1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #include "core.h" 40 #include "bus.h" 41 #include "host.h" 42 #include "sdio_bus.h" 43 #include "pwrseq.h" 44 45 #include "mmc_ops.h" 46 #include "sd_ops.h" 47 #include "sdio_ops.h" 48 49 /* If the device is not responding */ 50 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 51 52 /* 53 * Background operations can take a long time, depending on the housekeeping 54 * operations the card has to perform. 55 */ 56 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 57 58 static struct workqueue_struct *workqueue; 59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 60 61 /* 62 * Enabling software CRCs on the data blocks can be a significant (30%) 63 * performance cost, and for other reasons may not always be desired. 64 * So we allow it it to be disabled. 65 */ 66 bool use_spi_crc = 1; 67 module_param(use_spi_crc, bool, 0); 68 69 /* 70 * Internal function. Schedule delayed work in the MMC work queue. 71 */ 72 static int mmc_schedule_delayed_work(struct delayed_work *work, 73 unsigned long delay) 74 { 75 return queue_delayed_work(workqueue, work, delay); 76 } 77 78 /* 79 * Internal function. Flush all scheduled work from the MMC work queue. 80 */ 81 static void mmc_flush_scheduled_work(void) 82 { 83 flush_workqueue(workqueue); 84 } 85 86 #ifdef CONFIG_FAIL_MMC_REQUEST 87 88 /* 89 * Internal function. Inject random data errors. 90 * If mmc_data is NULL no errors are injected. 91 */ 92 static void mmc_should_fail_request(struct mmc_host *host, 93 struct mmc_request *mrq) 94 { 95 struct mmc_command *cmd = mrq->cmd; 96 struct mmc_data *data = mrq->data; 97 static const int data_errors[] = { 98 -ETIMEDOUT, 99 -EILSEQ, 100 -EIO, 101 }; 102 103 if (!data) 104 return; 105 106 if (cmd->error || data->error || 107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 108 return; 109 110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 112 } 113 114 #else /* CONFIG_FAIL_MMC_REQUEST */ 115 116 static inline void mmc_should_fail_request(struct mmc_host *host, 117 struct mmc_request *mrq) 118 { 119 } 120 121 #endif /* CONFIG_FAIL_MMC_REQUEST */ 122 123 /** 124 * mmc_request_done - finish processing an MMC request 125 * @host: MMC host which completed request 126 * @mrq: MMC request which request 127 * 128 * MMC drivers should call this function when they have completed 129 * their processing of a request. 130 */ 131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 132 { 133 struct mmc_command *cmd = mrq->cmd; 134 int err = cmd->error; 135 136 /* Flag re-tuning needed on CRC errors */ 137 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 138 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 139 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 140 (mrq->data && mrq->data->error == -EILSEQ) || 141 (mrq->stop && mrq->stop->error == -EILSEQ))) 142 mmc_retune_needed(host); 143 144 if (err && cmd->retries && mmc_host_is_spi(host)) { 145 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 146 cmd->retries = 0; 147 } 148 149 if (err && cmd->retries && !mmc_card_removed(host->card)) { 150 /* 151 * Request starter must handle retries - see 152 * mmc_wait_for_req_done(). 153 */ 154 if (mrq->done) 155 mrq->done(mrq); 156 } else { 157 mmc_should_fail_request(host, mrq); 158 159 led_trigger_event(host->led, LED_OFF); 160 161 if (mrq->sbc) { 162 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 163 mmc_hostname(host), mrq->sbc->opcode, 164 mrq->sbc->error, 165 mrq->sbc->resp[0], mrq->sbc->resp[1], 166 mrq->sbc->resp[2], mrq->sbc->resp[3]); 167 } 168 169 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 170 mmc_hostname(host), cmd->opcode, err, 171 cmd->resp[0], cmd->resp[1], 172 cmd->resp[2], cmd->resp[3]); 173 174 if (mrq->data) { 175 pr_debug("%s: %d bytes transferred: %d\n", 176 mmc_hostname(host), 177 mrq->data->bytes_xfered, mrq->data->error); 178 } 179 180 if (mrq->stop) { 181 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 182 mmc_hostname(host), mrq->stop->opcode, 183 mrq->stop->error, 184 mrq->stop->resp[0], mrq->stop->resp[1], 185 mrq->stop->resp[2], mrq->stop->resp[3]); 186 } 187 188 if (mrq->done) 189 mrq->done(mrq); 190 191 mmc_host_clk_release(host); 192 } 193 } 194 195 EXPORT_SYMBOL(mmc_request_done); 196 197 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 198 { 199 int err; 200 201 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 202 err = mmc_retune(host); 203 if (err) { 204 mrq->cmd->error = err; 205 mmc_request_done(host, mrq); 206 return; 207 } 208 209 host->ops->request(host, mrq); 210 } 211 212 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 213 { 214 #ifdef CONFIG_MMC_DEBUG 215 unsigned int i, sz; 216 struct scatterlist *sg; 217 #endif 218 mmc_retune_hold(host); 219 220 if (mmc_card_removed(host->card)) 221 return -ENOMEDIUM; 222 223 if (mrq->sbc) { 224 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 225 mmc_hostname(host), mrq->sbc->opcode, 226 mrq->sbc->arg, mrq->sbc->flags); 227 } 228 229 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 230 mmc_hostname(host), mrq->cmd->opcode, 231 mrq->cmd->arg, mrq->cmd->flags); 232 233 if (mrq->data) { 234 pr_debug("%s: blksz %d blocks %d flags %08x " 235 "tsac %d ms nsac %d\n", 236 mmc_hostname(host), mrq->data->blksz, 237 mrq->data->blocks, mrq->data->flags, 238 mrq->data->timeout_ns / 1000000, 239 mrq->data->timeout_clks); 240 } 241 242 if (mrq->stop) { 243 pr_debug("%s: CMD%u arg %08x flags %08x\n", 244 mmc_hostname(host), mrq->stop->opcode, 245 mrq->stop->arg, mrq->stop->flags); 246 } 247 248 WARN_ON(!host->claimed); 249 250 mrq->cmd->error = 0; 251 mrq->cmd->mrq = mrq; 252 if (mrq->sbc) { 253 mrq->sbc->error = 0; 254 mrq->sbc->mrq = mrq; 255 } 256 if (mrq->data) { 257 BUG_ON(mrq->data->blksz > host->max_blk_size); 258 BUG_ON(mrq->data->blocks > host->max_blk_count); 259 BUG_ON(mrq->data->blocks * mrq->data->blksz > 260 host->max_req_size); 261 262 #ifdef CONFIG_MMC_DEBUG 263 sz = 0; 264 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 265 sz += sg->length; 266 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 267 #endif 268 269 mrq->cmd->data = mrq->data; 270 mrq->data->error = 0; 271 mrq->data->mrq = mrq; 272 if (mrq->stop) { 273 mrq->data->stop = mrq->stop; 274 mrq->stop->error = 0; 275 mrq->stop->mrq = mrq; 276 } 277 } 278 mmc_host_clk_hold(host); 279 led_trigger_event(host->led, LED_FULL); 280 __mmc_start_request(host, mrq); 281 282 return 0; 283 } 284 285 /** 286 * mmc_start_bkops - start BKOPS for supported cards 287 * @card: MMC card to start BKOPS 288 * @form_exception: A flag to indicate if this function was 289 * called due to an exception raised by the card 290 * 291 * Start background operations whenever requested. 292 * When the urgent BKOPS bit is set in a R1 command response 293 * then background operations should be started immediately. 294 */ 295 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 296 { 297 int err; 298 int timeout; 299 bool use_busy_signal; 300 301 BUG_ON(!card); 302 303 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 304 return; 305 306 err = mmc_read_bkops_status(card); 307 if (err) { 308 pr_err("%s: Failed to read bkops status: %d\n", 309 mmc_hostname(card->host), err); 310 return; 311 } 312 313 if (!card->ext_csd.raw_bkops_status) 314 return; 315 316 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 317 from_exception) 318 return; 319 320 mmc_claim_host(card->host); 321 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 322 timeout = MMC_BKOPS_MAX_TIMEOUT; 323 use_busy_signal = true; 324 } else { 325 timeout = 0; 326 use_busy_signal = false; 327 } 328 329 mmc_retune_hold(card->host); 330 331 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 332 EXT_CSD_BKOPS_START, 1, timeout, 333 use_busy_signal, true, false); 334 if (err) { 335 pr_warn("%s: Error %d starting bkops\n", 336 mmc_hostname(card->host), err); 337 mmc_retune_release(card->host); 338 goto out; 339 } 340 341 /* 342 * For urgent bkops status (LEVEL_2 and more) 343 * bkops executed synchronously, otherwise 344 * the operation is in progress 345 */ 346 if (!use_busy_signal) 347 mmc_card_set_doing_bkops(card); 348 else 349 mmc_retune_release(card->host); 350 out: 351 mmc_release_host(card->host); 352 } 353 EXPORT_SYMBOL(mmc_start_bkops); 354 355 /* 356 * mmc_wait_data_done() - done callback for data request 357 * @mrq: done data request 358 * 359 * Wakes up mmc context, passed as a callback to host controller driver 360 */ 361 static void mmc_wait_data_done(struct mmc_request *mrq) 362 { 363 struct mmc_context_info *context_info = &mrq->host->context_info; 364 365 context_info->is_done_rcv = true; 366 wake_up_interruptible(&context_info->wait); 367 } 368 369 static void mmc_wait_done(struct mmc_request *mrq) 370 { 371 complete(&mrq->completion); 372 } 373 374 /* 375 *__mmc_start_data_req() - starts data request 376 * @host: MMC host to start the request 377 * @mrq: data request to start 378 * 379 * Sets the done callback to be called when request is completed by the card. 380 * Starts data mmc request execution 381 */ 382 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 383 { 384 int err; 385 386 mrq->done = mmc_wait_data_done; 387 mrq->host = host; 388 389 err = mmc_start_request(host, mrq); 390 if (err) { 391 mrq->cmd->error = err; 392 mmc_wait_data_done(mrq); 393 } 394 395 return err; 396 } 397 398 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 399 { 400 int err; 401 402 init_completion(&mrq->completion); 403 mrq->done = mmc_wait_done; 404 405 err = mmc_start_request(host, mrq); 406 if (err) { 407 mrq->cmd->error = err; 408 complete(&mrq->completion); 409 } 410 411 return err; 412 } 413 414 /* 415 * mmc_wait_for_data_req_done() - wait for request completed 416 * @host: MMC host to prepare the command. 