1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #include "core.h" 40 #include "bus.h" 41 #include "host.h" 42 #include "sdio_bus.h" 43 #include "pwrseq.h" 44 45 #include "mmc_ops.h" 46 #include "sd_ops.h" 47 #include "sdio_ops.h" 48 49 /* If the device is not responding */ 50 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 51 52 /* 53 * Background operations can take a long time, depending on the housekeeping 54 * operations the card has to perform. 55 */ 56 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 57 58 static struct workqueue_struct *workqueue; 59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 60 61 /* 62 * Enabling software CRCs on the data blocks can be a significant (30%) 63 * performance cost, and for other reasons may not always be desired. 64 * So we allow it it to be disabled. 65 */ 66 bool use_spi_crc = 1; 67 module_param(use_spi_crc, bool, 0); 68 69 /* 70 * Internal function. Schedule delayed work in the MMC work queue. 71 */ 72 static int mmc_schedule_delayed_work(struct delayed_work *work, 73 unsigned long delay) 74 { 75 return queue_delayed_work(workqueue, work, delay); 76 } 77 78 /* 79 * Internal function. Flush all scheduled work from the MMC work queue. 80 */ 81 static void mmc_flush_scheduled_work(void) 82 { 83 flush_workqueue(workqueue); 84 } 85 86 #ifdef CONFIG_FAIL_MMC_REQUEST 87 88 /* 89 * Internal function. Inject random data errors. 90 * If mmc_data is NULL no errors are injected. 91 */ 92 static void mmc_should_fail_request(struct mmc_host *host, 93 struct mmc_request *mrq) 94 { 95 struct mmc_command *cmd = mrq->cmd; 96 struct mmc_data *data = mrq->data; 97 static const int data_errors[] = { 98 -ETIMEDOUT, 99 -EILSEQ, 100 -EIO, 101 }; 102 103 if (!data) 104 return; 105 106 if (cmd->error || data->error || 107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 108 return; 109 110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 112 } 113 114 #else /* CONFIG_FAIL_MMC_REQUEST */ 115 116 static inline void mmc_should_fail_request(struct mmc_host *host, 117 struct mmc_request *mrq) 118 { 119 } 120 121 #endif /* CONFIG_FAIL_MMC_REQUEST */ 122 123 /** 124 * mmc_request_done - finish processing an MMC request 125 * @host: MMC host which completed request 126 * @mrq: MMC request which request 127 * 128 * MMC drivers should call this function when they have completed 129 * their processing of a request. 130 */ 131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 132 { 133 struct mmc_command *cmd = mrq->cmd; 134 int err = cmd->error; 135 136 /* Flag re-tuning needed on CRC errors */ 137 if (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 138 (mrq->data && mrq->data->error == -EILSEQ) || 139 (mrq->stop && mrq->stop->error == -EILSEQ)) 140 mmc_retune_needed(host); 141 142 if (err && cmd->retries && mmc_host_is_spi(host)) { 143 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 144 cmd->retries = 0; 145 } 146 147 if (err && cmd->retries && !mmc_card_removed(host->card)) { 148 /* 149 * Request starter must handle retries - see 150 * mmc_wait_for_req_done(). 151 */ 152 if (mrq->done) 153 mrq->done(mrq); 154 } else { 155 mmc_should_fail_request(host, mrq); 156 157 led_trigger_event(host->led, LED_OFF); 158 159 if (mrq->sbc) { 160 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 161 mmc_hostname(host), mrq->sbc->opcode, 162 mrq->sbc->error, 163 mrq->sbc->resp[0], mrq->sbc->resp[1], 164 mrq->sbc->resp[2], mrq->sbc->resp[3]); 165 } 166 167 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 168 mmc_hostname(host), cmd->opcode, err, 169 cmd->resp[0], cmd->resp[1], 170 cmd->resp[2], cmd->resp[3]); 171 172 if (mrq->data) { 173 pr_debug("%s: %d bytes transferred: %d\n", 174 mmc_hostname(host), 175 mrq->data->bytes_xfered, mrq->data->error); 176 } 177 178 if (mrq->stop) { 179 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 180 mmc_hostname(host), mrq->stop->opcode, 181 mrq->stop->error, 182 mrq->stop->resp[0], mrq->stop->resp[1], 183 mrq->stop->resp[2], mrq->stop->resp[3]); 184 } 185 186 if (mrq->done) 187 mrq->done(mrq); 188 189 mmc_host_clk_release(host); 190 } 191 } 192 193 EXPORT_SYMBOL(mmc_request_done); 194 195 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 196 { 197 int err; 198 199 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 200 err = mmc_retune(host); 201 if (err) { 202 mrq->cmd->error = err; 203 mmc_request_done(host, mrq); 204 return; 205 } 206 207 host->ops->request(host, mrq); 208 } 209 210 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 211 { 212 #ifdef CONFIG_MMC_DEBUG 213 unsigned int i, sz; 214 struct scatterlist *sg; 215 #endif 216 mmc_retune_hold(host); 217 218 if (mmc_card_removed(host->card)) 219 return -ENOMEDIUM; 220 221 if (mrq->sbc) { 222 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 223 mmc_hostname(host), mrq->sbc->opcode, 224 mrq->sbc->arg, mrq->sbc->flags); 225 } 226 227 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 228 mmc_hostname(host), mrq->cmd->opcode, 229 mrq->cmd->arg, mrq->cmd->flags); 230 231 if (mrq->data) { 232 pr_debug("%s: blksz %d blocks %d flags %08x " 233 "tsac %d ms nsac %d\n", 234 mmc_hostname(host), mrq->data->blksz, 235 mrq->data->blocks, mrq->data->flags, 236 mrq->data->timeout_ns / 1000000, 237 mrq->data->timeout_clks); 238 } 239 240 if (mrq->stop) { 241 pr_debug("%s: CMD%u arg %08x flags %08x\n", 242 mmc_hostname(host), mrq->stop->opcode, 243 mrq->stop->arg, mrq->stop->flags); 244 } 245 246 WARN_ON(!host->claimed); 247 248 mrq->cmd->error = 0; 249 mrq->cmd->mrq = mrq; 250 if (mrq->sbc) { 251 mrq->sbc->error = 0; 252 mrq->sbc->mrq = mrq; 253 } 254 if (mrq->data) { 255 BUG_ON(mrq->data->blksz > host->max_blk_size); 256 BUG_ON(mrq->data->blocks > host->max_blk_count); 257 BUG_ON(mrq->data->blocks * mrq->data->blksz > 258 host->max_req_size); 259 260 #ifdef CONFIG_MMC_DEBUG 261 sz = 0; 262 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 263 sz += sg->length; 264 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 265 #endif 266 267 mrq->cmd->data = mrq->data; 268 mrq->data->error = 0; 269 mrq->data->mrq = mrq; 270 if (mrq->stop) { 271 mrq->data->stop = mrq->stop; 272 mrq->stop->error = 0; 273 mrq->stop->mrq = mrq; 274 } 275 } 276 mmc_host_clk_hold(host); 277 led_trigger_event(host->led, LED_FULL); 278 __mmc_start_request(host, mrq); 279 280 return 0; 281 } 282 283 /** 284 * mmc_start_bkops - start BKOPS for supported cards 285 * @card: MMC card to start BKOPS 286 * @form_exception: A flag to indicate if this function was 287 * called due to an exception raised by the card 288 * 289 * Start background operations whenever requested. 290 * When the urgent BKOPS bit is set in a R1 command response 291 * then background operations should be started immediately. 292 */ 293 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 294 { 295 int err; 296 int timeout; 297 bool use_busy_signal; 298 299 BUG_ON(!card); 300 301 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 302 return; 303 304 err = mmc_read_bkops_status(card); 305 if (err) { 306 pr_err("%s: Failed to read bkops status: %d\n", 307 mmc_hostname(card->host), err); 308 return; 309 } 310 311 if (!card->ext_csd.raw_bkops_status) 312 return; 313 314 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 315 from_exception) 316 return; 317 318 mmc_claim_host(card->host); 319 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 320 timeout = MMC_BKOPS_MAX_TIMEOUT; 321 use_busy_signal = true; 322 } else { 323 timeout = 0; 324 use_busy_signal = false; 325 } 326 327 mmc_retune_hold(card->host); 328 329 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 330 EXT_CSD_BKOPS_START, 1, timeout, 331 use_busy_signal, true, false); 332 if (err) { 333 pr_warn("%s: Error %d starting bkops\n", 334 mmc_hostname(card->host), err); 335 mmc_retune_release(card->host); 336 goto out; 337 } 338 339 /* 340 * For urgent bkops status (LEVEL_2 and more) 341 * bkops executed synchronously, otherwise 342 * the operation is in progress 343 */ 344 if (!use_busy_signal) 345 mmc_card_set_doing_bkops(card); 346 else 347 mmc_retune_release(card->host); 348 out: 349 mmc_release_host(card->host); 350 } 351 EXPORT_SYMBOL(mmc_start_bkops); 352 353 /* 354 * mmc_wait_data_done() - done callback for data request 355 * @mrq: done data request 356 * 357 * Wakes up mmc context, passed as a callback to host controller driver 358 */ 359 static void mmc_wait_data_done(struct mmc_request *mrq) 360 { 361 struct mmc_context_info *context_info = &mrq->host->context_info; 362 363 context_info->is_done_rcv = true; 364 wake_up_interruptible(&context_info->wait); 365 } 366 367 static void mmc_wait_done(struct mmc_request *mrq) 368 { 369 complete(&mrq->completion); 370 } 371 372 /* 373 *__mmc_start_data_req() - starts data request 374 * @host: MMC host to start the request 375 * @mrq: data request to start 376 * 377 * Sets the done callback to be called when request is completed by the card. 378 * Starts data mmc request execution 379 */ 380 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 381 { 382 int err; 383 384 mrq->done = mmc_wait_data_done; 385 mrq->host = host; 386 387 err = mmc_start_request(host, mrq); 388 if (err) { 389 mrq->cmd->error = err; 390 mmc_wait_data_done(mrq); 391 } 392 393 return err; 394 } 395 396 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 397 { 398 int err; 399 400 init_completion(&mrq->completion); 401 mrq->done = mmc_wait_done; 402 403 err = mmc_start_request(host, mrq); 404 if (err) { 405 mrq->cmd->error = err; 406 complete(&mrq->completion); 407 } 408 409 return err; 410 } 411 412 /* 413 * mmc_wait_for_data_req_done() - wait for request completed 414 * @host: MMC host to prepare the command. 