xref: /linux/drivers/mmc/core/core.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
35 
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
40 
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
44 
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
47 
48 /*
49  * Background operations can take a long time, depending on the housekeeping
50  * operations the card has to perform.
51  */
52 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
53 
54 static struct workqueue_struct *workqueue;
55 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56 
57 /*
58  * Enabling software CRCs on the data blocks can be a significant (30%)
59  * performance cost, and for other reasons may not always be desired.
60  * So we allow it it to be disabled.
61  */
62 bool use_spi_crc = 1;
63 module_param(use_spi_crc, bool, 0);
64 
65 /*
66  * We normally treat cards as removed during suspend if they are not
67  * known to be on a non-removable bus, to avoid the risk of writing
68  * back data to a different card after resume.  Allow this to be
69  * overridden if necessary.
70  */
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable;
73 #else
74 bool mmc_assume_removable = 1;
75 #endif
76 EXPORT_SYMBOL(mmc_assume_removable);
77 module_param_named(removable, mmc_assume_removable, bool, 0644);
78 MODULE_PARM_DESC(
79 	removable,
80 	"MMC/SD cards are removable and may be removed during suspend");
81 
82 /*
83  * Internal function. Schedule delayed work in the MMC work queue.
84  */
85 static int mmc_schedule_delayed_work(struct delayed_work *work,
86 				     unsigned long delay)
87 {
88 	return queue_delayed_work(workqueue, work, delay);
89 }
90 
91 /*
92  * Internal function. Flush all scheduled work from the MMC work queue.
93  */
94 static void mmc_flush_scheduled_work(void)
95 {
96 	flush_workqueue(workqueue);
97 }
98 
99 #ifdef CONFIG_FAIL_MMC_REQUEST
100 
101 /*
102  * Internal function. Inject random data errors.
103  * If mmc_data is NULL no errors are injected.
104  */
105 static void mmc_should_fail_request(struct mmc_host *host,
106 				    struct mmc_request *mrq)
107 {
108 	struct mmc_command *cmd = mrq->cmd;
109 	struct mmc_data *data = mrq->data;
110 	static const int data_errors[] = {
111 		-ETIMEDOUT,
112 		-EILSEQ,
113 		-EIO,
114 	};
115 
116 	if (!data)
117 		return;
118 
119 	if (cmd->error || data->error ||
120 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 		return;
122 
123 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
124 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
125 }
126 
127 #else /* CONFIG_FAIL_MMC_REQUEST */
128 
129 static inline void mmc_should_fail_request(struct mmc_host *host,
130 					   struct mmc_request *mrq)
131 {
132 }
133 
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
135 
136 /**
137  *	mmc_request_done - finish processing an MMC request
138  *	@host: MMC host which completed request
139  *	@mrq: MMC request which request
140  *
141  *	MMC drivers should call this function when they have completed
142  *	their processing of a request.
143  */
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 	struct mmc_command *cmd = mrq->cmd;
147 	int err = cmd->error;
148 
149 	if (err && cmd->retries && mmc_host_is_spi(host)) {
150 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 			cmd->retries = 0;
152 	}
153 
154 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
155 		/*
156 		 * Request starter must handle retries - see
157 		 * mmc_wait_for_req_done().
