xref: /linux/drivers/mmc/core/core.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
51 
52 /*
53  * Background operations can take a long time, depending on the housekeeping
54  * operations the card has to perform.
55  */
56 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
57 
58 static struct workqueue_struct *workqueue;
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
69 /*
70  * Internal function. Schedule delayed work in the MMC work queue.
71  */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 				     unsigned long delay)
74 {
75 	return queue_delayed_work(workqueue, work, delay);
76 }
77 
78 /*
79  * Internal function. Flush all scheduled work from the MMC work queue.
80  */
81 static void mmc_flush_scheduled_work(void)
82 {
83 	flush_workqueue(workqueue);
84 }
85 
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87 
88 /*
89  * Internal function. Inject random data errors.
90  * If mmc_data is NULL no errors are injected.
91  */
92 static void mmc_should_fail_request(struct mmc_host *host,
93 				    struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	struct mmc_data *data = mrq->data;
97 	static const int data_errors[] = {
98 		-ETIMEDOUT,
99 		-EILSEQ,
100 		-EIO,
101 	};
102 
103 	if (!data)
104 		return;
105 
106 	if (cmd->error || data->error ||
107 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 		return;
109 
110 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113 
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115 
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 					   struct mmc_request *mrq)
118 {
119 }
120 
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122 
123 /**
124  *	mmc_request_done - finish processing an MMC request
125  *	@host: MMC host which completed request
126  *	@mrq: MMC request which request
127  *
128  *	MMC drivers should call this function when they have completed
129  *	their processing of a request.
130  */
131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132 {
133 	struct mmc_command *cmd = mrq->cmd;
134 	int err = cmd->error;
135 
136 	/* Flag re-tuning needed on CRC errors */
137 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
138 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
139 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
140 	    (mrq->data && mrq->data->error == -EILSEQ) ||
141 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
142 		mmc_retune_needed(host);
143 
144 	if (err && cmd->retries && mmc_host_is_spi(host)) {
145 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
146 			cmd->retries = 0;
147 	}
148 
149 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
150 		/*
151 		 * Request starter must handle retries - see
152 		 * mmc_wait_for_req_done().
153 		 */
154 		if (mrq->done)
155 			mrq->done(mrq);
156 	} else {
157 		mmc_should_fail_request(host, mrq);
158 
159 		led_trigger_event(host->led, LED_OFF);
160 
161 		if (mrq->sbc) {
162 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
163 				mmc_hostname(host), mrq->sbc->opcode,
164 				mrq->sbc->error,
165 				mrq->sbc->resp[0], mrq->sbc->resp[1],
166 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
167 		}
168 
169 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
170 			mmc_hostname(host), cmd->opcode, err,
171 			cmd->resp[0], cmd->resp[1],
172 			cmd->resp[2], cmd->resp[3]);
173 
174 		if (mrq->data) {
175 			pr_debug("%s:     %d bytes transferred: %d\n",
176 				mmc_hostname(host),
177 				mrq->data->bytes_xfered, mrq->data->error);
178 		}
179 
180 		if (mrq->stop) {
181 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
182 				mmc_hostname(host), mrq->stop->opcode,
183 				mrq->stop->error,
184 				mrq->stop->resp[0], mrq->stop->resp[1],
185 				mrq->stop->resp[2], mrq->stop->resp[3]);
186 		}
187 
188 		if (mrq->done)
189 			mrq->done(mrq);
190 
191 		mmc_host_clk_release(host);
192 	}
193 }
194 
195 EXPORT_SYMBOL(mmc_request_done);
196 
197 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
198 {
199 	int err;
200 
201 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
202 	err = mmc_retune(host);
203 	if (err) {
204 		mrq->cmd->error = err;
205 		mmc_request_done(host, mrq);
206 		return;
207 	}
208 
209 	host->ops->request(host, mrq);
210 }
211 
212 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
213 {
214 #ifdef CONFIG_MMC_DEBUG
215 	unsigned int i, sz;
216 	struct scatterlist *sg;
217 #endif
218 	mmc_retune_hold(host);
219 
220 	if (mmc_card_removed(host->card))
221 		return -ENOMEDIUM;
222 
223 	if (mrq->sbc) {
224 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
225 			 mmc_hostname(host), mrq->sbc->opcode,
226 			 mrq->sbc->arg, mrq->sbc->flags);
227 	}
228 
229 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
230 		 mmc_hostname(host), mrq->cmd->opcode,
231 		 mrq->cmd->arg, mrq->cmd->flags);
232 
233 	if (mrq->data) {
234 		pr_debug("%s:     blksz %d blocks %d flags %08x "
235 			"tsac %d ms nsac %d\n",
236 			mmc_hostname(host), mrq->data->blksz,
237 			mrq->data->blocks, mrq->data->flags,
238 			mrq->data->timeout_ns / 1000000,
239 			mrq->data->timeout_clks);
240 	}
241 
242 	if (mrq->stop) {
243 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
244 			 mmc_hostname(host), mrq->stop->opcode,
245 			 mrq->stop->arg, mrq->stop->flags);
246 	}
247 
248 	WARN_ON(!host->claimed);
249 
250 	mrq->cmd->error = 0;
251 	mrq->cmd->mrq = mrq;
252 	if (mrq->sbc) {
253 		mrq->sbc->error = 0;
254 		mrq->sbc->mrq = mrq;
255 	}
256 	if (mrq->data) {
257 		BUG_ON(mrq->data->blksz > host->max_blk_size);
258 		BUG_ON(mrq->data->blocks > host->max_blk_count);
259 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
260 			host->max_req_size);
261 
262 #ifdef CONFIG_MMC_DEBUG
263 		sz = 0;
264 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
265 			sz += sg->length;
266 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
267 #endif
268 
269 		mrq->cmd->data = mrq->data;
270 		mrq->data->error = 0;
271 		mrq->data->mrq = mrq;
272 		if (mrq->stop) {
273 			mrq->data->stop = mrq->stop;
274 			mrq->stop->error = 0;
275 			mrq->stop->mrq = mrq;
276 		}
277 	}
278 	mmc_host_clk_hold(host);
279 	led_trigger_event(host->led, LED_FULL);
280 	__mmc_start_request(host, mrq);
281 
282 	return 0;
283 }
284 
285 /**
286  *	mmc_start_bkops - start BKOPS for supported cards
287  *	@card: MMC card to start BKOPS
288  *	@form_exception: A flag to indicate if this function was
289  *			 called due to an exception raised by the card
290  *
291  *	Start background operations whenever requested.
292  *	When the urgent BKOPS bit is set in a R1 command response
293  *	then background operations should be started immediately.
294 */
295 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
296 {
297 	int err;
298 	int timeout;
299 	bool use_busy_signal;
300 
301 	BUG_ON(!card);
302 
303 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
304 		return;
305 
306 	err = mmc_read_bkops_status(card);
307 	if (err) {
308 		pr_err("%s: Failed to read bkops status: %d\n",
309 		       mmc_hostname(card->host), err);
310 		return;
311 	}
312 
313 	if (!card->ext_csd.raw_bkops_status)
314 		return;
315 
316 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
317 	    from_exception)
318 		return;
319 
320 	mmc_claim_host(card->host);
321 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
322 		timeout = MMC_BKOPS_MAX_TIMEOUT;
323 		use_busy_signal = true;
324 	} else {
325 		timeout = 0;
326 		use_busy_signal = false;
327 	}
328 
329 	mmc_retune_hold(card->host);
330 
331 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
332 			EXT_CSD_BKOPS_START, 1, timeout,
333 			use_busy_signal, true, false);
334 	if (err) {
335 		pr_warn("%s: Error %d starting bkops\n",
336 			mmc_hostname(card->host), err);
337 		mmc_retune_release(card->host);
338 		goto out;
339 	}
340 
341 	/*
342 	 * For urgent bkops status (LEVEL_2 and more)
343 	 * bkops executed synchronously, otherwise
344 	 * the operation is in progress
345 	 */
346 	if (!use_busy_signal)
347 		mmc_card_set_doing_bkops(card);
348 	else
349 		mmc_retune_release(card->host);
350 out:
351 	mmc_release_host(card->host);
352 }
353 EXPORT_SYMBOL(mmc_start_bkops);
354 
355 /*
356  * mmc_wait_data_done() - done callback for data request
357  * @mrq: done data request
358  *
359  * Wakes up mmc context, passed as a callback to host controller driver
360  */
361 static void mmc_wait_data_done(struct mmc_request *mrq)
362 {
363 	struct mmc_context_info *context_info = &mrq->host->context_info;
364 
365 	context_info->is_done_rcv = true;
366 	wake_up_interruptible(&context_info->wait);
367 }
368 
369 static void mmc_wait_done(struct mmc_request *mrq)
370 {
371 	complete(&mrq->completion);
372 }
373 
374 /*
375  *__mmc_start_data_req() - starts data request
376  * @host: MMC host to start the request
377  * @mrq: data request to start
378  *
379  * Sets the done callback to be called when request is completed by the card.
380  * Starts data mmc request execution
381  */
382 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
383 {
384 	int err;
385 
386 	mrq->done = mmc_wait_data_done;
387 	mrq->host = host;
388 
389 	err = mmc_start_request(host, mrq);
390 	if (err) {
391 		mrq->cmd->error = err;
392 		mmc_wait_data_done(mrq);
393 	}
394 
395 	return err;
396 }
397 
398 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 	int err;
401 
402 	init_completion(&mrq->completion);
403 	mrq->done = mmc_wait_done;
404 
405 	err = mmc_start_request(host, mrq);
406 	if (err) {
407 		mrq->cmd->error = err;
408 		complete(&mrq->completion);
409 	}
410 
411 	return err;
412 }
413 
414 /*
415  * mmc_wait_for_data_req_done() - wait for request completed
416  * @host: MMC host to prepare the command.
417  * @mrq: MMC request to wait for
418  *
419  * Blocks MMC context till host controller will ack end of data request
420  * execution or new request notification arrives from the block layer.
421  * Handles command retries.
422  *
423  * Returns enum mmc_blk_status after checking errors.
