xref: /linux/drivers/mmc/core/core.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
51 
52 /*
53  * Background operations can take a long time, depending on the housekeeping
54  * operations the card has to perform.
55  */
56 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
57 
58 static struct workqueue_struct *workqueue;
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
69 /*
70  * Internal function. Schedule delayed work in the MMC work queue.
71  */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 				     unsigned long delay)
74 {
75 	return queue_delayed_work(workqueue, work, delay);
76 }
77 
78 /*
79  * Internal function. Flush all scheduled work from the MMC work queue.
80  */
81 static void mmc_flush_scheduled_work(void)
82 {
83 	flush_workqueue(workqueue);
84 }
85 
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87 
88 /*
89  * Internal function. Inject random data errors.
90  * If mmc_data is NULL no errors are injected.
91  */
92 static void mmc_should_fail_request(struct mmc_host *host,
93 				    struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	struct mmc_data *data = mrq->data;
97 	static const int data_errors[] = {
98 		-ETIMEDOUT,
99 		-EILSEQ,
100 		-EIO,
101 	};
102 
103 	if (!data)
104 		return;
105 
106 	if (cmd->error || data->error ||
107 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 		return;
109 
110 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113 
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115 
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 					   struct mmc_request *mrq)
118 {
119 }
120 
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122 
123 /**
124  *	mmc_request_done - finish processing an MMC request
125  *	@host: MMC host which completed request
126  *	@mrq: MMC request which request
127  *
128  *	MMC drivers should call this function when they have completed
129  *	their processing of a request.
130  */
131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132 {
133 	struct mmc_command *cmd = mrq->cmd;
134 	int err = cmd->error;
135 
136 	/* Flag re-tuning needed on CRC errors */
137 	if (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
138 	    (mrq->data && mrq->data->error == -EILSEQ) ||
139 	    (mrq->stop && mrq->stop->error == -EILSEQ))
140 		mmc_retune_needed(host);
141 
142 	if (err && cmd->retries && mmc_host_is_spi(host)) {
143 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
144 			cmd->retries = 0;
145 	}
146 
147 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
148 		/*
149 		 * Request starter must handle retries - see
150 		 * mmc_wait_for_req_done().
151 		 */
152 		if (mrq->done)
153 			mrq->done(mrq);
154 	} else {
155 		mmc_should_fail_request(host, mrq);
156 
157 		led_trigger_event(host->led, LED_OFF);
158 
159 		if (mrq->sbc) {
160 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
161 				mmc_hostname(host), mrq->sbc->opcode,
162 				mrq->sbc->error,
163 				mrq->sbc->resp[0], mrq->sbc->resp[1],
164 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
165 		}
166 
167 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
168 			mmc_hostname(host), cmd->opcode, err,
169 			cmd->resp[0], cmd->resp[1],
170 			cmd->resp[2], cmd->resp[3]);
171 
172 		if (mrq->data) {
173 			pr_debug("%s:     %d bytes transferred: %d\n",
174 				mmc_hostname(host),
175 				mrq->data->bytes_xfered, mrq->data->error);
176 		}
177 
178 		if (mrq->stop) {
179 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
180 				mmc_hostname(host), mrq->stop->opcode,
181 				mrq->stop->error,
182 				mrq->stop->resp[0], mrq->stop->resp[1],
183 				mrq->stop->resp[2], mrq->stop->resp[3]);
184 		}
185 
186 		if (mrq->done)
187 			mrq->done(mrq);
188 
189 		mmc_host_clk_release(host);
190 	}
191 }
192 
193 EXPORT_SYMBOL(mmc_request_done);
194 
195 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196 {
197 	int err;
198 
199 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
200 	err = mmc_retune(host);
201 	if (err) {
202 		mrq->cmd->error = err;
203 		mmc_request_done(host, mrq);
204 		return;
205 	}
206 
207 	host->ops->request(host, mrq);
208 }
209 
210 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
211 {
212 #ifdef CONFIG_MMC_DEBUG
213 	unsigned int i, sz;
214 	struct scatterlist *sg;
215 #endif
216 	mmc_retune_hold(host);
217 
218 	if (mmc_card_removed(host->card))
219 		return -ENOMEDIUM;
220 
221 	if (mrq->sbc) {
222 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
223 			 mmc_hostname(host), mrq->sbc->opcode,
224 			 mrq->sbc->arg, mrq->sbc->flags);
225 	}
226 
227 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
228 		 mmc_hostname(host), mrq->cmd->opcode,
229 		 mrq->cmd->arg, mrq->cmd->flags);
230 
231 	if (mrq->data) {
232 		pr_debug("%s:     blksz %d blocks %d flags %08x "
233 			"tsac %d ms nsac %d\n",
234 			mmc_hostname(host), mrq->data->blksz,
235 			mrq->data->blocks, mrq->data->flags,
236 			mrq->data->timeout_ns / 1000000,
237 			mrq->data->timeout_clks);
238 	}
239 
240 	if (mrq->stop) {
241 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
242 			 mmc_hostname(host), mrq->stop->opcode,
243 			 mrq->stop->arg, mrq->stop->flags);
244 	}
245 
246 	WARN_ON(!host->claimed);
247 
248 	mrq->cmd->error = 0;
249 	mrq->cmd->mrq = mrq;
250 	if (mrq->sbc) {
251 		mrq->sbc->error = 0;
252 		mrq->sbc->mrq = mrq;
253 	}
254 	if (mrq->data) {
255 		BUG_ON(mrq->data->blksz > host->max_blk_size);
256 		BUG_ON(mrq->data->blocks > host->max_blk_count);
257 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
258 			host->max_req_size);
259 
260 #ifdef CONFIG_MMC_DEBUG
261 		sz = 0;
262 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
263 			sz += sg->length;
264 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
265 #endif
266 
267 		mrq->cmd->data = mrq->data;
268 		mrq->data->error = 0;
269 		mrq->data->mrq = mrq;
270 		if (mrq->stop) {
271 			mrq->data->stop = mrq->stop;
272 			mrq->stop->error = 0;
273 			mrq->stop->mrq = mrq;
274 		}
275 	}
276 	mmc_host_clk_hold(host);
277 	led_trigger_event(host->led, LED_FULL);
278 	__mmc_start_request(host, mrq);
279 
280 	return 0;
281 }
282 
283 /**
284  *	mmc_start_bkops - start BKOPS for supported cards
285  *	@card: MMC card to start BKOPS
286  *	@form_exception: A flag to indicate if this function was
287  *			 called due to an exception raised by the card
288  *
289  *	Start background operations whenever requested.
290  *	When the urgent BKOPS bit is set in a R1 command response
291  *	then background operations should be started immediately.
292 */
293 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
294 {
295 	int err;
296 	int timeout;
297 	bool use_busy_signal;
298 
299 	BUG_ON(!card);
300 
301 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
302 		return;
303 
304 	err = mmc_read_bkops_status(card);
305 	if (err) {
306 		pr_err("%s: Failed to read bkops status: %d\n",
307 		       mmc_hostname(card->host), err);
308 		return;
309 	}
310 
311 	if (!card->ext_csd.raw_bkops_status)
312 		return;
313 
314 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
315 	    from_exception)
316 		return;
317 
318 	mmc_claim_host(card->host);
319 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
320 		timeout = MMC_BKOPS_MAX_TIMEOUT;
321 		use_busy_signal = true;
322 	} else {
323 		timeout = 0;
324 		use_busy_signal = false;
325 	}
326 
327 	mmc_retune_hold(card->host);
328 
329 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
330 			EXT_CSD_BKOPS_START, 1, timeout,
331 			use_busy_signal, true, false);
332 	if (err) {
333 		pr_warn("%s: Error %d starting bkops\n",
334 			mmc_hostname(card->host), err);
335 		mmc_retune_release(card->host);
336 		goto out;
337 	}
338 
339 	/*
340 	 * For urgent bkops status (LEVEL_2 and more)
341 	 * bkops executed synchronously, otherwise
342 	 * the operation is in progress
343 	 */
344 	if (!use_busy_signal)
345 		mmc_card_set_doing_bkops(card);
346 	else
347 		mmc_retune_release(card->host);
348 out:
349 	mmc_release_host(card->host);
350 }
351 EXPORT_SYMBOL(mmc_start_bkops);
352 
353 /*
354  * mmc_wait_data_done() - done callback for data request
355  * @mrq: done data request
356  *
357  * Wakes up mmc context, passed as a callback to host controller driver
358  */
359 static void mmc_wait_data_done(struct mmc_request *mrq)
360 {
361 	struct mmc_context_info *context_info = &mrq->host->context_info;
362 
363 	context_info->is_done_rcv = true;
364 	wake_up_interruptible(&context_info->wait);
365 }
366 
367 static void mmc_wait_done(struct mmc_request *mrq)
368 {
369 	complete(&mrq->completion);
370 }
371 
372 /*
373  *__mmc_start_data_req() - starts data request
374  * @host: MMC host to start the request
375  * @mrq: data request to start
376  *
377  * Sets the done callback to be called when request is completed by the card.
378  * Starts data mmc request execution
379  */
380 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
381 {
382 	int err;
383 
384 	mrq->done = mmc_wait_data_done;
385 	mrq->host = host;
386 
387 	err = mmc_start_request(host, mrq);
388 	if (err) {
389 		mrq->cmd->error = err;
390 		mmc_wait_data_done(mrq);
391 	}
392 
393 	return err;
394 }
395 
396 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
397 {
398 	int err;
399 
400 	init_completion(&mrq->completion);
401 	mrq->done = mmc_wait_done;
402 
403 	err = mmc_start_request(host, mrq);
404 	if (err) {
405 		mrq->cmd->error = err;
406 		complete(&mrq->completion);
407 	}
408 
409 	return err;
410 }
411 
412 /*
413  * mmc_wait_for_data_req_done() - wait for request completed
414  * @host: MMC host to prepare the command.
415  * @mrq: MMC request to wait for
416  *
417  * Blocks MMC context till host controller will ack end of data request
418  * execution or new request notification arrives from the block layer.
419  * Handles command retries.
420  *
421  * Returns enum mmc_blk_status after checking errors.