158 		 */
159 		if (mrq->done)
160 			mrq->done(mrq);
161 	} else {
162 		mmc_should_fail_request(host, mrq);
163 
164 		led_trigger_event(host->led, LED_OFF);
165 
166 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 			mmc_hostname(host), cmd->opcode, err,
168 			cmd->resp[0], cmd->resp[1],
169 			cmd->resp[2], cmd->resp[3]);
170 
171 		if (mrq->data) {
172 			pr_debug("%s:     %d bytes transferred: %d\n",
173 				mmc_hostname(host),
174 				mrq->data->bytes_xfered, mrq->data->error);
175 		}
176 
177 		if (mrq->stop) {
178 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
179 				mmc_hostname(host), mrq->stop->opcode,
180 				mrq->stop->error,
181 				mrq->stop->resp[0], mrq->stop->resp[1],
182 				mrq->stop->resp[2], mrq->stop->resp[3]);
183 		}
184 
185 		if (mrq->done)
186 			mrq->done(mrq);
187 
188 		mmc_host_clk_release(host);
189 	}
190 }
191 
192 EXPORT_SYMBOL(mmc_request_done);
193 
194 static void
195 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196 {
197 #ifdef CONFIG_MMC_DEBUG
198 	unsigned int i, sz;
199 	struct scatterlist *sg;
200 #endif
201 
202 	if (mrq->sbc) {
203 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 			 mmc_hostname(host), mrq->sbc->opcode,
205 			 mrq->sbc->arg, mrq->sbc->flags);
206 	}
207 
208 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 		 mmc_hostname(host), mrq->cmd->opcode,
210 		 mrq->cmd->arg, mrq->cmd->flags);
211 
212 	if (mrq->data) {
213 		pr_debug("%s:     blksz %d blocks %d flags %08x "
214 			"tsac %d ms nsac %d\n",
215 			mmc_hostname(host), mrq->data->blksz,
216 			mrq->data->blocks, mrq->data->flags,
217 			mrq->data->timeout_ns / 1000000,
218 			mrq->data->timeout_clks);
219 	}
220 
221 	if (mrq->stop) {
222 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
223 			 mmc_hostname(host), mrq->stop->opcode,
224 			 mrq->stop->arg, mrq->stop->flags);
225 	}
226 
227 	WARN_ON(!host->claimed);
228 
229 	mrq->cmd->error = 0;
230 	mrq->cmd->mrq = mrq;
231 	if (mrq->data) {
232 		BUG_ON(mrq->data->blksz > host->max_blk_size);
233 		BUG_ON(mrq->data->blocks > host->max_blk_count);
234 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 			host->max_req_size);
236 
237 #ifdef CONFIG_MMC_DEBUG
238 		sz = 0;
239 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 			sz += sg->length;
241 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
243 
244 		mrq->cmd->data = mrq->data;
245 		mrq->data->error = 0;
246 		mrq->data->mrq = mrq;
247 		if (mrq->stop) {
248 			mrq->data->stop = mrq->stop;
249 			mrq->stop->error = 0;
250 			mrq->stop->mrq = mrq;
251 		}
252 	}
253 	mmc_host_clk_hold(host);
254 	led_trigger_event(host->led, LED_FULL);
255 	host->ops->request(host, mrq);
256 }
257 
258 /**
259  *	mmc_start_bkops - start BKOPS for supported cards
260  *	@card: MMC card to start BKOPS
261  *	@form_exception: A flag to indicate if this function was
262  *			 called due to an exception raised by the card
263  *
264  *	Start background operations whenever requested.
265  *	When the urgent BKOPS bit is set in a R1 command response
266  *	then background operations should be started immediately.
267 */
268 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
269 {
270 	int err;
271 	int timeout;
272 	bool use_busy_signal;
273 
274 	BUG_ON(!card);
275 
276 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 		return;
278 
279 	err = mmc_read_bkops_status(card);
280 	if (err) {
281 		pr_err("%s: Failed to read bkops status: %d\n",
282 		       mmc_hostname(card->host), err);
283 		return;
284 	}
285 
286 	if (!card->ext_csd.raw_bkops_status)
287 		return;
288 
289 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 	    from_exception)
291 		return;
292 
293 	mmc_claim_host(card->host);
294 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 		timeout = MMC_BKOPS_MAX_TIMEOUT;
296 		use_busy_signal = true;
297 	} else {
298 		timeout = 0;
299 		use_busy_signal = false;
300 	}
301 
302 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 			EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 	if (err) {
305 		pr_warn("%s: Error %d starting bkops\n",
306 			mmc_hostname(card->host), err);
307 		goto out;
308 	}
309 
310 	/*
311 	 * For urgent bkops status (LEVEL_2 and more)
312 	 * bkops executed synchronously, otherwise
313 	 * the operation is in progress
314 	 */
315 	if (!use_busy_signal)
316 		mmc_card_set_doing_bkops(card);
317 out:
318 	mmc_release_host(card->host);
319 }
320 EXPORT_SYMBOL(mmc_start_bkops);
321 
322 static void mmc_wait_done(struct mmc_request *mrq)
323 {
324 	complete(&mrq->completion);
325 }
326 
327 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
328 {
329 	init_completion(&mrq->completion);
330 	mrq->done = mmc_wait_done;
331 	if (mmc_card_removed(host->card)) {
332 		mrq->cmd->error = -ENOMEDIUM;
333 		complete(&mrq->completion);
334 		return -ENOMEDIUM;
335 	}
336 	mmc_start_request(host, mrq);
337 	return 0;
338 }
339 
340 static void mmc_wait_for_req_done(struct mmc_host *host,
341 				  struct mmc_request *mrq)
342 {
343 	struct mmc_command *cmd;
344 
345 	while (1) {
346 		wait_for_completion(&mrq->completion);
347 
348 		cmd = mrq->cmd;
349 		if (!cmd->error || !cmd->retries ||
350 		    mmc_card_removed(host->card))
351 			break;
352 
353 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
354 			 mmc_hostname(host), cmd->opcode, cmd->error);
355 		cmd->retries--;
356 		cmd->error = 0;
357 		host->ops->request(host, mrq);
358 	}
359 }
360 
361 /**
362  *	mmc_pre_req - Prepare for a new request
363  *	@host: MMC host to prepare command
364  *	@mrq: MMC request to prepare for
365  *	@is_first_req: true if there is no previous started request
366  *                     that may run in parellel to this call, otherwise false
367  *
368  *	mmc_pre_req() is called in prior to mmc_start_req() to let
369  *	host prepare for the new request. Preparation of a request may be
370  *	performed while another request is running on the host.