424  */
425 static int mmc_wait_for_data_req_done(struct mmc_host *host,
426 				      struct mmc_request *mrq,
427 				      struct mmc_async_req *next_req)
428 {
429 	struct mmc_command *cmd;
430 	struct mmc_context_info *context_info = &host->context_info;
431 	int err;
432 	unsigned long flags;
433 
434 	while (1) {
435 		wait_event_interruptible(context_info->wait,
436 				(context_info->is_done_rcv ||
437 				 context_info->is_new_req));
438 		spin_lock_irqsave(&context_info->lock, flags);
439 		context_info->is_waiting_last_req = false;
440 		spin_unlock_irqrestore(&context_info->lock, flags);
441 		if (context_info->is_done_rcv) {
442 			context_info->is_done_rcv = false;
443 			context_info->is_new_req = false;
444 			cmd = mrq->cmd;
445 
446 			if (!cmd->error || !cmd->retries ||
447 			    mmc_card_removed(host->card)) {
448 				err = host->areq->err_check(host->card,
449 							    host->areq);
450 				break; /* return err */
451 			} else {
452 				mmc_retune_recheck(host);
453 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
454 					mmc_hostname(host),
455 					cmd->opcode, cmd->error);
456 				cmd->retries--;
457 				cmd->error = 0;
458 				__mmc_start_request(host, mrq);
459 				continue; /* wait for done/new event again */
460 			}
461 		} else if (context_info->is_new_req) {
462 			context_info->is_new_req = false;
463 			if (!next_req)
464 				return MMC_BLK_NEW_REQUEST;
465 		}
466 	}
467 	mmc_retune_release(host);
468 	return err;
469 }
470 
471 static void mmc_wait_for_req_done(struct mmc_host *host,
472 				  struct mmc_request *mrq)
473 {
474 	struct mmc_command *cmd;
475 
476 	while (1) {
477 		wait_for_completion(&mrq->completion);
478 
479 		cmd = mrq->cmd;
480 
481 		/*
482 		 * If host has timed out waiting for the sanitize
483 		 * to complete, card might be still in programming state
484 		 * so let's try to bring the card out of programming
485 		 * state.
486 		 */
487 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
488 			if (!mmc_interrupt_hpi(host->card)) {
489 				pr_warn("%s: %s: Interrupted sanitize\n",
490 					mmc_hostname(host), __func__);
491 				cmd->error = 0;
492 				break;
493 			} else {
494 				pr_err("%s: %s: Failed to interrupt sanitize\n",
495 				       mmc_hostname(host), __func__);
496 			}
497 		}
498 		if (!cmd->error || !cmd->retries ||
499 		    mmc_card_removed(host->card))
500 			break;
501 
502 		mmc_retune_recheck(host);
503 
504 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
505 			 mmc_hostname(host), cmd->opcode, cmd->error);
506 		cmd->retries--;
507 		cmd->error = 0;
508 		__mmc_start_request(host, mrq);
509 	}
510 
511 	mmc_retune_release(host);
512 }
513 
514 /**
515  *	mmc_pre_req - Prepare for a new request
516  *	@host: MMC host to prepare command
517  *	@mrq: MMC request to prepare for
518  *	@is_first_req: true if there is no previous started request
519  *                     that may run in parellel to this call, otherwise false
520  *
521  *	mmc_pre_req() is called in prior to mmc_start_req() to let
522  *	host prepare for the new request. Preparation of a request may be
523  *	performed while another request is running on the host.
524  */
525 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
526 		 bool is_first_req)
527 {
528 	if (host->ops->pre_req) {
529 		mmc_host_clk_hold(host);
530 		host->ops->pre_req(host, mrq, is_first_req);
531 		mmc_host_clk_release(host);
532 	}
533 }
534 
535 /**
536  *	mmc_post_req - Post process a completed request
537  *	@host: MMC host to post process command
538  *	@mrq: MMC request to post process for
539  *	@err: Error, if non zero, clean up any resources made in pre_req
540  *
541  *	Let the host post process a completed request. Post processing of
542  *	a request may be performed while another reuqest is running.
543  */
544 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
545 			 int err)
546 {
547 	if (host->ops->post_req) {
548 		mmc_host_clk_hold(host);
549 		host->ops->post_req(host, mrq, err);
550 		mmc_host_clk_release(host);
551 	}
552 }
553 
554 /**
555  *	mmc_start_req - start a non-blocking request
556  *	@host: MMC host to start command
557  *	@areq: async request to start
558  *	@error: out parameter returns 0 for success, otherwise non zero
559  *
560  *	Start a new MMC custom command request for a host.
561  *	If there is on ongoing async request wait for completion
562  *	of that request and start the new one and return.
563  *	Does not wait for the new request to complete.
564  *
565  *      Returns the completed request, NULL in case of none completed.
566  *	Wait for the an ongoing request (previoulsy started) to complete and
567  *	return the completed request. If there is no ongoing request, NULL
568  *	is returned without waiting. NULL is not an error condition.
569  */
570 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
571 				    struct mmc_async_req *areq, int *error)
572 {
573 	int err = 0;
574 	int start_err = 0;
575 	struct mmc_async_req *data = host->areq;
576 
577 	/* Prepare a new request */
578 	if (areq)
579 		mmc_pre_req(host, areq->mrq, !host->areq);
580 
581 	if (host->areq) {
582 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
583 		if (err == MMC_BLK_NEW_REQUEST) {
584 			if (error)
585 				*error = err;
586 			/*
587 			 * The previous request was not completed,
588 			 * nothing to return
589 			 */
590 			return NULL;
591 		}
592 		/*
593 		 * Check BKOPS urgency for each R1 response
594 		 */
595 		if (host->card && mmc_card_mmc(host->card) &&
596 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
597 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
598 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
599 
600 			/* Cancel the prepared request */
601 			if (areq)
602 				mmc_post_req(host, areq->mrq, -EINVAL);
603 
604 			mmc_start_bkops(host->card, true);
605 
606 			/* prepare the request again */
607 			if (areq)
608 				mmc_pre_req(host, areq->mrq, !host->areq);
609 		}
610 	}
611 
612 	if (!err && areq)
613 		start_err = __mmc_start_data_req(host, areq->mrq);
614 
615 	if (host->areq)
616 		mmc_post_req(host, host->areq->mrq, 0);
617 
618 	 /* Cancel a prepared request if it was not started. */
619 	if ((err || start_err) && areq)
620 		mmc_post_req(host, areq->mrq, -EINVAL);
621 
622 	if (err)
623 		host->areq = NULL;
624 	else
625 		host->areq = areq;
626 
627 	if (error)
628 		*error = err;
629 	return data;
630 }
631 EXPORT_SYMBOL(mmc_start_req);
632 
633 /**
634  *	mmc_wait_for_req - start a request and wait for completion
635  *	@host: MMC host to start command
636  *	@mrq: MMC request to start
637  *
638  *	Start a new MMC custom command request for a host, and wait
639  *	for the command to complete. Does not attempt to parse the
640  *	response.
641  */
642 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
643 {
644 	__mmc_start_req(host, mrq);
645 	mmc_wait_for_req_done(host, mrq);
646 }
647 EXPORT_SYMBOL(mmc_wait_for_req);
648 
649 /**
650  *	mmc_interrupt_hpi - Issue for High priority Interrupt
651  *	@card: the MMC card associated with the HPI transfer
652  *
653  *	Issued High Priority Interrupt, and check for card status
654  *	until out-of prg-state.
655  */
656 int mmc_interrupt_hpi(struct mmc_card *card)
657 {
658 	int err;
659 	u32 status;
660 	unsigned long prg_wait;
661 
662 	BUG_ON(!card);
663 
664 	if (!card->ext_csd.hpi_en) {
665 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
666 		return 1;
667 	}
668 
669 	mmc_claim_host(card->host);
670 	err = mmc_send_status(card, &status);
671 	if (err) {
672 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
673 		goto out;
674 	}
675 
676 	switch (R1_CURRENT_STATE(status)) {
677 	case R1_STATE_IDLE:
678 	case R1_STATE_READY:
679 	case R1_STATE_STBY:
680 	case R1_STATE_TRAN:
681 		/*
682 		 * In idle and transfer states, HPI is not needed and the caller
683 		 * can issue the next intended command immediately
684 		 */
685 		goto out;
686 	case R1_STATE_PRG:
687 		break;
688 	default:
689 		/* In all other states, it's illegal to issue HPI */
690 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
691 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
692 		err = -EINVAL;
693 		goto out;
694 	}
695 
696 	err = mmc_send_hpi_cmd(card, &status);
697 	if (err)
698 		goto out;
699 
700 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
701 	do {
702 		err = mmc_send_status(card, &status);
703 
704 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
705 			break;
706 		if (time_after(jiffies, prg_wait))
707 			err = -ETIMEDOUT;
708 	} while (!err);
709 
710 out:
711 	mmc_release_host(card->host);
712 	return err;
713 }
714 EXPORT_SYMBOL(mmc_interrupt_hpi);
715 
716 /**
717  *	mmc_wait_for_cmd - start a command and wait for completion
718  *	@host: MMC host to start command
719  *	@cmd: MMC command to start
720  *	@retries: maximum number of retries
721  *
722  *	Start a new MMC command for a host, and wait for the command
723  *	to complete.  Return any error that occurred while the command
724  *	was executing.  Do not attempt to parse the response.
725  */
726 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
727 {
728 	struct mmc_request mrq = {NULL};
729 
730 	WARN_ON(!host->claimed);
731 
732 	memset(cmd->resp, 0, sizeof(cmd->resp));
733 	cmd->retries = retries;
734 
735 	mrq.cmd = cmd;
736 	cmd->data = NULL;
737 
738 	mmc_wait_for_req(host, &mrq);
739 
740 	return cmd->error;
741 }
742 
743 EXPORT_SYMBOL(mmc_wait_for_cmd);
744 
745 /**
746  *	mmc_stop_bkops - stop ongoing BKOPS
747  *	@card: MMC card to check BKOPS
748  *
749  *	Send HPI command to stop ongoing background operations to
750  *	allow rapid servicing of foreground operations, e.g. read/
751  *	writes. Wait until the card comes out of the programming state
752  *	to avoid errors in servicing read/write requests.
753  */
754 int mmc_stop_bkops(struct mmc_card *card)
755 {
756 	int err = 0;
757 
758 	BUG_ON(!card);
759 	err = mmc_interrupt_hpi(card);
760 
761 	/*
762 	 * If err is EINVAL, we can't issue an HPI.
763 	 * It should complete the BKOPS.
764 	 */
765 	if (!err || (err == -EINVAL)) {
766 		mmc_card_clr_doing_bkops(card);
767 		mmc_retune_release(card->host);
768 		err = 0;
769 	}
770 
771 	return err;
772 }
773 EXPORT_SYMBOL(mmc_stop_bkops);
774 
775 int mmc_read_bkops_status(struct mmc_card *card)
776 {
777 	int err;
778 	u8 *ext_csd;
779 
780 	mmc_claim_host(card->host);
781 	err = mmc_get_ext_csd(card, &ext_csd);
782 	mmc_release_host(card->host);
783 	if (err)
784 		return err;
785 
786 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
787 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
788 	kfree(ext_csd);
789 	return 0;
790 }
791 EXPORT_SYMBOL(mmc_read_bkops_status);
792 
793 /**
794  *	mmc_set_data_timeout - set the timeout for a data command
795  *	@data: data phase for command
796  *	@card: the MMC card associated with the data transfer
797  *
798  *	Computes the data timeout parameters according to the
799  *	correct algorithm given the card type.