417 * @mrq: MMC request to wait for 418 * 419 * Blocks MMC context till host controller will ack end of data request 420 * execution or new request notification arrives from the block layer. 421 * Handles command retries. 422 * 423 * Returns enum mmc_blk_status after checking errors. 424 */ 425 static int mmc_wait_for_data_req_done(struct mmc_host *host, 426 struct mmc_request *mrq, 427 struct mmc_async_req *next_req) 428 { 429 struct mmc_command *cmd; 430 struct mmc_context_info *context_info = &host->context_info; 431 int err; 432 unsigned long flags; 433 434 while (1) { 435 wait_event_interruptible(context_info->wait, 436 (context_info->is_done_rcv || 437 context_info->is_new_req)); 438 spin_lock_irqsave(&context_info->lock, flags); 439 context_info->is_waiting_last_req = false; 440 spin_unlock_irqrestore(&context_info->lock, flags); 441 if (context_info->is_done_rcv) { 442 context_info->is_done_rcv = false; 443 context_info->is_new_req = false; 444 cmd = mrq->cmd; 445 446 if (!cmd->error || !cmd->retries || 447 mmc_card_removed(host->card)) { 448 err = host->areq->err_check(host->card, 449 host->areq); 450 break; /* return err */ 451 } else { 452 mmc_retune_recheck(host); 453 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 454 mmc_hostname(host), 455 cmd->opcode, cmd->error); 456 cmd->retries--; 457 cmd->error = 0; 458 __mmc_start_request(host, mrq); 459 continue; /* wait for done/new event again */ 460 } 461 } else if (context_info->is_new_req) { 462 context_info->is_new_req = false; 463 if (!next_req) 464 return MMC_BLK_NEW_REQUEST; 465 } 466 } 467 mmc_retune_release(host); 468 return err; 469 } 470 471 static void mmc_wait_for_req_done(struct mmc_host *host, 472 struct mmc_request *mrq) 473 { 474 struct mmc_command *cmd; 475 476 while (1) { 477 wait_for_completion(&mrq->completion); 478 479 cmd = mrq->cmd; 480 481 /* 482 * If host has timed out waiting for the sanitize 483 * to complete, card might be still in programming state 484 * so let's try to bring the card out of programming 485 * state. 486 */ 487 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 488 if (!mmc_interrupt_hpi(host->card)) { 489 pr_warn("%s: %s: Interrupted sanitize\n", 490 mmc_hostname(host), __func__); 491 cmd->error = 0; 492 break; 493 } else { 494 pr_err("%s: %s: Failed to interrupt sanitize\n", 495 mmc_hostname(host), __func__); 496 } 497 } 498 if (!cmd->error || !cmd->retries || 499 mmc_card_removed(host->card)) 500 break; 501 502 mmc_retune_recheck(host); 503 504 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 505 mmc_hostname(host), cmd->opcode, cmd->error); 506 cmd->retries--; 507 cmd->error = 0; 508 __mmc_start_request(host, mrq); 509 } 510 511 mmc_retune_release(host); 512 } 513 514 /** 515 * mmc_pre_req - Prepare for a new request 516 * @host: MMC host to prepare command 517 * @mrq: MMC request to prepare for 518 * @is_first_req: true if there is no previous started request 519 * that may run in parellel to this call, otherwise false 520 * 521 * mmc_pre_req() is called in prior to mmc_start_req() to let 522 * host prepare for the new request. Preparation of a request may be 523 * performed while another request is running on the host. 524 */ 525 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 526 bool is_first_req) 527 { 528 if (host->ops->pre_req) { 529 mmc_host_clk_hold(host); 530 host->ops->pre_req(host, mrq, is_first_req); 531 mmc_host_clk_release(host); 532 } 533 } 534 535 /** 536 * mmc_post_req - Post process a completed request 537 * @host: MMC host to post process command 538 * @mrq: MMC request to post process for 539 * @err: Error, if non zero, clean up any resources made in pre_req 540 * 541 * Let the host post process a completed request. Post processing of 542 * a request may be performed while another reuqest is running. 543 */ 544 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 545 int err) 546 { 547 if (host->ops->post_req) { 548 mmc_host_clk_hold(host); 549 host->ops->post_req(host, mrq, err); 550 mmc_host_clk_release(host); 551 } 552 } 553 554 /** 555 * mmc_start_req - start a non-blocking request 556 * @host: MMC host to start command 557 * @areq: async request to start 558 * @error: out parameter returns 0 for success, otherwise non zero 559 * 560 * Start a new MMC custom command request for a host. 561 * If there is on ongoing async request wait for completion 562 * of that request and start the new one and return. 563 * Does not wait for the new request to complete. 564 * 565 * Returns the completed request, NULL in case of none completed. 566 * Wait for the an ongoing request (previoulsy started) to complete and 567 * return the completed request. If there is no ongoing request, NULL 568 * is returned without waiting. NULL is not an error condition. 569 */ 570 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 571 struct mmc_async_req *areq, int *error) 572 { 573 int err = 0; 574 int start_err = 0; 575 struct mmc_async_req *data = host->areq; 576 577 /* Prepare a new request */ 578 if (areq) 579 mmc_pre_req(host, areq->mrq, !host->areq); 580 581 if (host->areq) { 582 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 583 if (err == MMC_BLK_NEW_REQUEST) { 584 if (error) 585 *error = err; 586 /* 587 * The previous request was not completed, 588 * nothing to return 589 */ 590 return NULL; 591 } 592 /* 593 * Check BKOPS urgency for each R1 response 594 */ 595 if (host->card && mmc_card_mmc(host->card) && 596 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 597 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 598 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 599 600 /* Cancel the prepared request */ 601 if (areq) 602 mmc_post_req(host, areq->mrq, -EINVAL); 603 604 mmc_start_bkops(host->card, true); 605 606 /* prepare the request again */ 607 if (areq) 608 mmc_pre_req(host, areq->mrq, !host->areq); 609 } 610 } 611 612 if (!err && areq) 613 start_err = __mmc_start_data_req(host, areq->mrq); 614 615 if (host->areq) 616 mmc_post_req(host, host->areq->mrq, 0); 617 618 /* Cancel a prepared request if it was not started. */ 619 if ((err || start_err) && areq) 620 mmc_post_req(host, areq->mrq, -EINVAL); 621 622 if (err) 623 host->areq = NULL; 624 else 625 host->areq = areq; 626 627 if (error) 628 *error = err; 629 return data; 630 } 631 EXPORT_SYMBOL(mmc_start_req); 632 633 /** 634 * mmc_wait_for_req - start a request and wait for completion 635 * @host: MMC host to start command 636 * @mrq: MMC request to start 637 * 638 * Start a new MMC custom command request for a host, and wait 639 * for the command to complete. Does not attempt to parse the 640 * response. 641 */ 642 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 643 { 644 __mmc_start_req(host, mrq); 645 mmc_wait_for_req_done(host, mrq); 646 } 647 EXPORT_SYMBOL(mmc_wait_for_req); 648 649 /** 650 * mmc_interrupt_hpi - Issue for High priority Interrupt 651 * @card: the MMC card associated with the HPI transfer 652 * 653 * Issued High Priority Interrupt, and check for card status 654 * until out-of prg-state. 655 */ 656 int mmc_interrupt_hpi(struct mmc_card *card) 657 { 658 int err; 659 u32 status; 660 unsigned long prg_wait; 661 662 BUG_ON(!card); 663 664 if (!card->ext_csd.hpi_en) { 665 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 666 return 1; 667 } 668 669 mmc_claim_host(card->host); 670 err = mmc_send_status(card, &status); 671 if (err) { 672 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 673 goto out; 674 } 675 676 switch (R1_CURRENT_STATE(status)) { 677 case R1_STATE_IDLE: 678 case R1_STATE_READY: 679 case R1_STATE_STBY: 680 case R1_STATE_TRAN: 681 /* 682 * In idle and transfer states, HPI is not needed and the caller 683 * can issue the next intended command immediately 684 */ 685 goto out; 686 case R1_STATE_PRG: 687 break; 688 default: 689 /* In all other states, it's illegal to issue HPI */ 690 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 691 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 692 err = -EINVAL; 693 goto out; 694 } 695 696 err = mmc_send_hpi_cmd(card, &status); 697 if (err) 698 goto out; 699 700 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 701 do { 702 err = mmc_send_status(card, &status); 703 704 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 705 break; 706 if (time_after(jiffies, prg_wait)) 707 err = -ETIMEDOUT; 708 } while (!err); 709 710 out: 711 mmc_release_host(card->host); 712 return err; 713 } 714 EXPORT_SYMBOL(mmc_interrupt_hpi); 715 716 /** 717 * mmc_wait_for_cmd - start a command and wait for completion 718 * @host: MMC host to start command 719 * @cmd: MMC command to start 720 * @retries: maximum number of retries 721 * 722 * Start a new MMC command for a host, and wait for the command 723 * to complete. Return any error that occurred while the command 724 * was executing. Do not attempt to parse the response. 725 */ 726 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 727 { 728 struct mmc_request mrq = {NULL}; 729 730 WARN_ON(!host->claimed); 731 732 memset(cmd->resp, 0, sizeof(cmd->resp)); 733 cmd->retries = retries; 734 735 mrq.cmd = cmd; 736 cmd->data = NULL; 737 738 mmc_wait_for_req(host, &mrq); 739 740 return cmd->error; 741 } 742 743 EXPORT_SYMBOL(mmc_wait_for_cmd); 744 745 /** 746 * mmc_stop_bkops - stop ongoing BKOPS 747 * @card: MMC card to check BKOPS 748 * 749 * Send HPI command to stop ongoing background operations to 750 * allow rapid servicing of foreground operations, e.g. read/ 751 * writes. Wait until the card comes out of the programming state 752 * to avoid errors in servicing read/write requests. 