371  */
372 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
373 		 bool is_first_req)
374 {
375 	if (host->ops->pre_req) {
376 		mmc_host_clk_hold(host);
377 		host->ops->pre_req(host, mrq, is_first_req);
378 		mmc_host_clk_release(host);
379 	}
380 }
381 
382 /**
383  *	mmc_post_req - Post process a completed request
384  *	@host: MMC host to post process command
385  *	@mrq: MMC request to post process for
386  *	@err: Error, if non zero, clean up any resources made in pre_req
387  *
388  *	Let the host post process a completed request. Post processing of
389  *	a request may be performed while another reuqest is running.
390  */
391 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
392 			 int err)
393 {
394 	if (host->ops->post_req) {
395 		mmc_host_clk_hold(host);
396 		host->ops->post_req(host, mrq, err);
397 		mmc_host_clk_release(host);
398 	}
399 }
400 
401 /**
402  *	mmc_start_req - start a non-blocking request
403  *	@host: MMC host to start command
404  *	@areq: async request to start
405  *	@error: out parameter returns 0 for success, otherwise non zero
406  *
407  *	Start a new MMC custom command request for a host.
408  *	If there is on ongoing async request wait for completion
409  *	of that request and start the new one and return.
410  *	Does not wait for the new request to complete.
411  *
412  *      Returns the completed request, NULL in case of none completed.
413  *	Wait for the an ongoing request (previoulsy started) to complete and
414  *	return the completed request. If there is no ongoing request, NULL
415  *	is returned without waiting. NULL is not an error condition.
416  */
417 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
418 				    struct mmc_async_req *areq, int *error)
419 {
420 	int err = 0;
421 	int start_err = 0;
422 	struct mmc_async_req *data = host->areq;
423 
424 	/* Prepare a new request */
425 	if (areq)
426 		mmc_pre_req(host, areq->mrq, !host->areq);
427 
428 	if (host->areq) {
429 		mmc_wait_for_req_done(host, host->areq->mrq);
430 		err = host->areq->err_check(host->card, host->areq);
431 		/*
432 		 * Check BKOPS urgency for each R1 response
433 		 */
434 		if (host->card && mmc_card_mmc(host->card) &&
435 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
436 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
437 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
438 			mmc_start_bkops(host->card, true);
439 	}
440 
441 	if (!err && areq)
442 		start_err = __mmc_start_req(host, areq->mrq);
443 
444 	if (host->areq)
445 		mmc_post_req(host, host->areq->mrq, 0);
446 
447 	 /* Cancel a prepared request if it was not started. */
448 	if ((err || start_err) && areq)
449 			mmc_post_req(host, areq->mrq, -EINVAL);
450 
451 	if (err)
452 		host->areq = NULL;
453 	else
454 		host->areq = areq;
455 
456 	if (error)
457 		*error = err;
458 	return data;
459 }
460 EXPORT_SYMBOL(mmc_start_req);
461 
462 /**
463  *	mmc_wait_for_req - start a request and wait for completion
464  *	@host: MMC host to start command
465  *	@mrq: MMC request to start
466  *
467  *	Start a new MMC custom command request for a host, and wait
468  *	for the command to complete. Does not attempt to parse the
469  *	response.
470  */
471 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
472 {
473 	__mmc_start_req(host, mrq);
474 	mmc_wait_for_req_done(host, mrq);
475 }
476 EXPORT_SYMBOL(mmc_wait_for_req);
477 
478 /**
479  *	mmc_interrupt_hpi - Issue for High priority Interrupt
480  *	@card: the MMC card associated with the HPI transfer
481  *
482  *	Issued High Priority Interrupt, and check for card status
483  *	until out-of prg-state.