422  */
423 static int mmc_wait_for_data_req_done(struct mmc_host *host,
424 				      struct mmc_request *mrq,
425 				      struct mmc_async_req *next_req)
426 {
427 	struct mmc_command *cmd;
428 	struct mmc_context_info *context_info = &host->context_info;
429 	int err;
430 	unsigned long flags;
431 
432 	while (1) {
433 		wait_event_interruptible(context_info->wait,
434 				(context_info->is_done_rcv ||
435 				 context_info->is_new_req));
436 		spin_lock_irqsave(&context_info->lock, flags);
437 		context_info->is_waiting_last_req = false;
438 		spin_unlock_irqrestore(&context_info->lock, flags);
439 		if (context_info->is_done_rcv) {
440 			context_info->is_done_rcv = false;
441 			context_info->is_new_req = false;
442 			cmd = mrq->cmd;
443 
444 			if (!cmd->error || !cmd->retries ||
445 			    mmc_card_removed(host->card)) {
446 				err = host->areq->err_check(host->card,
447 							    host->areq);
448 				break; /* return err */
449 			} else {
450 				mmc_retune_recheck(host);
451 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
452 					mmc_hostname(host),
453 					cmd->opcode, cmd->error);
454 				cmd->retries--;
455 				cmd->error = 0;
456 				__mmc_start_request(host, mrq);
457 				continue; /* wait for done/new event again */
458 			}
459 		} else if (context_info->is_new_req) {
460 			context_info->is_new_req = false;
461 			if (!next_req)
462 				return MMC_BLK_NEW_REQUEST;
463 		}
464 	}
465 	mmc_retune_release(host);
466 	return err;
467 }
468 
469 static void mmc_wait_for_req_done(struct mmc_host *host,
470 				  struct mmc_request *mrq)
471 {
472 	struct mmc_command *cmd;
473 
474 	while (1) {
475 		wait_for_completion(&mrq->completion);
476 
477 		cmd = mrq->cmd;
478 
479 		/*
480 		 * If host has timed out waiting for the sanitize
481 		 * to complete, card might be still in programming state
482 		 * so let's try to bring the card out of programming
483 		 * state.
484 		 */
485 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
486 			if (!mmc_interrupt_hpi(host->card)) {
487 				pr_warn("%s: %s: Interrupted sanitize\n",
488 					mmc_hostname(host), __func__);
489 				cmd->error = 0;
490 				break;
491 			} else {
492 				pr_err("%s: %s: Failed to interrupt sanitize\n",
493 				       mmc_hostname(host), __func__);
494 			}
495 		}
496 		if (!cmd->error || !cmd->retries ||
497 		    mmc_card_removed(host->card))
498 			break;
499 
500 		mmc_retune_recheck(host);
501 
502 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
503 			 mmc_hostname(host), cmd->opcode, cmd->error);
504 		cmd->retries--;
505 		cmd->error = 0;
506 		__mmc_start_request(host, mrq);
507 	}
508 
509 	mmc_retune_release(host);
510 }
511 
512 /**
513  *	mmc_pre_req - Prepare for a new request
514  *	@host: MMC host to prepare command
515  *	@mrq: MMC request to prepare for
516  *	@is_first_req: true if there is no previous started request
517  *                     that may run in parellel to this call, otherwise false
518  *
519  *	mmc_pre_req() is called in prior to mmc_start_req() to let
520  *	host prepare for the new request. Preparation of a request may be
521  *	performed while another request is running on the host.
522  */
523 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
524 		 bool is_first_req)
525 {
526 	if (host->ops->pre_req) {
527 		mmc_host_clk_hold(host);
528 		host->ops->pre_req(host, mrq, is_first_req);
529 		mmc_host_clk_release(host);
530 	}
531 }
532 
533 /**
534  *	mmc_post_req - Post process a completed request
535  *	@host: MMC host to post process command
536  *	@mrq: MMC request to post process for
537  *	@err: Error, if non zero, clean up any resources made in pre_req
538  *
539  *	Let the host post process a completed request. Post processing of
540  *	a request may be performed while another reuqest is running.
541  */
542 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
543 			 int err)
544 {
545 	if (host->ops->post_req) {
546 		mmc_host_clk_hold(host);
547 		host->ops->post_req(host, mrq, err);
548 		mmc_host_clk_release(host);
549 	}
550 }
551 
552 /**
553  *	mmc_start_req - start a non-blocking request
554  *	@host: MMC host to start command
555  *	@areq: async request to start
556  *	@error: out parameter returns 0 for success, otherwise non zero
557  *
558  *	Start a new MMC custom command request for a host.
559  *	If there is on ongoing async request wait for completion
560  *	of that request and start the new one and return.
561  *	Does not wait for the new request to complete.
562  *
563  *      Returns the completed request, NULL in case of none completed.
564  *	Wait for the an ongoing request (previoulsy started) to complete and
565  *	return the completed request. If there is no ongoing request, NULL
566  *	is returned without waiting. NULL is not an error condition.
567  */
568 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
569 				    struct mmc_async_req *areq, int *error)
570 {
571 	int err = 0;
572 	int start_err = 0;
573 	struct mmc_async_req *data = host->areq;
574 
575 	/* Prepare a new request */
576 	if (areq)
577 		mmc_pre_req(host, areq->mrq, !host->areq);
578 
579 	if (host->areq) {
580 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
581 		if (err == MMC_BLK_NEW_REQUEST) {
582 			if (error)
583 				*error = err;
584 			/*
585 			 * The previous request was not completed,
586 			 * nothing to return
587 			 */
588 			return NULL;
589 		}
590 		/*
591 		 * Check BKOPS urgency for each R1 response
592 		 */
593 		if (host->card && mmc_card_mmc(host->card) &&
594 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
595 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
596 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
597 
598 			/* Cancel the prepared request */
599 			if (areq)
600 				mmc_post_req(host, areq->mrq, -EINVAL);
601 
602 			mmc_start_bkops(host->card, true);
603 
604 			/* prepare the request again */
605 			if (areq)
606 				mmc_pre_req(host, areq->mrq, !host->areq);
607 		}
608 	}
609 
610 	if (!err && areq)
611 		start_err = __mmc_start_data_req(host, areq->mrq);
612 
613 	if (host->areq)
614 		mmc_post_req(host, host->areq->mrq, 0);
615 
616 	 /* Cancel a prepared request if it was not started. */
617 	if ((err || start_err) && areq)
618 		mmc_post_req(host, areq->mrq, -EINVAL);
619 
620 	if (err)
621 		host->areq = NULL;
622 	else
623 		host->areq = areq;
624 
625 	if (error)
626 		*error = err;
627 	return data;
628 }
629 EXPORT_SYMBOL(mmc_start_req);
630 
631 /**
632  *	mmc_wait_for_req - start a request and wait for completion
633  *	@host: MMC host to start command
634  *	@mrq: MMC request to start
635  *
636  *	Start a new MMC custom command request for a host, and wait
637  *	for the command to complete. Does not attempt to parse the
638  *	response.
639  */
640 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
641 {
642 	__mmc_start_req(host, mrq);
643 	mmc_wait_for_req_done(host, mrq);
644 }
645 EXPORT_SYMBOL(mmc_wait_for_req);
646 
647 /**
648  *	mmc_interrupt_hpi - Issue for High priority Interrupt
649  *	@card: the MMC card associated with the HPI transfer
650  *
651  *	Issued High Priority Interrupt, and check for card status
652  *	until out-of prg-state.
653  */
654 int mmc_interrupt_hpi(struct mmc_card *card)
655 {
656 	int err;
657 	u32 status;
658 	unsigned long prg_wait;
659 
660 	BUG_ON(!card);
661 
662 	if (!card->ext_csd.hpi_en) {
663 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
664 		return 1;
665 	}
666 
667 	mmc_claim_host(card->host);
668 	err = mmc_send_status(card, &status);
669 	if (err) {
670 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
671 		goto out;
672 	}
673 
674 	switch (R1_CURRENT_STATE(status)) {
675 	case R1_STATE_IDLE:
676 	case R1_STATE_READY:
677 	case R1_STATE_STBY:
678 	case R1_STATE_TRAN:
679 		/*
680 		 * In idle and transfer states, HPI is not needed and the caller
681 		 * can issue the next intended command immediately
682 		 */
683 		goto out;
684 	case R1_STATE_PRG:
685 		break;
686 	default:
687 		/* In all other states, it's illegal to issue HPI */
688 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
689 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
690 		err = -EINVAL;
691 		goto out;
692 	}
693 
694 	err = mmc_send_hpi_cmd(card, &status);
695 	if (err)
696 		goto out;
697 
698 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
699 	do {
700 		err = mmc_send_status(card, &status);
701 
702 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
703 			break;
704 		if (time_after(jiffies, prg_wait))
705 			err = -ETIMEDOUT;
706 	} while (!err);
707 
708 out:
709 	mmc_release_host(card->host);
710 	return err;
711 }
712 EXPORT_SYMBOL(mmc_interrupt_hpi);
713 
714 /**
715  *	mmc_wait_for_cmd - start a command and wait for completion
716  *	@host: MMC host to start command
717  *	@cmd: MMC command to start
718  *	@retries: maximum number of retries
719  *
720  *	Start a new MMC command for a host, and wait for the command
721  *	to complete.  Return any error that occurred while the command
722  *	was executing.  Do not attempt to parse the response.
723  */
724 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
725 {
726 	struct mmc_request mrq = {NULL};
727 
728 	WARN_ON(!host->claimed);
729 
730 	memset(cmd->resp, 0, sizeof(cmd->resp));
731 	cmd->retries = retries;
732 
733 	mrq.cmd = cmd;
734 	cmd->data = NULL;
735 
736 	mmc_wait_for_req(host, &mrq);
737 
738 	return cmd->error;
739 }
740 
741 EXPORT_SYMBOL(mmc_wait_for_cmd);
742 
743 /**
744  *	mmc_stop_bkops - stop ongoing BKOPS
745  *	@card: MMC card to check BKOPS
746  *
747  *	Send HPI command to stop ongoing background operations to
748  *	allow rapid servicing of foreground operations, e.g. read/
749  *	writes. Wait until the card comes out of the programming state
750  *	to avoid errors in servicing read/write requests.
751  */
752 int mmc_stop_bkops(struct mmc_card *card)
753 {
754 	int err = 0;
755 
756 	BUG_ON(!card);
757 	err = mmc_interrupt_hpi(card);
758 
759 	/*
760 	 * If err is EINVAL, we can't issue an HPI.
761 	 * It should complete the BKOPS.
762 	 */
763 	if (!err || (err == -EINVAL)) {
764 		mmc_card_clr_doing_bkops(card);
765 		mmc_retune_release(card->host);
766 		err = 0;
767 	}
768 
769 	return err;
770 }
771 EXPORT_SYMBOL(mmc_stop_bkops);
772 
773 int mmc_read_bkops_status(struct mmc_card *card)
774 {
775 	int err;
776 	u8 *ext_csd;
777 
778 	mmc_claim_host(card->host);
779 	err = mmc_get_ext_csd(card, &ext_csd);
780 	mmc_release_host(card->host);
781 	if (err)
782 		return err;
783 
784 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
785 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
786 	kfree(ext_csd);
787 	return 0;
788 }
789 EXPORT_SYMBOL(mmc_read_bkops_status);
790 
791 /**
792  *	mmc_set_data_timeout - set the timeout for a data command
793  *	@data: data phase for command
794  *	@card: the MMC card associated with the data transfer
795  *
796  *	Computes the data timeout parameters according to the
797  *	correct algorithm given the card type.