415 * @mrq: MMC request to wait for 416 * 417 * Blocks MMC context till host controller will ack end of data request 418 * execution or new request notification arrives from the block layer. 419 * Handles command retries. 420 * 421 * Returns enum mmc_blk_status after checking errors. 422 */ 423 static int mmc_wait_for_data_req_done(struct mmc_host *host, 424 struct mmc_request *mrq, 425 struct mmc_async_req *next_req) 426 { 427 struct mmc_command *cmd; 428 struct mmc_context_info *context_info = &host->context_info; 429 int err; 430 unsigned long flags; 431 432 while (1) { 433 wait_event_interruptible(context_info->wait, 434 (context_info->is_done_rcv || 435 context_info->is_new_req)); 436 spin_lock_irqsave(&context_info->lock, flags); 437 context_info->is_waiting_last_req = false; 438 spin_unlock_irqrestore(&context_info->lock, flags); 439 if (context_info->is_done_rcv) { 440 context_info->is_done_rcv = false; 441 context_info->is_new_req = false; 442 cmd = mrq->cmd; 443 444 if (!cmd->error || !cmd->retries || 445 mmc_card_removed(host->card)) { 446 err = host->areq->err_check(host->card, 447 host->areq); 448 break; /* return err */ 449 } else { 450 mmc_retune_recheck(host); 451 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 452 mmc_hostname(host), 453 cmd->opcode, cmd->error); 454 cmd->retries--; 455 cmd->error = 0; 456 __mmc_start_request(host, mrq); 457 continue; /* wait for done/new event again */ 458 } 459 } else if (context_info->is_new_req) { 460 context_info->is_new_req = false; 461 if (!next_req) 462 return MMC_BLK_NEW_REQUEST; 463 } 464 } 465 mmc_retune_release(host); 466 return err; 467 } 468 469 static void mmc_wait_for_req_done(struct mmc_host *host, 470 struct mmc_request *mrq) 471 { 472 struct mmc_command *cmd; 473 474 while (1) { 475 wait_for_completion(&mrq->completion); 476 477 cmd = mrq->cmd; 478 479 /* 480 * If host has timed out waiting for the sanitize 481 * to complete, card might be still in programming state 482 * so let's try to bring the card out of programming 483 * state. 484 */ 485 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 486 if (!mmc_interrupt_hpi(host->card)) { 487 pr_warn("%s: %s: Interrupted sanitize\n", 488 mmc_hostname(host), __func__); 489 cmd->error = 0; 490 break; 491 } else { 492 pr_err("%s: %s: Failed to interrupt sanitize\n", 493 mmc_hostname(host), __func__); 494 } 495 } 496 if (!cmd->error || !cmd->retries || 497 mmc_card_removed(host->card)) 498 break; 499 500 mmc_retune_recheck(host); 501 502 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 503 mmc_hostname(host), cmd->opcode, cmd->error); 504 cmd->retries--; 505 cmd->error = 0; 506 __mmc_start_request(host, mrq); 507 } 508 509 mmc_retune_release(host); 510 } 511 512 /** 513 * mmc_pre_req - Prepare for a new request 514 * @host: MMC host to prepare command 515 * @mrq: MMC request to prepare for 516 * @is_first_req: true if there is no previous started request 517 * that may run in parellel to this call, otherwise false 518 * 519 * mmc_pre_req() is called in prior to mmc_start_req() to let 520 * host prepare for the new request. Preparation of a request may be 521 * performed while another request is running on the host. 522 */ 523 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 524 bool is_first_req) 525 { 526 if (host->ops->pre_req) { 527 mmc_host_clk_hold(host); 528 host->ops->pre_req(host, mrq, is_first_req); 529 mmc_host_clk_release(host); 530 } 531 } 532 533 /** 534 * mmc_post_req - Post process a completed request 535 * @host: MMC host to post process command 536 * @mrq: MMC request to post process for 537 * @err: Error, if non zero, clean up any resources made in pre_req 538 * 539 * Let the host post process a completed request. Post processing of 540 * a request may be performed while another reuqest is running. 541 */ 542 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 543 int err) 544 { 545 if (host->ops->post_req) { 546 mmc_host_clk_hold(host); 547 host->ops->post_req(host, mrq, err); 548 mmc_host_clk_release(host); 549 } 550 } 551 552 /** 553 * mmc_start_req - start a non-blocking request 554 * @host: MMC host to start command 555 * @areq: async request to start 556 * @error: out parameter returns 0 for success, otherwise non zero 557 * 558 * Start a new MMC custom command request for a host. 559 * If there is on ongoing async request wait for completion 560 * of that request and start the new one and return. 561 * Does not wait for the new request to complete. 562 * 563 * Returns the completed request, NULL in case of none completed. 564 * Wait for the an ongoing request (previoulsy started) to complete and 565 * return the completed request. If there is no ongoing request, NULL 566 * is returned without waiting. NULL is not an error condition. 567 */ 568 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 569 struct mmc_async_req *areq, int *error) 570 { 571 int err = 0; 572 int start_err = 0; 573 struct mmc_async_req *data = host->areq; 574 575 /* Prepare a new request */ 576 if (areq) 577 mmc_pre_req(host, areq->mrq, !host->areq); 578 579 if (host->areq) { 580 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 581 if (err == MMC_BLK_NEW_REQUEST) { 582 if (error) 583 *error = err; 584 /* 585 * The previous request was not completed, 586 * nothing to return 587 */ 588 return NULL; 589 } 590 /* 591 * Check BKOPS urgency for each R1 response 592 */ 593 if (host->card && mmc_card_mmc(host->card) && 594 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 595 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 596 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 597 598 /* Cancel the prepared request */ 599 if (areq) 600 mmc_post_req(host, areq->mrq, -EINVAL); 601 602 mmc_start_bkops(host->card, true); 603 604 /* prepare the request again */ 605 if (areq) 606 mmc_pre_req(host, areq->mrq, !host->areq); 607 } 608 } 609 610 if (!err && areq) 611 start_err = __mmc_start_data_req(host, areq->mrq); 612 613 if (host->areq) 614 mmc_post_req(host, host->areq->mrq, 0); 615 616 /* Cancel a prepared request if it was not started. */ 617 if ((err || start_err) && areq) 618 mmc_post_req(host, areq->mrq, -EINVAL); 619 620 if (err) 621 host->areq = NULL; 622 else 623 host->areq = areq; 624 625 if (error) 626 *error = err; 627 return data; 628 } 629 EXPORT_SYMBOL(mmc_start_req); 630 631 /** 632 * mmc_wait_for_req - start a request and wait for completion 633 * @host: MMC host to start command 634 * @mrq: MMC request to start 635 * 636 * Start a new MMC custom command request for a host, and wait 637 * for the command to complete. Does not attempt to parse the 638 * response. 639 */ 640 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 641 { 642 __mmc_start_req(host, mrq); 643 mmc_wait_for_req_done(host, mrq); 644 } 645 EXPORT_SYMBOL(mmc_wait_for_req); 646 647 /** 648 * mmc_interrupt_hpi - Issue for High priority Interrupt 649 * @card: the MMC card associated with the HPI transfer 650 * 651 * Issued High Priority Interrupt, and check for card status 652 * until out-of prg-state. 653 */ 654 int mmc_interrupt_hpi(struct mmc_card *card) 655 { 656 int err; 657 u32 status; 658 unsigned long prg_wait; 659 660 BUG_ON(!card); 661 662 if (!card->ext_csd.hpi_en) { 663 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 664 return 1; 665 } 666 667 mmc_claim_host(card->host); 668 err = mmc_send_status(card, &status); 669 if (err) { 670 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 671 goto out; 672 } 673 674 switch (R1_CURRENT_STATE(status)) { 675 case R1_STATE_IDLE: 676 case R1_STATE_READY: 677 case R1_STATE_STBY: 678 case R1_STATE_TRAN: 679 /* 680 * In idle and transfer states, HPI is not needed and the caller 681 * can issue the next intended command immediately 682 */ 683 goto out; 684 case R1_STATE_PRG: 685 break; 686 default: 687 /* In all other states, it's illegal to issue HPI */ 688 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 689 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 690 err = -EINVAL; 691 goto out; 692 } 693 694 err = mmc_send_hpi_cmd(card, &status); 695 if (err) 696 goto out; 697 698 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 699 do { 700 err = mmc_send_status(card, &status); 701 702 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 703 break; 704 if (time_after(jiffies, prg_wait)) 705 err = -ETIMEDOUT; 706 } while (!err); 707 708 out: 709 mmc_release_host(card->host); 710 return err; 711 } 712 EXPORT_SYMBOL(mmc_interrupt_hpi); 713 714 /** 715 * mmc_wait_for_cmd - start a command and wait for completion 716 * @host: MMC host to start command 717 * @cmd: MMC command to start 718 * @retries: maximum number of retries 719 * 720 * Start a new MMC command for a host, and wait for the command 721 * to complete. Return any error that occurred while the command 722 * was executing. Do not attempt to parse the response. 723 */ 724 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 725 { 726 struct mmc_request mrq = {NULL}; 727 728 WARN_ON(!host->claimed); 729 730 memset(cmd->resp, 0, sizeof(cmd->resp)); 731 cmd->retries = retries; 732 733 mrq.cmd = cmd; 734 cmd->data = NULL; 735 736 mmc_wait_for_req(host, &mrq); 737 738 return cmd->error; 739 } 740 741 EXPORT_SYMBOL(mmc_wait_for_cmd); 742 743 /** 744 * mmc_stop_bkops - stop ongoing BKOPS 745 * @card: MMC card to check BKOPS 746 * 747 * Send HPI command to stop ongoing background operations to 748 * allow rapid servicing of foreground operations, e.g. read/ 749 * writes. Wait until the card comes out of the programming state 750 * to avoid errors in servicing read/write requests. 751 */ 752 int mmc_stop_bkops(struct mmc_card *card) 753 { 754 int err = 0; 755 756 BUG_ON(!card); 757 err = mmc_interrupt_hpi(card); 758 759 /* 760 * If err is EINVAL, we can't issue an HPI. 761 * It should complete the BKOPS. 