753 */ 754 int mmc_stop_bkops(struct mmc_card *card) 755 { 756 int err = 0; 757 758 BUG_ON(!card); 759 err = mmc_interrupt_hpi(card); 760 761 /* 762 * If err is EINVAL, we can't issue an HPI. 763 * It should complete the BKOPS. 764 */ 765 if (!err || (err == -EINVAL)) { 766 mmc_card_clr_doing_bkops(card); 767 mmc_retune_release(card->host); 768 err = 0; 769 } 770 771 return err; 772 } 773 EXPORT_SYMBOL(mmc_stop_bkops); 774 775 int mmc_read_bkops_status(struct mmc_card *card) 776 { 777 int err; 778 u8 *ext_csd; 779 780 mmc_claim_host(card->host); 781 err = mmc_get_ext_csd(card, &ext_csd); 782 mmc_release_host(card->host); 783 if (err) 784 return err; 785 786 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 787 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 788 kfree(ext_csd); 789 return 0; 790 } 791 EXPORT_SYMBOL(mmc_read_bkops_status); 792 793 /** 794 * mmc_set_data_timeout - set the timeout for a data command 795 * @data: data phase for command 796 * @card: the MMC card associated with the data transfer 797 * 798 * Computes the data timeout parameters according to the 799 * correct algorithm given the card type. 800 */ 801 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 802 { 803 unsigned int mult; 804 805 /* 806 * SDIO cards only define an upper 1 s limit on access. 807 */ 808 if (mmc_card_sdio(card)) { 809 data->timeout_ns = 1000000000; 810 data->timeout_clks = 0; 811 return; 812 } 813 814 /* 815 * SD cards use a 100 multiplier rather than 10 816 */ 817 mult = mmc_card_sd(card) ? 100 : 10; 818 819 /* 820 * Scale up the multiplier (and therefore the timeout) by 821 * the r2w factor for writes. 822 */ 823 if (data->flags & MMC_DATA_WRITE) 824 mult <<= card->csd.r2w_factor; 825 826 data->timeout_ns = card->csd.tacc_ns * mult; 827 data->timeout_clks = card->csd.tacc_clks * mult; 828 829 /* 830 * SD cards also have an upper limit on the timeout. 831 */ 832 if (mmc_card_sd(card)) { 833 unsigned int timeout_us, limit_us; 834 835 timeout_us = data->timeout_ns / 1000; 836 if (mmc_host_clk_rate(card->host)) 837 timeout_us += data->timeout_clks * 1000 / 838 (mmc_host_clk_rate(card->host) / 1000); 839 840 if (data->flags & MMC_DATA_WRITE) 841 /* 842 * The MMC spec "It is strongly recommended 843 * for hosts to implement more than 500ms 844 * timeout value even if the card indicates 845 * the 250ms maximum busy length." Even the 846 * previous value of 300ms is known to be 847 * insufficient for some cards. 848 */ 849 limit_us = 3000000; 850 else 851 limit_us = 100000; 852 853 /* 854 * SDHC cards always use these fixed values. 855 */ 856 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 857 data->timeout_ns = limit_us * 1000; 858 data->timeout_clks = 0; 859 } 860 861 /* assign limit value if invalid */ 862 if (timeout_us == 0) 863 data->timeout_ns = limit_us * 1000; 864 } 865 866 /* 867 * Some cards require longer data read timeout than indicated in CSD. 868 * Address this by setting the read timeout to a "reasonably high" 869 * value. For the cards tested, 300ms has proven enough. If necessary, 870 * this value can be increased if other problematic cards require this. 871 */ 872 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 873 data->timeout_ns = 300000000; 874 data->timeout_clks = 0; 875 } 876 877 /* 878 * Some cards need very high timeouts if driven in SPI mode. 879 * The worst observed timeout was 900ms after writing a 880 * continuous stream of data until the internal logic 881 * overflowed. 882 */ 883 if (mmc_host_is_spi(card->host)) { 884 if (data->flags & MMC_DATA_WRITE) { 885 if (data->timeout_ns < 1000000000) 886 data->timeout_ns = 1000000000; /* 1s */ 887 } else { 888 if (data->timeout_ns < 100000000) 889 data->timeout_ns = 100000000; /* 100ms */ 890 } 891 } 892 } 893 EXPORT_SYMBOL(mmc_set_data_timeout); 894 895 /** 896 * mmc_align_data_size - pads a transfer size to a more optimal value 897 * @card: the MMC card associated with the data transfer 898 * @sz: original transfer size 899 * 900 * Pads the original data size with a number of extra bytes in 901 * order to avoid controller bugs and/or performance hits 902 * (e.g. some controllers revert to PIO for certain sizes). 903 * 904 * Returns the improved size, which might be unmodified. 905 * 906 * Note that this function is only relevant when issuing a 907 * single scatter gather entry. 908 */ 909 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 910 { 911 /* 912 * FIXME: We don't have a system for the controller to tell 913 * the core about its problems yet, so for now we just 32-bit 914 * align the size. 915 */ 916 sz = ((sz + 3) / 4) * 4; 917 918 return sz; 919 } 920 EXPORT_SYMBOL(mmc_align_data_size); 921 922 /** 923 * __mmc_claim_host - exclusively claim a host 924 * @host: mmc host to claim 925 * @abort: whether or not the operation should be aborted 926 * 927 * Claim a host for a set of operations. If @abort is non null and 928 * dereference a non-zero value then this will return prematurely with 929 * that non-zero value without acquiring the lock. Returns zero 930 * with the lock held otherwise. 931 */ 932 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 933 { 934 DECLARE_WAITQUEUE(wait, current); 935 unsigned long flags; 936 int stop; 937 bool pm = false; 938 939 might_sleep(); 940 941 add_wait_queue(&host->wq, &wait); 942 spin_lock_irqsave(&host->lock, flags); 943 while (1) { 944 set_current_state(TASK_UNINTERRUPTIBLE); 945 stop = abort ? atomic_read(abort) : 0; 946 if (stop || !host->claimed || host->claimer == current) 947 break; 948 spin_unlock_irqrestore(&host->lock, flags); 949 schedule(); 950 spin_lock_irqsave(&host->lock, flags); 951 } 952 set_current_state(TASK_RUNNING); 953 if (!stop) { 954 host->claimed = 1; 955 host->claimer = current; 956 host->claim_cnt += 1; 957 if (host->claim_cnt == 1) 958 pm = true; 959 } else 960 wake_up(&host->wq); 961 spin_unlock_irqrestore(&host->lock, flags); 962 remove_wait_queue(&host->wq, &wait); 963 964 if (pm) 965 pm_runtime_get_sync(mmc_dev(host)); 966 967 return stop; 968 } 969 EXPORT_SYMBOL(__mmc_claim_host); 970 971 /** 972 * mmc_release_host - release a host 973 * @host: mmc host to release 974 * 975 * Release a MMC host, allowing others to claim the host 976 * for their operations. 977 */ 978 void mmc_release_host(struct mmc_host *host) 979 { 980 unsigned long flags; 981 982 WARN_ON(!host->claimed); 983 984 spin_lock_irqsave(&host->lock, flags); 985 if (--host->claim_cnt) { 986 /* Release for nested claim */ 987 spin_unlock_irqrestore(&host->lock, flags); 988 } else { 989 host->claimed = 0; 990 host->claimer = NULL; 991 spin_unlock_irqrestore(&host->lock, flags); 992 wake_up(&host->wq); 993 pm_runtime_mark_last_busy(mmc_dev(host)); 994 pm_runtime_put_autosuspend(mmc_dev(host)); 995 } 996 } 997 EXPORT_SYMBOL(mmc_release_host); 998 999 /* 1000 * This is a helper function, which fetches a runtime pm reference for the 1001 * card device and also claims the host. 1002 */ 1003 void mmc_get_card(struct mmc_card *card) 1004 { 1005 pm_runtime_get_sync(&card->dev); 1006 mmc_claim_host(card->host); 1007 } 1008 EXPORT_SYMBOL(mmc_get_card); 1009 1010 /* 1011 * This is a helper function, which releases the host and drops the runtime 1012 * pm reference for the card device. 1013 */ 1014 void mmc_put_card(struct mmc_card *card) 1015 { 1016 mmc_release_host(card->host); 1017 pm_runtime_mark_last_busy(&card->dev); 1018 pm_runtime_put_autosuspend(&card->dev); 1019 } 1020 EXPORT_SYMBOL(mmc_put_card); 1021 1022 /* 1023 * Internal function that does the actual ios call to the host driver, 1024 * optionally printing some debug output. 1025 */ 1026 static inline void mmc_set_ios(struct mmc_host *host) 1027 { 1028 struct mmc_ios *ios = &host->ios; 1029 1030 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1031 "width %u timing %u\n", 1032 mmc_hostname(host), ios->clock, ios->bus_mode, 1033 ios->power_mode, ios->chip_select, ios->vdd, 1034 ios->bus_width, ios->timing); 1035 1036 if (ios->clock > 0) 1037 mmc_set_ungated(host); 1038 host->ops->set_ios(host, ios); 1039 } 1040 1041 /* 1042 * Control chip select pin on a host. 1043 */ 1044 void mmc_set_chip_select(struct mmc_host *host, int mode) 1045 { 1046 mmc_host_clk_hold(host); 1047 host->ios.chip_select = mode; 1048 mmc_set_ios(host); 1049 mmc_host_clk_release(host); 1050 } 1051 1052 /* 1053 * Sets the host clock to the highest possible frequency that 1054 * is below "hz". 1055 */ 1056 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 1057 { 1058 WARN_ON(hz && hz < host->f_min); 1059 1060 if (hz > host->f_max) 1061 hz = host->f_max; 1062 1063 host->ios.clock = hz; 1064 mmc_set_ios(host); 1065 } 1066 1067 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1068 { 1069 mmc_host_clk_hold(host); 1070 __mmc_set_clock(host, hz); 1071 mmc_host_clk_release(host); 1072 } 1073 1074 #ifdef CONFIG_MMC_CLKGATE 1075 /* 1076 * This gates the clock by setting it to 0 Hz. 1077 */ 1078 void mmc_gate_clock(struct mmc_host *host) 1079 { 1080 unsigned long flags; 1081 1082 spin_lock_irqsave(&host->clk_lock, flags); 1083 host->clk_old = host->ios.clock; 1084 host->ios.clock = 0; 1085 host->clk_gated = true; 1086 spin_unlock_irqrestore(&host->clk_lock, flags); 1087 mmc_set_ios(host); 1088 } 1089 1090 /* 1091 * This restores the clock from gating by using the cached 1092 * clock value. 