798  */
799 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
800 {
801 	unsigned int mult;
802 
803 	/*
804 	 * SDIO cards only define an upper 1 s limit on access.
805 	 */
806 	if (mmc_card_sdio(card)) {
807 		data->timeout_ns = 1000000000;
808 		data->timeout_clks = 0;
809 		return;
810 	}
811 
812 	/*
813 	 * SD cards use a 100 multiplier rather than 10
814 	 */
815 	mult = mmc_card_sd(card) ? 100 : 10;
816 
817 	/*
818 	 * Scale up the multiplier (and therefore the timeout) by
819 	 * the r2w factor for writes.
820 	 */
821 	if (data->flags & MMC_DATA_WRITE)
822 		mult <<= card->csd.r2w_factor;
823 
824 	data->timeout_ns = card->csd.tacc_ns * mult;
825 	data->timeout_clks = card->csd.tacc_clks * mult;
826 
827 	/*
828 	 * SD cards also have an upper limit on the timeout.
829 	 */
830 	if (mmc_card_sd(card)) {
831 		unsigned int timeout_us, limit_us;
832 
833 		timeout_us = data->timeout_ns / 1000;
834 		if (mmc_host_clk_rate(card->host))
835 			timeout_us += data->timeout_clks * 1000 /
836 				(mmc_host_clk_rate(card->host) / 1000);
837 
838 		if (data->flags & MMC_DATA_WRITE)
839 			/*
840 			 * The MMC spec "It is strongly recommended
841 			 * for hosts to implement more than 500ms
842 			 * timeout value even if the card indicates
843 			 * the 250ms maximum busy length."  Even the
844 			 * previous value of 300ms is known to be
845 			 * insufficient for some cards.
846 			 */
847 			limit_us = 3000000;
848 		else
849 			limit_us = 100000;
850 
851 		/*
852 		 * SDHC cards always use these fixed values.
853 		 */
854 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
855 			data->timeout_ns = limit_us * 1000;
856 			data->timeout_clks = 0;
857 		}
858 
859 		/* assign limit value if invalid */
860 		if (timeout_us == 0)
861 			data->timeout_ns = limit_us * 1000;
862 	}
863 
864 	/*
865 	 * Some cards require longer data read timeout than indicated in CSD.
866 	 * Address this by setting the read timeout to a "reasonably high"
867 	 * value. For the cards tested, 300ms has proven enough. If necessary,
868 	 * this value can be increased if other problematic cards require this.
869 	 */
870 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
871 		data->timeout_ns = 300000000;
872 		data->timeout_clks = 0;
873 	}
874 
875 	/*
876 	 * Some cards need very high timeouts if driven in SPI mode.
877 	 * The worst observed timeout was 900ms after writing a
878 	 * continuous stream of data until the internal logic
879 	 * overflowed.
880 	 */
881 	if (mmc_host_is_spi(card->host)) {
882 		if (data->flags & MMC_DATA_WRITE) {
883 			if (data->timeout_ns < 1000000000)
884 				data->timeout_ns = 1000000000;	/* 1s */
885 		} else {
886 			if (data->timeout_ns < 100000000)
887 				data->timeout_ns =  100000000;	/* 100ms */
888 		}
889 	}
890 }
891 EXPORT_SYMBOL(mmc_set_data_timeout);
892 
893 /**
894  *	mmc_align_data_size - pads a transfer size to a more optimal value
895  *	@card: the MMC card associated with the data transfer
896  *	@sz: original transfer size
897  *
898  *	Pads the original data size with a number of extra bytes in
899  *	order to avoid controller bugs and/or performance hits
900  *	(e.g. some controllers revert to PIO for certain sizes).
901  *
902  *	Returns the improved size, which might be unmodified.
903  *
904  *	Note that this function is only relevant when issuing a
905  *	single scatter gather entry.
906  */
907 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
908 {
909 	/*
910 	 * FIXME: We don't have a system for the controller to tell
911 	 * the core about its problems yet, so for now we just 32-bit
912 	 * align the size.
913 	 */
914 	sz = ((sz + 3) / 4) * 4;
915 
916 	return sz;
917 }
918 EXPORT_SYMBOL(mmc_align_data_size);
919 
920 /**
921  *	__mmc_claim_host - exclusively claim a host
922  *	@host: mmc host to claim
923  *	@abort: whether or not the operation should be aborted
924  *
925  *	Claim a host for a set of operations.  If @abort is non null and
926  *	dereference a non-zero value then this will return prematurely with
927  *	that non-zero value without acquiring the lock.  Returns zero
928  *	with the lock held otherwise.
929  */
930 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
931 {
932 	DECLARE_WAITQUEUE(wait, current);
933 	unsigned long flags;
934 	int stop;
935 	bool pm = false;
936 
937 	might_sleep();
938 
939 	add_wait_queue(&host->wq, &wait);
940 	spin_lock_irqsave(&host->lock, flags);
941 	while (1) {
942 		set_current_state(TASK_UNINTERRUPTIBLE);
943 		stop = abort ? atomic_read(abort) : 0;
944 		if (stop || !host->claimed || host->claimer == current)
945 			break;
946 		spin_unlock_irqrestore(&host->lock, flags);
947 		schedule();
948 		spin_lock_irqsave(&host->lock, flags);
949 	}
950 	set_current_state(TASK_RUNNING);
951 	if (!stop) {
952 		host->claimed = 1;
953 		host->claimer = current;
954 		host->claim_cnt += 1;
955 		if (host->claim_cnt == 1)
956 			pm = true;
957 	} else
958 		wake_up(&host->wq);
959 	spin_unlock_irqrestore(&host->lock, flags);
960 	remove_wait_queue(&host->wq, &wait);
961 
962 	if (pm)
963 		pm_runtime_get_sync(mmc_dev(host));
964 
965 	return stop;
966 }
967 EXPORT_SYMBOL(__mmc_claim_host);
968 
969 /**
970  *	mmc_release_host - release a host
971  *	@host: mmc host to release
972  *
973  *	Release a MMC host, allowing others to claim the host
974  *	for their operations.
975  */
976 void mmc_release_host(struct mmc_host *host)
977 {
978 	unsigned long flags;
979 
980 	WARN_ON(!host->claimed);
981 
982 	spin_lock_irqsave(&host->lock, flags);
983 	if (--host->claim_cnt) {
984 		/* Release for nested claim */
985 		spin_unlock_irqrestore(&host->lock, flags);
986 	} else {
987 		host->claimed = 0;
988 		host->claimer = NULL;
989 		spin_unlock_irqrestore(&host->lock, flags);
990 		wake_up(&host->wq);
991 		pm_runtime_mark_last_busy(mmc_dev(host));
992 		pm_runtime_put_autosuspend(mmc_dev(host));
993 	}
994 }
995 EXPORT_SYMBOL(mmc_release_host);
996 
997 /*
998  * This is a helper function, which fetches a runtime pm reference for the
999  * card device and also claims the host.
1000  */
1001 void mmc_get_card(struct mmc_card *card)
1002 {
1003 	pm_runtime_get_sync(&card->dev);
1004 	mmc_claim_host(card->host);
1005 }
1006 EXPORT_SYMBOL(mmc_get_card);
1007 
1008 /*
1009  * This is a helper function, which releases the host and drops the runtime
1010  * pm reference for the card device.
1011  */
1012 void mmc_put_card(struct mmc_card *card)
1013 {
1014 	mmc_release_host(card->host);
1015 	pm_runtime_mark_last_busy(&card->dev);
1016 	pm_runtime_put_autosuspend(&card->dev);
1017 }
1018 EXPORT_SYMBOL(mmc_put_card);
1019 
1020 /*
1021  * Internal function that does the actual ios call to the host driver,
1022  * optionally printing some debug output.
1023  */
1024 static inline void mmc_set_ios(struct mmc_host *host)
1025 {
1026 	struct mmc_ios *ios = &host->ios;
1027 
1028 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1029 		"width %u timing %u\n",
1030 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1031 		 ios->power_mode, ios->chip_select, ios->vdd,
1032 		 ios->bus_width, ios->timing);
1033 
1034 	if (ios->clock > 0)
1035 		mmc_set_ungated(host);
1036 	host->ops->set_ios(host, ios);
1037 }
1038 
1039 /*
1040  * Control chip select pin on a host.
1041  */
1042 void mmc_set_chip_select(struct mmc_host *host, int mode)
1043 {
1044 	mmc_host_clk_hold(host);
1045 	host->ios.chip_select = mode;
1046 	mmc_set_ios(host);
1047 	mmc_host_clk_release(host);
1048 }
1049 
1050 /*
1051  * Sets the host clock to the highest possible frequency that
1052  * is below "hz".
1053  */
1054 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1055 {
1056 	WARN_ON(hz && hz < host->f_min);
1057 
1058 	if (hz > host->f_max)
1059 		hz = host->f_max;
1060 
1061 	host->ios.clock = hz;
1062 	mmc_set_ios(host);
1063 }
1064 
1065 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1066 {
1067 	mmc_host_clk_hold(host);
1068 	__mmc_set_clock(host, hz);
1069 	mmc_host_clk_release(host);
1070 }
1071 
1072 #ifdef CONFIG_MMC_CLKGATE
1073 /*
1074  * This gates the clock by setting it to 0 Hz.
1075  */
1076 void mmc_gate_clock(struct mmc_host *host)
1077 {
1078 	unsigned long flags;
1079 
1080 	spin_lock_irqsave(&host->clk_lock, flags);
1081 	host->clk_old = host->ios.clock;
1082 	host->ios.clock = 0;
1083 	host->clk_gated = true;
1084 	spin_unlock_irqrestore(&host->clk_lock, flags);
1085 	mmc_set_ios(host);
1086 }
1087 
1088 /*
1089  * This restores the clock from gating by using the cached
1090  * clock value.
1091  */
1092 void mmc_ungate_clock(struct mmc_host *host)
1093 {
1094 	/*
1095 	 * We should previously have gated the clock, so the clock shall
1096 	 * be 0 here! The clock may however be 0 during initialization,
1097 	 * when some request operations are performed before setting
1098 	 * the frequency. When ungate is requested in that situation
1099 	 * we just ignore the call.
1100 	 */
1101 	if (host->clk_old) {
1102 		BUG_ON(host->ios.clock);
1103 		/* This call will also set host->clk_gated to false */
1104 		__mmc_set_clock(host, host->clk_old);
1105 	}
1106 }
1107 
1108 void mmc_set_ungated(struct mmc_host *host)
1109 {
1110 	unsigned long flags;
1111 
1112 	/*
1113 	 * We've been given a new frequency while the clock is gated,
1114 	 * so make sure we regard this as ungating it.