762 */ 763 if (!err || (err == -EINVAL)) { 764 mmc_card_clr_doing_bkops(card); 765 mmc_retune_release(card->host); 766 err = 0; 767 } 768 769 return err; 770 } 771 EXPORT_SYMBOL(mmc_stop_bkops); 772 773 int mmc_read_bkops_status(struct mmc_card *card) 774 { 775 int err; 776 u8 *ext_csd; 777 778 mmc_claim_host(card->host); 779 err = mmc_get_ext_csd(card, &ext_csd); 780 mmc_release_host(card->host); 781 if (err) 782 return err; 783 784 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 785 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 786 kfree(ext_csd); 787 return 0; 788 } 789 EXPORT_SYMBOL(mmc_read_bkops_status); 790 791 /** 792 * mmc_set_data_timeout - set the timeout for a data command 793 * @data: data phase for command 794 * @card: the MMC card associated with the data transfer 795 * 796 * Computes the data timeout parameters according to the 797 * correct algorithm given the card type. 798 */ 799 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 800 { 801 unsigned int mult; 802 803 /* 804 * SDIO cards only define an upper 1 s limit on access. 805 */ 806 if (mmc_card_sdio(card)) { 807 data->timeout_ns = 1000000000; 808 data->timeout_clks = 0; 809 return; 810 } 811 812 /* 813 * SD cards use a 100 multiplier rather than 10 814 */ 815 mult = mmc_card_sd(card) ? 100 : 10; 816 817 /* 818 * Scale up the multiplier (and therefore the timeout) by 819 * the r2w factor for writes. 820 */ 821 if (data->flags & MMC_DATA_WRITE) 822 mult <<= card->csd.r2w_factor; 823 824 data->timeout_ns = card->csd.tacc_ns * mult; 825 data->timeout_clks = card->csd.tacc_clks * mult; 826 827 /* 828 * SD cards also have an upper limit on the timeout. 829 */ 830 if (mmc_card_sd(card)) { 831 unsigned int timeout_us, limit_us; 832 833 timeout_us = data->timeout_ns / 1000; 834 if (mmc_host_clk_rate(card->host)) 835 timeout_us += data->timeout_clks * 1000 / 836 (mmc_host_clk_rate(card->host) / 1000); 837 838 if (data->flags & MMC_DATA_WRITE) 839 /* 840 * The MMC spec "It is strongly recommended 841 * for hosts to implement more than 500ms 842 * timeout value even if the card indicates 843 * the 250ms maximum busy length." Even the 844 * previous value of 300ms is known to be 845 * insufficient for some cards. 846 */ 847 limit_us = 3000000; 848 else 849 limit_us = 100000; 850 851 /* 852 * SDHC cards always use these fixed values. 853 */ 854 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 855 data->timeout_ns = limit_us * 1000; 856 data->timeout_clks = 0; 857 } 858 859 /* assign limit value if invalid */ 860 if (timeout_us == 0) 861 data->timeout_ns = limit_us * 1000; 862 } 863 864 /* 865 * Some cards require longer data read timeout than indicated in CSD. 866 * Address this by setting the read timeout to a "reasonably high" 867 * value. For the cards tested, 300ms has proven enough. If necessary, 868 * this value can be increased if other problematic cards require this. 869 */ 870 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 871 data->timeout_ns = 300000000; 872 data->timeout_clks = 0; 873 } 874 875 /* 876 * Some cards need very high timeouts if driven in SPI mode. 877 * The worst observed timeout was 900ms after writing a 878 * continuous stream of data until the internal logic 879 * overflowed. 880 */ 881 if (mmc_host_is_spi(card->host)) { 882 if (data->flags & MMC_DATA_WRITE) { 883 if (data->timeout_ns < 1000000000) 884 data->timeout_ns = 1000000000; /* 1s */ 885 } else { 886 if (data->timeout_ns < 100000000) 887 data->timeout_ns = 100000000; /* 100ms */ 888 } 889 } 890 } 891 EXPORT_SYMBOL(mmc_set_data_timeout); 892 893 /** 894 * mmc_align_data_size - pads a transfer size to a more optimal value 895 * @card: the MMC card associated with the data transfer 896 * @sz: original transfer size 897 * 898 * Pads the original data size with a number of extra bytes in 899 * order to avoid controller bugs and/or performance hits 900 * (e.g. some controllers revert to PIO for certain sizes). 901 * 902 * Returns the improved size, which might be unmodified. 903 * 904 * Note that this function is only relevant when issuing a 905 * single scatter gather entry. 906 */ 907 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 908 { 909 /* 910 * FIXME: We don't have a system for the controller to tell 911 * the core about its problems yet, so for now we just 32-bit 912 * align the size. 913 */ 914 sz = ((sz + 3) / 4) * 4; 915 916 return sz; 917 } 918 EXPORT_SYMBOL(mmc_align_data_size); 919 920 /** 921 * __mmc_claim_host - exclusively claim a host 922 * @host: mmc host to claim 923 * @abort: whether or not the operation should be aborted 924 * 925 * Claim a host for a set of operations. If @abort is non null and 926 * dereference a non-zero value then this will return prematurely with 927 * that non-zero value without acquiring the lock. Returns zero 928 * with the lock held otherwise. 929 */ 930 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 931 { 932 DECLARE_WAITQUEUE(wait, current); 933 unsigned long flags; 934 int stop; 935 bool pm = false; 936 937 might_sleep(); 938 939 add_wait_queue(&host->wq, &wait); 940 spin_lock_irqsave(&host->lock, flags); 941 while (1) { 942 set_current_state(TASK_UNINTERRUPTIBLE); 943 stop = abort ? atomic_read(abort) : 0; 944 if (stop || !host->claimed || host->claimer == current) 945 break; 946 spin_unlock_irqrestore(&host->lock, flags); 947 schedule(); 948 spin_lock_irqsave(&host->lock, flags); 949 } 950 set_current_state(TASK_RUNNING); 951 if (!stop) { 952 host->claimed = 1; 953 host->claimer = current; 954 host->claim_cnt += 1; 955 if (host->claim_cnt == 1) 956 pm = true; 957 } else 958 wake_up(&host->wq); 959 spin_unlock_irqrestore(&host->lock, flags); 960 remove_wait_queue(&host->wq, &wait); 961 962 if (pm) 963 pm_runtime_get_sync(mmc_dev(host)); 964 965 return stop; 966 } 967 EXPORT_SYMBOL(__mmc_claim_host); 968 969 /** 970 * mmc_release_host - release a host 971 * @host: mmc host to release 972 * 973 * Release a MMC host, allowing others to claim the host 974 * for their operations. 975 */ 976 void mmc_release_host(struct mmc_host *host) 977 { 978 unsigned long flags; 979 980 WARN_ON(!host->claimed); 981 982 spin_lock_irqsave(&host->lock, flags); 983 if (--host->claim_cnt) { 984 /* Release for nested claim */ 985 spin_unlock_irqrestore(&host->lock, flags); 986 } else { 987 host->claimed = 0; 988 host->claimer = NULL; 989 spin_unlock_irqrestore(&host->lock, flags); 990 wake_up(&host->wq); 991 pm_runtime_mark_last_busy(mmc_dev(host)); 992 pm_runtime_put_autosuspend(mmc_dev(host)); 993 } 994 } 995 EXPORT_SYMBOL(mmc_release_host); 996 997 /* 998 * This is a helper function, which fetches a runtime pm reference for the 999 * card device and also claims the host. 1000 */ 1001 void mmc_get_card(struct mmc_card *card) 1002 { 1003 pm_runtime_get_sync(&card->dev); 1004 mmc_claim_host(card->host); 1005 } 1006 EXPORT_SYMBOL(mmc_get_card); 1007 1008 /* 1009 * This is a helper function, which releases the host and drops the runtime 1010 * pm reference for the card device. 1011 */ 1012 void mmc_put_card(struct mmc_card *card) 1013 { 1014 mmc_release_host(card->host); 1015 pm_runtime_mark_last_busy(&card->dev); 1016 pm_runtime_put_autosuspend(&card->dev); 1017 } 1018 EXPORT_SYMBOL(mmc_put_card); 1019 1020 /* 1021 * Internal function that does the actual ios call to the host driver, 1022 * optionally printing some debug output. 1023 */ 1024 static inline void mmc_set_ios(struct mmc_host *host) 1025 { 1026 struct mmc_ios *ios = &host->ios; 1027 1028 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1029 "width %u timing %u\n", 1030 mmc_hostname(host), ios->clock, ios->bus_mode, 1031 ios->power_mode, ios->chip_select, ios->vdd, 1032 ios->bus_width, ios->timing); 1033 1034 if (ios->clock > 0) 1035 mmc_set_ungated(host); 1036 host->ops->set_ios(host, ios); 1037 } 1038 1039 /* 1040 * Control chip select pin on a host. 1041 */ 1042 void mmc_set_chip_select(struct mmc_host *host, int mode) 1043 { 1044 mmc_host_clk_hold(host); 1045 host->ios.chip_select = mode; 1046 mmc_set_ios(host); 1047 mmc_host_clk_release(host); 1048 } 1049 1050 /* 1051 * Sets the host clock to the highest possible frequency that 1052 * is below "hz". 1053 */ 1054 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 1055 { 1056 WARN_ON(hz && hz < host->f_min); 1057 1058 if (hz > host->f_max) 1059 hz = host->f_max; 1060 1061 host->ios.clock = hz; 1062 mmc_set_ios(host); 1063 } 1064 1065 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1066 { 1067 mmc_host_clk_hold(host); 1068 __mmc_set_clock(host, hz); 1069 mmc_host_clk_release(host); 1070 } 1071 1072 #ifdef CONFIG_MMC_CLKGATE 1073 /* 1074 * This gates the clock by setting it to 0 Hz. 1075 */ 1076 void mmc_gate_clock(struct mmc_host *host) 1077 { 1078 unsigned long flags; 1079 1080 spin_lock_irqsave(&host->clk_lock, flags); 1081 host->clk_old = host->ios.clock; 1082 host->ios.clock = 0; 1083 host->clk_gated = true; 1084 spin_unlock_irqrestore(&host->clk_lock, flags); 1085 mmc_set_ios(host); 1086 } 1087 1088 /* 1089 * This restores the clock from gating by using the cached 1090 * clock value. 