1093 */ 1094 void mmc_ungate_clock(struct mmc_host *host) 1095 { 1096 /* 1097 * We should previously have gated the clock, so the clock shall 1098 * be 0 here! The clock may however be 0 during initialization, 1099 * when some request operations are performed before setting 1100 * the frequency. When ungate is requested in that situation 1101 * we just ignore the call. 1102 */ 1103 if (host->clk_old) { 1104 BUG_ON(host->ios.clock); 1105 /* This call will also set host->clk_gated to false */ 1106 __mmc_set_clock(host, host->clk_old); 1107 } 1108 } 1109 1110 void mmc_set_ungated(struct mmc_host *host) 1111 { 1112 unsigned long flags; 1113 1114 /* 1115 * We've been given a new frequency while the clock is gated, 1116 * so make sure we regard this as ungating it. 1117 */ 1118 spin_lock_irqsave(&host->clk_lock, flags); 1119 host->clk_gated = false; 1120 spin_unlock_irqrestore(&host->clk_lock, flags); 1121 } 1122 1123 #else 1124 void mmc_set_ungated(struct mmc_host *host) 1125 { 1126 } 1127 #endif 1128 1129 int mmc_execute_tuning(struct mmc_card *card) 1130 { 1131 struct mmc_host *host = card->host; 1132 u32 opcode; 1133 int err; 1134 1135 if (!host->ops->execute_tuning) 1136 return 0; 1137 1138 if (mmc_card_mmc(card)) 1139 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1140 else 1141 opcode = MMC_SEND_TUNING_BLOCK; 1142 1143 mmc_host_clk_hold(host); 1144 err = host->ops->execute_tuning(host, opcode); 1145 mmc_host_clk_release(host); 1146 1147 if (err) 1148 pr_err("%s: tuning execution failed\n", mmc_hostname(host)); 1149 else 1150 mmc_retune_enable(host); 1151 1152 return err; 1153 } 1154 1155 /* 1156 * Change the bus mode (open drain/push-pull) of a host. 1157 */ 1158 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1159 { 1160 mmc_host_clk_hold(host); 1161 host->ios.bus_mode = mode; 1162 mmc_set_ios(host); 1163 mmc_host_clk_release(host); 1164 } 1165 1166 /* 1167 * Change data bus width of a host. 1168 */ 1169 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1170 { 1171 mmc_host_clk_hold(host); 1172 host->ios.bus_width = width; 1173 mmc_set_ios(host); 1174 mmc_host_clk_release(host); 1175 } 1176 1177 /* 1178 * Set initial state after a power cycle or a hw_reset. 1179 */ 1180 void mmc_set_initial_state(struct mmc_host *host) 1181 { 1182 mmc_retune_disable(host); 1183 1184 if (mmc_host_is_spi(host)) 1185 host->ios.chip_select = MMC_CS_HIGH; 1186 else 1187 host->ios.chip_select = MMC_CS_DONTCARE; 1188 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1189 host->ios.bus_width = MMC_BUS_WIDTH_1; 1190 host->ios.timing = MMC_TIMING_LEGACY; 1191 host->ios.drv_type = 0; 1192 1193 mmc_set_ios(host); 1194 } 1195 1196 /** 1197 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1198 * @vdd: voltage (mV) 1199 * @low_bits: prefer low bits in boundary cases 1200 * 1201 * This function returns the OCR bit number according to the provided @vdd 1202 * value. If conversion is not possible a negative errno value returned. 1203 * 1204 * Depending on the @low_bits flag the function prefers low or high OCR bits 1205 * on boundary voltages. For example, 1206 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1207 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1208 * 1209 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1210 */ 1211 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1212 { 1213 const int max_bit = ilog2(MMC_VDD_35_36); 1214 int bit; 1215 1216 if (vdd < 1650 || vdd > 3600) 1217 return -EINVAL; 1218 1219 if (vdd >= 1650 && vdd <= 1950) 1220 return ilog2(MMC_VDD_165_195); 1221 1222 if (low_bits) 1223 vdd -= 1; 1224 1225 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1226 bit = (vdd - 2000) / 100 + 8; 1227 if (bit > max_bit) 1228 return max_bit; 1229 return bit; 1230 } 1231 1232 /** 1233 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1234 * @vdd_min: minimum voltage value (mV) 1235 * @vdd_max: maximum voltage value (mV) 1236 * 1237 * This function returns the OCR mask bits according to the provided @vdd_min 1238 * and @vdd_max values. If conversion is not possible the function returns 0. 1239 * 1240 * Notes wrt boundary cases: 1241 * This function sets the OCR bits for all boundary voltages, for example 1242 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1243 * MMC_VDD_34_35 mask. 1244 */ 1245 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1246 { 1247 u32 mask = 0; 1248 1249 if (vdd_max < vdd_min) 1250 return 0; 1251 1252 /* Prefer high bits for the boundary vdd_max values. */ 1253 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1254 if (vdd_max < 0) 1255 return 0; 1256 1257 /* Prefer low bits for the boundary vdd_min values. */ 1258 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1259 if (vdd_min < 0) 1260 return 0; 1261 1262 /* Fill the mask, from max bit to min bit. */ 1263 while (vdd_max >= vdd_min) 1264 mask |= 1 << vdd_max--; 1265 1266 return mask; 1267 } 1268 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1269 1270 #ifdef CONFIG_OF 1271 1272 /** 1273 * mmc_of_parse_voltage - return mask of supported voltages 1274 * @np: The device node need to be parsed. 1275 * @mask: mask of voltages available for MMC/SD/SDIO 1276 * 1277 * 1. Return zero on success. 1278 * 2. Return negative errno: voltage-range is invalid. 1279 */ 1280 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1281 { 1282 const u32 *voltage_ranges; 1283 int num_ranges, i; 1284 1285 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1286 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1287 if (!voltage_ranges || !num_ranges) { 1288 pr_info("%s: voltage-ranges unspecified\n", np->full_name); 1289 return -EINVAL; 1290 } 1291 1292 for (i = 0; i < num_ranges; i++) { 1293 const int j = i * 2; 1294 u32 ocr_mask; 1295 1296 ocr_mask = mmc_vddrange_to_ocrmask( 1297 be32_to_cpu(voltage_ranges[j]), 1298 be32_to_cpu(voltage_ranges[j + 1])); 1299 if (!ocr_mask) { 1300 pr_err("%s: voltage-range #%d is invalid\n", 1301 np->full_name, i); 1302 return -EINVAL; 1303 } 1304 *mask |= ocr_mask; 1305 } 1306 1307 return 0; 1308 } 1309 EXPORT_SYMBOL(mmc_of_parse_voltage); 1310 1311 #endif /* CONFIG_OF */ 1312 1313 static int mmc_of_get_func_num(struct device_node *node) 1314 { 1315 u32 reg; 1316 int ret; 1317 1318 ret = of_property_read_u32(node, "reg", ®); 1319 if (ret < 0) 1320 return ret; 1321 1322 return reg; 1323 } 1324 1325 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1326 unsigned func_num) 1327 { 1328 struct device_node *node; 1329 1330 if (!host->parent || !host->parent->of_node) 1331 return NULL; 1332 1333 for_each_child_of_node(host->parent->of_node, node) { 1334 if (mmc_of_get_func_num(node) == func_num) 1335 return node; 1336 } 1337 1338 return NULL; 1339 } 1340 1341 #ifdef CONFIG_REGULATOR 1342 1343 /** 1344 * mmc_regulator_get_ocrmask - return mask of supported voltages 1345 * @supply: regulator to use 1346 * 1347 * This returns either a negative errno, or a mask of voltages that 1348 * can be provided to MMC/SD/SDIO devices using the specified voltage 1349 * regulator. This would normally be called before registering the 1350 * MMC host adapter. 1351 */ 1352 int mmc_regulator_get_ocrmask(struct regulator *supply) 1353 { 1354 int result = 0; 1355 int count; 1356 int i; 1357 int vdd_uV; 1358 int vdd_mV; 1359 1360 count = regulator_count_voltages(supply); 1361 if (count < 0) 1362 return count; 1363 1364 for (i = 0; i < count; i++) { 1365 vdd_uV = regulator_list_voltage(supply, i); 1366 if (vdd_uV <= 0) 1367 continue; 1368 1369 vdd_mV = vdd_uV / 1000; 1370 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1371 } 1372 1373 if (!result) { 1374 vdd_uV = regulator_get_voltage(supply); 1375 if (vdd_uV <= 0) 1376 return vdd_uV; 1377 1378 vdd_mV = vdd_uV / 1000; 1379 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1380 } 1381 1382 return result; 1383 } 1384 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1385 1386 /** 1387 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1388 * @mmc: the host to regulate 1389 * @supply: regulator to use 1390 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1391 * 1392 * Returns zero on success, else negative errno. 1393 * 1394 * MMC host drivers may use this to enable or disable a regulator using 1395 * a particular supply voltage. This would normally be called from the 1396 * set_ios() method. 1397 */ 1398 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1399 struct regulator *supply, 1400 unsigned short vdd_bit) 1401 { 1402 int result = 0; 1403 int min_uV, max_uV; 1404 1405 if (vdd_bit) { 1406 int tmp; 1407 1408 /* 1409 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1410 * bits this regulator doesn't quite support ... don't 1411 * be too picky, most cards and regulators are OK with 1412 * a 0.1V range goof (it's a small error percentage). 1413 */ 1414 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1415 if (tmp == 0) { 1416 min_uV = 1650 * 1000; 1417 max_uV = 1950 * 1000; 1418 } else { 1419 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1420 max_uV = min_uV + 100 * 1000; 1421 } 1422 1423 result = regulator_set_voltage(supply, min_uV, max_uV); 1424 if (result == 0 && !mmc->regulator_enabled) { 1425 result = regulator_enable(supply); 1426 if (!result) 1427 mmc->regulator_enabled = true; 1428 } 1429 } else if (mmc->regulator_enabled) { 1430 result = regulator_disable(supply); 1431 if (result == 0) 1432 mmc->regulator_enabled = false; 1433 } 1434 1435 if (result) 1436 dev_err(mmc_dev(mmc), 1437 "could not set regulator OCR (%d)\n", result); 1438 return result; 1439 } 1440 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1441 1442 #endif /* CONFIG_REGULATOR */ 1443 1444 int mmc_regulator_get_supply(struct mmc_host *mmc) 1445 { 1446 struct device *dev = mmc_dev(mmc); 1447 int ret; 1448 1449 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1450 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1451 1452 if (IS_ERR(mmc->supply.vmmc)) { 1453 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1454 return -EPROBE_DEFER; 1455 dev_info(dev, "No vmmc regulator found\n"); 1456 } else { 1457 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1458 if (ret > 0) 1459 mmc->ocr_avail = ret; 1460 else 1461 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1462 } 1463 1464 if (IS_ERR(mmc->supply.vqmmc)) { 1465 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1466 return -EPROBE_DEFER; 1467 dev_info(dev, "No vqmmc regulator found\n"); 1468 } 1469 1470 return 0; 1471 } 1472 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1473 1474 /* 1475 * Mask off any voltages we don't support and select 1476 * the lowest voltage 1477 */ 1478 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1479 { 1480 int bit; 1481 1482 /* 1483 * Sanity check the voltages that the card claims to 1484 * support. 