1115 	 */
1116 	spin_lock_irqsave(&host->clk_lock, flags);
1117 	host->clk_gated = false;
1118 	spin_unlock_irqrestore(&host->clk_lock, flags);
1119 }
1120 
1121 #else
1122 void mmc_set_ungated(struct mmc_host *host)
1123 {
1124 }
1125 #endif
1126 
1127 int mmc_execute_tuning(struct mmc_card *card)
1128 {
1129 	struct mmc_host *host = card->host;
1130 	u32 opcode;
1131 	int err;
1132 
1133 	if (!host->ops->execute_tuning)
1134 		return 0;
1135 
1136 	if (mmc_card_mmc(card))
1137 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1138 	else
1139 		opcode = MMC_SEND_TUNING_BLOCK;
1140 
1141 	mmc_host_clk_hold(host);
1142 	err = host->ops->execute_tuning(host, opcode);
1143 	mmc_host_clk_release(host);
1144 
1145 	if (err)
1146 		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1147 	else
1148 		mmc_retune_enable(host);
1149 
1150 	return err;
1151 }
1152 
1153 /*
1154  * Change the bus mode (open drain/push-pull) of a host.
1155  */
1156 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1157 {
1158 	mmc_host_clk_hold(host);
1159 	host->ios.bus_mode = mode;
1160 	mmc_set_ios(host);
1161 	mmc_host_clk_release(host);
1162 }
1163 
1164 /*
1165  * Change data bus width of a host.
1166  */
1167 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1168 {
1169 	mmc_host_clk_hold(host);
1170 	host->ios.bus_width = width;
1171 	mmc_set_ios(host);
1172 	mmc_host_clk_release(host);
1173 }
1174 
1175 /*
1176  * Set initial state after a power cycle or a hw_reset.
1177  */
1178 void mmc_set_initial_state(struct mmc_host *host)
1179 {
1180 	mmc_retune_disable(host);
1181 
1182 	if (mmc_host_is_spi(host))
1183 		host->ios.chip_select = MMC_CS_HIGH;
1184 	else
1185 		host->ios.chip_select = MMC_CS_DONTCARE;
1186 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1187 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1188 	host->ios.timing = MMC_TIMING_LEGACY;
1189 	host->ios.drv_type = 0;
1190 
1191 	mmc_set_ios(host);
1192 }
1193 
1194 /**
1195  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1196  * @vdd:	voltage (mV)
1197  * @low_bits:	prefer low bits in boundary cases
1198  *
1199  * This function returns the OCR bit number according to the provided @vdd
1200  * value. If conversion is not possible a negative errno value returned.
1201  *
1202  * Depending on the @low_bits flag the function prefers low or high OCR bits
1203  * on boundary voltages. For example,
1204  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1205  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1206  *
1207  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1208  */
1209 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1210 {
1211 	const int max_bit = ilog2(MMC_VDD_35_36);
1212 	int bit;
1213 
1214 	if (vdd < 1650 || vdd > 3600)
1215 		return -EINVAL;
1216 
1217 	if (vdd >= 1650 && vdd <= 1950)
1218 		return ilog2(MMC_VDD_165_195);
1219 
1220 	if (low_bits)
1221 		vdd -= 1;
1222 
1223 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1224 	bit = (vdd - 2000) / 100 + 8;
1225 	if (bit > max_bit)
1226 		return max_bit;
1227 	return bit;
1228 }
1229 
1230 /**
1231  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1232  * @vdd_min:	minimum voltage value (mV)
1233  * @vdd_max:	maximum voltage value (mV)
1234  *
1235  * This function returns the OCR mask bits according to the provided @vdd_min
1236  * and @vdd_max values. If conversion is not possible the function returns 0.
1237  *
1238  * Notes wrt boundary cases:
1239  * This function sets the OCR bits for all boundary voltages, for example
1240  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1241  * MMC_VDD_34_35 mask.
1242  */
1243 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1244 {
1245 	u32 mask = 0;
1246 
1247 	if (vdd_max < vdd_min)
1248 		return 0;
1249 
1250 	/* Prefer high bits for the boundary vdd_max values. */
1251 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1252 	if (vdd_max < 0)
1253 		return 0;
1254 
1255 	/* Prefer low bits for the boundary vdd_min values. */
1256 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1257 	if (vdd_min < 0)
1258 		return 0;
1259 
1260 	/* Fill the mask, from max bit to min bit. */
1261 	while (vdd_max >= vdd_min)
1262 		mask |= 1 << vdd_max--;
1263 
1264 	return mask;
1265 }
1266 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1267 
1268 #ifdef CONFIG_OF
1269 
1270 /**
1271  * mmc_of_parse_voltage - return mask of supported voltages
1272  * @np: The device node need to be parsed.
1273  * @mask: mask of voltages available for MMC/SD/SDIO
1274  *
1275  * 1. Return zero on success.
1276  * 2. Return negative errno: voltage-range is invalid.
1277  */
1278 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1279 {
1280 	const u32 *voltage_ranges;
1281 	int num_ranges, i;
1282 
1283 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1284 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1285 	if (!voltage_ranges || !num_ranges) {
1286 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1287 		return -EINVAL;
1288 	}
1289 
1290 	for (i = 0; i < num_ranges; i++) {
1291 		const int j = i * 2;
1292 		u32 ocr_mask;
1293 
1294 		ocr_mask = mmc_vddrange_to_ocrmask(
1295 				be32_to_cpu(voltage_ranges[j]),
1296 				be32_to_cpu(voltage_ranges[j + 1]));
1297 		if (!ocr_mask) {
1298 			pr_err("%s: voltage-range #%d is invalid\n",
1299 				np->full_name, i);
1300 			return -EINVAL;
1301 		}
1302 		*mask |= ocr_mask;
1303 	}
1304 
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(mmc_of_parse_voltage);
1308 
1309 #endif /* CONFIG_OF */
1310 
1311 static int mmc_of_get_func_num(struct device_node *node)
1312 {
1313 	u32 reg;
1314 	int ret;
1315 
1316 	ret = of_property_read_u32(node, "reg", &reg);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	return reg;
1321 }
1322 
1323 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1324 		unsigned func_num)
1325 {
1326 	struct device_node *node;
1327 
1328 	if (!host->parent || !host->parent->of_node)
1329 		return NULL;
1330 
1331 	for_each_child_of_node(host->parent->of_node, node) {
1332 		if (mmc_of_get_func_num(node) == func_num)
1333 			return node;
1334 	}
1335 
1336 	return NULL;
1337 }
1338 
1339 #ifdef CONFIG_REGULATOR
1340 
1341 /**
1342  * mmc_regulator_get_ocrmask - return mask of supported voltages
1343  * @supply: regulator to use
1344  *
1345  * This returns either a negative errno, or a mask of voltages that
1346  * can be provided to MMC/SD/SDIO devices using the specified voltage
1347  * regulator.  This would normally be called before registering the
1348  * MMC host adapter.
1349  */
1350 int mmc_regulator_get_ocrmask(struct regulator *supply)
1351 {
1352 	int			result = 0;
1353 	int			count;
1354 	int			i;
1355 	int			vdd_uV;
1356 	int			vdd_mV;
1357 
1358 	count = regulator_count_voltages(supply);
1359 	if (count < 0)
1360 		return count;
1361 
1362 	for (i = 0; i < count; i++) {
1363 		vdd_uV = regulator_list_voltage(supply, i);
1364 		if (vdd_uV <= 0)
1365 			continue;
1366 
1367 		vdd_mV = vdd_uV / 1000;
1368 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1369 	}
1370 
1371 	if (!result) {
1372 		vdd_uV = regulator_get_voltage(supply);
1373 		if (vdd_uV <= 0)
1374 			return vdd_uV;
1375 
1376 		vdd_mV = vdd_uV / 1000;
1377 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1378 	}
1379 
1380 	return result;
1381 }
1382 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1383 
1384 /**
1385  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1386  * @mmc: the host to regulate
1387  * @supply: regulator to use
1388  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1389  *
1390  * Returns zero on success, else negative errno.
1391  *
1392  * MMC host drivers may use this to enable or disable a regulator using
1393  * a particular supply voltage.  This would normally be called from the
1394  * set_ios() method.
1395  */
1396 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1397 			struct regulator *supply,
1398 			unsigned short vdd_bit)
1399 {
1400 	int			result = 0;
1401 	int			min_uV, max_uV;
1402 
1403 	if (vdd_bit) {
1404 		int		tmp;
1405 
1406 		/*
1407 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1408 		 * bits this regulator doesn't quite support ... don't
1409 		 * be too picky, most cards and regulators are OK with
1410 		 * a 0.1V range goof (it's a small error percentage).
1411 		 */
1412 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1413 		if (tmp == 0) {
1414 			min_uV = 1650 * 1000;
1415 			max_uV = 1950 * 1000;
1416 		} else {
1417 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1418 			max_uV = min_uV + 100 * 1000;
1419 		}
1420 
1421 		result = regulator_set_voltage(supply, min_uV, max_uV);
1422 		if (result == 0 && !mmc->regulator_enabled) {
1423 			result = regulator_enable(supply);
1424 			if (!result)
1425 				mmc->regulator_enabled = true;
1426 		}
1427 	} else if (mmc->regulator_enabled) {
1428 		result = regulator_disable(supply);
1429 		if (result == 0)
1430 			mmc->regulator_enabled = false;
1431 	}
1432 
1433 	if (result)
1434 		dev_err(mmc_dev(mmc),
1435 			"could not set regulator OCR (%d)\n", result);
1436 	return result;
1437 }
1438 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1439 
1440 #endif /* CONFIG_REGULATOR */
1441 
1442 int mmc_regulator_get_supply(struct mmc_host *mmc)
1443 {
1444 	struct device *dev = mmc_dev(mmc);
1445 	int ret;
1446 
1447 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1448 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1449 
1450 	if (IS_ERR(mmc->supply.vmmc)) {
1451 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1452 			return -EPROBE_DEFER;
1453 		dev_info(dev, "No vmmc regulator found\n");
1454 	} else {
1455 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1456 		if (ret > 0)
1457 			mmc->ocr_avail = ret;
1458 		else
1459 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1460 	}
1461 
1462 	if (IS_ERR(mmc->supply.vqmmc)) {
1463 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1464 			return -EPROBE_DEFER;
1465 		dev_info(dev, "No vqmmc regulator found\n");
1466 	}
1467 
1468 	return 0;
1469 }
1470 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1471 
1472 /*
1473  * Mask off any voltages we don't support and select
1474  * the lowest voltage
1475  */
1476 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1477 {
1478 	int bit;
1479 
1480 	/*
1481 	 * Sanity check the voltages that the card claims to
1482 	 * support.