800  */
801 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
802 {
803 	unsigned int mult;
804 
805 	/*
806 	 * SDIO cards only define an upper 1 s limit on access.
807 	 */
808 	if (mmc_card_sdio(card)) {
809 		data->timeout_ns = 1000000000;
810 		data->timeout_clks = 0;
811 		return;
812 	}
813 
814 	/*
815 	 * SD cards use a 100 multiplier rather than 10
816 	 */
817 	mult = mmc_card_sd(card) ? 100 : 10;
818 
819 	/*
820 	 * Scale up the multiplier (and therefore the timeout) by
821 	 * the r2w factor for writes.
822 	 */
823 	if (data->flags & MMC_DATA_WRITE)
824 		mult <<= card->csd.r2w_factor;
825 
826 	data->timeout_ns = card->csd.tacc_ns * mult;
827 	data->timeout_clks = card->csd.tacc_clks * mult;
828 
829 	/*
830 	 * SD cards also have an upper limit on the timeout.
831 	 */
832 	if (mmc_card_sd(card)) {
833 		unsigned int timeout_us, limit_us;
834 
835 		timeout_us = data->timeout_ns / 1000;
836 		if (mmc_host_clk_rate(card->host))
837 			timeout_us += data->timeout_clks * 1000 /
838 				(mmc_host_clk_rate(card->host) / 1000);
839 
840 		if (data->flags & MMC_DATA_WRITE)
841 			/*
842 			 * The MMC spec "It is strongly recommended
843 			 * for hosts to implement more than 500ms
844 			 * timeout value even if the card indicates
845 			 * the 250ms maximum busy length."  Even the
846 			 * previous value of 300ms is known to be
847 			 * insufficient for some cards.
848 			 */
849 			limit_us = 3000000;
850 		else
851 			limit_us = 100000;
852 
853 		/*
854 		 * SDHC cards always use these fixed values.
855 		 */
856 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
857 			data->timeout_ns = limit_us * 1000;
858 			data->timeout_clks = 0;
859 		}
860 
861 		/* assign limit value if invalid */
862 		if (timeout_us == 0)
863 			data->timeout_ns = limit_us * 1000;
864 	}
865 
866 	/*
867 	 * Some cards require longer data read timeout than indicated in CSD.
868 	 * Address this by setting the read timeout to a "reasonably high"
869 	 * value. For the cards tested, 300ms has proven enough. If necessary,
870 	 * this value can be increased if other problematic cards require this.
871 	 */
872 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
873 		data->timeout_ns = 300000000;
874 		data->timeout_clks = 0;
875 	}
876 
877 	/*
878 	 * Some cards need very high timeouts if driven in SPI mode.
879 	 * The worst observed timeout was 900ms after writing a
880 	 * continuous stream of data until the internal logic
881 	 * overflowed.
882 	 */
883 	if (mmc_host_is_spi(card->host)) {
884 		if (data->flags & MMC_DATA_WRITE) {
885 			if (data->timeout_ns < 1000000000)
886 				data->timeout_ns = 1000000000;	/* 1s */
887 		} else {
888 			if (data->timeout_ns < 100000000)
889 				data->timeout_ns =  100000000;	/* 100ms */
890 		}
891 	}
892 }
893 EXPORT_SYMBOL(mmc_set_data_timeout);
894 
895 /**
896  *	mmc_align_data_size - pads a transfer size to a more optimal value
897  *	@card: the MMC card associated with the data transfer
898  *	@sz: original transfer size
899  *
900  *	Pads the original data size with a number of extra bytes in
901  *	order to avoid controller bugs and/or performance hits
902  *	(e.g. some controllers revert to PIO for certain sizes).
903  *
904  *	Returns the improved size, which might be unmodified.
905  *
906  *	Note that this function is only relevant when issuing a
907  *	single scatter gather entry.
908  */
909 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
910 {
911 	/*
912 	 * FIXME: We don't have a system for the controller to tell
913 	 * the core about its problems yet, so for now we just 32-bit
914 	 * align the size.
915 	 */
916 	sz = ((sz + 3) / 4) * 4;
917 
918 	return sz;
919 }
920 EXPORT_SYMBOL(mmc_align_data_size);
921 
922 /**
923  *	__mmc_claim_host - exclusively claim a host
924  *	@host: mmc host to claim
925  *	@abort: whether or not the operation should be aborted
926  *
927  *	Claim a host for a set of operations.  If @abort is non null and
928  *	dereference a non-zero value then this will return prematurely with
929  *	that non-zero value without acquiring the lock.  Returns zero
930  *	with the lock held otherwise.
931  */
932 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
933 {
934 	DECLARE_WAITQUEUE(wait, current);
935 	unsigned long flags;
936 	int stop;
937 	bool pm = false;
938 
939 	might_sleep();
940 
941 	add_wait_queue(&host->wq, &wait);
942 	spin_lock_irqsave(&host->lock, flags);
943 	while (1) {
944 		set_current_state(TASK_UNINTERRUPTIBLE);
945 		stop = abort ? atomic_read(abort) : 0;
946 		if (stop || !host->claimed || host->claimer == current)
947 			break;
948 		spin_unlock_irqrestore(&host->lock, flags);
949 		schedule();
950 		spin_lock_irqsave(&host->lock, flags);
951 	}
952 	set_current_state(TASK_RUNNING);
953 	if (!stop) {
954 		host->claimed = 1;
955 		host->claimer = current;
956 		host->claim_cnt += 1;
957 		if (host->claim_cnt == 1)
958 			pm = true;
959 	} else
960 		wake_up(&host->wq);
961 	spin_unlock_irqrestore(&host->lock, flags);
962 	remove_wait_queue(&host->wq, &wait);
963 
964 	if (pm)
965 		pm_runtime_get_sync(mmc_dev(host));
966 
967 	return stop;
968 }
969 EXPORT_SYMBOL(__mmc_claim_host);
970 
971 /**
972  *	mmc_release_host - release a host
973  *	@host: mmc host to release
974  *
975  *	Release a MMC host, allowing others to claim the host
976  *	for their operations.
977  */
978 void mmc_release_host(struct mmc_host *host)
979 {
980 	unsigned long flags;
981 
982 	WARN_ON(!host->claimed);
983 
984 	spin_lock_irqsave(&host->lock, flags);
985 	if (--host->claim_cnt) {
986 		/* Release for nested claim */
987 		spin_unlock_irqrestore(&host->lock, flags);
988 	} else {
989 		host->claimed = 0;
990 		host->claimer = NULL;
991 		spin_unlock_irqrestore(&host->lock, flags);
992 		wake_up(&host->wq);
993 		pm_runtime_mark_last_busy(mmc_dev(host));
994 		pm_runtime_put_autosuspend(mmc_dev(host));
995 	}
996 }
997 EXPORT_SYMBOL(mmc_release_host);
998 
999 /*
1000  * This is a helper function, which fetches a runtime pm reference for the
1001  * card device and also claims the host.
1002  */
1003 void mmc_get_card(struct mmc_card *card)
1004 {
1005 	pm_runtime_get_sync(&card->dev);
1006 	mmc_claim_host(card->host);
1007 }
1008 EXPORT_SYMBOL(mmc_get_card);
1009 
1010 /*
1011  * This is a helper function, which releases the host and drops the runtime
1012  * pm reference for the card device.
1013  */
1014 void mmc_put_card(struct mmc_card *card)
1015 {
1016 	mmc_release_host(card->host);
1017 	pm_runtime_mark_last_busy(&card->dev);
1018 	pm_runtime_put_autosuspend(&card->dev);
1019 }
1020 EXPORT_SYMBOL(mmc_put_card);
1021 
1022 /*
1023  * Internal function that does the actual ios call to the host driver,
1024  * optionally printing some debug output.
1025  */
1026 static inline void mmc_set_ios(struct mmc_host *host)
1027 {
1028 	struct mmc_ios *ios = &host->ios;
1029 
1030 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1031 		"width %u timing %u\n",
1032 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1033 		 ios->power_mode, ios->chip_select, ios->vdd,
1034 		 ios->bus_width, ios->timing);
1035 
1036 	if (ios->clock > 0)
1037 		mmc_set_ungated(host);
1038 	host->ops->set_ios(host, ios);
1039 }
1040 
1041 /*
1042  * Control chip select pin on a host.
1043  */
1044 void mmc_set_chip_select(struct mmc_host *host, int mode)
1045 {
1046 	mmc_host_clk_hold(host);
1047 	host->ios.chip_select = mode;
1048 	mmc_set_ios(host);
1049 	mmc_host_clk_release(host);
1050 }
1051 
1052 /*
1053  * Sets the host clock to the highest possible frequency that
1054  * is below "hz".
1055  */
1056 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1057 {
1058 	WARN_ON(hz && hz < host->f_min);
1059 
1060 	if (hz > host->f_max)
1061 		hz = host->f_max;
1062 
1063 	host->ios.clock = hz;
1064 	mmc_set_ios(host);
1065 }
1066 
1067 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1068 {
1069 	mmc_host_clk_hold(host);
1070 	__mmc_set_clock(host, hz);
1071 	mmc_host_clk_release(host);
1072 }
1073 
1074 #ifdef CONFIG_MMC_CLKGATE
1075 /*
1076  * This gates the clock by setting it to 0 Hz.
1077  */
1078 void mmc_gate_clock(struct mmc_host *host)
1079 {
1080 	unsigned long flags;
1081 
1082 	spin_lock_irqsave(&host->clk_lock, flags);
1083 	host->clk_old = host->ios.clock;
1084 	host->ios.clock = 0;
1085 	host->clk_gated = true;
1086 	spin_unlock_irqrestore(&host->clk_lock, flags);
1087 	mmc_set_ios(host);
1088 }
1089 
1090 /*
1091  * This restores the clock from gating by using the cached
1092  * clock value.
1093  */
1094 void mmc_ungate_clock(struct mmc_host *host)
1095 {
1096 	/*
1097 	 * We should previously have gated the clock, so the clock shall
1098 	 * be 0 here! The clock may however be 0 during initialization,
1099 	 * when some request operations are performed before setting
1100 	 * the frequency. When ungate is requested in that situation
1101 	 * we just ignore the call.
1102 	 */
1103 	if (host->clk_old) {
1104 		BUG_ON(host->ios.clock);
1105 		/* This call will also set host->clk_gated to false */
1106 		__mmc_set_clock(host, host->clk_old);
1107 	}
1108 }
1109 
1110 void mmc_set_ungated(struct mmc_host *host)
1111 {
1112 	unsigned long flags;
1113 
1114 	/*
1115 	 * We've been given a new frequency while the clock is gated,
1116 	 * so make sure we regard this as ungating it.