1485 */ 1486 if (ocr & 0x7F) { 1487 dev_warn(mmc_dev(host), 1488 "card claims to support voltages below defined range\n"); 1489 ocr &= ~0x7F; 1490 } 1491 1492 ocr &= host->ocr_avail; 1493 if (!ocr) { 1494 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1495 return 0; 1496 } 1497 1498 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1499 bit = ffs(ocr) - 1; 1500 ocr &= 3 << bit; 1501 mmc_power_cycle(host, ocr); 1502 } else { 1503 bit = fls(ocr) - 1; 1504 ocr &= 3 << bit; 1505 if (bit != host->ios.vdd) 1506 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1507 } 1508 1509 return ocr; 1510 } 1511 1512 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1513 { 1514 int err = 0; 1515 int old_signal_voltage = host->ios.signal_voltage; 1516 1517 host->ios.signal_voltage = signal_voltage; 1518 if (host->ops->start_signal_voltage_switch) { 1519 mmc_host_clk_hold(host); 1520 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1521 mmc_host_clk_release(host); 1522 } 1523 1524 if (err) 1525 host->ios.signal_voltage = old_signal_voltage; 1526 1527 return err; 1528 1529 } 1530 1531 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1532 { 1533 struct mmc_command cmd = {0}; 1534 int err = 0; 1535 u32 clock; 1536 1537 BUG_ON(!host); 1538 1539 /* 1540 * Send CMD11 only if the request is to switch the card to 1541 * 1.8V signalling. 1542 */ 1543 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1544 return __mmc_set_signal_voltage(host, signal_voltage); 1545 1546 /* 1547 * If we cannot switch voltages, return failure so the caller 1548 * can continue without UHS mode 1549 */ 1550 if (!host->ops->start_signal_voltage_switch) 1551 return -EPERM; 1552 if (!host->ops->card_busy) 1553 pr_warn("%s: cannot verify signal voltage switch\n", 1554 mmc_hostname(host)); 1555 1556 mmc_host_clk_hold(host); 1557 1558 cmd.opcode = SD_SWITCH_VOLTAGE; 1559 cmd.arg = 0; 1560 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1561 1562 err = mmc_wait_for_cmd(host, &cmd, 0); 1563 if (err) 1564 goto err_command; 1565 1566 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) { 1567 err = -EIO; 1568 goto err_command; 1569 } 1570 /* 1571 * The card should drive cmd and dat[0:3] low immediately 1572 * after the response of cmd11, but wait 1 ms to be sure 1573 */ 1574 mmc_delay(1); 1575 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1576 err = -EAGAIN; 1577 goto power_cycle; 1578 } 1579 /* 1580 * During a signal voltage level switch, the clock must be gated 1581 * for 5 ms according to the SD spec 1582 */ 1583 clock = host->ios.clock; 1584 host->ios.clock = 0; 1585 mmc_set_ios(host); 1586 1587 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1588 /* 1589 * Voltages may not have been switched, but we've already 1590 * sent CMD11, so a power cycle is required anyway 1591 */ 1592 err = -EAGAIN; 1593 goto power_cycle; 1594 } 1595 1596 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1597 mmc_delay(10); 1598 host->ios.clock = clock; 1599 mmc_set_ios(host); 1600 1601 /* Wait for at least 1 ms according to spec */ 1602 mmc_delay(1); 1603 1604 /* 1605 * Failure to switch is indicated by the card holding 1606 * dat[0:3] low 1607 */ 1608 if (host->ops->card_busy && host->ops->card_busy(host)) 1609 err = -EAGAIN; 1610 1611 power_cycle: 1612 if (err) { 1613 pr_debug("%s: Signal voltage switch failed, " 1614 "power cycling card\n", mmc_hostname(host)); 1615 mmc_power_cycle(host, ocr); 1616 } 1617 1618 err_command: 1619 mmc_host_clk_release(host); 1620 1621 return err; 1622 } 1623 1624 /* 1625 * Select timing parameters for host. 1626 */ 1627 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1628 { 1629 mmc_host_clk_hold(host); 1630 host->ios.timing = timing; 1631 mmc_set_ios(host); 1632 mmc_host_clk_release(host); 1633 } 1634 1635 /* 1636 * Select appropriate driver type for host. 1637 */ 1638 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1639 { 1640 mmc_host_clk_hold(host); 1641 host->ios.drv_type = drv_type; 1642 mmc_set_ios(host); 1643 mmc_host_clk_release(host); 1644 } 1645 1646 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1647 int card_drv_type, int *drv_type) 1648 { 1649 struct mmc_host *host = card->host; 1650 int host_drv_type = SD_DRIVER_TYPE_B; 1651 int drive_strength; 1652 1653 *drv_type = 0; 1654 1655 if (!host->ops->select_drive_strength) 1656 return 0; 1657 1658 /* Use SD definition of driver strength for hosts */ 1659 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1660 host_drv_type |= SD_DRIVER_TYPE_A; 1661 1662 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1663 host_drv_type |= SD_DRIVER_TYPE_C; 1664 1665 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1666 host_drv_type |= SD_DRIVER_TYPE_D; 1667 1668 /* 1669 * The drive strength that the hardware can support 1670 * depends on the board design. Pass the appropriate 1671 * information and let the hardware specific code 1672 * return what is possible given the options 1673 */ 1674 mmc_host_clk_hold(host); 1675 drive_strength = host->ops->select_drive_strength(card, max_dtr, 1676 host_drv_type, 1677 card_drv_type, 1678 drv_type); 1679 mmc_host_clk_release(host); 1680 1681 return drive_strength; 1682 } 1683 1684 /* 1685 * Apply power to the MMC stack. This is a two-stage process. 1686 * First, we enable power to the card without the clock running. 1687 * We then wait a bit for the power to stabilise. Finally, 1688 * enable the bus drivers and clock to the card. 1689 * 1690 * We must _NOT_ enable the clock prior to power stablising. 1691 * 1692 * If a host does all the power sequencing itself, ignore the 1693 * initial MMC_POWER_UP stage. 1694 */ 1695 void mmc_power_up(struct mmc_host *host, u32 ocr) 1696 { 1697 if (host->ios.power_mode == MMC_POWER_ON) 1698 return; 1699 1700 mmc_host_clk_hold(host); 1701 1702 mmc_pwrseq_pre_power_on(host); 1703 1704 host->ios.vdd = fls(ocr) - 1; 1705 host->ios.power_mode = MMC_POWER_UP; 1706 /* Set initial state and call mmc_set_ios */ 1707 mmc_set_initial_state(host); 1708 1709 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1710 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1711 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1712 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1713 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1714 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1715 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1716 1717 /* 1718 * This delay should be sufficient to allow the power supply 1719 * to reach the minimum voltage. 1720 */ 1721 mmc_delay(10); 1722 1723 mmc_pwrseq_post_power_on(host); 1724 1725 host->ios.clock = host->f_init; 1726 1727 host->ios.power_mode = MMC_POWER_ON; 1728 mmc_set_ios(host); 1729 1730 /* 1731 * This delay must be at least 74 clock sizes, or 1 ms, or the 1732 * time required to reach a stable voltage. 1733 */ 1734 mmc_delay(10); 1735 1736 mmc_host_clk_release(host); 1737 } 1738 1739 void mmc_power_off(struct mmc_host *host) 1740 { 1741 if (host->ios.power_mode == MMC_POWER_OFF) 1742 return; 1743 1744 mmc_host_clk_hold(host); 1745 1746 mmc_pwrseq_power_off(host); 1747 1748 host->ios.clock = 0; 1749 host->ios.vdd = 0; 1750 1751 host->ios.power_mode = MMC_POWER_OFF; 1752 /* Set initial state and call mmc_set_ios */ 1753 mmc_set_initial_state(host); 1754 1755 /* 1756 * Some configurations, such as the 802.11 SDIO card in the OLPC 1757 * XO-1.5, require a short delay after poweroff before the card 1758 * can be successfully turned on again. 1759 */ 1760 mmc_delay(1); 1761 1762 mmc_host_clk_release(host); 1763 } 1764 1765 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1766 { 1767 mmc_power_off(host); 1768 /* Wait at least 1 ms according to SD spec */ 1769 mmc_delay(1); 1770 mmc_power_up(host, ocr); 1771 } 1772 1773 /* 1774 * Cleanup when the last reference to the bus operator is dropped. 1775 */ 1776 static void __mmc_release_bus(struct mmc_host *host) 1777 { 1778 BUG_ON(!host); 1779 BUG_ON(host->bus_refs); 1780 BUG_ON(!host->bus_dead); 1781 1782 host->bus_ops = NULL; 1783 } 1784 1785 /* 1786 * Increase reference count of bus operator 1787 */ 1788 static inline void mmc_bus_get(struct mmc_host *host) 1789 { 1790 unsigned long flags; 1791 1792 spin_lock_irqsave(&host->lock, flags); 1793 host->bus_refs++; 1794 spin_unlock_irqrestore(&host->lock, flags); 1795 } 1796 1797 /* 1798 * Decrease reference count of bus operator and free it if 1799 * it is the last reference. 