1091 */ 1092 void mmc_ungate_clock(struct mmc_host *host) 1093 { 1094 /* 1095 * We should previously have gated the clock, so the clock shall 1096 * be 0 here! The clock may however be 0 during initialization, 1097 * when some request operations are performed before setting 1098 * the frequency. When ungate is requested in that situation 1099 * we just ignore the call. 1100 */ 1101 if (host->clk_old) { 1102 BUG_ON(host->ios.clock); 1103 /* This call will also set host->clk_gated to false */ 1104 __mmc_set_clock(host, host->clk_old); 1105 } 1106 } 1107 1108 void mmc_set_ungated(struct mmc_host *host) 1109 { 1110 unsigned long flags; 1111 1112 /* 1113 * We've been given a new frequency while the clock is gated, 1114 * so make sure we regard this as ungating it. 1115 */ 1116 spin_lock_irqsave(&host->clk_lock, flags); 1117 host->clk_gated = false; 1118 spin_unlock_irqrestore(&host->clk_lock, flags); 1119 } 1120 1121 #else 1122 void mmc_set_ungated(struct mmc_host *host) 1123 { 1124 } 1125 #endif 1126 1127 int mmc_execute_tuning(struct mmc_card *card) 1128 { 1129 struct mmc_host *host = card->host; 1130 u32 opcode; 1131 int err; 1132 1133 if (!host->ops->execute_tuning) 1134 return 0; 1135 1136 if (mmc_card_mmc(card)) 1137 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1138 else 1139 opcode = MMC_SEND_TUNING_BLOCK; 1140 1141 mmc_host_clk_hold(host); 1142 err = host->ops->execute_tuning(host, opcode); 1143 mmc_host_clk_release(host); 1144 1145 if (err) 1146 pr_err("%s: tuning execution failed\n", mmc_hostname(host)); 1147 else 1148 mmc_retune_enable(host); 1149 1150 return err; 1151 } 1152 1153 /* 1154 * Change the bus mode (open drain/push-pull) of a host. 1155 */ 1156 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1157 { 1158 mmc_host_clk_hold(host); 1159 host->ios.bus_mode = mode; 1160 mmc_set_ios(host); 1161 mmc_host_clk_release(host); 1162 } 1163 1164 /* 1165 * Change data bus width of a host. 1166 */ 1167 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1168 { 1169 mmc_host_clk_hold(host); 1170 host->ios.bus_width = width; 1171 mmc_set_ios(host); 1172 mmc_host_clk_release(host); 1173 } 1174 1175 /* 1176 * Set initial state after a power cycle or a hw_reset. 1177 */ 1178 void mmc_set_initial_state(struct mmc_host *host) 1179 { 1180 mmc_retune_disable(host); 1181 1182 if (mmc_host_is_spi(host)) 1183 host->ios.chip_select = MMC_CS_HIGH; 1184 else 1185 host->ios.chip_select = MMC_CS_DONTCARE; 1186 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1187 host->ios.bus_width = MMC_BUS_WIDTH_1; 1188 host->ios.timing = MMC_TIMING_LEGACY; 1189 host->ios.drv_type = 0; 1190 1191 mmc_set_ios(host); 1192 } 1193 1194 /** 1195 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1196 * @vdd: voltage (mV) 1197 * @low_bits: prefer low bits in boundary cases 1198 * 1199 * This function returns the OCR bit number according to the provided @vdd 1200 * value. If conversion is not possible a negative errno value returned. 1201 * 1202 * Depending on the @low_bits flag the function prefers low or high OCR bits 1203 * on boundary voltages. For example, 1204 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1205 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1206 * 1207 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1208 */ 1209 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1210 { 1211 const int max_bit = ilog2(MMC_VDD_35_36); 1212 int bit; 1213 1214 if (vdd < 1650 || vdd > 3600) 1215 return -EINVAL; 1216 1217 if (vdd >= 1650 && vdd <= 1950) 1218 return ilog2(MMC_VDD_165_195); 1219 1220 if (low_bits) 1221 vdd -= 1; 1222 1223 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1224 bit = (vdd - 2000) / 100 + 8; 1225 if (bit > max_bit) 1226 return max_bit; 1227 return bit; 1228 } 1229 1230 /** 1231 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1232 * @vdd_min: minimum voltage value (mV) 1233 * @vdd_max: maximum voltage value (mV) 1234 * 1235 * This function returns the OCR mask bits according to the provided @vdd_min 1236 * and @vdd_max values. If conversion is not possible the function returns 0. 1237 * 1238 * Notes wrt boundary cases: 1239 * This function sets the OCR bits for all boundary voltages, for example 1240 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1241 * MMC_VDD_34_35 mask. 1242 */ 1243 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1244 { 1245 u32 mask = 0; 1246 1247 if (vdd_max < vdd_min) 1248 return 0; 1249 1250 /* Prefer high bits for the boundary vdd_max values. */ 1251 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1252 if (vdd_max < 0) 1253 return 0; 1254 1255 /* Prefer low bits for the boundary vdd_min values. */ 1256 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1257 if (vdd_min < 0) 1258 return 0; 1259 1260 /* Fill the mask, from max bit to min bit. */ 1261 while (vdd_max >= vdd_min) 1262 mask |= 1 << vdd_max--; 1263 1264 return mask; 1265 } 1266 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1267 1268 #ifdef CONFIG_OF 1269 1270 /** 1271 * mmc_of_parse_voltage - return mask of supported voltages 1272 * @np: The device node need to be parsed. 1273 * @mask: mask of voltages available for MMC/SD/SDIO 1274 * 1275 * 1. Return zero on success. 1276 * 2. Return negative errno: voltage-range is invalid. 1277 */ 1278 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1279 { 1280 const u32 *voltage_ranges; 1281 int num_ranges, i; 1282 1283 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1284 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1285 if (!voltage_ranges || !num_ranges) { 1286 pr_info("%s: voltage-ranges unspecified\n", np->full_name); 1287 return -EINVAL; 1288 } 1289 1290 for (i = 0; i < num_ranges; i++) { 1291 const int j = i * 2; 1292 u32 ocr_mask; 1293 1294 ocr_mask = mmc_vddrange_to_ocrmask( 1295 be32_to_cpu(voltage_ranges[j]), 1296 be32_to_cpu(voltage_ranges[j + 1])); 1297 if (!ocr_mask) { 1298 pr_err("%s: voltage-range #%d is invalid\n", 1299 np->full_name, i); 1300 return -EINVAL; 1301 } 1302 *mask |= ocr_mask; 1303 } 1304 1305 return 0; 1306 } 1307 EXPORT_SYMBOL(mmc_of_parse_voltage); 1308 1309 #endif /* CONFIG_OF */ 1310 1311 static int mmc_of_get_func_num(struct device_node *node) 1312 { 1313 u32 reg; 1314 int ret; 1315 1316 ret = of_property_read_u32(node, "reg", ®); 1317 if (ret < 0) 1318 return ret; 1319 1320 return reg; 1321 } 1322 1323 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1324 unsigned func_num) 1325 { 1326 struct device_node *node; 1327 1328 if (!host->parent || !host->parent->of_node) 1329 return NULL; 1330 1331 for_each_child_of_node(host->parent->of_node, node) { 1332 if (mmc_of_get_func_num(node) == func_num) 1333 return node; 1334 } 1335 1336 return NULL; 1337 } 1338 1339 #ifdef CONFIG_REGULATOR 1340 1341 /** 1342 * mmc_regulator_get_ocrmask - return mask of supported voltages 1343 * @supply: regulator to use 1344 * 1345 * This returns either a negative errno, or a mask of voltages that 1346 * can be provided to MMC/SD/SDIO devices using the specified voltage 1347 * regulator. This would normally be called before registering the 1348 * MMC host adapter. 1349 */ 1350 int mmc_regulator_get_ocrmask(struct regulator *supply) 1351 { 1352 int result = 0; 1353 int count; 1354 int i; 1355 int vdd_uV; 1356 int vdd_mV; 1357 1358 count = regulator_count_voltages(supply); 1359 if (count < 0) 1360 return count; 1361 1362 for (i = 0; i < count; i++) { 1363 vdd_uV = regulator_list_voltage(supply, i); 1364 if (vdd_uV <= 0) 1365 continue; 1366 1367 vdd_mV = vdd_uV / 1000; 1368 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1369 } 1370 1371 if (!result) { 1372 vdd_uV = regulator_get_voltage(supply); 1373 if (vdd_uV <= 0) 1374 return vdd_uV; 1375 1376 vdd_mV = vdd_uV / 1000; 1377 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1378 } 1379 1380 return result; 1381 } 1382 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1383 1384 /** 1385 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1386 * @mmc: the host to regulate 1387 * @supply: regulator to use 1388 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1389 * 1390 * Returns zero on success, else negative errno. 1391 * 1392 * MMC host drivers may use this to enable or disable a regulator using 1393 * a particular supply voltage. This would normally be called from the 1394 * set_ios() method. 1395 */ 1396 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1397 struct regulator *supply, 1398 unsigned short vdd_bit) 1399 { 1400 int result = 0; 1401 int min_uV, max_uV; 1402 1403 if (vdd_bit) { 1404 int tmp; 1405 1406 /* 1407 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1408 * bits this regulator doesn't quite support ... don't 1409 * be too picky, most cards and regulators are OK with 1410 * a 0.1V range goof (it's a small error percentage). 1411 */ 1412 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1413 if (tmp == 0) { 1414 min_uV = 1650 * 1000; 1415 max_uV = 1950 * 1000; 1416 } else { 1417 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1418 max_uV = min_uV + 100 * 1000; 1419 } 1420 1421 result = regulator_set_voltage(supply, min_uV, max_uV); 1422 if (result == 0 && !mmc->regulator_enabled) { 1423 result = regulator_enable(supply); 1424 if (!result) 1425 mmc->regulator_enabled = true; 1426 } 1427 } else if (mmc->regulator_enabled) { 1428 result = regulator_disable(supply); 1429 if (result == 0) 1430 mmc->regulator_enabled = false; 1431 } 1432 1433 if (result) 1434 dev_err(mmc_dev(mmc), 1435 "could not set regulator OCR (%d)\n", result); 1436 return result; 1437 } 1438 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1439 1440 #endif /* CONFIG_REGULATOR */ 1441 1442 int mmc_regulator_get_supply(struct mmc_host *mmc) 1443 { 1444 struct device *dev = mmc_dev(mmc); 1445 int ret; 1446 1447 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1448 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1449 1450 if (IS_ERR(mmc->supply.vmmc)) { 1451 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1452 return -EPROBE_DEFER; 1453 dev_info(dev, "No vmmc regulator found\n"); 1454 } else { 1455 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1456 if (ret > 0) 1457 mmc->ocr_avail = ret; 1458 else 1459 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1460 } 1461 1462 if (IS_ERR(mmc->supply.vqmmc)) { 1463 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1464 return -EPROBE_DEFER; 1465 dev_info(dev, "No vqmmc regulator found\n"); 1466 } 1467 1468 return 0; 1469 } 1470 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1471 1472 /* 1473 * Mask off any voltages we don't support and select 1474 * the lowest voltage 1475 */ 1476 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1477 { 1478 int bit; 1479 1480 /* 1481 * Sanity check the voltages that the card claims to 1482 * support. 