1117 	 */
1118 	spin_lock_irqsave(&host->clk_lock, flags);
1119 	host->clk_gated = false;
1120 	spin_unlock_irqrestore(&host->clk_lock, flags);
1121 }
1122 
1123 #else
1124 void mmc_set_ungated(struct mmc_host *host)
1125 {
1126 }
1127 #endif
1128 
1129 int mmc_execute_tuning(struct mmc_card *card)
1130 {
1131 	struct mmc_host *host = card->host;
1132 	u32 opcode;
1133 	int err;
1134 
1135 	if (!host->ops->execute_tuning)
1136 		return 0;
1137 
1138 	if (mmc_card_mmc(card))
1139 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1140 	else
1141 		opcode = MMC_SEND_TUNING_BLOCK;
1142 
1143 	mmc_host_clk_hold(host);
1144 	err = host->ops->execute_tuning(host, opcode);
1145 	mmc_host_clk_release(host);
1146 
1147 	if (err)
1148 		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1149 	else
1150 		mmc_retune_enable(host);
1151 
1152 	return err;
1153 }
1154 
1155 /*
1156  * Change the bus mode (open drain/push-pull) of a host.
1157  */
1158 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1159 {
1160 	mmc_host_clk_hold(host);
1161 	host->ios.bus_mode = mode;
1162 	mmc_set_ios(host);
1163 	mmc_host_clk_release(host);
1164 }
1165 
1166 /*
1167  * Change data bus width of a host.
1168  */
1169 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1170 {
1171 	mmc_host_clk_hold(host);
1172 	host->ios.bus_width = width;
1173 	mmc_set_ios(host);
1174 	mmc_host_clk_release(host);
1175 }
1176 
1177 /*
1178  * Set initial state after a power cycle or a hw_reset.
1179  */
1180 void mmc_set_initial_state(struct mmc_host *host)
1181 {
1182 	mmc_retune_disable(host);
1183 
1184 	if (mmc_host_is_spi(host))
1185 		host->ios.chip_select = MMC_CS_HIGH;
1186 	else
1187 		host->ios.chip_select = MMC_CS_DONTCARE;
1188 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1189 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1190 	host->ios.timing = MMC_TIMING_LEGACY;
1191 	host->ios.drv_type = 0;
1192 
1193 	mmc_set_ios(host);
1194 }
1195 
1196 /**
1197  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1198  * @vdd:	voltage (mV)
1199  * @low_bits:	prefer low bits in boundary cases
1200  *
1201  * This function returns the OCR bit number according to the provided @vdd
1202  * value. If conversion is not possible a negative errno value returned.
1203  *
1204  * Depending on the @low_bits flag the function prefers low or high OCR bits
1205  * on boundary voltages. For example,
1206  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1207  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1208  *
1209  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1210  */
1211 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1212 {
1213 	const int max_bit = ilog2(MMC_VDD_35_36);
1214 	int bit;
1215 
1216 	if (vdd < 1650 || vdd > 3600)
1217 		return -EINVAL;
1218 
1219 	if (vdd >= 1650 && vdd <= 1950)
1220 		return ilog2(MMC_VDD_165_195);
1221 
1222 	if (low_bits)
1223 		vdd -= 1;
1224 
1225 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1226 	bit = (vdd - 2000) / 100 + 8;
1227 	if (bit > max_bit)
1228 		return max_bit;
1229 	return bit;
1230 }
1231 
1232 /**
1233  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1234  * @vdd_min:	minimum voltage value (mV)
1235  * @vdd_max:	maximum voltage value (mV)
1236  *
1237  * This function returns the OCR mask bits according to the provided @vdd_min
1238  * and @vdd_max values. If conversion is not possible the function returns 0.
1239  *
1240  * Notes wrt boundary cases:
1241  * This function sets the OCR bits for all boundary voltages, for example
1242  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1243  * MMC_VDD_34_35 mask.
1244  */
1245 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1246 {
1247 	u32 mask = 0;
1248 
1249 	if (vdd_max < vdd_min)
1250 		return 0;
1251 
1252 	/* Prefer high bits for the boundary vdd_max values. */
1253 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1254 	if (vdd_max < 0)
1255 		return 0;
1256 
1257 	/* Prefer low bits for the boundary vdd_min values. */
1258 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1259 	if (vdd_min < 0)
1260 		return 0;
1261 
1262 	/* Fill the mask, from max bit to min bit. */
1263 	while (vdd_max >= vdd_min)
1264 		mask |= 1 << vdd_max--;
1265 
1266 	return mask;
1267 }
1268 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1269 
1270 #ifdef CONFIG_OF
1271 
1272 /**
1273  * mmc_of_parse_voltage - return mask of supported voltages
1274  * @np: The device node need to be parsed.
1275  * @mask: mask of voltages available for MMC/SD/SDIO
1276  *
1277  * 1. Return zero on success.
1278  * 2. Return negative errno: voltage-range is invalid.
1279  */
1280 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1281 {
1282 	const u32 *voltage_ranges;
1283 	int num_ranges, i;
1284 
1285 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1286 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1287 	if (!voltage_ranges || !num_ranges) {
1288 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1289 		return -EINVAL;
1290 	}
1291 
1292 	for (i = 0; i < num_ranges; i++) {
1293 		const int j = i * 2;
1294 		u32 ocr_mask;
1295 
1296 		ocr_mask = mmc_vddrange_to_ocrmask(
1297 				be32_to_cpu(voltage_ranges[j]),
1298 				be32_to_cpu(voltage_ranges[j + 1]));
1299 		if (!ocr_mask) {
1300 			pr_err("%s: voltage-range #%d is invalid\n",
1301 				np->full_name, i);
1302 			return -EINVAL;
1303 		}
1304 		*mask |= ocr_mask;
1305 	}
1306 
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(mmc_of_parse_voltage);
1310 
1311 #endif /* CONFIG_OF */
1312 
1313 static int mmc_of_get_func_num(struct device_node *node)
1314 {
1315 	u32 reg;
1316 	int ret;
1317 
1318 	ret = of_property_read_u32(node, "reg", &reg);
1319 	if (ret < 0)
1320 		return ret;
1321 
1322 	return reg;
1323 }
1324 
1325 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1326 		unsigned func_num)
1327 {
1328 	struct device_node *node;
1329 
1330 	if (!host->parent || !host->parent->of_node)
1331 		return NULL;
1332 
1333 	for_each_child_of_node(host->parent->of_node, node) {
1334 		if (mmc_of_get_func_num(node) == func_num)
1335 			return node;
1336 	}
1337 
1338 	return NULL;
1339 }
1340 
1341 #ifdef CONFIG_REGULATOR
1342 
1343 /**
1344  * mmc_regulator_get_ocrmask - return mask of supported voltages
1345  * @supply: regulator to use
1346  *
1347  * This returns either a negative errno, or a mask of voltages that
1348  * can be provided to MMC/SD/SDIO devices using the specified voltage
1349  * regulator.  This would normally be called before registering the
1350  * MMC host adapter.
1351  */
1352 int mmc_regulator_get_ocrmask(struct regulator *supply)
1353 {
1354 	int			result = 0;
1355 	int			count;
1356 	int			i;
1357 	int			vdd_uV;
1358 	int			vdd_mV;
1359 
1360 	count = regulator_count_voltages(supply);
1361 	if (count < 0)
1362 		return count;
1363 
1364 	for (i = 0; i < count; i++) {
1365 		vdd_uV = regulator_list_voltage(supply, i);
1366 		if (vdd_uV <= 0)
1367 			continue;
1368 
1369 		vdd_mV = vdd_uV / 1000;
1370 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1371 	}
1372 
1373 	if (!result) {
1374 		vdd_uV = regulator_get_voltage(supply);
1375 		if (vdd_uV <= 0)
1376 			return vdd_uV;
1377 
1378 		vdd_mV = vdd_uV / 1000;
1379 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1380 	}
1381 
1382 	return result;
1383 }
1384 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1385 
1386 /**
1387  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1388  * @mmc: the host to regulate
1389  * @supply: regulator to use
1390  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1391  *
1392  * Returns zero on success, else negative errno.
1393  *
1394  * MMC host drivers may use this to enable or disable a regulator using
1395  * a particular supply voltage.  This would normally be called from the
1396  * set_ios() method.
1397  */
1398 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1399 			struct regulator *supply,
1400 			unsigned short vdd_bit)
1401 {
1402 	int			result = 0;
1403 	int			min_uV, max_uV;
1404 
1405 	if (vdd_bit) {
1406 		int		tmp;
1407 
1408 		/*
1409 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1410 		 * bits this regulator doesn't quite support ... don't
1411 		 * be too picky, most cards and regulators are OK with
1412 		 * a 0.1V range goof (it's a small error percentage).
1413 		 */
1414 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1415 		if (tmp == 0) {
1416 			min_uV = 1650 * 1000;
1417 			max_uV = 1950 * 1000;
1418 		} else {
1419 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1420 			max_uV = min_uV + 100 * 1000;
1421 		}
1422 
1423 		result = regulator_set_voltage(supply, min_uV, max_uV);
1424 		if (result == 0 && !mmc->regulator_enabled) {
1425 			result = regulator_enable(supply);
1426 			if (!result)
1427 				mmc->regulator_enabled = true;
1428 		}
1429 	} else if (mmc->regulator_enabled) {
1430 		result = regulator_disable(supply);
1431 		if (result == 0)
1432 			mmc->regulator_enabled = false;
1433 	}
1434 
1435 	if (result)
1436 		dev_err(mmc_dev(mmc),
1437 			"could not set regulator OCR (%d)\n", result);
1438 	return result;
1439 }
1440 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1441 
1442 #endif /* CONFIG_REGULATOR */
1443 
1444 int mmc_regulator_get_supply(struct mmc_host *mmc)
1445 {
1446 	struct device *dev = mmc_dev(mmc);
1447 	int ret;
1448 
1449 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1450 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1451 
1452 	if (IS_ERR(mmc->supply.vmmc)) {
1453 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1454 			return -EPROBE_DEFER;
1455 		dev_info(dev, "No vmmc regulator found\n");
1456 	} else {
1457 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1458 		if (ret > 0)
1459 			mmc->ocr_avail = ret;
1460 		else
1461 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1462 	}
1463 
1464 	if (IS_ERR(mmc->supply.vqmmc)) {
1465 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1466 			return -EPROBE_DEFER;
1467 		dev_info(dev, "No vqmmc regulator found\n");
1468 	}
1469 
1470 	return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1473 
1474 /*
1475  * Mask off any voltages we don't support and select
1476  * the lowest voltage
1477  */
1478 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1479 {
1480 	int bit;
1481 
1482 	/*
1483 	 * Sanity check the voltages that the card claims to
1484 	 * support.