1800 */ 1801 static inline void mmc_bus_put(struct mmc_host *host) 1802 { 1803 unsigned long flags; 1804 1805 spin_lock_irqsave(&host->lock, flags); 1806 host->bus_refs--; 1807 if ((host->bus_refs == 0) && host->bus_ops) 1808 __mmc_release_bus(host); 1809 spin_unlock_irqrestore(&host->lock, flags); 1810 } 1811 1812 /* 1813 * Assign a mmc bus handler to a host. Only one bus handler may control a 1814 * host at any given time. 1815 */ 1816 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1817 { 1818 unsigned long flags; 1819 1820 BUG_ON(!host); 1821 BUG_ON(!ops); 1822 1823 WARN_ON(!host->claimed); 1824 1825 spin_lock_irqsave(&host->lock, flags); 1826 1827 BUG_ON(host->bus_ops); 1828 BUG_ON(host->bus_refs); 1829 1830 host->bus_ops = ops; 1831 host->bus_refs = 1; 1832 host->bus_dead = 0; 1833 1834 spin_unlock_irqrestore(&host->lock, flags); 1835 } 1836 1837 /* 1838 * Remove the current bus handler from a host. 1839 */ 1840 void mmc_detach_bus(struct mmc_host *host) 1841 { 1842 unsigned long flags; 1843 1844 BUG_ON(!host); 1845 1846 WARN_ON(!host->claimed); 1847 WARN_ON(!host->bus_ops); 1848 1849 spin_lock_irqsave(&host->lock, flags); 1850 1851 host->bus_dead = 1; 1852 1853 spin_unlock_irqrestore(&host->lock, flags); 1854 1855 mmc_bus_put(host); 1856 } 1857 1858 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1859 bool cd_irq) 1860 { 1861 #ifdef CONFIG_MMC_DEBUG 1862 unsigned long flags; 1863 spin_lock_irqsave(&host->lock, flags); 1864 WARN_ON(host->removed); 1865 spin_unlock_irqrestore(&host->lock, flags); 1866 #endif 1867 1868 /* 1869 * If the device is configured as wakeup, we prevent a new sleep for 1870 * 5 s to give provision for user space to consume the event. 1871 */ 1872 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1873 device_can_wakeup(mmc_dev(host))) 1874 pm_wakeup_event(mmc_dev(host), 5000); 1875 1876 host->detect_change = 1; 1877 mmc_schedule_delayed_work(&host->detect, delay); 1878 } 1879 1880 /** 1881 * mmc_detect_change - process change of state on a MMC socket 1882 * @host: host which changed state. 1883 * @delay: optional delay to wait before detection (jiffies) 1884 * 1885 * MMC drivers should call this when they detect a card has been 1886 * inserted or removed. The MMC layer will confirm that any 1887 * present card is still functional, and initialize any newly 1888 * inserted. 1889 */ 1890 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1891 { 1892 _mmc_detect_change(host, delay, true); 1893 } 1894 EXPORT_SYMBOL(mmc_detect_change); 1895 1896 void mmc_init_erase(struct mmc_card *card) 1897 { 1898 unsigned int sz; 1899 1900 if (is_power_of_2(card->erase_size)) 1901 card->erase_shift = ffs(card->erase_size) - 1; 1902 else 1903 card->erase_shift = 0; 1904 1905 /* 1906 * It is possible to erase an arbitrarily large area of an SD or MMC 1907 * card. That is not desirable because it can take a long time 1908 * (minutes) potentially delaying more important I/O, and also the 1909 * timeout calculations become increasingly hugely over-estimated. 1910 * Consequently, 'pref_erase' is defined as a guide to limit erases 1911 * to that size and alignment. 1912 * 1913 * For SD cards that define Allocation Unit size, limit erases to one 1914 * Allocation Unit at a time. For MMC cards that define High Capacity 1915 * Erase Size, whether it is switched on or not, limit to that size. 1916 * Otherwise just have a stab at a good value. For modern cards it 1917 * will end up being 4MiB. Note that if the value is too small, it 1918 * can end up taking longer to erase. 1919 */ 1920 if (mmc_card_sd(card) && card->ssr.au) { 1921 card->pref_erase = card->ssr.au; 1922 card->erase_shift = ffs(card->ssr.au) - 1; 1923 } else if (card->ext_csd.hc_erase_size) { 1924 card->pref_erase = card->ext_csd.hc_erase_size; 1925 } else if (card->erase_size) { 1926 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1927 if (sz < 128) 1928 card->pref_erase = 512 * 1024 / 512; 1929 else if (sz < 512) 1930 card->pref_erase = 1024 * 1024 / 512; 1931 else if (sz < 1024) 1932 card->pref_erase = 2 * 1024 * 1024 / 512; 1933 else 1934 card->pref_erase = 4 * 1024 * 1024 / 512; 1935 if (card->pref_erase < card->erase_size) 1936 card->pref_erase = card->erase_size; 1937 else { 1938 sz = card->pref_erase % card->erase_size; 1939 if (sz) 1940 card->pref_erase += card->erase_size - sz; 1941 } 1942 } else 1943 card->pref_erase = 0; 1944 } 1945 1946 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1947 unsigned int arg, unsigned int qty) 1948 { 1949 unsigned int erase_timeout; 1950 1951 if (arg == MMC_DISCARD_ARG || 1952 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1953 erase_timeout = card->ext_csd.trim_timeout; 1954 } else if (card->ext_csd.erase_group_def & 1) { 1955 /* High Capacity Erase Group Size uses HC timeouts */ 1956 if (arg == MMC_TRIM_ARG) 1957 erase_timeout = card->ext_csd.trim_timeout; 1958 else 1959 erase_timeout = card->ext_csd.hc_erase_timeout; 1960 } else { 1961 /* CSD Erase Group Size uses write timeout */ 1962 unsigned int mult = (10 << card->csd.r2w_factor); 1963 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1964 unsigned int timeout_us; 1965 1966 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1967 if (card->csd.tacc_ns < 1000000) 1968 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1969 else 1970 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1971 1972 /* 1973 * ios.clock is only a target. The real clock rate might be 1974 * less but not that much less, so fudge it by multiplying by 2. 1975 */ 1976 timeout_clks <<= 1; 1977 timeout_us += (timeout_clks * 1000) / 1978 (mmc_host_clk_rate(card->host) / 1000); 1979 1980 erase_timeout = timeout_us / 1000; 1981 1982 /* 1983 * Theoretically, the calculation could underflow so round up 1984 * to 1ms in that case. 1985 */ 1986 if (!erase_timeout) 1987 erase_timeout = 1; 1988 } 1989 1990 /* Multiplier for secure operations */ 1991 if (arg & MMC_SECURE_ARGS) { 1992 if (arg == MMC_SECURE_ERASE_ARG) 1993 erase_timeout *= card->ext_csd.sec_erase_mult; 1994 else 1995 erase_timeout *= card->ext_csd.sec_trim_mult; 1996 } 1997 1998 erase_timeout *= qty; 1999 2000 /* 2001 * Ensure at least a 1 second timeout for SPI as per 2002 * 'mmc_set_data_timeout()' 2003 */ 2004 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2005 erase_timeout = 1000; 2006 2007 return erase_timeout; 2008 } 2009 2010 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2011 unsigned int arg, 2012 unsigned int qty) 2013 { 2014 unsigned int erase_timeout; 2015 2016 if (card->ssr.erase_timeout) { 2017 /* Erase timeout specified in SD Status Register (SSR) */ 2018 erase_timeout = card->ssr.erase_timeout * qty + 2019 card->ssr.erase_offset; 2020 } else { 2021 /* 2022 * Erase timeout not specified in SD Status Register (SSR) so 2023 * use 250ms per write block. 2024 */ 2025 erase_timeout = 250 * qty; 2026 } 2027 2028 /* Must not be less than 1 second */ 2029 if (erase_timeout < 1000) 2030 erase_timeout = 1000; 2031 2032 return erase_timeout; 2033 } 2034 2035 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2036 unsigned int arg, 2037 unsigned int qty) 2038 { 2039 if (mmc_card_sd(card)) 2040 return mmc_sd_erase_timeout(card, arg, qty); 2041 else 2042 return mmc_mmc_erase_timeout(card, arg, qty); 2043 } 2044 2045 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2046 unsigned int to, unsigned int arg) 2047 { 2048 struct mmc_command cmd = {0}; 2049 unsigned int qty = 0; 2050 unsigned long timeout; 2051 int err; 2052 2053 mmc_retune_hold(card->host); 2054 2055 /* 2056 * qty is used to calculate the erase timeout which depends on how many 2057 * erase groups (or allocation units in SD terminology) are affected. 2058 * We count erasing part of an erase group as one erase group. 2059 * For SD, the allocation units are always a power of 2. For MMC, the 2060 * erase group size is almost certainly also power of 2, but it does not 2061 * seem to insist on that in the JEDEC standard, so we fall back to 2062 * division in that case. SD may not specify an allocation unit size, 2063 * in which case the timeout is based on the number of write blocks. 2064 * 2065 * Note that the timeout for secure trim 2 will only be correct if the 2066 * number of erase groups specified is the same as the total of all 2067 * preceding secure trim 1 commands. Since the power may have been 2068 * lost since the secure trim 1 commands occurred, it is generally 2069 * impossible to calculate the secure trim 2 timeout correctly. 2070 */ 2071 if (card->erase_shift) 2072 qty += ((to >> card->erase_shift) - 2073 (from >> card->erase_shift)) + 1; 2074 else if (mmc_card_sd(card)) 2075 qty += to - from + 1; 2076 else 2077 qty += ((to / card->erase_size) - 2078 (from / card->erase_size)) + 1; 2079 2080 if (!mmc_card_blockaddr(card)) { 2081 from <<= 9; 2082 to <<= 9; 2083 } 2084 2085 if (mmc_card_sd(card)) 2086 cmd.opcode = SD_ERASE_WR_BLK_START; 2087 else 2088 cmd.opcode = MMC_ERASE_GROUP_START; 2089 cmd.arg = from; 2090 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2091 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2092 if (err) { 2093 pr_err("mmc_erase: group start error %d, " 2094 "status %#x\n", err, cmd.resp[0]); 2095 err = -EIO; 2096 goto out; 2097 } 2098 2099 memset(&cmd, 0, sizeof(struct mmc_command)); 2100 if (mmc_card_sd(card)) 2101 cmd.opcode = SD_ERASE_WR_BLK_END; 2102 else 2103 cmd.opcode = MMC_ERASE_GROUP_END; 2104 cmd.arg = to; 2105 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2106 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2107 if (err) { 2108 pr_err("mmc_erase: group end error %d, status %#x\n", 2109 err, cmd.resp[0]); 2110 err = -EIO; 2111 goto out; 2112 } 2113 2114 memset(&cmd, 0, sizeof(struct mmc_command)); 2115 cmd.opcode = MMC_ERASE; 2116 cmd.arg = arg; 2117 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2118 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); 2119 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2120 if (err) { 2121 pr_err("mmc_erase: erase error %d, status %#x\n", 2122 err, cmd.resp[0]); 2123 err = -EIO; 2124 goto out; 2125 } 2126 2127 if (mmc_host_is_spi(card->host)) 2128 goto out; 2129 2130 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 2131 do { 2132 memset(&cmd, 0, sizeof(struct mmc_command)); 2133 cmd.opcode = MMC_SEND_STATUS; 2134 cmd.arg = card->rca << 16; 2135 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2136 /* Do not retry else we can't see errors */ 2137 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2138 if (err || (cmd.resp[0] & 0xFDF92000)) { 2139 pr_err("error %d requesting status %#x\n", 2140 err, cmd.resp[0]); 2141 err = -EIO; 2142 goto out; 2143 } 2144 2145 /* Timeout if the device never becomes ready for data and 2146 * never leaves the program state. 