1483 */ 1484 if (ocr & 0x7F) { 1485 dev_warn(mmc_dev(host), 1486 "card claims to support voltages below defined range\n"); 1487 ocr &= ~0x7F; 1488 } 1489 1490 ocr &= host->ocr_avail; 1491 if (!ocr) { 1492 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1493 return 0; 1494 } 1495 1496 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1497 bit = ffs(ocr) - 1; 1498 ocr &= 3 << bit; 1499 mmc_power_cycle(host, ocr); 1500 } else { 1501 bit = fls(ocr) - 1; 1502 ocr &= 3 << bit; 1503 if (bit != host->ios.vdd) 1504 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1505 } 1506 1507 return ocr; 1508 } 1509 1510 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1511 { 1512 int err = 0; 1513 int old_signal_voltage = host->ios.signal_voltage; 1514 1515 host->ios.signal_voltage = signal_voltage; 1516 if (host->ops->start_signal_voltage_switch) { 1517 mmc_host_clk_hold(host); 1518 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1519 mmc_host_clk_release(host); 1520 } 1521 1522 if (err) 1523 host->ios.signal_voltage = old_signal_voltage; 1524 1525 return err; 1526 1527 } 1528 1529 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1530 { 1531 struct mmc_command cmd = {0}; 1532 int err = 0; 1533 u32 clock; 1534 1535 BUG_ON(!host); 1536 1537 /* 1538 * Send CMD11 only if the request is to switch the card to 1539 * 1.8V signalling. 1540 */ 1541 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1542 return __mmc_set_signal_voltage(host, signal_voltage); 1543 1544 /* 1545 * If we cannot switch voltages, return failure so the caller 1546 * can continue without UHS mode 1547 */ 1548 if (!host->ops->start_signal_voltage_switch) 1549 return -EPERM; 1550 if (!host->ops->card_busy) 1551 pr_warn("%s: cannot verify signal voltage switch\n", 1552 mmc_hostname(host)); 1553 1554 mmc_host_clk_hold(host); 1555 1556 cmd.opcode = SD_SWITCH_VOLTAGE; 1557 cmd.arg = 0; 1558 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1559 1560 err = mmc_wait_for_cmd(host, &cmd, 0); 1561 if (err) 1562 goto err_command; 1563 1564 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) { 1565 err = -EIO; 1566 goto err_command; 1567 } 1568 /* 1569 * The card should drive cmd and dat[0:3] low immediately 1570 * after the response of cmd11, but wait 1 ms to be sure 1571 */ 1572 mmc_delay(1); 1573 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1574 err = -EAGAIN; 1575 goto power_cycle; 1576 } 1577 /* 1578 * During a signal voltage level switch, the clock must be gated 1579 * for 5 ms according to the SD spec 1580 */ 1581 clock = host->ios.clock; 1582 host->ios.clock = 0; 1583 mmc_set_ios(host); 1584 1585 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1586 /* 1587 * Voltages may not have been switched, but we've already 1588 * sent CMD11, so a power cycle is required anyway 1589 */ 1590 err = -EAGAIN; 1591 goto power_cycle; 1592 } 1593 1594 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1595 mmc_delay(10); 1596 host->ios.clock = clock; 1597 mmc_set_ios(host); 1598 1599 /* Wait for at least 1 ms according to spec */ 1600 mmc_delay(1); 1601 1602 /* 1603 * Failure to switch is indicated by the card holding 1604 * dat[0:3] low 1605 */ 1606 if (host->ops->card_busy && host->ops->card_busy(host)) 1607 err = -EAGAIN; 1608 1609 power_cycle: 1610 if (err) { 1611 pr_debug("%s: Signal voltage switch failed, " 1612 "power cycling card\n", mmc_hostname(host)); 1613 mmc_power_cycle(host, ocr); 1614 } 1615 1616 err_command: 1617 mmc_host_clk_release(host); 1618 1619 return err; 1620 } 1621 1622 /* 1623 * Select timing parameters for host. 1624 */ 1625 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1626 { 1627 mmc_host_clk_hold(host); 1628 host->ios.timing = timing; 1629 mmc_set_ios(host); 1630 mmc_host_clk_release(host); 1631 } 1632 1633 /* 1634 * Select appropriate driver type for host. 1635 */ 1636 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1637 { 1638 mmc_host_clk_hold(host); 1639 host->ios.drv_type = drv_type; 1640 mmc_set_ios(host); 1641 mmc_host_clk_release(host); 1642 } 1643 1644 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1645 int card_drv_type, int *drv_type) 1646 { 1647 struct mmc_host *host = card->host; 1648 int host_drv_type = SD_DRIVER_TYPE_B; 1649 int drive_strength; 1650 1651 *drv_type = 0; 1652 1653 if (!host->ops->select_drive_strength) 1654 return 0; 1655 1656 /* Use SD definition of driver strength for hosts */ 1657 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1658 host_drv_type |= SD_DRIVER_TYPE_A; 1659 1660 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1661 host_drv_type |= SD_DRIVER_TYPE_C; 1662 1663 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1664 host_drv_type |= SD_DRIVER_TYPE_D; 1665 1666 /* 1667 * The drive strength that the hardware can support 1668 * depends on the board design. Pass the appropriate 1669 * information and let the hardware specific code 1670 * return what is possible given the options 1671 */ 1672 mmc_host_clk_hold(host); 1673 drive_strength = host->ops->select_drive_strength(card, max_dtr, 1674 host_drv_type, 1675 card_drv_type, 1676 drv_type); 1677 mmc_host_clk_release(host); 1678 1679 return drive_strength; 1680 } 1681 1682 /* 1683 * Apply power to the MMC stack. This is a two-stage process. 1684 * First, we enable power to the card without the clock running. 1685 * We then wait a bit for the power to stabilise. Finally, 1686 * enable the bus drivers and clock to the card. 1687 * 1688 * We must _NOT_ enable the clock prior to power stablising. 1689 * 1690 * If a host does all the power sequencing itself, ignore the 1691 * initial MMC_POWER_UP stage. 1692 */ 1693 void mmc_power_up(struct mmc_host *host, u32 ocr) 1694 { 1695 if (host->ios.power_mode == MMC_POWER_ON) 1696 return; 1697 1698 mmc_host_clk_hold(host); 1699 1700 mmc_pwrseq_pre_power_on(host); 1701 1702 host->ios.vdd = fls(ocr) - 1; 1703 host->ios.power_mode = MMC_POWER_UP; 1704 /* Set initial state and call mmc_set_ios */ 1705 mmc_set_initial_state(host); 1706 1707 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1708 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1709 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1710 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1711 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1712 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1713 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1714 1715 /* 1716 * This delay should be sufficient to allow the power supply 1717 * to reach the minimum voltage. 1718 */ 1719 mmc_delay(10); 1720 1721 mmc_pwrseq_post_power_on(host); 1722 1723 host->ios.clock = host->f_init; 1724 1725 host->ios.power_mode = MMC_POWER_ON; 1726 mmc_set_ios(host); 1727 1728 /* 1729 * This delay must be at least 74 clock sizes, or 1 ms, or the 1730 * time required to reach a stable voltage. 1731 */ 1732 mmc_delay(10); 1733 1734 mmc_host_clk_release(host); 1735 } 1736 1737 void mmc_power_off(struct mmc_host *host) 1738 { 1739 if (host->ios.power_mode == MMC_POWER_OFF) 1740 return; 1741 1742 mmc_host_clk_hold(host); 1743 1744 mmc_pwrseq_power_off(host); 1745 1746 host->ios.clock = 0; 1747 host->ios.vdd = 0; 1748 1749 host->ios.power_mode = MMC_POWER_OFF; 1750 /* Set initial state and call mmc_set_ios */ 1751 mmc_set_initial_state(host); 1752 1753 /* 1754 * Some configurations, such as the 802.11 SDIO card in the OLPC 1755 * XO-1.5, require a short delay after poweroff before the card 1756 * can be successfully turned on again. 1757 */ 1758 mmc_delay(1); 1759 1760 mmc_host_clk_release(host); 1761 } 1762 1763 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1764 { 1765 mmc_power_off(host); 1766 /* Wait at least 1 ms according to SD spec */ 1767 mmc_delay(1); 1768 mmc_power_up(host, ocr); 1769 } 1770 1771 /* 1772 * Cleanup when the last reference to the bus operator is dropped. 1773 */ 1774 static void __mmc_release_bus(struct mmc_host *host) 1775 { 1776 BUG_ON(!host); 1777 BUG_ON(host->bus_refs); 1778 BUG_ON(!host->bus_dead); 1779 1780 host->bus_ops = NULL; 1781 } 1782 1783 /* 1784 * Increase reference count of bus operator 1785 */ 1786 static inline void mmc_bus_get(struct mmc_host *host) 1787 { 1788 unsigned long flags; 1789 1790 spin_lock_irqsave(&host->lock, flags); 1791 host->bus_refs++; 1792 spin_unlock_irqrestore(&host->lock, flags); 1793 } 1794 1795 /* 1796 * Decrease reference count of bus operator and free it if 1797 * it is the last reference. 