1485 	 */
1486 	if (ocr & 0x7F) {
1487 		dev_warn(mmc_dev(host),
1488 		"card claims to support voltages below defined range\n");
1489 		ocr &= ~0x7F;
1490 	}
1491 
1492 	ocr &= host->ocr_avail;
1493 	if (!ocr) {
1494 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1495 		return 0;
1496 	}
1497 
1498 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1499 		bit = ffs(ocr) - 1;
1500 		ocr &= 3 << bit;
1501 		mmc_power_cycle(host, ocr);
1502 	} else {
1503 		bit = fls(ocr) - 1;
1504 		ocr &= 3 << bit;
1505 		if (bit != host->ios.vdd)
1506 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1507 	}
1508 
1509 	return ocr;
1510 }
1511 
1512 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1513 {
1514 	int err = 0;
1515 	int old_signal_voltage = host->ios.signal_voltage;
1516 
1517 	host->ios.signal_voltage = signal_voltage;
1518 	if (host->ops->start_signal_voltage_switch) {
1519 		mmc_host_clk_hold(host);
1520 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1521 		mmc_host_clk_release(host);
1522 	}
1523 
1524 	if (err)
1525 		host->ios.signal_voltage = old_signal_voltage;
1526 
1527 	return err;
1528 
1529 }
1530 
1531 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1532 {
1533 	struct mmc_command cmd = {0};
1534 	int err = 0;
1535 	u32 clock;
1536 
1537 	BUG_ON(!host);
1538 
1539 	/*
1540 	 * Send CMD11 only if the request is to switch the card to
1541 	 * 1.8V signalling.
1542 	 */
1543 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1544 		return __mmc_set_signal_voltage(host, signal_voltage);
1545 
1546 	/*
1547 	 * If we cannot switch voltages, return failure so the caller
1548 	 * can continue without UHS mode
1549 	 */
1550 	if (!host->ops->start_signal_voltage_switch)
1551 		return -EPERM;
1552 	if (!host->ops->card_busy)
1553 		pr_warn("%s: cannot verify signal voltage switch\n",
1554 			mmc_hostname(host));
1555 
1556 	mmc_host_clk_hold(host);
1557 
1558 	cmd.opcode = SD_SWITCH_VOLTAGE;
1559 	cmd.arg = 0;
1560 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1561 
1562 	err = mmc_wait_for_cmd(host, &cmd, 0);
1563 	if (err)
1564 		goto err_command;
1565 
1566 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1567 		err = -EIO;
1568 		goto err_command;
1569 	}
1570 	/*
1571 	 * The card should drive cmd and dat[0:3] low immediately
1572 	 * after the response of cmd11, but wait 1 ms to be sure
1573 	 */
1574 	mmc_delay(1);
1575 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1576 		err = -EAGAIN;
1577 		goto power_cycle;
1578 	}
1579 	/*
1580 	 * During a signal voltage level switch, the clock must be gated
1581 	 * for 5 ms according to the SD spec
1582 	 */
1583 	clock = host->ios.clock;
1584 	host->ios.clock = 0;
1585 	mmc_set_ios(host);
1586 
1587 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1588 		/*
1589 		 * Voltages may not have been switched, but we've already
1590 		 * sent CMD11, so a power cycle is required anyway
1591 		 */
1592 		err = -EAGAIN;
1593 		goto power_cycle;
1594 	}
1595 
1596 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1597 	mmc_delay(10);
1598 	host->ios.clock = clock;
1599 	mmc_set_ios(host);
1600 
1601 	/* Wait for at least 1 ms according to spec */
1602 	mmc_delay(1);
1603 
1604 	/*
1605 	 * Failure to switch is indicated by the card holding
1606 	 * dat[0:3] low
1607 	 */
1608 	if (host->ops->card_busy && host->ops->card_busy(host))
1609 		err = -EAGAIN;
1610 
1611 power_cycle:
1612 	if (err) {
1613 		pr_debug("%s: Signal voltage switch failed, "
1614 			"power cycling card\n", mmc_hostname(host));
1615 		mmc_power_cycle(host, ocr);
1616 	}
1617 
1618 err_command:
1619 	mmc_host_clk_release(host);
1620 
1621 	return err;
1622 }
1623 
1624 /*
1625  * Select timing parameters for host.
1626  */
1627 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1628 {
1629 	mmc_host_clk_hold(host);
1630 	host->ios.timing = timing;
1631 	mmc_set_ios(host);
1632 	mmc_host_clk_release(host);
1633 }
1634 
1635 /*
1636  * Select appropriate driver type for host.
1637  */
1638 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1639 {
1640 	mmc_host_clk_hold(host);
1641 	host->ios.drv_type = drv_type;
1642 	mmc_set_ios(host);
1643 	mmc_host_clk_release(host);
1644 }
1645 
1646 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1647 			      int card_drv_type, int *drv_type)
1648 {
1649 	struct mmc_host *host = card->host;
1650 	int host_drv_type = SD_DRIVER_TYPE_B;
1651 	int drive_strength;
1652 
1653 	*drv_type = 0;
1654 
1655 	if (!host->ops->select_drive_strength)
1656 		return 0;
1657 
1658 	/* Use SD definition of driver strength for hosts */
1659 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1660 		host_drv_type |= SD_DRIVER_TYPE_A;
1661 
1662 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1663 		host_drv_type |= SD_DRIVER_TYPE_C;
1664 
1665 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1666 		host_drv_type |= SD_DRIVER_TYPE_D;
1667 
1668 	/*
1669 	 * The drive strength that the hardware can support
1670 	 * depends on the board design.  Pass the appropriate
1671 	 * information and let the hardware specific code
1672 	 * return what is possible given the options
1673 	 */
1674 	mmc_host_clk_hold(host);
1675 	drive_strength = host->ops->select_drive_strength(card, max_dtr,
1676 							  host_drv_type,
1677 							  card_drv_type,
1678 							  drv_type);
1679 	mmc_host_clk_release(host);
1680 
1681 	return drive_strength;
1682 }
1683 
1684 /*
1685  * Apply power to the MMC stack.  This is a two-stage process.
1686  * First, we enable power to the card without the clock running.
1687  * We then wait a bit for the power to stabilise.  Finally,
1688  * enable the bus drivers and clock to the card.
1689  *
1690  * We must _NOT_ enable the clock prior to power stablising.
1691  *
1692  * If a host does all the power sequencing itself, ignore the
1693  * initial MMC_POWER_UP stage.
1694  */
1695 void mmc_power_up(struct mmc_host *host, u32 ocr)
1696 {
1697 	if (host->ios.power_mode == MMC_POWER_ON)
1698 		return;
1699 
1700 	mmc_host_clk_hold(host);
1701 
1702 	mmc_pwrseq_pre_power_on(host);
1703 
1704 	host->ios.vdd = fls(ocr) - 1;
1705 	host->ios.power_mode = MMC_POWER_UP;
1706 	/* Set initial state and call mmc_set_ios */
1707 	mmc_set_initial_state(host);
1708 
1709 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1710 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1711 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1712 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1713 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1714 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1715 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1716 
1717 	/*
1718 	 * This delay should be sufficient to allow the power supply
1719 	 * to reach the minimum voltage.
1720 	 */
1721 	mmc_delay(10);
1722 
1723 	mmc_pwrseq_post_power_on(host);
1724 
1725 	host->ios.clock = host->f_init;
1726 
1727 	host->ios.power_mode = MMC_POWER_ON;
1728 	mmc_set_ios(host);
1729 
1730 	/*
1731 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1732 	 * time required to reach a stable voltage.
1733 	 */
1734 	mmc_delay(10);
1735 
1736 	mmc_host_clk_release(host);
1737 }
1738 
1739 void mmc_power_off(struct mmc_host *host)
1740 {
1741 	if (host->ios.power_mode == MMC_POWER_OFF)
1742 		return;
1743 
1744 	mmc_host_clk_hold(host);
1745 
1746 	mmc_pwrseq_power_off(host);
1747 
1748 	host->ios.clock = 0;
1749 	host->ios.vdd = 0;
1750 
1751 	host->ios.power_mode = MMC_POWER_OFF;
1752 	/* Set initial state and call mmc_set_ios */
1753 	mmc_set_initial_state(host);
1754 
1755 	/*
1756 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1757 	 * XO-1.5, require a short delay after poweroff before the card
1758 	 * can be successfully turned on again.
1759 	 */
1760 	mmc_delay(1);
1761 
1762 	mmc_host_clk_release(host);
1763 }
1764 
1765 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1766 {
1767 	mmc_power_off(host);
1768 	/* Wait at least 1 ms according to SD spec */
1769 	mmc_delay(1);
1770 	mmc_power_up(host, ocr);
1771 }
1772 
1773 /*
1774  * Cleanup when the last reference to the bus operator is dropped.
1775  */
1776 static void __mmc_release_bus(struct mmc_host *host)
1777 {
1778 	BUG_ON(!host);
1779 	BUG_ON(host->bus_refs);
1780 	BUG_ON(!host->bus_dead);
1781 
1782 	host->bus_ops = NULL;
1783 }
1784 
1785 /*
1786  * Increase reference count of bus operator
1787  */
1788 static inline void mmc_bus_get(struct mmc_host *host)
1789 {
1790 	unsigned long flags;
1791 
1792 	spin_lock_irqsave(&host->lock, flags);
1793 	host->bus_refs++;
1794 	spin_unlock_irqrestore(&host->lock, flags);
1795 }
1796 
1797 /*
1798  * Decrease reference count of bus operator and free it if
1799  * it is the last reference.
1800  */
1801 static inline void mmc_bus_put(struct mmc_host *host)
1802 {
1803 	unsigned long flags;
1804 
1805 	spin_lock_irqsave(&host->lock, flags);
1806 	host->bus_refs--;
1807 	if ((host->bus_refs == 0) && host->bus_ops)
1808 		__mmc_release_bus(host);
1809 	spin_unlock_irqrestore(&host->lock, flags);
1810 }
1811 
1812 /*
1813  * Assign a mmc bus handler to a host. Only one bus handler may control a
1814  * host at any given time.
1815  */
1816 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1817 {
1818 	unsigned long flags;
1819 
1820 	BUG_ON(!host);
1821 	BUG_ON(!ops);
1822 
1823 	WARN_ON(!host->claimed);
1824 
1825 	spin_lock_irqsave(&host->lock, flags);
1826 
1827 	BUG_ON(host->bus_ops);
1828 	BUG_ON(host->bus_refs);
1829 
1830 	host->bus_ops = ops;
1831 	host->bus_refs = 1;
1832 	host->bus_dead = 0;
1833 
1834 	spin_unlock_irqrestore(&host->lock, flags);
1835 }
1836 
1837 /*
1838  * Remove the current bus handler from a host.