1483 	 */
1484 	if (ocr & 0x7F) {
1485 		dev_warn(mmc_dev(host),
1486 		"card claims to support voltages below defined range\n");
1487 		ocr &= ~0x7F;
1488 	}
1489 
1490 	ocr &= host->ocr_avail;
1491 	if (!ocr) {
1492 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1493 		return 0;
1494 	}
1495 
1496 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1497 		bit = ffs(ocr) - 1;
1498 		ocr &= 3 << bit;
1499 		mmc_power_cycle(host, ocr);
1500 	} else {
1501 		bit = fls(ocr) - 1;
1502 		ocr &= 3 << bit;
1503 		if (bit != host->ios.vdd)
1504 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1505 	}
1506 
1507 	return ocr;
1508 }
1509 
1510 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1511 {
1512 	int err = 0;
1513 	int old_signal_voltage = host->ios.signal_voltage;
1514 
1515 	host->ios.signal_voltage = signal_voltage;
1516 	if (host->ops->start_signal_voltage_switch) {
1517 		mmc_host_clk_hold(host);
1518 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1519 		mmc_host_clk_release(host);
1520 	}
1521 
1522 	if (err)
1523 		host->ios.signal_voltage = old_signal_voltage;
1524 
1525 	return err;
1526 
1527 }
1528 
1529 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1530 {
1531 	struct mmc_command cmd = {0};
1532 	int err = 0;
1533 	u32 clock;
1534 
1535 	BUG_ON(!host);
1536 
1537 	/*
1538 	 * Send CMD11 only if the request is to switch the card to
1539 	 * 1.8V signalling.
1540 	 */
1541 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1542 		return __mmc_set_signal_voltage(host, signal_voltage);
1543 
1544 	/*
1545 	 * If we cannot switch voltages, return failure so the caller
1546 	 * can continue without UHS mode
1547 	 */
1548 	if (!host->ops->start_signal_voltage_switch)
1549 		return -EPERM;
1550 	if (!host->ops->card_busy)
1551 		pr_warn("%s: cannot verify signal voltage switch\n",
1552 			mmc_hostname(host));
1553 
1554 	mmc_host_clk_hold(host);
1555 
1556 	cmd.opcode = SD_SWITCH_VOLTAGE;
1557 	cmd.arg = 0;
1558 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1559 
1560 	err = mmc_wait_for_cmd(host, &cmd, 0);
1561 	if (err)
1562 		goto err_command;
1563 
1564 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1565 		err = -EIO;
1566 		goto err_command;
1567 	}
1568 	/*
1569 	 * The card should drive cmd and dat[0:3] low immediately
1570 	 * after the response of cmd11, but wait 1 ms to be sure
1571 	 */
1572 	mmc_delay(1);
1573 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1574 		err = -EAGAIN;
1575 		goto power_cycle;
1576 	}
1577 	/*
1578 	 * During a signal voltage level switch, the clock must be gated
1579 	 * for 5 ms according to the SD spec
1580 	 */
1581 	clock = host->ios.clock;
1582 	host->ios.clock = 0;
1583 	mmc_set_ios(host);
1584 
1585 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1586 		/*
1587 		 * Voltages may not have been switched, but we've already
1588 		 * sent CMD11, so a power cycle is required anyway
1589 		 */
1590 		err = -EAGAIN;
1591 		goto power_cycle;
1592 	}
1593 
1594 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1595 	mmc_delay(10);
1596 	host->ios.clock = clock;
1597 	mmc_set_ios(host);
1598 
1599 	/* Wait for at least 1 ms according to spec */
1600 	mmc_delay(1);
1601 
1602 	/*
1603 	 * Failure to switch is indicated by the card holding
1604 	 * dat[0:3] low
1605 	 */
1606 	if (host->ops->card_busy && host->ops->card_busy(host))
1607 		err = -EAGAIN;
1608 
1609 power_cycle:
1610 	if (err) {
1611 		pr_debug("%s: Signal voltage switch failed, "
1612 			"power cycling card\n", mmc_hostname(host));
1613 		mmc_power_cycle(host, ocr);
1614 	}
1615 
1616 err_command:
1617 	mmc_host_clk_release(host);
1618 
1619 	return err;
1620 }
1621 
1622 /*
1623  * Select timing parameters for host.
1624  */
1625 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1626 {
1627 	mmc_host_clk_hold(host);
1628 	host->ios.timing = timing;
1629 	mmc_set_ios(host);
1630 	mmc_host_clk_release(host);
1631 }
1632 
1633 /*
1634  * Select appropriate driver type for host.
1635  */
1636 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1637 {
1638 	mmc_host_clk_hold(host);
1639 	host->ios.drv_type = drv_type;
1640 	mmc_set_ios(host);
1641 	mmc_host_clk_release(host);
1642 }
1643 
1644 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1645 			      int card_drv_type, int *drv_type)
1646 {
1647 	struct mmc_host *host = card->host;
1648 	int host_drv_type = SD_DRIVER_TYPE_B;
1649 	int drive_strength;
1650 
1651 	*drv_type = 0;
1652 
1653 	if (!host->ops->select_drive_strength)
1654 		return 0;
1655 
1656 	/* Use SD definition of driver strength for hosts */
1657 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1658 		host_drv_type |= SD_DRIVER_TYPE_A;
1659 
1660 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1661 		host_drv_type |= SD_DRIVER_TYPE_C;
1662 
1663 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1664 		host_drv_type |= SD_DRIVER_TYPE_D;
1665 
1666 	/*
1667 	 * The drive strength that the hardware can support
1668 	 * depends on the board design.  Pass the appropriate
1669 	 * information and let the hardware specific code
1670 	 * return what is possible given the options
1671 	 */
1672 	mmc_host_clk_hold(host);
1673 	drive_strength = host->ops->select_drive_strength(card, max_dtr,
1674 							  host_drv_type,
1675 							  card_drv_type,
1676 							  drv_type);
1677 	mmc_host_clk_release(host);
1678 
1679 	return drive_strength;
1680 }
1681 
1682 /*
1683  * Apply power to the MMC stack.  This is a two-stage process.
1684  * First, we enable power to the card without the clock running.
1685  * We then wait a bit for the power to stabilise.  Finally,
1686  * enable the bus drivers and clock to the card.
1687  *
1688  * We must _NOT_ enable the clock prior to power stablising.
1689  *
1690  * If a host does all the power sequencing itself, ignore the
1691  * initial MMC_POWER_UP stage.
1692  */
1693 void mmc_power_up(struct mmc_host *host, u32 ocr)
1694 {
1695 	if (host->ios.power_mode == MMC_POWER_ON)
1696 		return;
1697 
1698 	mmc_host_clk_hold(host);
1699 
1700 	mmc_pwrseq_pre_power_on(host);
1701 
1702 	host->ios.vdd = fls(ocr) - 1;
1703 	host->ios.power_mode = MMC_POWER_UP;
1704 	/* Set initial state and call mmc_set_ios */
1705 	mmc_set_initial_state(host);
1706 
1707 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1708 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1709 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1710 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1711 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1712 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1713 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1714 
1715 	/*
1716 	 * This delay should be sufficient to allow the power supply
1717 	 * to reach the minimum voltage.
1718 	 */
1719 	mmc_delay(10);
1720 
1721 	mmc_pwrseq_post_power_on(host);
1722 
1723 	host->ios.clock = host->f_init;
1724 
1725 	host->ios.power_mode = MMC_POWER_ON;
1726 	mmc_set_ios(host);
1727 
1728 	/*
1729 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1730 	 * time required to reach a stable voltage.
1731 	 */
1732 	mmc_delay(10);
1733 
1734 	mmc_host_clk_release(host);
1735 }
1736 
1737 void mmc_power_off(struct mmc_host *host)
1738 {
1739 	if (host->ios.power_mode == MMC_POWER_OFF)
1740 		return;
1741 
1742 	mmc_host_clk_hold(host);
1743 
1744 	mmc_pwrseq_power_off(host);
1745 
1746 	host->ios.clock = 0;
1747 	host->ios.vdd = 0;
1748 
1749 	host->ios.power_mode = MMC_POWER_OFF;
1750 	/* Set initial state and call mmc_set_ios */
1751 	mmc_set_initial_state(host);
1752 
1753 	/*
1754 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1755 	 * XO-1.5, require a short delay after poweroff before the card
1756 	 * can be successfully turned on again.
1757 	 */
1758 	mmc_delay(1);
1759 
1760 	mmc_host_clk_release(host);
1761 }
1762 
1763 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1764 {
1765 	mmc_power_off(host);
1766 	/* Wait at least 1 ms according to SD spec */
1767 	mmc_delay(1);
1768 	mmc_power_up(host, ocr);
1769 }
1770 
1771 /*
1772  * Cleanup when the last reference to the bus operator is dropped.
1773  */
1774 static void __mmc_release_bus(struct mmc_host *host)
1775 {
1776 	BUG_ON(!host);
1777 	BUG_ON(host->bus_refs);
1778 	BUG_ON(!host->bus_dead);
1779 
1780 	host->bus_ops = NULL;
1781 }
1782 
1783 /*
1784  * Increase reference count of bus operator
1785  */
1786 static inline void mmc_bus_get(struct mmc_host *host)
1787 {
1788 	unsigned long flags;
1789 
1790 	spin_lock_irqsave(&host->lock, flags);
1791 	host->bus_refs++;
1792 	spin_unlock_irqrestore(&host->lock, flags);
1793 }
1794 
1795 /*
1796  * Decrease reference count of bus operator and free it if
1797  * it is the last reference.
1798  */
1799 static inline void mmc_bus_put(struct mmc_host *host)
1800 {
1801 	unsigned long flags;
1802 
1803 	spin_lock_irqsave(&host->lock, flags);
1804 	host->bus_refs--;
1805 	if ((host->bus_refs == 0) && host->bus_ops)
1806 		__mmc_release_bus(host);
1807 	spin_unlock_irqrestore(&host->lock, flags);
1808 }
1809 
1810 /*
1811  * Assign a mmc bus handler to a host. Only one bus handler may control a
1812  * host at any given time.
1813  */
1814 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1815 {
1816 	unsigned long flags;
1817 
1818 	BUG_ON(!host);
1819 	BUG_ON(!ops);
1820 
1821 	WARN_ON(!host->claimed);
1822 
1823 	spin_lock_irqsave(&host->lock, flags);
1824 
1825 	BUG_ON(host->bus_ops);
1826 	BUG_ON(host->bus_refs);
1827 
1828 	host->bus_ops = ops;
1829 	host->bus_refs = 1;
1830 	host->bus_dead = 0;
1831 
1832 	spin_unlock_irqrestore(&host->lock, flags);
1833 }
1834 
1835 /*
1836  * Remove the current bus handler from a host.