1798 */ 1799 static inline void mmc_bus_put(struct mmc_host *host) 1800 { 1801 unsigned long flags; 1802 1803 spin_lock_irqsave(&host->lock, flags); 1804 host->bus_refs--; 1805 if ((host->bus_refs == 0) && host->bus_ops) 1806 __mmc_release_bus(host); 1807 spin_unlock_irqrestore(&host->lock, flags); 1808 } 1809 1810 /* 1811 * Assign a mmc bus handler to a host. Only one bus handler may control a 1812 * host at any given time. 1813 */ 1814 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1815 { 1816 unsigned long flags; 1817 1818 BUG_ON(!host); 1819 BUG_ON(!ops); 1820 1821 WARN_ON(!host->claimed); 1822 1823 spin_lock_irqsave(&host->lock, flags); 1824 1825 BUG_ON(host->bus_ops); 1826 BUG_ON(host->bus_refs); 1827 1828 host->bus_ops = ops; 1829 host->bus_refs = 1; 1830 host->bus_dead = 0; 1831 1832 spin_unlock_irqrestore(&host->lock, flags); 1833 } 1834 1835 /* 1836 * Remove the current bus handler from a host. 1837 */ 1838 void mmc_detach_bus(struct mmc_host *host) 1839 { 1840 unsigned long flags; 1841 1842 BUG_ON(!host); 1843 1844 WARN_ON(!host->claimed); 1845 WARN_ON(!host->bus_ops); 1846 1847 spin_lock_irqsave(&host->lock, flags); 1848 1849 host->bus_dead = 1; 1850 1851 spin_unlock_irqrestore(&host->lock, flags); 1852 1853 mmc_bus_put(host); 1854 } 1855 1856 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1857 bool cd_irq) 1858 { 1859 #ifdef CONFIG_MMC_DEBUG 1860 unsigned long flags; 1861 spin_lock_irqsave(&host->lock, flags); 1862 WARN_ON(host->removed); 1863 spin_unlock_irqrestore(&host->lock, flags); 1864 #endif 1865 1866 /* 1867 * If the device is configured as wakeup, we prevent a new sleep for 1868 * 5 s to give provision for user space to consume the event. 1869 */ 1870 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1871 device_can_wakeup(mmc_dev(host))) 1872 pm_wakeup_event(mmc_dev(host), 5000); 1873 1874 host->detect_change = 1; 1875 mmc_schedule_delayed_work(&host->detect, delay); 1876 } 1877 1878 /** 1879 * mmc_detect_change - process change of state on a MMC socket 1880 * @host: host which changed state. 1881 * @delay: optional delay to wait before detection (jiffies) 1882 * 1883 * MMC drivers should call this when they detect a card has been 1884 * inserted or removed. The MMC layer will confirm that any 1885 * present card is still functional, and initialize any newly 1886 * inserted. 1887 */ 1888 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1889 { 1890 _mmc_detect_change(host, delay, true); 1891 } 1892 EXPORT_SYMBOL(mmc_detect_change); 1893 1894 void mmc_init_erase(struct mmc_card *card) 1895 { 1896 unsigned int sz; 1897 1898 if (is_power_of_2(card->erase_size)) 1899 card->erase_shift = ffs(card->erase_size) - 1; 1900 else 1901 card->erase_shift = 0; 1902 1903 /* 1904 * It is possible to erase an arbitrarily large area of an SD or MMC 1905 * card. That is not desirable because it can take a long time 1906 * (minutes) potentially delaying more important I/O, and also the 1907 * timeout calculations become increasingly hugely over-estimated. 1908 * Consequently, 'pref_erase' is defined as a guide to limit erases 1909 * to that size and alignment. 1910 * 1911 * For SD cards that define Allocation Unit size, limit erases to one 1912 * Allocation Unit at a time. For MMC cards that define High Capacity 1913 * Erase Size, whether it is switched on or not, limit to that size. 1914 * Otherwise just have a stab at a good value. For modern cards it 1915 * will end up being 4MiB. Note that if the value is too small, it 1916 * can end up taking longer to erase. 1917 */ 1918 if (mmc_card_sd(card) && card->ssr.au) { 1919 card->pref_erase = card->ssr.au; 1920 card->erase_shift = ffs(card->ssr.au) - 1; 1921 } else if (card->ext_csd.hc_erase_size) { 1922 card->pref_erase = card->ext_csd.hc_erase_size; 1923 } else if (card->erase_size) { 1924 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1925 if (sz < 128) 1926 card->pref_erase = 512 * 1024 / 512; 1927 else if (sz < 512) 1928 card->pref_erase = 1024 * 1024 / 512; 1929 else if (sz < 1024) 1930 card->pref_erase = 2 * 1024 * 1024 / 512; 1931 else 1932 card->pref_erase = 4 * 1024 * 1024 / 512; 1933 if (card->pref_erase < card->erase_size) 1934 card->pref_erase = card->erase_size; 1935 else { 1936 sz = card->pref_erase % card->erase_size; 1937 if (sz) 1938 card->pref_erase += card->erase_size - sz; 1939 } 1940 } else 1941 card->pref_erase = 0; 1942 } 1943 1944 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1945 unsigned int arg, unsigned int qty) 1946 { 1947 unsigned int erase_timeout; 1948 1949 if (arg == MMC_DISCARD_ARG || 1950 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1951 erase_timeout = card->ext_csd.trim_timeout; 1952 } else if (card->ext_csd.erase_group_def & 1) { 1953 /* High Capacity Erase Group Size uses HC timeouts */ 1954 if (arg == MMC_TRIM_ARG) 1955 erase_timeout = card->ext_csd.trim_timeout; 1956 else 1957 erase_timeout = card->ext_csd.hc_erase_timeout; 1958 } else { 1959 /* CSD Erase Group Size uses write timeout */ 1960 unsigned int mult = (10 << card->csd.r2w_factor); 1961 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1962 unsigned int timeout_us; 1963 1964 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1965 if (card->csd.tacc_ns < 1000000) 1966 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1967 else 1968 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1969 1970 /* 1971 * ios.clock is only a target. The real clock rate might be 1972 * less but not that much less, so fudge it by multiplying by 2. 1973 */ 1974 timeout_clks <<= 1; 1975 timeout_us += (timeout_clks * 1000) / 1976 (mmc_host_clk_rate(card->host) / 1000); 1977 1978 erase_timeout = timeout_us / 1000; 1979 1980 /* 1981 * Theoretically, the calculation could underflow so round up 1982 * to 1ms in that case. 1983 */ 1984 if (!erase_timeout) 1985 erase_timeout = 1; 1986 } 1987 1988 /* Multiplier for secure operations */ 1989 if (arg & MMC_SECURE_ARGS) { 1990 if (arg == MMC_SECURE_ERASE_ARG) 1991 erase_timeout *= card->ext_csd.sec_erase_mult; 1992 else 1993 erase_timeout *= card->ext_csd.sec_trim_mult; 1994 } 1995 1996 erase_timeout *= qty; 1997 1998 /* 1999 * Ensure at least a 1 second timeout for SPI as per 2000 * 'mmc_set_data_timeout()' 2001 */ 2002 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2003 erase_timeout = 1000; 2004 2005 return erase_timeout; 2006 } 2007 2008 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2009 unsigned int arg, 2010 unsigned int qty) 2011 { 2012 unsigned int erase_timeout; 2013 2014 if (card->ssr.erase_timeout) { 2015 /* Erase timeout specified in SD Status Register (SSR) */ 2016 erase_timeout = card->ssr.erase_timeout * qty + 2017 card->ssr.erase_offset; 2018 } else { 2019 /* 2020 * Erase timeout not specified in SD Status Register (SSR) so 2021 * use 250ms per write block. 2022 */ 2023 erase_timeout = 250 * qty; 2024 } 2025 2026 /* Must not be less than 1 second */ 2027 if (erase_timeout < 1000) 2028 erase_timeout = 1000; 2029 2030 return erase_timeout; 2031 } 2032 2033 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2034 unsigned int arg, 2035 unsigned int qty) 2036 { 2037 if (mmc_card_sd(card)) 2038 return mmc_sd_erase_timeout(card, arg, qty); 2039 else 2040 return mmc_mmc_erase_timeout(card, arg, qty); 2041 } 2042 2043 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2044 unsigned int to, unsigned int arg) 2045 { 2046 struct mmc_command cmd = {0}; 2047 unsigned int qty = 0; 2048 unsigned long timeout; 2049 int err; 2050 2051 mmc_retune_hold(card->host); 2052 2053 /* 2054 * qty is used to calculate the erase timeout which depends on how many 2055 * erase groups (or allocation units in SD terminology) are affected. 2056 * We count erasing part of an erase group as one erase group. 2057 * For SD, the allocation units are always a power of 2. For MMC, the 2058 * erase group size is almost certainly also power of 2, but it does not 2059 * seem to insist on that in the JEDEC standard, so we fall back to 2060 * division in that case. SD may not specify an allocation unit size, 2061 * in which case the timeout is based on the number of write blocks. 2062 * 2063 * Note that the timeout for secure trim 2 will only be correct if the 2064 * number of erase groups specified is the same as the total of all 2065 * preceding secure trim 1 commands. Since the power may have been 2066 * lost since the secure trim 1 commands occurred, it is generally 2067 * impossible to calculate the secure trim 2 timeout correctly. 2068 */ 2069 if (card->erase_shift) 2070 qty += ((to >> card->erase_shift) - 2071 (from >> card->erase_shift)) + 1; 2072 else if (mmc_card_sd(card)) 2073 qty += to - from + 1; 2074 else 2075 qty += ((to / card->erase_size) - 2076 (from / card->erase_size)) + 1; 2077 2078 if (!mmc_card_blockaddr(card)) { 2079 from <<= 9; 2080 to <<= 9; 2081 } 2082 2083 if (mmc_card_sd(card)) 2084 cmd.opcode = SD_ERASE_WR_BLK_START; 2085 else 2086 cmd.opcode = MMC_ERASE_GROUP_START; 2087 cmd.arg = from; 2088 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2089 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2090 if (err) { 2091 pr_err("mmc_erase: group start error %d, " 2092 "status %#x\n", err, cmd.resp[0]); 2093 err = -EIO; 2094 goto out; 2095 } 2096 2097 memset(&cmd, 0, sizeof(struct mmc_command)); 2098 if (mmc_card_sd(card)) 2099 cmd.opcode = SD_ERASE_WR_BLK_END; 2100 else 2101 cmd.opcode = MMC_ERASE_GROUP_END; 2102 cmd.arg = to; 2103 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2104 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2105 if (err) { 2106 pr_err("mmc_erase: group end error %d, status %#x\n", 2107 err, cmd.resp[0]); 2108 err = -EIO; 2109 goto out; 2110 } 2111 2112 memset(&cmd, 0, sizeof(struct mmc_command)); 2113 cmd.opcode = MMC_ERASE; 2114 cmd.arg = arg; 2115 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2116 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); 2117 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2118 if (err) { 2119 pr_err("mmc_erase: erase error %d, status %#x\n", 2120 err, cmd.resp[0]); 2121 err = -EIO; 2122 goto out; 2123 } 2124 2125 if (mmc_host_is_spi(card->host)) 2126 goto out; 2127 2128 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 2129 do { 2130 memset(&cmd, 0, sizeof(struct mmc_command)); 2131 cmd.opcode = MMC_SEND_STATUS; 2132 cmd.arg = card->rca << 16; 2133 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2134 /* Do not retry else we can't see errors */ 2135 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2136 if (err || (cmd.resp[0] & 0xFDF92000)) { 2137 pr_err("error %d requesting status %#x\n", 2138 err, cmd.resp[0]); 2139 err = -EIO; 2140 goto out; 2141 } 2142 2143 /* Timeout if the device never becomes ready for data and 2144 * never leaves the program state. 