1839  */
1840 void mmc_detach_bus(struct mmc_host *host)
1841 {
1842 	unsigned long flags;
1843 
1844 	BUG_ON(!host);
1845 
1846 	WARN_ON(!host->claimed);
1847 	WARN_ON(!host->bus_ops);
1848 
1849 	spin_lock_irqsave(&host->lock, flags);
1850 
1851 	host->bus_dead = 1;
1852 
1853 	spin_unlock_irqrestore(&host->lock, flags);
1854 
1855 	mmc_bus_put(host);
1856 }
1857 
1858 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1859 				bool cd_irq)
1860 {
1861 #ifdef CONFIG_MMC_DEBUG
1862 	unsigned long flags;
1863 	spin_lock_irqsave(&host->lock, flags);
1864 	WARN_ON(host->removed);
1865 	spin_unlock_irqrestore(&host->lock, flags);
1866 #endif
1867 
1868 	/*
1869 	 * If the device is configured as wakeup, we prevent a new sleep for
1870 	 * 5 s to give provision for user space to consume the event.
1871 	 */
1872 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1873 		device_can_wakeup(mmc_dev(host)))
1874 		pm_wakeup_event(mmc_dev(host), 5000);
1875 
1876 	host->detect_change = 1;
1877 	mmc_schedule_delayed_work(&host->detect, delay);
1878 }
1879 
1880 /**
1881  *	mmc_detect_change - process change of state on a MMC socket
1882  *	@host: host which changed state.
1883  *	@delay: optional delay to wait before detection (jiffies)
1884  *
1885  *	MMC drivers should call this when they detect a card has been
1886  *	inserted or removed. The MMC layer will confirm that any
1887  *	present card is still functional, and initialize any newly
1888  *	inserted.
1889  */
1890 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1891 {
1892 	_mmc_detect_change(host, delay, true);
1893 }
1894 EXPORT_SYMBOL(mmc_detect_change);
1895 
1896 void mmc_init_erase(struct mmc_card *card)
1897 {
1898 	unsigned int sz;
1899 
1900 	if (is_power_of_2(card->erase_size))
1901 		card->erase_shift = ffs(card->erase_size) - 1;
1902 	else
1903 		card->erase_shift = 0;
1904 
1905 	/*
1906 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1907 	 * card.  That is not desirable because it can take a long time
1908 	 * (minutes) potentially delaying more important I/O, and also the
1909 	 * timeout calculations become increasingly hugely over-estimated.
1910 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1911 	 * to that size and alignment.
1912 	 *
1913 	 * For SD cards that define Allocation Unit size, limit erases to one
1914 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1915 	 * Erase Size, whether it is switched on or not, limit to that size.
1916 	 * Otherwise just have a stab at a good value.  For modern cards it
1917 	 * will end up being 4MiB.  Note that if the value is too small, it
1918 	 * can end up taking longer to erase.
1919 	 */
1920 	if (mmc_card_sd(card) && card->ssr.au) {
1921 		card->pref_erase = card->ssr.au;
1922 		card->erase_shift = ffs(card->ssr.au) - 1;
1923 	} else if (card->ext_csd.hc_erase_size) {
1924 		card->pref_erase = card->ext_csd.hc_erase_size;
1925 	} else if (card->erase_size) {
1926 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1927 		if (sz < 128)
1928 			card->pref_erase = 512 * 1024 / 512;
1929 		else if (sz < 512)
1930 			card->pref_erase = 1024 * 1024 / 512;
1931 		else if (sz < 1024)
1932 			card->pref_erase = 2 * 1024 * 1024 / 512;
1933 		else
1934 			card->pref_erase = 4 * 1024 * 1024 / 512;
1935 		if (card->pref_erase < card->erase_size)
1936 			card->pref_erase = card->erase_size;
1937 		else {
1938 			sz = card->pref_erase % card->erase_size;
1939 			if (sz)
1940 				card->pref_erase += card->erase_size - sz;
1941 		}
1942 	} else
1943 		card->pref_erase = 0;
1944 }
1945 
1946 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1947 				          unsigned int arg, unsigned int qty)
1948 {
1949 	unsigned int erase_timeout;
1950 
1951 	if (arg == MMC_DISCARD_ARG ||
1952 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1953 		erase_timeout = card->ext_csd.trim_timeout;
1954 	} else if (card->ext_csd.erase_group_def & 1) {
1955 		/* High Capacity Erase Group Size uses HC timeouts */
1956 		if (arg == MMC_TRIM_ARG)
1957 			erase_timeout = card->ext_csd.trim_timeout;
1958 		else
1959 			erase_timeout = card->ext_csd.hc_erase_timeout;
1960 	} else {
1961 		/* CSD Erase Group Size uses write timeout */
1962 		unsigned int mult = (10 << card->csd.r2w_factor);
1963 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1964 		unsigned int timeout_us;
1965 
1966 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1967 		if (card->csd.tacc_ns < 1000000)
1968 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1969 		else
1970 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1971 
1972 		/*
1973 		 * ios.clock is only a target.  The real clock rate might be
1974 		 * less but not that much less, so fudge it by multiplying by 2.
1975 		 */
1976 		timeout_clks <<= 1;
1977 		timeout_us += (timeout_clks * 1000) /
1978 			      (mmc_host_clk_rate(card->host) / 1000);
1979 
1980 		erase_timeout = timeout_us / 1000;
1981 
1982 		/*
1983 		 * Theoretically, the calculation could underflow so round up
1984 		 * to 1ms in that case.
1985 		 */
1986 		if (!erase_timeout)
1987 			erase_timeout = 1;
1988 	}
1989 
1990 	/* Multiplier for secure operations */
1991 	if (arg & MMC_SECURE_ARGS) {
1992 		if (arg == MMC_SECURE_ERASE_ARG)
1993 			erase_timeout *= card->ext_csd.sec_erase_mult;
1994 		else
1995 			erase_timeout *= card->ext_csd.sec_trim_mult;
1996 	}
1997 
1998 	erase_timeout *= qty;
1999 
2000 	/*
2001 	 * Ensure at least a 1 second timeout for SPI as per
2002 	 * 'mmc_set_data_timeout()'
2003 	 */
2004 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2005 		erase_timeout = 1000;
2006 
2007 	return erase_timeout;
2008 }
2009 
2010 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2011 					 unsigned int arg,
2012 					 unsigned int qty)
2013 {
2014 	unsigned int erase_timeout;
2015 
2016 	if (card->ssr.erase_timeout) {
2017 		/* Erase timeout specified in SD Status Register (SSR) */
2018 		erase_timeout = card->ssr.erase_timeout * qty +
2019 				card->ssr.erase_offset;
2020 	} else {
2021 		/*
2022 		 * Erase timeout not specified in SD Status Register (SSR) so
2023 		 * use 250ms per write block.
2024 		 */
2025 		erase_timeout = 250 * qty;
2026 	}
2027 
2028 	/* Must not be less than 1 second */
2029 	if (erase_timeout < 1000)
2030 		erase_timeout = 1000;
2031 
2032 	return erase_timeout;
2033 }
2034 
2035 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2036 				      unsigned int arg,
2037 				      unsigned int qty)
2038 {
2039 	if (mmc_card_sd(card))
2040 		return mmc_sd_erase_timeout(card, arg, qty);
2041 	else
2042 		return mmc_mmc_erase_timeout(card, arg, qty);
2043 }
2044 
2045 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2046 			unsigned int to, unsigned int arg)
2047 {
2048 	struct mmc_command cmd = {0};
2049 	unsigned int qty = 0;
2050 	unsigned long timeout;
2051 	int err;
2052 
2053 	mmc_retune_hold(card->host);
2054 
2055 	/*
2056 	 * qty is used to calculate the erase timeout which depends on how many
2057 	 * erase groups (or allocation units in SD terminology) are affected.
2058 	 * We count erasing part of an erase group as one erase group.
2059 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2060 	 * erase group size is almost certainly also power of 2, but it does not
2061 	 * seem to insist on that in the JEDEC standard, so we fall back to
2062 	 * division in that case.  SD may not specify an allocation unit size,
2063 	 * in which case the timeout is based on the number of write blocks.
2064 	 *
2065 	 * Note that the timeout for secure trim 2 will only be correct if the
2066 	 * number of erase groups specified is the same as the total of all
2067 	 * preceding secure trim 1 commands.  Since the power may have been
2068 	 * lost since the secure trim 1 commands occurred, it is generally
2069 	 * impossible to calculate the secure trim 2 timeout correctly.
2070 	 */
2071 	if (card->erase_shift)
2072 		qty += ((to >> card->erase_shift) -
2073 			(from >> card->erase_shift)) + 1;
2074 	else if (mmc_card_sd(card))
2075 		qty += to - from + 1;
2076 	else
2077 		qty += ((to / card->erase_size) -
2078 			(from / card->erase_size)) + 1;
2079 
2080 	if (!mmc_card_blockaddr(card)) {
2081 		from <<= 9;
2082 		to <<= 9;
2083 	}
2084 
2085 	if (mmc_card_sd(card))
2086 		cmd.opcode = SD_ERASE_WR_BLK_START;
2087 	else
2088 		cmd.opcode = MMC_ERASE_GROUP_START;
2089 	cmd.arg = from;
2090 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2091 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2092 	if (err) {
2093 		pr_err("mmc_erase: group start error %d, "
2094 		       "status %#x\n", err, cmd.resp[0]);
2095 		err = -EIO;
2096 		goto out;
2097 	}
2098 
2099 	memset(&cmd, 0, sizeof(struct mmc_command));
2100 	if (mmc_card_sd(card))
2101 		cmd.opcode = SD_ERASE_WR_BLK_END;
2102 	else
2103 		cmd.opcode = MMC_ERASE_GROUP_END;
2104 	cmd.arg = to;
2105 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2106 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2107 	if (err) {
2108 		pr_err("mmc_erase: group end error %d, status %#x\n",
2109 		       err, cmd.resp[0]);
2110 		err = -EIO;
2111 		goto out;
2112 	}
2113 
2114 	memset(&cmd, 0, sizeof(struct mmc_command));
2115 	cmd.opcode = MMC_ERASE;
2116 	cmd.arg = arg;
2117 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2118 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2119 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2120 	if (err) {
2121 		pr_err("mmc_erase: erase error %d, status %#x\n",
2122 		       err, cmd.resp[0]);
2123 		err = -EIO;
2124 		goto out;
2125 	}
2126 
2127 	if (mmc_host_is_spi(card->host))
2128 		goto out;
2129 
2130 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2131 	do {
2132 		memset(&cmd, 0, sizeof(struct mmc_command));
2133 		cmd.opcode = MMC_SEND_STATUS;
2134 		cmd.arg = card->rca << 16;
2135 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2136 		/* Do not retry else we can't see errors */
2137 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2138 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2139 			pr_err("error %d requesting status %#x\n",
2140 				err, cmd.resp[0]);
2141 			err = -EIO;
2142 			goto out;
2143 		}
2144 
2145 		/* Timeout if the device never becomes ready for data and
2146 		 * never leaves the program state.