2147 */ 2148 if (time_after(jiffies, timeout)) { 2149 pr_err("%s: Card stuck in programming state! %s\n", 2150 mmc_hostname(card->host), __func__); 2151 err = -EIO; 2152 goto out; 2153 } 2154 2155 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2156 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2157 out: 2158 mmc_retune_release(card->host); 2159 return err; 2160 } 2161 2162 /** 2163 * mmc_erase - erase sectors. 2164 * @card: card to erase 2165 * @from: first sector to erase 2166 * @nr: number of sectors to erase 2167 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2168 * 2169 * Caller must claim host before calling this function. 2170 */ 2171 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2172 unsigned int arg) 2173 { 2174 unsigned int rem, to = from + nr; 2175 int err; 2176 2177 if (!(card->host->caps & MMC_CAP_ERASE) || 2178 !(card->csd.cmdclass & CCC_ERASE)) 2179 return -EOPNOTSUPP; 2180 2181 if (!card->erase_size) 2182 return -EOPNOTSUPP; 2183 2184 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2185 return -EOPNOTSUPP; 2186 2187 if ((arg & MMC_SECURE_ARGS) && 2188 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2189 return -EOPNOTSUPP; 2190 2191 if ((arg & MMC_TRIM_ARGS) && 2192 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2193 return -EOPNOTSUPP; 2194 2195 if (arg == MMC_SECURE_ERASE_ARG) { 2196 if (from % card->erase_size || nr % card->erase_size) 2197 return -EINVAL; 2198 } 2199 2200 if (arg == MMC_ERASE_ARG) { 2201 rem = from % card->erase_size; 2202 if (rem) { 2203 rem = card->erase_size - rem; 2204 from += rem; 2205 if (nr > rem) 2206 nr -= rem; 2207 else 2208 return 0; 2209 } 2210 rem = nr % card->erase_size; 2211 if (rem) 2212 nr -= rem; 2213 } 2214 2215 if (nr == 0) 2216 return 0; 2217 2218 to = from + nr; 2219 2220 if (to <= from) 2221 return -EINVAL; 2222 2223 /* 'from' and 'to' are inclusive */ 2224 to -= 1; 2225 2226 /* 2227 * Special case where only one erase-group fits in the timeout budget: 2228 * If the region crosses an erase-group boundary on this particular 2229 * case, we will be trimming more than one erase-group which, does not 2230 * fit in the timeout budget of the controller, so we need to split it 2231 * and call mmc_do_erase() twice if necessary. This special case is 2232 * identified by the card->eg_boundary flag. 2233 */ 2234 rem = card->erase_size - (from % card->erase_size); 2235 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2236 err = mmc_do_erase(card, from, from + rem - 1, arg); 2237 from += rem; 2238 if ((err) || (to <= from)) 2239 return err; 2240 } 2241 2242 return mmc_do_erase(card, from, to, arg); 2243 } 2244 EXPORT_SYMBOL(mmc_erase); 2245 2246 int mmc_can_erase(struct mmc_card *card) 2247 { 2248 if ((card->host->caps & MMC_CAP_ERASE) && 2249 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2250 return 1; 2251 return 0; 2252 } 2253 EXPORT_SYMBOL(mmc_can_erase); 2254 2255 int mmc_can_trim(struct mmc_card *card) 2256 { 2257 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2258 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2259 return 1; 2260 return 0; 2261 } 2262 EXPORT_SYMBOL(mmc_can_trim); 2263 2264 int mmc_can_discard(struct mmc_card *card) 2265 { 2266 /* 2267 * As there's no way to detect the discard support bit at v4.5 2268 * use the s/w feature support filed. 2269 */ 2270 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2271 return 1; 2272 return 0; 2273 } 2274 EXPORT_SYMBOL(mmc_can_discard); 2275 2276 int mmc_can_sanitize(struct mmc_card *card) 2277 { 2278 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2279 return 0; 2280 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2281 return 1; 2282 return 0; 2283 } 2284 EXPORT_SYMBOL(mmc_can_sanitize); 2285 2286 int mmc_can_secure_erase_trim(struct mmc_card *card) 2287 { 2288 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2289 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2290 return 1; 2291 return 0; 2292 } 2293 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2294 2295 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2296 unsigned int nr) 2297 { 2298 if (!card->erase_size) 2299 return 0; 2300 if (from % card->erase_size || nr % card->erase_size) 2301 return 0; 2302 return 1; 2303 } 2304 EXPORT_SYMBOL(mmc_erase_group_aligned); 2305 2306 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2307 unsigned int arg) 2308 { 2309 struct mmc_host *host = card->host; 2310 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2311 unsigned int last_timeout = 0; 2312 2313 if (card->erase_shift) 2314 max_qty = UINT_MAX >> card->erase_shift; 2315 else if (mmc_card_sd(card)) 2316 max_qty = UINT_MAX; 2317 else 2318 max_qty = UINT_MAX / card->erase_size; 2319 2320 /* Find the largest qty with an OK timeout */ 2321 do { 2322 y = 0; 2323 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2324 timeout = mmc_erase_timeout(card, arg, qty + x); 2325 if (timeout > host->max_busy_timeout) 2326 break; 2327 if (timeout < last_timeout) 2328 break; 2329 last_timeout = timeout; 2330 y = x; 2331 } 2332 qty += y; 2333 } while (y); 2334 2335 if (!qty) 2336 return 0; 2337 2338 /* 2339 * When specifying a sector range to trim, chances are we might cross 2340 * an erase-group boundary even if the amount of sectors is less than 2341 * one erase-group. 2342 * If we can only fit one erase-group in the controller timeout budget, 2343 * we have to care that erase-group boundaries are not crossed by a 2344 * single trim operation. We flag that special case with "eg_boundary". 2345 * In all other cases we can just decrement qty and pretend that we 2346 * always touch (qty + 1) erase-groups as a simple optimization. 2347 */ 2348 if (qty == 1) 2349 card->eg_boundary = 1; 2350 else 2351 qty--; 2352 2353 /* Convert qty to sectors */ 2354 if (card->erase_shift) 2355 max_discard = qty << card->erase_shift; 2356 else if (mmc_card_sd(card)) 2357 max_discard = qty + 1; 2358 else 2359 max_discard = qty * card->erase_size; 2360 2361 return max_discard; 2362 } 2363 2364 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2365 { 2366 struct mmc_host *host = card->host; 2367 unsigned int max_discard, max_trim; 2368 2369 if (!host->max_busy_timeout) 2370 return UINT_MAX; 2371 2372 /* 2373 * Without erase_group_def set, MMC erase timeout depends on clock 2374 * frequence which can change. In that case, the best choice is 2375 * just the preferred erase size. 2376 */ 2377 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2378 return card->pref_erase; 2379 2380 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2381 if (mmc_can_trim(card)) { 2382 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2383 if (max_trim < max_discard) 2384 max_discard = max_trim; 2385 } else if (max_discard < card->erase_size) { 2386 max_discard = 0; 2387 } 2388 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2389 mmc_hostname(host), max_discard, host->max_busy_timeout); 2390 return max_discard; 2391 } 2392 EXPORT_SYMBOL(mmc_calc_max_discard); 2393 2394 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2395 { 2396 struct mmc_command cmd = {0}; 2397 2398 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) 2399 return 0; 2400 2401 cmd.opcode = MMC_SET_BLOCKLEN; 2402 cmd.arg = blocklen; 2403 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2404 return mmc_wait_for_cmd(card->host, &cmd, 5); 2405 } 2406 EXPORT_SYMBOL(mmc_set_blocklen); 2407 2408 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2409 bool is_rel_write) 2410 { 2411 struct mmc_command cmd = {0}; 2412 2413 cmd.opcode = MMC_SET_BLOCK_COUNT; 2414 cmd.arg = blockcount & 0x0000FFFF; 2415 if (is_rel_write) 2416 cmd.arg |= 1 << 31; 2417 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2418 return mmc_wait_for_cmd(card->host, &cmd, 5); 2419 } 2420 EXPORT_SYMBOL(mmc_set_blockcount); 2421 2422 static void mmc_hw_reset_for_init(struct mmc_host *host) 2423 { 2424 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2425 return; 2426 mmc_host_clk_hold(host); 2427 host->ops->hw_reset(host); 2428 mmc_host_clk_release(host); 2429 } 2430 2431 int mmc_hw_reset(struct mmc_host *host) 2432 { 2433 int ret; 2434 2435 if (!host->card) 2436 return -EINVAL; 2437 2438 mmc_bus_get(host); 2439 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2440 mmc_bus_put(host); 2441 return -EOPNOTSUPP; 2442 } 2443 2444 ret = host->bus_ops->reset(host); 2445 mmc_bus_put(host); 2446 2447 if (ret != -EOPNOTSUPP) 2448 pr_warn("%s: tried to reset card\n", mmc_hostname(host)); 2449 2450 return ret; 2451 } 2452 EXPORT_SYMBOL(mmc_hw_reset); 2453 2454 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2455 { 2456 host->f_init = freq; 2457 2458 #ifdef CONFIG_MMC_DEBUG 2459 pr_info("%s: %s: trying to init card at %u Hz\n", 2460 mmc_hostname(host), __func__, host->f_init); 2461 #endif 2462 mmc_power_up(host, host->ocr_avail); 2463 2464 /* 2465 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2466 * do a hardware reset if possible. 2467 */ 2468 mmc_hw_reset_for_init(host); 2469 2470 /* 2471 * sdio_reset sends CMD52 to reset card. Since we do not know 2472 * if the card is being re-initialized, just send it. CMD52 2473 * should be ignored by SD/eMMC cards. 