2145 */ 2146 if (time_after(jiffies, timeout)) { 2147 pr_err("%s: Card stuck in programming state! %s\n", 2148 mmc_hostname(card->host), __func__); 2149 err = -EIO; 2150 goto out; 2151 } 2152 2153 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2154 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2155 out: 2156 mmc_retune_release(card->host); 2157 return err; 2158 } 2159 2160 /** 2161 * mmc_erase - erase sectors. 2162 * @card: card to erase 2163 * @from: first sector to erase 2164 * @nr: number of sectors to erase 2165 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2166 * 2167 * Caller must claim host before calling this function. 2168 */ 2169 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2170 unsigned int arg) 2171 { 2172 unsigned int rem, to = from + nr; 2173 int err; 2174 2175 if (!(card->host->caps & MMC_CAP_ERASE) || 2176 !(card->csd.cmdclass & CCC_ERASE)) 2177 return -EOPNOTSUPP; 2178 2179 if (!card->erase_size) 2180 return -EOPNOTSUPP; 2181 2182 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2183 return -EOPNOTSUPP; 2184 2185 if ((arg & MMC_SECURE_ARGS) && 2186 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2187 return -EOPNOTSUPP; 2188 2189 if ((arg & MMC_TRIM_ARGS) && 2190 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2191 return -EOPNOTSUPP; 2192 2193 if (arg == MMC_SECURE_ERASE_ARG) { 2194 if (from % card->erase_size || nr % card->erase_size) 2195 return -EINVAL; 2196 } 2197 2198 if (arg == MMC_ERASE_ARG) { 2199 rem = from % card->erase_size; 2200 if (rem) { 2201 rem = card->erase_size - rem; 2202 from += rem; 2203 if (nr > rem) 2204 nr -= rem; 2205 else 2206 return 0; 2207 } 2208 rem = nr % card->erase_size; 2209 if (rem) 2210 nr -= rem; 2211 } 2212 2213 if (nr == 0) 2214 return 0; 2215 2216 to = from + nr; 2217 2218 if (to <= from) 2219 return -EINVAL; 2220 2221 /* 'from' and 'to' are inclusive */ 2222 to -= 1; 2223 2224 /* 2225 * Special case where only one erase-group fits in the timeout budget: 2226 * If the region crosses an erase-group boundary on this particular 2227 * case, we will be trimming more than one erase-group which, does not 2228 * fit in the timeout budget of the controller, so we need to split it 2229 * and call mmc_do_erase() twice if necessary. This special case is 2230 * identified by the card->eg_boundary flag. 2231 */ 2232 rem = card->erase_size - (from % card->erase_size); 2233 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2234 err = mmc_do_erase(card, from, from + rem - 1, arg); 2235 from += rem; 2236 if ((err) || (to <= from)) 2237 return err; 2238 } 2239 2240 return mmc_do_erase(card, from, to, arg); 2241 } 2242 EXPORT_SYMBOL(mmc_erase); 2243 2244 int mmc_can_erase(struct mmc_card *card) 2245 { 2246 if ((card->host->caps & MMC_CAP_ERASE) && 2247 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2248 return 1; 2249 return 0; 2250 } 2251 EXPORT_SYMBOL(mmc_can_erase); 2252 2253 int mmc_can_trim(struct mmc_card *card) 2254 { 2255 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2256 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2257 return 1; 2258 return 0; 2259 } 2260 EXPORT_SYMBOL(mmc_can_trim); 2261 2262 int mmc_can_discard(struct mmc_card *card) 2263 { 2264 /* 2265 * As there's no way to detect the discard support bit at v4.5 2266 * use the s/w feature support filed. 2267 */ 2268 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2269 return 1; 2270 return 0; 2271 } 2272 EXPORT_SYMBOL(mmc_can_discard); 2273 2274 int mmc_can_sanitize(struct mmc_card *card) 2275 { 2276 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2277 return 0; 2278 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2279 return 1; 2280 return 0; 2281 } 2282 EXPORT_SYMBOL(mmc_can_sanitize); 2283 2284 int mmc_can_secure_erase_trim(struct mmc_card *card) 2285 { 2286 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2287 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2288 return 1; 2289 return 0; 2290 } 2291 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2292 2293 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2294 unsigned int nr) 2295 { 2296 if (!card->erase_size) 2297 return 0; 2298 if (from % card->erase_size || nr % card->erase_size) 2299 return 0; 2300 return 1; 2301 } 2302 EXPORT_SYMBOL(mmc_erase_group_aligned); 2303 2304 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2305 unsigned int arg) 2306 { 2307 struct mmc_host *host = card->host; 2308 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2309 unsigned int last_timeout = 0; 2310 2311 if (card->erase_shift) 2312 max_qty = UINT_MAX >> card->erase_shift; 2313 else if (mmc_card_sd(card)) 2314 max_qty = UINT_MAX; 2315 else 2316 max_qty = UINT_MAX / card->erase_size; 2317 2318 /* Find the largest qty with an OK timeout */ 2319 do { 2320 y = 0; 2321 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2322 timeout = mmc_erase_timeout(card, arg, qty + x); 2323 if (timeout > host->max_busy_timeout) 2324 break; 2325 if (timeout < last_timeout) 2326 break; 2327 last_timeout = timeout; 2328 y = x; 2329 } 2330 qty += y; 2331 } while (y); 2332 2333 if (!qty) 2334 return 0; 2335 2336 /* 2337 * When specifying a sector range to trim, chances are we might cross 2338 * an erase-group boundary even if the amount of sectors is less than 2339 * one erase-group. 2340 * If we can only fit one erase-group in the controller timeout budget, 2341 * we have to care that erase-group boundaries are not crossed by a 2342 * single trim operation. We flag that special case with "eg_boundary". 2343 * In all other cases we can just decrement qty and pretend that we 2344 * always touch (qty + 1) erase-groups as a simple optimization. 2345 */ 2346 if (qty == 1) 2347 card->eg_boundary = 1; 2348 else 2349 qty--; 2350 2351 /* Convert qty to sectors */ 2352 if (card->erase_shift) 2353 max_discard = qty << card->erase_shift; 2354 else if (mmc_card_sd(card)) 2355 max_discard = qty + 1; 2356 else 2357 max_discard = qty * card->erase_size; 2358 2359 return max_discard; 2360 } 2361 2362 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2363 { 2364 struct mmc_host *host = card->host; 2365 unsigned int max_discard, max_trim; 2366 2367 if (!host->max_busy_timeout) 2368 return UINT_MAX; 2369 2370 /* 2371 * Without erase_group_def set, MMC erase timeout depends on clock 2372 * frequence which can change. In that case, the best choice is 2373 * just the preferred erase size. 2374 */ 2375 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2376 return card->pref_erase; 2377 2378 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2379 if (mmc_can_trim(card)) { 2380 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2381 if (max_trim < max_discard) 2382 max_discard = max_trim; 2383 } else if (max_discard < card->erase_size) { 2384 max_discard = 0; 2385 } 2386 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2387 mmc_hostname(host), max_discard, host->max_busy_timeout); 2388 return max_discard; 2389 } 2390 EXPORT_SYMBOL(mmc_calc_max_discard); 2391 2392 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2393 { 2394 struct mmc_command cmd = {0}; 2395 2396 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) 2397 return 0; 2398 2399 cmd.opcode = MMC_SET_BLOCKLEN; 2400 cmd.arg = blocklen; 2401 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2402 return mmc_wait_for_cmd(card->host, &cmd, 5); 2403 } 2404 EXPORT_SYMBOL(mmc_set_blocklen); 2405 2406 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2407 bool is_rel_write) 2408 { 2409 struct mmc_command cmd = {0}; 2410 2411 cmd.opcode = MMC_SET_BLOCK_COUNT; 2412 cmd.arg = blockcount & 0x0000FFFF; 2413 if (is_rel_write) 2414 cmd.arg |= 1 << 31; 2415 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2416 return mmc_wait_for_cmd(card->host, &cmd, 5); 2417 } 2418 EXPORT_SYMBOL(mmc_set_blockcount); 2419 2420 static void mmc_hw_reset_for_init(struct mmc_host *host) 2421 { 2422 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2423 return; 2424 mmc_host_clk_hold(host); 2425 host->ops->hw_reset(host); 2426 mmc_host_clk_release(host); 2427 } 2428 2429 int mmc_hw_reset(struct mmc_host *host) 2430 { 2431 int ret; 2432 2433 if (!host->card) 2434 return -EINVAL; 2435 2436 mmc_bus_get(host); 2437 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2438 mmc_bus_put(host); 2439 return -EOPNOTSUPP; 2440 } 2441 2442 ret = host->bus_ops->reset(host); 2443 mmc_bus_put(host); 2444 2445 if (ret != -EOPNOTSUPP) 2446 pr_warn("%s: tried to reset card\n", mmc_hostname(host)); 2447 2448 return ret; 2449 } 2450 EXPORT_SYMBOL(mmc_hw_reset); 2451 2452 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2453 { 2454 host->f_init = freq; 2455 2456 #ifdef CONFIG_MMC_DEBUG 2457 pr_info("%s: %s: trying to init card at %u Hz\n", 2458 mmc_hostname(host), __func__, host->f_init); 2459 #endif 2460 mmc_power_up(host, host->ocr_avail); 2461 2462 /* 2463 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2464 * do a hardware reset if possible. 2465 */ 2466 mmc_hw_reset_for_init(host); 2467 2468 /* 2469 * sdio_reset sends CMD52 to reset card. Since we do not know 2470 * if the card is being re-initialized, just send it. CMD52 2471 * should be ignored by SD/eMMC cards. 