2147 		 */
2148 		if (time_after(jiffies, timeout)) {
2149 			pr_err("%s: Card stuck in programming state! %s\n",
2150 				mmc_hostname(card->host), __func__);
2151 			err =  -EIO;
2152 			goto out;
2153 		}
2154 
2155 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2156 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2157 out:
2158 	mmc_retune_release(card->host);
2159 	return err;
2160 }
2161 
2162 /**
2163  * mmc_erase - erase sectors.
2164  * @card: card to erase
2165  * @from: first sector to erase
2166  * @nr: number of sectors to erase
2167  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2168  *
2169  * Caller must claim host before calling this function.
2170  */
2171 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2172 	      unsigned int arg)
2173 {
2174 	unsigned int rem, to = from + nr;
2175 	int err;
2176 
2177 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2178 	    !(card->csd.cmdclass & CCC_ERASE))
2179 		return -EOPNOTSUPP;
2180 
2181 	if (!card->erase_size)
2182 		return -EOPNOTSUPP;
2183 
2184 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2185 		return -EOPNOTSUPP;
2186 
2187 	if ((arg & MMC_SECURE_ARGS) &&
2188 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2189 		return -EOPNOTSUPP;
2190 
2191 	if ((arg & MMC_TRIM_ARGS) &&
2192 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2193 		return -EOPNOTSUPP;
2194 
2195 	if (arg == MMC_SECURE_ERASE_ARG) {
2196 		if (from % card->erase_size || nr % card->erase_size)
2197 			return -EINVAL;
2198 	}
2199 
2200 	if (arg == MMC_ERASE_ARG) {
2201 		rem = from % card->erase_size;
2202 		if (rem) {
2203 			rem = card->erase_size - rem;
2204 			from += rem;
2205 			if (nr > rem)
2206 				nr -= rem;
2207 			else
2208 				return 0;
2209 		}
2210 		rem = nr % card->erase_size;
2211 		if (rem)
2212 			nr -= rem;
2213 	}
2214 
2215 	if (nr == 0)
2216 		return 0;
2217 
2218 	to = from + nr;
2219 
2220 	if (to <= from)
2221 		return -EINVAL;
2222 
2223 	/* 'from' and 'to' are inclusive */
2224 	to -= 1;
2225 
2226 	/*
2227 	 * Special case where only one erase-group fits in the timeout budget:
2228 	 * If the region crosses an erase-group boundary on this particular
2229 	 * case, we will be trimming more than one erase-group which, does not
2230 	 * fit in the timeout budget of the controller, so we need to split it
2231 	 * and call mmc_do_erase() twice if necessary. This special case is
2232 	 * identified by the card->eg_boundary flag.
2233 	 */
2234 	rem = card->erase_size - (from % card->erase_size);
2235 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2236 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2237 		from += rem;
2238 		if ((err) || (to <= from))
2239 			return err;
2240 	}
2241 
2242 	return mmc_do_erase(card, from, to, arg);
2243 }
2244 EXPORT_SYMBOL(mmc_erase);
2245 
2246 int mmc_can_erase(struct mmc_card *card)
2247 {
2248 	if ((card->host->caps & MMC_CAP_ERASE) &&
2249 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2250 		return 1;
2251 	return 0;
2252 }
2253 EXPORT_SYMBOL(mmc_can_erase);
2254 
2255 int mmc_can_trim(struct mmc_card *card)
2256 {
2257 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2258 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2259 		return 1;
2260 	return 0;
2261 }
2262 EXPORT_SYMBOL(mmc_can_trim);
2263 
2264 int mmc_can_discard(struct mmc_card *card)
2265 {
2266 	/*
2267 	 * As there's no way to detect the discard support bit at v4.5
2268 	 * use the s/w feature support filed.
2269 	 */
2270 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2271 		return 1;
2272 	return 0;
2273 }
2274 EXPORT_SYMBOL(mmc_can_discard);
2275 
2276 int mmc_can_sanitize(struct mmc_card *card)
2277 {
2278 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2279 		return 0;
2280 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2281 		return 1;
2282 	return 0;
2283 }
2284 EXPORT_SYMBOL(mmc_can_sanitize);
2285 
2286 int mmc_can_secure_erase_trim(struct mmc_card *card)
2287 {
2288 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2289 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2290 		return 1;
2291 	return 0;
2292 }
2293 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2294 
2295 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2296 			    unsigned int nr)
2297 {
2298 	if (!card->erase_size)
2299 		return 0;
2300 	if (from % card->erase_size || nr % card->erase_size)
2301 		return 0;
2302 	return 1;
2303 }
2304 EXPORT_SYMBOL(mmc_erase_group_aligned);
2305 
2306 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2307 					    unsigned int arg)
2308 {
2309 	struct mmc_host *host = card->host;
2310 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2311 	unsigned int last_timeout = 0;
2312 
2313 	if (card->erase_shift)
2314 		max_qty = UINT_MAX >> card->erase_shift;
2315 	else if (mmc_card_sd(card))
2316 		max_qty = UINT_MAX;
2317 	else
2318 		max_qty = UINT_MAX / card->erase_size;
2319 
2320 	/* Find the largest qty with an OK timeout */
2321 	do {
2322 		y = 0;
2323 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2324 			timeout = mmc_erase_timeout(card, arg, qty + x);
2325 			if (timeout > host->max_busy_timeout)
2326 				break;
2327 			if (timeout < last_timeout)
2328 				break;
2329 			last_timeout = timeout;
2330 			y = x;
2331 		}
2332 		qty += y;
2333 	} while (y);
2334 
2335 	if (!qty)
2336 		return 0;
2337 
2338 	/*
2339 	 * When specifying a sector range to trim, chances are we might cross
2340 	 * an erase-group boundary even if the amount of sectors is less than
2341 	 * one erase-group.
2342 	 * If we can only fit one erase-group in the controller timeout budget,
2343 	 * we have to care that erase-group boundaries are not crossed by a
2344 	 * single trim operation. We flag that special case with "eg_boundary".
2345 	 * In all other cases we can just decrement qty and pretend that we
2346 	 * always touch (qty + 1) erase-groups as a simple optimization.
2347 	 */
2348 	if (qty == 1)
2349 		card->eg_boundary = 1;
2350 	else
2351 		qty--;
2352 
2353 	/* Convert qty to sectors */
2354 	if (card->erase_shift)
2355 		max_discard = qty << card->erase_shift;
2356 	else if (mmc_card_sd(card))
2357 		max_discard = qty + 1;
2358 	else
2359 		max_discard = qty * card->erase_size;
2360 
2361 	return max_discard;
2362 }
2363 
2364 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2365 {
2366 	struct mmc_host *host = card->host;
2367 	unsigned int max_discard, max_trim;
2368 
2369 	if (!host->max_busy_timeout)
2370 		return UINT_MAX;
2371 
2372 	/*
2373 	 * Without erase_group_def set, MMC erase timeout depends on clock
2374 	 * frequence which can change.  In that case, the best choice is
2375 	 * just the preferred erase size.
2376 	 */
2377 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2378 		return card->pref_erase;
2379 
2380 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2381 	if (mmc_can_trim(card)) {
2382 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2383 		if (max_trim < max_discard)
2384 			max_discard = max_trim;
2385 	} else if (max_discard < card->erase_size) {
2386 		max_discard = 0;
2387 	}
2388 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2389 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2390 	return max_discard;
2391 }
2392 EXPORT_SYMBOL(mmc_calc_max_discard);
2393 
2394 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2395 {
2396 	struct mmc_command cmd = {0};
2397 
2398 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2399 		return 0;
2400 
2401 	cmd.opcode = MMC_SET_BLOCKLEN;
2402 	cmd.arg = blocklen;
2403 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2404 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2405 }
2406 EXPORT_SYMBOL(mmc_set_blocklen);
2407 
2408 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2409 			bool is_rel_write)
2410 {
2411 	struct mmc_command cmd = {0};
2412 
2413 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2414 	cmd.arg = blockcount & 0x0000FFFF;
2415 	if (is_rel_write)
2416 		cmd.arg |= 1 << 31;
2417 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2418 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2419 }
2420 EXPORT_SYMBOL(mmc_set_blockcount);
2421 
2422 static void mmc_hw_reset_for_init(struct mmc_host *host)
2423 {
2424 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2425 		return;
2426 	mmc_host_clk_hold(host);
2427 	host->ops->hw_reset(host);
2428 	mmc_host_clk_release(host);
2429 }
2430 
2431 int mmc_hw_reset(struct mmc_host *host)
2432 {
2433 	int ret;
2434 
2435 	if (!host->card)
2436 		return -EINVAL;
2437 
2438 	mmc_bus_get(host);
2439 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2440 		mmc_bus_put(host);
2441 		return -EOPNOTSUPP;
2442 	}
2443 
2444 	ret = host->bus_ops->reset(host);
2445 	mmc_bus_put(host);
2446 
2447 	if (ret != -EOPNOTSUPP)
2448 		pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2449 
2450 	return ret;
2451 }
2452 EXPORT_SYMBOL(mmc_hw_reset);
2453 
2454 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455 {
2456 	host->f_init = freq;
2457 
2458 #ifdef CONFIG_MMC_DEBUG
2459 	pr_info("%s: %s: trying to init card at %u Hz\n",
2460 		mmc_hostname(host), __func__, host->f_init);
2461 #endif
2462 	mmc_power_up(host, host->ocr_avail);
2463 
2464 	/*
2465 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2466 	 * do a hardware reset if possible.
2467 	 */
2468 	mmc_hw_reset_for_init(host);
2469 
2470 	/*
2471 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2472 	 * if the card is being re-initialized, just send it.  CMD52
2473 	 * should be ignored by SD/eMMC cards.
2474 	 */
2475 	sdio_reset(host);
2476 	mmc_go_idle(host);
2477 
2478 	mmc_send_if_cond(host, host->ocr_avail);
2479 
2480 	/* Order's important: probe SDIO, then SD, then MMC */
2481 	if (!mmc_attach_sdio(host))
2482 		return 0;
2483 	if (!mmc_attach_sd(host))
2484 		return 0;
2485 	if (!mmc_attach_mmc(host))
2486 		return 0;
2487 
2488 	mmc_power_off(host);
2489 	return -EIO;
2490 }
2491 
2492 int _mmc_detect_card_removed(struct mmc_host *host)
2493 {
2494 	int ret;
2495 
2496 	if (host->caps & MMC_CAP_NONREMOVABLE)
2497 		return 0;
2498 
2499 	if (!host->card || mmc_card_removed(host->card))
2500 		return 1;
2501 
2502 	ret = host->bus_ops->alive(host);
2503 
2504 	/*
2505 	 * Card detect status and alive check may be out of sync if card is
2506 	 * removed slowly, when card detect switch changes while card/slot
2507 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2508 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2509 	 * detect work 200ms later for this case.