1837  */
1838 void mmc_detach_bus(struct mmc_host *host)
1839 {
1840 	unsigned long flags;
1841 
1842 	BUG_ON(!host);
1843 
1844 	WARN_ON(!host->claimed);
1845 	WARN_ON(!host->bus_ops);
1846 
1847 	spin_lock_irqsave(&host->lock, flags);
1848 
1849 	host->bus_dead = 1;
1850 
1851 	spin_unlock_irqrestore(&host->lock, flags);
1852 
1853 	mmc_bus_put(host);
1854 }
1855 
1856 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1857 				bool cd_irq)
1858 {
1859 #ifdef CONFIG_MMC_DEBUG
1860 	unsigned long flags;
1861 	spin_lock_irqsave(&host->lock, flags);
1862 	WARN_ON(host->removed);
1863 	spin_unlock_irqrestore(&host->lock, flags);
1864 #endif
1865 
1866 	/*
1867 	 * If the device is configured as wakeup, we prevent a new sleep for
1868 	 * 5 s to give provision for user space to consume the event.
1869 	 */
1870 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1871 		device_can_wakeup(mmc_dev(host)))
1872 		pm_wakeup_event(mmc_dev(host), 5000);
1873 
1874 	host->detect_change = 1;
1875 	mmc_schedule_delayed_work(&host->detect, delay);
1876 }
1877 
1878 /**
1879  *	mmc_detect_change - process change of state on a MMC socket
1880  *	@host: host which changed state.
1881  *	@delay: optional delay to wait before detection (jiffies)
1882  *
1883  *	MMC drivers should call this when they detect a card has been
1884  *	inserted or removed. The MMC layer will confirm that any
1885  *	present card is still functional, and initialize any newly
1886  *	inserted.
1887  */
1888 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1889 {
1890 	_mmc_detect_change(host, delay, true);
1891 }
1892 EXPORT_SYMBOL(mmc_detect_change);
1893 
1894 void mmc_init_erase(struct mmc_card *card)
1895 {
1896 	unsigned int sz;
1897 
1898 	if (is_power_of_2(card->erase_size))
1899 		card->erase_shift = ffs(card->erase_size) - 1;
1900 	else
1901 		card->erase_shift = 0;
1902 
1903 	/*
1904 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1905 	 * card.  That is not desirable because it can take a long time
1906 	 * (minutes) potentially delaying more important I/O, and also the
1907 	 * timeout calculations become increasingly hugely over-estimated.
1908 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1909 	 * to that size and alignment.
1910 	 *
1911 	 * For SD cards that define Allocation Unit size, limit erases to one
1912 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1913 	 * Erase Size, whether it is switched on or not, limit to that size.
1914 	 * Otherwise just have a stab at a good value.  For modern cards it
1915 	 * will end up being 4MiB.  Note that if the value is too small, it
1916 	 * can end up taking longer to erase.
1917 	 */
1918 	if (mmc_card_sd(card) && card->ssr.au) {
1919 		card->pref_erase = card->ssr.au;
1920 		card->erase_shift = ffs(card->ssr.au) - 1;
1921 	} else if (card->ext_csd.hc_erase_size) {
1922 		card->pref_erase = card->ext_csd.hc_erase_size;
1923 	} else if (card->erase_size) {
1924 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1925 		if (sz < 128)
1926 			card->pref_erase = 512 * 1024 / 512;
1927 		else if (sz < 512)
1928 			card->pref_erase = 1024 * 1024 / 512;
1929 		else if (sz < 1024)
1930 			card->pref_erase = 2 * 1024 * 1024 / 512;
1931 		else
1932 			card->pref_erase = 4 * 1024 * 1024 / 512;
1933 		if (card->pref_erase < card->erase_size)
1934 			card->pref_erase = card->erase_size;
1935 		else {
1936 			sz = card->pref_erase % card->erase_size;
1937 			if (sz)
1938 				card->pref_erase += card->erase_size - sz;
1939 		}
1940 	} else
1941 		card->pref_erase = 0;
1942 }
1943 
1944 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1945 				          unsigned int arg, unsigned int qty)
1946 {
1947 	unsigned int erase_timeout;
1948 
1949 	if (arg == MMC_DISCARD_ARG ||
1950 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1951 		erase_timeout = card->ext_csd.trim_timeout;
1952 	} else if (card->ext_csd.erase_group_def & 1) {
1953 		/* High Capacity Erase Group Size uses HC timeouts */
1954 		if (arg == MMC_TRIM_ARG)
1955 			erase_timeout = card->ext_csd.trim_timeout;
1956 		else
1957 			erase_timeout = card->ext_csd.hc_erase_timeout;
1958 	} else {
1959 		/* CSD Erase Group Size uses write timeout */
1960 		unsigned int mult = (10 << card->csd.r2w_factor);
1961 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1962 		unsigned int timeout_us;
1963 
1964 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1965 		if (card->csd.tacc_ns < 1000000)
1966 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1967 		else
1968 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1969 
1970 		/*
1971 		 * ios.clock is only a target.  The real clock rate might be
1972 		 * less but not that much less, so fudge it by multiplying by 2.
1973 		 */
1974 		timeout_clks <<= 1;
1975 		timeout_us += (timeout_clks * 1000) /
1976 			      (mmc_host_clk_rate(card->host) / 1000);
1977 
1978 		erase_timeout = timeout_us / 1000;
1979 
1980 		/*
1981 		 * Theoretically, the calculation could underflow so round up
1982 		 * to 1ms in that case.
1983 		 */
1984 		if (!erase_timeout)
1985 			erase_timeout = 1;
1986 	}
1987 
1988 	/* Multiplier for secure operations */
1989 	if (arg & MMC_SECURE_ARGS) {
1990 		if (arg == MMC_SECURE_ERASE_ARG)
1991 			erase_timeout *= card->ext_csd.sec_erase_mult;
1992 		else
1993 			erase_timeout *= card->ext_csd.sec_trim_mult;
1994 	}
1995 
1996 	erase_timeout *= qty;
1997 
1998 	/*
1999 	 * Ensure at least a 1 second timeout for SPI as per
2000 	 * 'mmc_set_data_timeout()'
2001 	 */
2002 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2003 		erase_timeout = 1000;
2004 
2005 	return erase_timeout;
2006 }
2007 
2008 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2009 					 unsigned int arg,
2010 					 unsigned int qty)
2011 {
2012 	unsigned int erase_timeout;
2013 
2014 	if (card->ssr.erase_timeout) {
2015 		/* Erase timeout specified in SD Status Register (SSR) */
2016 		erase_timeout = card->ssr.erase_timeout * qty +
2017 				card->ssr.erase_offset;
2018 	} else {
2019 		/*
2020 		 * Erase timeout not specified in SD Status Register (SSR) so
2021 		 * use 250ms per write block.
2022 		 */
2023 		erase_timeout = 250 * qty;
2024 	}
2025 
2026 	/* Must not be less than 1 second */
2027 	if (erase_timeout < 1000)
2028 		erase_timeout = 1000;
2029 
2030 	return erase_timeout;
2031 }
2032 
2033 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2034 				      unsigned int arg,
2035 				      unsigned int qty)
2036 {
2037 	if (mmc_card_sd(card))
2038 		return mmc_sd_erase_timeout(card, arg, qty);
2039 	else
2040 		return mmc_mmc_erase_timeout(card, arg, qty);
2041 }
2042 
2043 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2044 			unsigned int to, unsigned int arg)
2045 {
2046 	struct mmc_command cmd = {0};
2047 	unsigned int qty = 0;
2048 	unsigned long timeout;
2049 	int err;
2050 
2051 	mmc_retune_hold(card->host);
2052 
2053 	/*
2054 	 * qty is used to calculate the erase timeout which depends on how many
2055 	 * erase groups (or allocation units in SD terminology) are affected.
2056 	 * We count erasing part of an erase group as one erase group.
2057 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2058 	 * erase group size is almost certainly also power of 2, but it does not
2059 	 * seem to insist on that in the JEDEC standard, so we fall back to
2060 	 * division in that case.  SD may not specify an allocation unit size,
2061 	 * in which case the timeout is based on the number of write blocks.
2062 	 *
2063 	 * Note that the timeout for secure trim 2 will only be correct if the
2064 	 * number of erase groups specified is the same as the total of all
2065 	 * preceding secure trim 1 commands.  Since the power may have been
2066 	 * lost since the secure trim 1 commands occurred, it is generally
2067 	 * impossible to calculate the secure trim 2 timeout correctly.
2068 	 */
2069 	if (card->erase_shift)
2070 		qty += ((to >> card->erase_shift) -
2071 			(from >> card->erase_shift)) + 1;
2072 	else if (mmc_card_sd(card))
2073 		qty += to - from + 1;
2074 	else
2075 		qty += ((to / card->erase_size) -
2076 			(from / card->erase_size)) + 1;
2077 
2078 	if (!mmc_card_blockaddr(card)) {
2079 		from <<= 9;
2080 		to <<= 9;
2081 	}
2082 
2083 	if (mmc_card_sd(card))
2084 		cmd.opcode = SD_ERASE_WR_BLK_START;
2085 	else
2086 		cmd.opcode = MMC_ERASE_GROUP_START;
2087 	cmd.arg = from;
2088 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2089 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2090 	if (err) {
2091 		pr_err("mmc_erase: group start error %d, "
2092 		       "status %#x\n", err, cmd.resp[0]);
2093 		err = -EIO;
2094 		goto out;
2095 	}
2096 
2097 	memset(&cmd, 0, sizeof(struct mmc_command));
2098 	if (mmc_card_sd(card))
2099 		cmd.opcode = SD_ERASE_WR_BLK_END;
2100 	else
2101 		cmd.opcode = MMC_ERASE_GROUP_END;
2102 	cmd.arg = to;
2103 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2104 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2105 	if (err) {
2106 		pr_err("mmc_erase: group end error %d, status %#x\n",
2107 		       err, cmd.resp[0]);
2108 		err = -EIO;
2109 		goto out;
2110 	}
2111 
2112 	memset(&cmd, 0, sizeof(struct mmc_command));
2113 	cmd.opcode = MMC_ERASE;
2114 	cmd.arg = arg;
2115 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2116 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2117 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2118 	if (err) {
2119 		pr_err("mmc_erase: erase error %d, status %#x\n",
2120 		       err, cmd.resp[0]);
2121 		err = -EIO;
2122 		goto out;
2123 	}
2124 
2125 	if (mmc_host_is_spi(card->host))
2126 		goto out;
2127 
2128 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2129 	do {
2130 		memset(&cmd, 0, sizeof(struct mmc_command));
2131 		cmd.opcode = MMC_SEND_STATUS;
2132 		cmd.arg = card->rca << 16;
2133 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2134 		/* Do not retry else we can't see errors */
2135 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2136 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2137 			pr_err("error %d requesting status %#x\n",
2138 				err, cmd.resp[0]);
2139 			err = -EIO;
2140 			goto out;
2141 		}
2142 
2143 		/* Timeout if the device never becomes ready for data and
2144 		 * never leaves the program state.