2474 */ 2475 sdio_reset(host); 2476 mmc_go_idle(host); 2477 2478 mmc_send_if_cond(host, host->ocr_avail); 2479 2480 /* Order's important: probe SDIO, then SD, then MMC */ 2481 if (!mmc_attach_sdio(host)) 2482 return 0; 2483 if (!mmc_attach_sd(host)) 2484 return 0; 2485 if (!mmc_attach_mmc(host)) 2486 return 0; 2487 2488 mmc_power_off(host); 2489 return -EIO; 2490 } 2491 2492 int _mmc_detect_card_removed(struct mmc_host *host) 2493 { 2494 int ret; 2495 2496 if (host->caps & MMC_CAP_NONREMOVABLE) 2497 return 0; 2498 2499 if (!host->card || mmc_card_removed(host->card)) 2500 return 1; 2501 2502 ret = host->bus_ops->alive(host); 2503 2504 /* 2505 * Card detect status and alive check may be out of sync if card is 2506 * removed slowly, when card detect switch changes while card/slot 2507 * pads are still contacted in hardware (refer to "SD Card Mechanical 2508 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2509 * detect work 200ms later for this case. 2510 */ 2511 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2512 mmc_detect_change(host, msecs_to_jiffies(200)); 2513 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2514 } 2515 2516 if (ret) { 2517 mmc_card_set_removed(host->card); 2518 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2519 } 2520 2521 return ret; 2522 } 2523 2524 int mmc_detect_card_removed(struct mmc_host *host) 2525 { 2526 struct mmc_card *card = host->card; 2527 int ret; 2528 2529 WARN_ON(!host->claimed); 2530 2531 if (!card) 2532 return 1; 2533 2534 ret = mmc_card_removed(card); 2535 /* 2536 * The card will be considered unchanged unless we have been asked to 2537 * detect a change or host requires polling to provide card detection. 2538 */ 2539 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2540 return ret; 2541 2542 host->detect_change = 0; 2543 if (!ret) { 2544 ret = _mmc_detect_card_removed(host); 2545 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2546 /* 2547 * Schedule a detect work as soon as possible to let a 2548 * rescan handle the card removal. 2549 */ 2550 cancel_delayed_work(&host->detect); 2551 _mmc_detect_change(host, 0, false); 2552 } 2553 } 2554 2555 return ret; 2556 } 2557 EXPORT_SYMBOL(mmc_detect_card_removed); 2558 2559 void mmc_rescan(struct work_struct *work) 2560 { 2561 struct mmc_host *host = 2562 container_of(work, struct mmc_host, detect.work); 2563 int i; 2564 2565 if (host->trigger_card_event && host->ops->card_event) { 2566 host->ops->card_event(host); 2567 host->trigger_card_event = false; 2568 } 2569 2570 if (host->rescan_disable) 2571 return; 2572 2573 /* If there is a non-removable card registered, only scan once */ 2574 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2575 return; 2576 host->rescan_entered = 1; 2577 2578 mmc_bus_get(host); 2579 2580 /* 2581 * if there is a _removable_ card registered, check whether it is 2582 * still present 2583 */ 2584 if (host->bus_ops && !host->bus_dead 2585 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2586 host->bus_ops->detect(host); 2587 2588 host->detect_change = 0; 2589 2590 /* 2591 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2592 * the card is no longer present. 2593 */ 2594 mmc_bus_put(host); 2595 mmc_bus_get(host); 2596 2597 /* if there still is a card present, stop here */ 2598 if (host->bus_ops != NULL) { 2599 mmc_bus_put(host); 2600 goto out; 2601 } 2602 2603 /* 2604 * Only we can add a new handler, so it's safe to 2605 * release the lock here. 2606 */ 2607 mmc_bus_put(host); 2608 2609 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd && 2610 host->ops->get_cd(host) == 0) { 2611 mmc_claim_host(host); 2612 mmc_power_off(host); 2613 mmc_release_host(host); 2614 goto out; 2615 } 2616 2617 mmc_claim_host(host); 2618 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2619 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2620 break; 2621 if (freqs[i] <= host->f_min) 2622 break; 2623 } 2624 mmc_release_host(host); 2625 2626 out: 2627 if (host->caps & MMC_CAP_NEEDS_POLL) 2628 mmc_schedule_delayed_work(&host->detect, HZ); 2629 } 2630 2631 void mmc_start_host(struct mmc_host *host) 2632 { 2633 host->f_init = max(freqs[0], host->f_min); 2634 host->rescan_disable = 0; 2635 host->ios.power_mode = MMC_POWER_UNDEFINED; 2636 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2637 mmc_power_off(host); 2638 else 2639 mmc_power_up(host, host->ocr_avail); 2640 mmc_gpiod_request_cd_irq(host); 2641 _mmc_detect_change(host, 0, false); 2642 } 2643 2644 void mmc_stop_host(struct mmc_host *host) 2645 { 2646 #ifdef CONFIG_MMC_DEBUG 2647 unsigned long flags; 2648 spin_lock_irqsave(&host->lock, flags); 2649 host->removed = 1; 2650 spin_unlock_irqrestore(&host->lock, flags); 2651 #endif 2652 if (host->slot.cd_irq >= 0) 2653 disable_irq(host->slot.cd_irq); 2654 2655 host->rescan_disable = 1; 2656 cancel_delayed_work_sync(&host->detect); 2657 mmc_flush_scheduled_work(); 2658 2659 /* clear pm flags now and let card drivers set them as needed */ 2660 host->pm_flags = 0; 2661 2662 mmc_bus_get(host); 2663 if (host->bus_ops && !host->bus_dead) { 2664 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2665 host->bus_ops->remove(host); 2666 mmc_claim_host(host); 2667 mmc_detach_bus(host); 2668 mmc_power_off(host); 2669 mmc_release_host(host); 2670 mmc_bus_put(host); 2671 return; 2672 } 2673 mmc_bus_put(host); 2674 2675 BUG_ON(host->card); 2676 2677 mmc_power_off(host); 2678 } 2679 2680 int mmc_power_save_host(struct mmc_host *host) 2681 { 2682 int ret = 0; 2683 2684 #ifdef CONFIG_MMC_DEBUG 2685 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2686 #endif 2687 2688 mmc_bus_get(host); 2689 2690 if (!host->bus_ops || host->bus_dead) { 2691 mmc_bus_put(host); 2692 return -EINVAL; 2693 } 2694 2695 if (host->bus_ops->power_save) 2696 ret = host->bus_ops->power_save(host); 2697 2698 mmc_bus_put(host); 2699 2700 mmc_power_off(host); 2701 2702 return ret; 2703 } 2704 EXPORT_SYMBOL(mmc_power_save_host); 2705 2706 int mmc_power_restore_host(struct mmc_host *host) 2707 { 2708 int ret; 2709 2710 #ifdef CONFIG_MMC_DEBUG 2711 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2712 #endif 2713 2714 mmc_bus_get(host); 2715 2716 if (!host->bus_ops || host->bus_dead) { 2717 mmc_bus_put(host); 2718 return -EINVAL; 2719 } 2720 2721 mmc_power_up(host, host->card->ocr); 2722 ret = host->bus_ops->power_restore(host); 2723 2724 mmc_bus_put(host); 2725 2726 return ret; 2727 } 2728 EXPORT_SYMBOL(mmc_power_restore_host); 2729 2730 /* 2731 * Flush the cache to the non-volatile storage. 2732 */ 2733 int mmc_flush_cache(struct mmc_card *card) 2734 { 2735 int err = 0; 2736 2737 if (mmc_card_mmc(card) && 2738 (card->ext_csd.cache_size > 0) && 2739 (card->ext_csd.cache_ctrl & 1)) { 2740 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2741 EXT_CSD_FLUSH_CACHE, 1, 0); 2742 if (err) 2743 pr_err("%s: cache flush error %d\n", 2744 mmc_hostname(card->host), err); 2745 } 2746 2747 return err; 2748 } 2749 EXPORT_SYMBOL(mmc_flush_cache); 2750 2751 #ifdef CONFIG_PM 2752 2753 /* Do the card removal on suspend if card is assumed removeable 2754 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2755 to sync the card. 2756 */ 2757 int mmc_pm_notify(struct notifier_block *notify_block, 2758 unsigned long mode, void *unused) 2759 { 2760 struct mmc_host *host = container_of( 2761 notify_block, struct mmc_host, pm_notify); 2762 unsigned long flags; 2763 int err = 0; 2764 2765 switch (mode) { 2766 case PM_HIBERNATION_PREPARE: 2767 case PM_SUSPEND_PREPARE: 2768 case PM_RESTORE_PREPARE: 2769 spin_lock_irqsave(&host->lock, flags); 2770 host->rescan_disable = 1; 2771 spin_unlock_irqrestore(&host->lock, flags); 2772 cancel_delayed_work_sync(&host->detect); 2773 2774 if (!host->bus_ops) 2775 break; 2776 2777 /* Validate prerequisites for suspend */ 2778 if (host->bus_ops->pre_suspend) 2779 err = host->bus_ops->pre_suspend(host); 2780 if (!err) 2781 break; 2782 2783 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2784 host->bus_ops->remove(host); 2785 mmc_claim_host(host); 2786 mmc_detach_bus(host); 2787 mmc_power_off(host); 2788 mmc_release_host(host); 2789 host->pm_flags = 0; 2790 break; 2791 2792 case PM_POST_SUSPEND: 2793 case PM_POST_HIBERNATION: 2794 case PM_POST_RESTORE: 2795 2796 spin_lock_irqsave(&host->lock, flags); 2797 host->rescan_disable = 0; 2798 spin_unlock_irqrestore(&host->lock, flags); 2799 _mmc_detect_change(host, 0, false); 2800 2801 } 2802 2803 return 0; 2804 } 2805 #endif 2806 2807 /** 2808 * mmc_init_context_info() - init synchronization context 2809 * @host: mmc host 2810 * 2811 * Init struct context_info needed to implement asynchronous 2812 * request mechanism, used by mmc core, host driver and mmc requests 2813 * supplier. 2814 */ 2815 void mmc_init_context_info(struct mmc_host *host) 2816 { 2817 spin_lock_init(&host->context_info.lock); 2818 host->context_info.is_new_req = false; 2819 host->context_info.is_done_rcv = false; 2820 host->context_info.is_waiting_last_req = false; 2821 init_waitqueue_head(&host->context_info.wait); 2822 } 2823 2824 static int __init mmc_init(void) 2825 { 2826 int ret; 2827 2828 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2829 if (!workqueue) 2830 return -ENOMEM; 2831 2832 ret = mmc_register_bus(); 2833 if (ret) 2834 goto destroy_workqueue; 2835 2836 ret = mmc_register_host_class(); 2837 if (ret) 2838 goto unregister_bus; 2839 2840 ret = sdio_register_bus(); 2841 if (ret) 2842 goto unregister_host_class; 2843 2844 return 0; 2845 2846 unregister_host_class: 2847 mmc_unregister_host_class(); 2848 unregister_bus: 2849 mmc_unregister_bus(); 2850 destroy_workqueue: 2851 destroy_workqueue(workqueue); 2852 2853 return ret; 2854 } 2855 2856 static void __exit mmc_exit(void) 2857 { 2858 sdio_unregister_bus(); 2859 mmc_unregister_host_class(); 2860 mmc_unregister_bus(); 2861 destroy_workqueue(workqueue); 2862 } 2863 2864 subsys_initcall(mmc_init); 2865 module_exit(mmc_exit); 2866 2867 MODULE_LICENSE("GPL"); 2868