2510 	 */
2511 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2512 		mmc_detect_change(host, msecs_to_jiffies(200));
2513 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2514 	}
2515 
2516 	if (ret) {
2517 		mmc_card_set_removed(host->card);
2518 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2519 	}
2520 
2521 	return ret;
2522 }
2523 
2524 int mmc_detect_card_removed(struct mmc_host *host)
2525 {
2526 	struct mmc_card *card = host->card;
2527 	int ret;
2528 
2529 	WARN_ON(!host->claimed);
2530 
2531 	if (!card)
2532 		return 1;
2533 
2534 	ret = mmc_card_removed(card);
2535 	/*
2536 	 * The card will be considered unchanged unless we have been asked to
2537 	 * detect a change or host requires polling to provide card detection.
2538 	 */
2539 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2540 		return ret;
2541 
2542 	host->detect_change = 0;
2543 	if (!ret) {
2544 		ret = _mmc_detect_card_removed(host);
2545 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2546 			/*
2547 			 * Schedule a detect work as soon as possible to let a
2548 			 * rescan handle the card removal.
2549 			 */
2550 			cancel_delayed_work(&host->detect);
2551 			_mmc_detect_change(host, 0, false);
2552 		}
2553 	}
2554 
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(mmc_detect_card_removed);
2558 
2559 void mmc_rescan(struct work_struct *work)
2560 {
2561 	struct mmc_host *host =
2562 		container_of(work, struct mmc_host, detect.work);
2563 	int i;
2564 
2565 	if (host->trigger_card_event && host->ops->card_event) {
2566 		host->ops->card_event(host);
2567 		host->trigger_card_event = false;
2568 	}
2569 
2570 	if (host->rescan_disable)
2571 		return;
2572 
2573 	/* If there is a non-removable card registered, only scan once */
2574 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2575 		return;
2576 	host->rescan_entered = 1;
2577 
2578 	mmc_bus_get(host);
2579 
2580 	/*
2581 	 * if there is a _removable_ card registered, check whether it is
2582 	 * still present
2583 	 */
2584 	if (host->bus_ops && !host->bus_dead
2585 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2586 		host->bus_ops->detect(host);
2587 
2588 	host->detect_change = 0;
2589 
2590 	/*
2591 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2592 	 * the card is no longer present.
2593 	 */
2594 	mmc_bus_put(host);
2595 	mmc_bus_get(host);
2596 
2597 	/* if there still is a card present, stop here */
2598 	if (host->bus_ops != NULL) {
2599 		mmc_bus_put(host);
2600 		goto out;
2601 	}
2602 
2603 	/*
2604 	 * Only we can add a new handler, so it's safe to
2605 	 * release the lock here.
2606 	 */
2607 	mmc_bus_put(host);
2608 
2609 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2610 			host->ops->get_cd(host) == 0) {
2611 		mmc_claim_host(host);
2612 		mmc_power_off(host);
2613 		mmc_release_host(host);
2614 		goto out;
2615 	}
2616 
2617 	mmc_claim_host(host);
2618 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2619 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2620 			break;
2621 		if (freqs[i] <= host->f_min)
2622 			break;
2623 	}
2624 	mmc_release_host(host);
2625 
2626  out:
2627 	if (host->caps & MMC_CAP_NEEDS_POLL)
2628 		mmc_schedule_delayed_work(&host->detect, HZ);
2629 }
2630 
2631 void mmc_start_host(struct mmc_host *host)
2632 {
2633 	host->f_init = max(freqs[0], host->f_min);
2634 	host->rescan_disable = 0;
2635 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2636 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2637 		mmc_power_off(host);
2638 	else
2639 		mmc_power_up(host, host->ocr_avail);
2640 	mmc_gpiod_request_cd_irq(host);
2641 	_mmc_detect_change(host, 0, false);
2642 }
2643 
2644 void mmc_stop_host(struct mmc_host *host)
2645 {
2646 #ifdef CONFIG_MMC_DEBUG
2647 	unsigned long flags;
2648 	spin_lock_irqsave(&host->lock, flags);
2649 	host->removed = 1;
2650 	spin_unlock_irqrestore(&host->lock, flags);
2651 #endif
2652 	if (host->slot.cd_irq >= 0)
2653 		disable_irq(host->slot.cd_irq);
2654 
2655 	host->rescan_disable = 1;
2656 	cancel_delayed_work_sync(&host->detect);
2657 	mmc_flush_scheduled_work();
2658 
2659 	/* clear pm flags now and let card drivers set them as needed */
2660 	host->pm_flags = 0;
2661 
2662 	mmc_bus_get(host);
2663 	if (host->bus_ops && !host->bus_dead) {
2664 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2665 		host->bus_ops->remove(host);
2666 		mmc_claim_host(host);
2667 		mmc_detach_bus(host);
2668 		mmc_power_off(host);
2669 		mmc_release_host(host);
2670 		mmc_bus_put(host);
2671 		return;
2672 	}
2673 	mmc_bus_put(host);
2674 
2675 	BUG_ON(host->card);
2676 
2677 	mmc_power_off(host);
2678 }
2679 
2680 int mmc_power_save_host(struct mmc_host *host)
2681 {
2682 	int ret = 0;
2683 
2684 #ifdef CONFIG_MMC_DEBUG
2685 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2686 #endif
2687 
2688 	mmc_bus_get(host);
2689 
2690 	if (!host->bus_ops || host->bus_dead) {
2691 		mmc_bus_put(host);
2692 		return -EINVAL;
2693 	}
2694 
2695 	if (host->bus_ops->power_save)
2696 		ret = host->bus_ops->power_save(host);
2697 
2698 	mmc_bus_put(host);
2699 
2700 	mmc_power_off(host);
2701 
2702 	return ret;
2703 }
2704 EXPORT_SYMBOL(mmc_power_save_host);
2705 
2706 int mmc_power_restore_host(struct mmc_host *host)
2707 {
2708 	int ret;
2709 
2710 #ifdef CONFIG_MMC_DEBUG
2711 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2712 #endif
2713 
2714 	mmc_bus_get(host);
2715 
2716 	if (!host->bus_ops || host->bus_dead) {
2717 		mmc_bus_put(host);
2718 		return -EINVAL;
2719 	}
2720 
2721 	mmc_power_up(host, host->card->ocr);
2722 	ret = host->bus_ops->power_restore(host);
2723 
2724 	mmc_bus_put(host);
2725 
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL(mmc_power_restore_host);
2729 
2730 /*
2731  * Flush the cache to the non-volatile storage.
2732  */
2733 int mmc_flush_cache(struct mmc_card *card)
2734 {
2735 	int err = 0;
2736 
2737 	if (mmc_card_mmc(card) &&
2738 			(card->ext_csd.cache_size > 0) &&
2739 			(card->ext_csd.cache_ctrl & 1)) {
2740 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2741 				EXT_CSD_FLUSH_CACHE, 1, 0);
2742 		if (err)
2743 			pr_err("%s: cache flush error %d\n",
2744 					mmc_hostname(card->host), err);
2745 	}
2746 
2747 	return err;
2748 }
2749 EXPORT_SYMBOL(mmc_flush_cache);
2750 
2751 #ifdef CONFIG_PM
2752 
2753 /* Do the card removal on suspend if card is assumed removeable
2754  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2755    to sync the card.
2756 */
2757 int mmc_pm_notify(struct notifier_block *notify_block,
2758 					unsigned long mode, void *unused)
2759 {
2760 	struct mmc_host *host = container_of(
2761 		notify_block, struct mmc_host, pm_notify);
2762 	unsigned long flags;
2763 	int err = 0;
2764 
2765 	switch (mode) {
2766 	case PM_HIBERNATION_PREPARE:
2767 	case PM_SUSPEND_PREPARE:
2768 	case PM_RESTORE_PREPARE:
2769 		spin_lock_irqsave(&host->lock, flags);
2770 		host->rescan_disable = 1;
2771 		spin_unlock_irqrestore(&host->lock, flags);
2772 		cancel_delayed_work_sync(&host->detect);
2773 
2774 		if (!host->bus_ops)
2775 			break;
2776 
2777 		/* Validate prerequisites for suspend */
2778 		if (host->bus_ops->pre_suspend)
2779 			err = host->bus_ops->pre_suspend(host);
2780 		if (!err)
2781 			break;
2782 
2783 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2784 		host->bus_ops->remove(host);
2785 		mmc_claim_host(host);
2786 		mmc_detach_bus(host);
2787 		mmc_power_off(host);
2788 		mmc_release_host(host);
2789 		host->pm_flags = 0;
2790 		break;
2791 
2792 	case PM_POST_SUSPEND:
2793 	case PM_POST_HIBERNATION:
2794 	case PM_POST_RESTORE:
2795 
2796 		spin_lock_irqsave(&host->lock, flags);
2797 		host->rescan_disable = 0;
2798 		spin_unlock_irqrestore(&host->lock, flags);
2799 		_mmc_detect_change(host, 0, false);
2800 
2801 	}
2802 
2803 	return 0;
2804 }
2805 #endif
2806 
2807 /**
2808  * mmc_init_context_info() - init synchronization context
2809  * @host: mmc host
2810  *
2811  * Init struct context_info needed to implement asynchronous
2812  * request mechanism, used by mmc core, host driver and mmc requests
2813  * supplier.
2814  */
2815 void mmc_init_context_info(struct mmc_host *host)
2816 {
2817 	spin_lock_init(&host->context_info.lock);
2818 	host->context_info.is_new_req = false;
2819 	host->context_info.is_done_rcv = false;
2820 	host->context_info.is_waiting_last_req = false;
2821 	init_waitqueue_head(&host->context_info.wait);
2822 }
2823 
2824 static int __init mmc_init(void)
2825 {
2826 	int ret;
2827 
2828 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2829 	if (!workqueue)
2830 		return -ENOMEM;
2831 
2832 	ret = mmc_register_bus();
2833 	if (ret)
2834 		goto destroy_workqueue;
2835 
2836 	ret = mmc_register_host_class();
2837 	if (ret)
2838 		goto unregister_bus;
2839 
2840 	ret = sdio_register_bus();
2841 	if (ret)
2842 		goto unregister_host_class;
2843 
2844 	return 0;
2845 
2846 unregister_host_class:
2847 	mmc_unregister_host_class();
2848 unregister_bus:
2849 	mmc_unregister_bus();
2850 destroy_workqueue:
2851 	destroy_workqueue(workqueue);
2852 
2853 	return ret;
2854 }
2855 
2856 static void __exit mmc_exit(void)
2857 {
2858 	sdio_unregister_bus();
2859 	mmc_unregister_host_class();
2860 	mmc_unregister_bus();
2861 	destroy_workqueue(workqueue);
2862 }
2863 
2864 subsys_initcall(mmc_init);
2865 module_exit(mmc_exit);
2866 
2867 MODULE_LICENSE("GPL");
2868