2145 		 */
2146 		if (time_after(jiffies, timeout)) {
2147 			pr_err("%s: Card stuck in programming state! %s\n",
2148 				mmc_hostname(card->host), __func__);
2149 			err =  -EIO;
2150 			goto out;
2151 		}
2152 
2153 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2154 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2155 out:
2156 	mmc_retune_release(card->host);
2157 	return err;
2158 }
2159 
2160 /**
2161  * mmc_erase - erase sectors.
2162  * @card: card to erase
2163  * @from: first sector to erase
2164  * @nr: number of sectors to erase
2165  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2166  *
2167  * Caller must claim host before calling this function.
2168  */
2169 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2170 	      unsigned int arg)
2171 {
2172 	unsigned int rem, to = from + nr;
2173 	int err;
2174 
2175 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2176 	    !(card->csd.cmdclass & CCC_ERASE))
2177 		return -EOPNOTSUPP;
2178 
2179 	if (!card->erase_size)
2180 		return -EOPNOTSUPP;
2181 
2182 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2183 		return -EOPNOTSUPP;
2184 
2185 	if ((arg & MMC_SECURE_ARGS) &&
2186 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2187 		return -EOPNOTSUPP;
2188 
2189 	if ((arg & MMC_TRIM_ARGS) &&
2190 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2191 		return -EOPNOTSUPP;
2192 
2193 	if (arg == MMC_SECURE_ERASE_ARG) {
2194 		if (from % card->erase_size || nr % card->erase_size)
2195 			return -EINVAL;
2196 	}
2197 
2198 	if (arg == MMC_ERASE_ARG) {
2199 		rem = from % card->erase_size;
2200 		if (rem) {
2201 			rem = card->erase_size - rem;
2202 			from += rem;
2203 			if (nr > rem)
2204 				nr -= rem;
2205 			else
2206 				return 0;
2207 		}
2208 		rem = nr % card->erase_size;
2209 		if (rem)
2210 			nr -= rem;
2211 	}
2212 
2213 	if (nr == 0)
2214 		return 0;
2215 
2216 	to = from + nr;
2217 
2218 	if (to <= from)
2219 		return -EINVAL;
2220 
2221 	/* 'from' and 'to' are inclusive */
2222 	to -= 1;
2223 
2224 	/*
2225 	 * Special case where only one erase-group fits in the timeout budget:
2226 	 * If the region crosses an erase-group boundary on this particular
2227 	 * case, we will be trimming more than one erase-group which, does not
2228 	 * fit in the timeout budget of the controller, so we need to split it
2229 	 * and call mmc_do_erase() twice if necessary. This special case is
2230 	 * identified by the card->eg_boundary flag.
2231 	 */
2232 	rem = card->erase_size - (from % card->erase_size);
2233 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2234 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2235 		from += rem;
2236 		if ((err) || (to <= from))
2237 			return err;
2238 	}
2239 
2240 	return mmc_do_erase(card, from, to, arg);
2241 }
2242 EXPORT_SYMBOL(mmc_erase);
2243 
2244 int mmc_can_erase(struct mmc_card *card)
2245 {
2246 	if ((card->host->caps & MMC_CAP_ERASE) &&
2247 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2248 		return 1;
2249 	return 0;
2250 }
2251 EXPORT_SYMBOL(mmc_can_erase);
2252 
2253 int mmc_can_trim(struct mmc_card *card)
2254 {
2255 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2256 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2257 		return 1;
2258 	return 0;
2259 }
2260 EXPORT_SYMBOL(mmc_can_trim);
2261 
2262 int mmc_can_discard(struct mmc_card *card)
2263 {
2264 	/*
2265 	 * As there's no way to detect the discard support bit at v4.5
2266 	 * use the s/w feature support filed.
2267 	 */
2268 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2269 		return 1;
2270 	return 0;
2271 }
2272 EXPORT_SYMBOL(mmc_can_discard);
2273 
2274 int mmc_can_sanitize(struct mmc_card *card)
2275 {
2276 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2277 		return 0;
2278 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2279 		return 1;
2280 	return 0;
2281 }
2282 EXPORT_SYMBOL(mmc_can_sanitize);
2283 
2284 int mmc_can_secure_erase_trim(struct mmc_card *card)
2285 {
2286 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2287 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2288 		return 1;
2289 	return 0;
2290 }
2291 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2292 
2293 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2294 			    unsigned int nr)
2295 {
2296 	if (!card->erase_size)
2297 		return 0;
2298 	if (from % card->erase_size || nr % card->erase_size)
2299 		return 0;
2300 	return 1;
2301 }
2302 EXPORT_SYMBOL(mmc_erase_group_aligned);
2303 
2304 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2305 					    unsigned int arg)
2306 {
2307 	struct mmc_host *host = card->host;
2308 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2309 	unsigned int last_timeout = 0;
2310 
2311 	if (card->erase_shift)
2312 		max_qty = UINT_MAX >> card->erase_shift;
2313 	else if (mmc_card_sd(card))
2314 		max_qty = UINT_MAX;
2315 	else
2316 		max_qty = UINT_MAX / card->erase_size;
2317 
2318 	/* Find the largest qty with an OK timeout */
2319 	do {
2320 		y = 0;
2321 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2322 			timeout = mmc_erase_timeout(card, arg, qty + x);
2323 			if (timeout > host->max_busy_timeout)
2324 				break;
2325 			if (timeout < last_timeout)
2326 				break;
2327 			last_timeout = timeout;
2328 			y = x;
2329 		}
2330 		qty += y;
2331 	} while (y);
2332 
2333 	if (!qty)
2334 		return 0;
2335 
2336 	/*
2337 	 * When specifying a sector range to trim, chances are we might cross
2338 	 * an erase-group boundary even if the amount of sectors is less than
2339 	 * one erase-group.
2340 	 * If we can only fit one erase-group in the controller timeout budget,
2341 	 * we have to care that erase-group boundaries are not crossed by a
2342 	 * single trim operation. We flag that special case with "eg_boundary".
2343 	 * In all other cases we can just decrement qty and pretend that we
2344 	 * always touch (qty + 1) erase-groups as a simple optimization.
2345 	 */
2346 	if (qty == 1)
2347 		card->eg_boundary = 1;
2348 	else
2349 		qty--;
2350 
2351 	/* Convert qty to sectors */
2352 	if (card->erase_shift)
2353 		max_discard = qty << card->erase_shift;
2354 	else if (mmc_card_sd(card))
2355 		max_discard = qty + 1;
2356 	else
2357 		max_discard = qty * card->erase_size;
2358 
2359 	return max_discard;
2360 }
2361 
2362 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2363 {
2364 	struct mmc_host *host = card->host;
2365 	unsigned int max_discard, max_trim;
2366 
2367 	if (!host->max_busy_timeout)
2368 		return UINT_MAX;
2369 
2370 	/*
2371 	 * Without erase_group_def set, MMC erase timeout depends on clock
2372 	 * frequence which can change.  In that case, the best choice is
2373 	 * just the preferred erase size.
2374 	 */
2375 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2376 		return card->pref_erase;
2377 
2378 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2379 	if (mmc_can_trim(card)) {
2380 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2381 		if (max_trim < max_discard)
2382 			max_discard = max_trim;
2383 	} else if (max_discard < card->erase_size) {
2384 		max_discard = 0;
2385 	}
2386 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2387 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2388 	return max_discard;
2389 }
2390 EXPORT_SYMBOL(mmc_calc_max_discard);
2391 
2392 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393 {
2394 	struct mmc_command cmd = {0};
2395 
2396 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2397 		return 0;
2398 
2399 	cmd.opcode = MMC_SET_BLOCKLEN;
2400 	cmd.arg = blocklen;
2401 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2402 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2403 }
2404 EXPORT_SYMBOL(mmc_set_blocklen);
2405 
2406 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2407 			bool is_rel_write)
2408 {
2409 	struct mmc_command cmd = {0};
2410 
2411 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2412 	cmd.arg = blockcount & 0x0000FFFF;
2413 	if (is_rel_write)
2414 		cmd.arg |= 1 << 31;
2415 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2416 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2417 }
2418 EXPORT_SYMBOL(mmc_set_blockcount);
2419 
2420 static void mmc_hw_reset_for_init(struct mmc_host *host)
2421 {
2422 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2423 		return;
2424 	mmc_host_clk_hold(host);
2425 	host->ops->hw_reset(host);
2426 	mmc_host_clk_release(host);
2427 }
2428 
2429 int mmc_hw_reset(struct mmc_host *host)
2430 {
2431 	int ret;
2432 
2433 	if (!host->card)
2434 		return -EINVAL;
2435 
2436 	mmc_bus_get(host);
2437 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2438 		mmc_bus_put(host);
2439 		return -EOPNOTSUPP;
2440 	}
2441 
2442 	ret = host->bus_ops->reset(host);
2443 	mmc_bus_put(host);
2444 
2445 	if (ret != -EOPNOTSUPP)
2446 		pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2447 
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL(mmc_hw_reset);
2451 
2452 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2453 {
2454 	host->f_init = freq;
2455 
2456 #ifdef CONFIG_MMC_DEBUG
2457 	pr_info("%s: %s: trying to init card at %u Hz\n",
2458 		mmc_hostname(host), __func__, host->f_init);
2459 #endif
2460 	mmc_power_up(host, host->ocr_avail);
2461 
2462 	/*
2463 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2464 	 * do a hardware reset if possible.
2465 	 */
2466 	mmc_hw_reset_for_init(host);
2467 
2468 	/*
2469 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2470 	 * if the card is being re-initialized, just send it.  CMD52
2471 	 * should be ignored by SD/eMMC cards.
2472 	 */
2473 	sdio_reset(host);
2474 	mmc_go_idle(host);
2475 
2476 	mmc_send_if_cond(host, host->ocr_avail);
2477 
2478 	/* Order's important: probe SDIO, then SD, then MMC */
2479 	if (!mmc_attach_sdio(host))
2480 		return 0;
2481 	if (!mmc_attach_sd(host))
2482 		return 0;
2483 	if (!mmc_attach_mmc(host))
2484 		return 0;
2485 
2486 	mmc_power_off(host);
2487 	return -EIO;
2488 }
2489 
2490 int _mmc_detect_card_removed(struct mmc_host *host)
2491 {
2492 	int ret;
2493 
2494 	if (host->caps & MMC_CAP_NONREMOVABLE)
2495 		return 0;
2496 
2497 	if (!host->card || mmc_card_removed(host->card))
2498 		return 1;
2499 
2500 	ret = host->bus_ops->alive(host);
2501 
2502 	/*
2503 	 * Card detect status and alive check may be out of sync if card is
2504 	 * removed slowly, when card detect switch changes while card/slot
2505 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2506 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2507 	 * detect work 200ms later for this case.
