {
2386 	struct mmc_host *host = container_of(
2387 		notify_block, struct mmc_host, pm_notify);
2388 	unsigned long flags;
2389 
2390 
2391 	switch (mode) {
2392 	case PM_HIBERNATION_PREPARE:
2393 	case PM_SUSPEND_PREPARE:
2394 
2395 		spin_lock_irqsave(&host->lock, flags);
2396 		host->rescan_disable = 1;
2397 		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2398 		spin_unlock_irqrestore(&host->lock, flags);
2399 		cancel_delayed_work_sync(&host->detect);
2400 
2401 		if (!host->bus_ops || host->bus_ops->suspend)
2402 			break;
2403 
2404 		mmc_claim_host(host);
2405 
2406 		if (host->bus_ops->remove)
2407 			host->bus_ops->remove(host);
2408 
2409 		mmc_detach_bus(host);
2410 		mmc_power_off(host);
2411 		mmc_release_host(host);
2412 		host->pm_flags = 0;
2413 		break;
2414 
2415 	case PM_POST_SUSPEND:
2416 	case PM_POST_HIBERNATION:
2417 	case PM_POST_RESTORE:
2418 
2419 		spin_lock_irqsave(&host->lock, flags);
2420 		host->rescan_disable = 0;
2421 		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2422 		spin_unlock_irqrestore(&host->lock, flags);
2423 		mmc_detect_change(host, 0);
2424 
2425 	}
2426 
2427 	return 0;
2428 }
2429 #endif
2430 
2431 static int __init mmc_init(void)
2432 {
2433 	int ret;
2434 
2435 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2436 	if (!workqueue)
2437 		return -ENOMEM;
2438 
2439 	ret = mmc_register_bus();
2440 	if (ret)
2441 		goto destroy_workqueue;
2442 
2443 	ret = mmc_register_host_class();
2444 	if (ret)
2445 		goto unregister_bus;
2446 
2447 	ret = sdio_register_bus();
2448 	if (ret)
2449 		goto unregister_host_class;
2450 
2451 	return 0;
2452 
2453 unregister_host_class:
2454 	mmc_unregister_host_class();
2455 unregister_bus:
2456 	mmc_unregister_bus();
2457 destroy_workqueue:
2458 	destroy_workqueue(workqueue);
2459 
2460 	return ret;
2461 }
2462 
2463 static void __exit mmc_exit(void)
2464 {
2465 	sdio_unregister_bus();
2466 	mmc_unregister_host_class();
2467 	mmc_unregister_bus();
2468 	destroy_workqueue(workqueue);
2469 }
2470 
2471 subsys_initcall(mmc_init);
2472 module_exit(mmc_exit);
2473 
2474 MODULE_LICENSE("GPL");
2475