2472 */ 2473 sdio_reset(host); 2474 mmc_go_idle(host); 2475 2476 mmc_send_if_cond(host, host->ocr_avail); 2477 2478 /* Order's important: probe SDIO, then SD, then MMC */ 2479 if (!mmc_attach_sdio(host)) 2480 return 0; 2481 if (!mmc_attach_sd(host)) 2482 return 0; 2483 if (!mmc_attach_mmc(host)) 2484 return 0; 2485 2486 mmc_power_off(host); 2487 return -EIO; 2488 } 2489 2490 int _mmc_detect_card_removed(struct mmc_host *host) 2491 { 2492 int ret; 2493 2494 if (host->caps & MMC_CAP_NONREMOVABLE) 2495 return 0; 2496 2497 if (!host->card || mmc_card_removed(host->card)) 2498 return 1; 2499 2500 ret = host->bus_ops->alive(host); 2501 2502 /* 2503 * Card detect status and alive check may be out of sync if card is 2504 * removed slowly, when card detect switch changes while card/slot 2505 * pads are still contacted in hardware (refer to "SD Card Mechanical 2506 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2507 * detect work 200ms later for this case. 2508 */ 2509 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2510 mmc_detect_change(host, msecs_to_jiffies(200)); 2511 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2512 } 2513 2514 if (ret) { 2515 mmc_card_set_removed(host->card); 2516 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2517 } 2518 2519 return ret; 2520 } 2521 2522 int mmc_detect_card_removed(struct mmc_host *host) 2523 { 2524 struct mmc_card *card = host->card; 2525 int ret; 2526 2527 WARN_ON(!host->claimed); 2528 2529 if (!card) 2530 return 1; 2531 2532 ret = mmc_card_removed(card); 2533 /* 2534 * The card will be considered unchanged unless we have been asked to 2535 * detect a change or host requires polling to provide card detection. 2536 */ 2537 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2538 return ret; 2539 2540 host->detect_change = 0; 2541 if (!ret) { 2542 ret = _mmc_detect_card_removed(host); 2543 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2544 /* 2545 * Schedule a detect work as soon as possible to let a 2546 * rescan handle the card removal. 2547 */ 2548 cancel_delayed_work(&host->detect); 2549 _mmc_detect_change(host, 0, false); 2550 } 2551 } 2552 2553 return ret; 2554 } 2555 EXPORT_SYMBOL(mmc_detect_card_removed); 2556 2557 void mmc_rescan(struct work_struct *work) 2558 { 2559 struct mmc_host *host = 2560 container_of(work, struct mmc_host, detect.work); 2561 int i; 2562 2563 if (host->trigger_card_event && host->ops->card_event) { 2564 host->ops->card_event(host); 2565 host->trigger_card_event = false; 2566 } 2567 2568 if (host->rescan_disable) 2569 return; 2570 2571 /* If there is a non-removable card registered, only scan once */ 2572 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2573 return; 2574 host->rescan_entered = 1; 2575 2576 mmc_bus_get(host); 2577 2578 /* 2579 * if there is a _removable_ card registered, check whether it is 2580 * still present 2581 */ 2582 if (host->bus_ops && !host->bus_dead 2583 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2584 host->bus_ops->detect(host); 2585 2586 host->detect_change = 0; 2587 2588 /* 2589 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2590 * the card is no longer present. 2591 */ 2592 mmc_bus_put(host); 2593 mmc_bus_get(host); 2594 2595 /* if there still is a card present, stop here */ 2596 if (host->bus_ops != NULL) { 2597 mmc_bus_put(host); 2598 goto out; 2599 } 2600 2601 /* 2602 * Only we can add a new handler, so it's safe to 2603 * release the lock here. 2604 */ 2605 mmc_bus_put(host); 2606 2607 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd && 2608 host->ops->get_cd(host) == 0) { 2609 mmc_claim_host(host); 2610 mmc_power_off(host); 2611 mmc_release_host(host); 2612 goto out; 2613 } 2614 2615 mmc_claim_host(host); 2616 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2617 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2618 break; 2619 if (freqs[i] <= host->f_min) 2620 break; 2621 } 2622 mmc_release_host(host); 2623 2624 out: 2625 if (host->caps & MMC_CAP_NEEDS_POLL) 2626 mmc_schedule_delayed_work(&host->detect, HZ); 2627 } 2628 2629 void mmc_start_host(struct mmc_host *host) 2630 { 2631 host->f_init = max(freqs[0], host->f_min); 2632 host->rescan_disable = 0; 2633 host->ios.power_mode = MMC_POWER_UNDEFINED; 2634 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2635 mmc_power_off(host); 2636 else 2637 mmc_power_up(host, host->ocr_avail); 2638 mmc_gpiod_request_cd_irq(host); 2639 _mmc_detect_change(host, 0, false); 2640 } 2641 2642 void mmc_stop_host(struct mmc_host *host) 2643 { 2644 #ifdef CONFIG_MMC_DEBUG 2645 unsigned long flags; 2646 spin_lock_irqsave(&host->lock, flags); 2647 host->removed = 1; 2648 spin_unlock_irqrestore(&host->lock, flags); 2649 #endif 2650 if (host->slot.cd_irq >= 0) 2651 disable_irq(host->slot.cd_irq); 2652 2653 host->rescan_disable = 1; 2654 cancel_delayed_work_sync(&host->detect); 2655 mmc_flush_scheduled_work(); 2656 2657 /* clear pm flags now and let card drivers set them as needed */ 2658 host->pm_flags = 0; 2659 2660 mmc_bus_get(host); 2661 if (host->bus_ops && !host->bus_dead) { 2662 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2663 host->bus_ops->remove(host); 2664 mmc_claim_host(host); 2665 mmc_detach_bus(host); 2666 mmc_power_off(host); 2667 mmc_release_host(host); 2668 mmc_bus_put(host); 2669 return; 2670 } 2671 mmc_bus_put(host); 2672 2673 BUG_ON(host->card); 2674 2675 mmc_power_off(host); 2676 } 2677 2678 int mmc_power_save_host(struct mmc_host *host) 2679 { 2680 int ret = 0; 2681 2682 #ifdef CONFIG_MMC_DEBUG 2683 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2684 #endif 2685 2686 mmc_bus_get(host); 2687 2688 if (!host->bus_ops || host->bus_dead) { 2689 mmc_bus_put(host); 2690 return -EINVAL; 2691 } 2692 2693 if (host->bus_ops->power_save) 2694 ret = host->bus_ops->power_save(host); 2695 2696 mmc_bus_put(host); 2697 2698 mmc_power_off(host); 2699 2700 return ret; 2701 } 2702 EXPORT_SYMBOL(mmc_power_save_host); 2703 2704 int mmc_power_restore_host(struct mmc_host *host) 2705 { 2706 int ret; 2707 2708 #ifdef CONFIG_MMC_DEBUG 2709 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2710 #endif 2711 2712 mmc_bus_get(host); 2713 2714 if (!host->bus_ops || host->bus_dead) { 2715 mmc_bus_put(host); 2716 return -EINVAL; 2717 } 2718 2719 mmc_power_up(host, host->card->ocr); 2720 ret = host->bus_ops->power_restore(host); 2721 2722 mmc_bus_put(host); 2723 2724 return ret; 2725 } 2726 EXPORT_SYMBOL(mmc_power_restore_host); 2727 2728 /* 2729 * Flush the cache to the non-volatile storage. 2730 */ 2731 int mmc_flush_cache(struct mmc_card *card) 2732 { 2733 int err = 0; 2734 2735 if (mmc_card_mmc(card) && 2736 (card->ext_csd.cache_size > 0) && 2737 (card->ext_csd.cache_ctrl & 1)) { 2738 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2739 EXT_CSD_FLUSH_CACHE, 1, 0); 2740 if (err) 2741 pr_err("%s: cache flush error %d\n", 2742 mmc_hostname(card->host), err); 2743 } 2744 2745 return err; 2746 } 2747 EXPORT_SYMBOL(mmc_flush_cache); 2748 2749 #ifdef CONFIG_PM 2750 2751 /* Do the card removal on suspend if card is assumed removeable 2752 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2753 to sync the card. 2754 */ 2755 int mmc_pm_notify(struct notifier_block *notify_block, 2756 unsigned long mode, void *unused) 2757 { 2758 struct mmc_host *host = container_of( 2759 notify_block, struct mmc_host, pm_notify); 2760 unsigned long flags; 2761 int err = 0; 2762 2763 switch (mode) { 2764 case PM_HIBERNATION_PREPARE: 2765 case PM_SUSPEND_PREPARE: 2766 case PM_RESTORE_PREPARE: 2767 spin_lock_irqsave(&host->lock, flags); 2768 host->rescan_disable = 1; 2769 spin_unlock_irqrestore(&host->lock, flags); 2770 cancel_delayed_work_sync(&host->detect); 2771 2772 if (!host->bus_ops) 2773 break; 2774 2775 /* Validate prerequisites for suspend */ 2776 if (host->bus_ops->pre_suspend) 2777 err = host->bus_ops->pre_suspend(host); 2778 if (!err) 2779 break; 2780 2781 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2782 host->bus_ops->remove(host); 2783 mmc_claim_host(host); 2784 mmc_detach_bus(host); 2785 mmc_power_off(host); 2786 mmc_release_host(host); 2787 host->pm_flags = 0; 2788 break; 2789 2790 case PM_POST_SUSPEND: 2791 case PM_POST_HIBERNATION: 2792 case PM_POST_RESTORE: 2793 2794 spin_lock_irqsave(&host->lock, flags); 2795 host->rescan_disable = 0; 2796 spin_unlock_irqrestore(&host->lock, flags); 2797 _mmc_detect_change(host, 0, false); 2798 2799 } 2800 2801 return 0; 2802 } 2803 #endif 2804 2805 /** 2806 * mmc_init_context_info() - init synchronization context 2807 * @host: mmc host 2808 * 2809 * Init struct context_info needed to implement asynchronous 2810 * request mechanism, used by mmc core, host driver and mmc requests 2811 * supplier. 2812 */ 2813 void mmc_init_context_info(struct mmc_host *host) 2814 { 2815 spin_lock_init(&host->context_info.lock); 2816 host->context_info.is_new_req = false; 2817 host->context_info.is_done_rcv = false; 2818 host->context_info.is_waiting_last_req = false; 2819 init_waitqueue_head(&host->context_info.wait); 2820 } 2821 2822 static int __init mmc_init(void) 2823 { 2824 int ret; 2825 2826 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2827 if (!workqueue) 2828 return -ENOMEM; 2829 2830 ret = mmc_register_bus(); 2831 if (ret) 2832 goto destroy_workqueue; 2833 2834 ret = mmc_register_host_class(); 2835 if (ret) 2836 goto unregister_bus; 2837 2838 ret = sdio_register_bus(); 2839 if (ret) 2840 goto unregister_host_class; 2841 2842 return 0; 2843 2844 unregister_host_class: 2845 mmc_unregister_host_class(); 2846 unregister_bus: 2847 mmc_unregister_bus(); 2848 destroy_workqueue: 2849 destroy_workqueue(workqueue); 2850 2851 return ret; 2852 } 2853 2854 static void __exit mmc_exit(void) 2855 { 2856 sdio_unregister_bus(); 2857 mmc_unregister_host_class(); 2858 mmc_unregister_bus(); 2859 destroy_workqueue(workqueue); 2860 } 2861 2862 subsys_initcall(mmc_init); 2863 module_exit(mmc_exit); 2864 2865 MODULE_LICENSE("GPL"); 2866