2508 	 */
2509 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2510 		mmc_detect_change(host, msecs_to_jiffies(200));
2511 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2512 	}
2513 
2514 	if (ret) {
2515 		mmc_card_set_removed(host->card);
2516 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2517 	}
2518 
2519 	return ret;
2520 }
2521 
2522 int mmc_detect_card_removed(struct mmc_host *host)
2523 {
2524 	struct mmc_card *card = host->card;
2525 	int ret;
2526 
2527 	WARN_ON(!host->claimed);
2528 
2529 	if (!card)
2530 		return 1;
2531 
2532 	ret = mmc_card_removed(card);
2533 	/*
2534 	 * The card will be considered unchanged unless we have been asked to
2535 	 * detect a change or host requires polling to provide card detection.
2536 	 */
2537 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2538 		return ret;
2539 
2540 	host->detect_change = 0;
2541 	if (!ret) {
2542 		ret = _mmc_detect_card_removed(host);
2543 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2544 			/*
2545 			 * Schedule a detect work as soon as possible to let a
2546 			 * rescan handle the card removal.
2547 			 */
2548 			cancel_delayed_work(&host->detect);
2549 			_mmc_detect_change(host, 0, false);
2550 		}
2551 	}
2552 
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL(mmc_detect_card_removed);
2556 
2557 void mmc_rescan(struct work_struct *work)
2558 {
2559 	struct mmc_host *host =
2560 		container_of(work, struct mmc_host, detect.work);
2561 	int i;
2562 
2563 	if (host->trigger_card_event && host->ops->card_event) {
2564 		host->ops->card_event(host);
2565 		host->trigger_card_event = false;
2566 	}
2567 
2568 	if (host->rescan_disable)
2569 		return;
2570 
2571 	/* If there is a non-removable card registered, only scan once */
2572 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2573 		return;
2574 	host->rescan_entered = 1;
2575 
2576 	mmc_bus_get(host);
2577 
2578 	/*
2579 	 * if there is a _removable_ card registered, check whether it is
2580 	 * still present
2581 	 */
2582 	if (host->bus_ops && !host->bus_dead
2583 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2584 		host->bus_ops->detect(host);
2585 
2586 	host->detect_change = 0;
2587 
2588 	/*
2589 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2590 	 * the card is no longer present.
2591 	 */
2592 	mmc_bus_put(host);
2593 	mmc_bus_get(host);
2594 
2595 	/* if there still is a card present, stop here */
2596 	if (host->bus_ops != NULL) {
2597 		mmc_bus_put(host);
2598 		goto out;
2599 	}
2600 
2601 	/*
2602 	 * Only we can add a new handler, so it's safe to
2603 	 * release the lock here.
2604 	 */
2605 	mmc_bus_put(host);
2606 
2607 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2608 			host->ops->get_cd(host) == 0) {
2609 		mmc_claim_host(host);
2610 		mmc_power_off(host);
2611 		mmc_release_host(host);
2612 		goto out;
2613 	}
2614 
2615 	mmc_claim_host(host);
2616 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2617 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2618 			break;
2619 		if (freqs[i] <= host->f_min)
2620 			break;
2621 	}
2622 	mmc_release_host(host);
2623 
2624  out:
2625 	if (host->caps & MMC_CAP_NEEDS_POLL)
2626 		mmc_schedule_delayed_work(&host->detect, HZ);
2627 }
2628 
2629 void mmc_start_host(struct mmc_host *host)
2630 {
2631 	host->f_init = max(freqs[0], host->f_min);
2632 	host->rescan_disable = 0;
2633 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2634 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2635 		mmc_power_off(host);
2636 	else
2637 		mmc_power_up(host, host->ocr_avail);
2638 	mmc_gpiod_request_cd_irq(host);
2639 	_mmc_detect_change(host, 0, false);
2640 }
2641 
2642 void mmc_stop_host(struct mmc_host *host)
2643 {
2644 #ifdef CONFIG_MMC_DEBUG
2645 	unsigned long flags;
2646 	spin_lock_irqsave(&host->lock, flags);
2647 	host->removed = 1;
2648 	spin_unlock_irqrestore(&host->lock, flags);
2649 #endif
2650 	if (host->slot.cd_irq >= 0)
2651 		disable_irq(host->slot.cd_irq);
2652 
2653 	host->rescan_disable = 1;
2654 	cancel_delayed_work_sync(&host->detect);
2655 	mmc_flush_scheduled_work();
2656 
2657 	/* clear pm flags now and let card drivers set them as needed */
2658 	host->pm_flags = 0;
2659 
2660 	mmc_bus_get(host);
2661 	if (host->bus_ops && !host->bus_dead) {
2662 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2663 		host->bus_ops->remove(host);
2664 		mmc_claim_host(host);
2665 		mmc_detach_bus(host);
2666 		mmc_power_off(host);
2667 		mmc_release_host(host);
2668 		mmc_bus_put(host);
2669 		return;
2670 	}
2671 	mmc_bus_put(host);
2672 
2673 	BUG_ON(host->card);
2674 
2675 	mmc_power_off(host);
2676 }
2677 
2678 int mmc_power_save_host(struct mmc_host *host)
2679 {
2680 	int ret = 0;
2681 
2682 #ifdef CONFIG_MMC_DEBUG
2683 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2684 #endif
2685 
2686 	mmc_bus_get(host);
2687 
2688 	if (!host->bus_ops || host->bus_dead) {
2689 		mmc_bus_put(host);
2690 		return -EINVAL;
2691 	}
2692 
2693 	if (host->bus_ops->power_save)
2694 		ret = host->bus_ops->power_save(host);
2695 
2696 	mmc_bus_put(host);
2697 
2698 	mmc_power_off(host);
2699 
2700 	return ret;
2701 }
2702 EXPORT_SYMBOL(mmc_power_save_host);
2703 
2704 int mmc_power_restore_host(struct mmc_host *host)
2705 {
2706 	int ret;
2707 
2708 #ifdef CONFIG_MMC_DEBUG
2709 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2710 #endif
2711 
2712 	mmc_bus_get(host);
2713 
2714 	if (!host->bus_ops || host->bus_dead) {
2715 		mmc_bus_put(host);
2716 		return -EINVAL;
2717 	}
2718 
2719 	mmc_power_up(host, host->card->ocr);
2720 	ret = host->bus_ops->power_restore(host);
2721 
2722 	mmc_bus_put(host);
2723 
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL(mmc_power_restore_host);
2727 
2728 /*
2729  * Flush the cache to the non-volatile storage.
2730  */
2731 int mmc_flush_cache(struct mmc_card *card)
2732 {
2733 	int err = 0;
2734 
2735 	if (mmc_card_mmc(card) &&
2736 			(card->ext_csd.cache_size > 0) &&
2737 			(card->ext_csd.cache_ctrl & 1)) {
2738 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2739 				EXT_CSD_FLUSH_CACHE, 1, 0);
2740 		if (err)
2741 			pr_err("%s: cache flush error %d\n",
2742 					mmc_hostname(card->host), err);
2743 	}
2744 
2745 	return err;
2746 }
2747 EXPORT_SYMBOL(mmc_flush_cache);
2748 
2749 #ifdef CONFIG_PM
2750 
2751 /* Do the card removal on suspend if card is assumed removeable
2752  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2753    to sync the card.
2754 */
2755 int mmc_pm_notify(struct notifier_block *notify_block,
2756 					unsigned long mode, void *unused)
2757 {
2758 	struct mmc_host *host = container_of(
2759 		notify_block, struct mmc_host, pm_notify);
2760 	unsigned long flags;
2761 	int err = 0;
2762 
2763 	switch (mode) {
2764 	case PM_HIBERNATION_PREPARE:
2765 	case PM_SUSPEND_PREPARE:
2766 	case PM_RESTORE_PREPARE:
2767 		spin_lock_irqsave(&host->lock, flags);
2768 		host->rescan_disable = 1;
2769 		spin_unlock_irqrestore(&host->lock, flags);
2770 		cancel_delayed_work_sync(&host->detect);
2771 
2772 		if (!host->bus_ops)
2773 			break;
2774 
2775 		/* Validate prerequisites for suspend */
2776 		if (host->bus_ops->pre_suspend)
2777 			err = host->bus_ops->pre_suspend(host);
2778 		if (!err)
2779 			break;
2780 
2781 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2782 		host->bus_ops->remove(host);
2783 		mmc_claim_host(host);
2784 		mmc_detach_bus(host);
2785 		mmc_power_off(host);
2786 		mmc_release_host(host);
2787 		host->pm_flags = 0;
2788 		break;
2789 
2790 	case PM_POST_SUSPEND:
2791 	case PM_POST_HIBERNATION:
2792 	case PM_POST_RESTORE:
2793 
2794 		spin_lock_irqsave(&host->lock, flags);
2795 		host->rescan_disable = 0;
2796 		spin_unlock_irqrestore(&host->lock, flags);
2797 		_mmc_detect_change(host, 0, false);
2798 
2799 	}
2800 
2801 	return 0;
2802 }
2803 #endif
2804 
2805 /**
2806  * mmc_init_context_info() - init synchronization context
2807  * @host: mmc host
2808  *
2809  * Init struct context_info needed to implement asynchronous
2810  * request mechanism, used by mmc core, host driver and mmc requests
2811  * supplier.
2812  */
2813 void mmc_init_context_info(struct mmc_host *host)
2814 {
2815 	spin_lock_init(&host->context_info.lock);
2816 	host->context_info.is_new_req = false;
2817 	host->context_info.is_done_rcv = false;
2818 	host->context_info.is_waiting_last_req = false;
2819 	init_waitqueue_head(&host->context_info.wait);
2820 }
2821 
2822 static int __init mmc_init(void)
2823 {
2824 	int ret;
2825 
2826 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2827 	if (!workqueue)
2828 		return -ENOMEM;
2829 
2830 	ret = mmc_register_bus();
2831 	if (ret)
2832 		goto destroy_workqueue;
2833 
2834 	ret = mmc_register_host_class();
2835 	if (ret)
2836 		goto unregister_bus;
2837 
2838 	ret = sdio_register_bus();
2839 	if (ret)
2840 		goto unregister_host_class;
2841 
2842 	return 0;
2843 
2844 unregister_host_class:
2845 	mmc_unregister_host_class();
2846 unregister_bus:
2847 	mmc_unregister_bus();
2848 destroy_workqueue:
2849 	destroy_workqueue(workqueue);
2850 
2851 	return ret;
2852 }
2853 
2854 static void __exit mmc_exit(void)
2855 {
2856 	sdio_unregister_bus();
2857 	mmc_unregister_host_class();
2858 	mmc_unregister_bus();
2859 	destroy_workqueue(workqueue);
2860 }
2861 
2862 subsys_initcall(mmc_init);
2863 module_exit(mmc_exit);
2864 
2865 MODULE_LICENSE("GPL");
2866