484  */
485 int mmc_interrupt_hpi(struct mmc_card *card)
486 {
487 	int err;
488 	u32 status;
489 	unsigned long prg_wait;
490 
491 	BUG_ON(!card);
492 
493 	if (!card->ext_csd.hpi_en) {
494 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
495 		return 1;
496 	}
497 
498 	mmc_claim_host(card->host);
499 	err = mmc_send_status(card, &status);
500 	if (err) {
501 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
502 		goto out;
503 	}
504 
505 	switch (R1_CURRENT_STATE(status)) {
506 	case R1_STATE_IDLE:
507 	case R1_STATE_READY:
508 	case R1_STATE_STBY:
509 	case R1_STATE_TRAN:
510 		/*
511 		 * In idle and transfer states, HPI is not needed and the caller
512 		 * can issue the next intended command immediately
513 		 */
514 		goto out;
515 	case R1_STATE_PRG:
516 		break;
517 	default:
518 		/* In all other states, it's illegal to issue HPI */
519 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
520 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
521 		err = -EINVAL;
522 		goto out;
523 	}
524 
525 	err = mmc_send_hpi_cmd(card, &status);
526 	if (err)
527 		goto out;
528 
529 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
530 	do {
531 		err = mmc_send_status(card, &status);
532 
533 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
534 			break;
535 		if (time_after(jiffies, prg_wait))
536 			err = -ETIMEDOUT;
537 	} while (!err);
538 
539 out:
540 	mmc_release_host(card->host);
541 	return err;
542 }
543 EXPORT_SYMBOL(mmc_interrupt_hpi);
544 
545 /**
546  *	mmc_wait_for_cmd - start a command and wait for completion
547  *	@host: MMC host to start command
548  *	@cmd: MMC command to start
549  *	@retries: maximum number of retries
550  *
551  *	Start a new MMC command for a host, and wait for the command
552  *	to complete.  Return any error that occurred while the command
553  *	was executing.  Do not attempt to parse the response.
554  */
555 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
556 {
557 	struct mmc_request mrq = {NULL};
558 
559 	WARN_ON(!host->claimed);
560 
561 	memset(cmd->resp, 0, sizeof(cmd->resp));
562 	cmd->retries = retries;
563 
564 	mrq.cmd = cmd;
565 	cmd->data = NULL;
566 
567 	mmc_wait_for_req(host, &mrq);
568 
569 	return cmd->error;
570 }
571 
572 EXPORT_SYMBOL(mmc_wait_for_cmd);
573 
574 /**
575  *	mmc_stop_bkops - stop ongoing BKOPS
576  *	@card: MMC card to check BKOPS
577  *
578  *	Send HPI command to stop ongoing background operations to
579  *	allow rapid servicing of foreground operations, e.g. read/
580  *	writes. Wait until the card comes out of the programming state
581  *	to avoid errors in servicing read/write requests.
582  */
583 int mmc_stop_bkops(struct mmc_card *card)
584 {
585 	int err = 0;
586 
587 	BUG_ON(!card);
588 	err = mmc_interrupt_hpi(card);
589 
590 	/*
591 	 * If err is EINVAL, we can't issue an HPI.
592 	 * It should complete the BKOPS.
593 	 */
594 	if (!err || (err == -EINVAL)) {
595 		mmc_card_clr_doing_bkops(card);
596 		err = 0;
597 	}
598 
599 	return err;
600 }
601 EXPORT_SYMBOL(mmc_stop_bkops);
602 
603 int mmc_read_bkops_status(struct mmc_card *card)
604 {
605 	int err;
606 	u8 *ext_csd;
607 
608 	/*
609 	 * In future work, we should consider storing the entire ext_csd.
610 	 */
611 	ext_csd = kmalloc(512, GFP_KERNEL);
612 	if (!ext_csd) {
613 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
614 		       mmc_hostname(card->host));
615 		return -ENOMEM;
616 	}
617 
618 	mmc_claim_host(card->host);
619 	err = mmc_send_ext_csd(card, ext_csd);
620 	mmc_release_host(card->host);
621 	if (err)
622 		goto out;
623 
624 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
625 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
626 out:
627 	kfree(ext_csd);
628 	return err;
629 }
630 EXPORT_SYMBOL(mmc_read_bkops_status);
631 
632 /**
633  *	mmc_set_data_timeout - set the timeout for a data command
634  *	@data: data phase for command
635  *	@card: the MMC card associated with the data transfer
636  *
637  *	Computes the data timeout parameters according to the
638  *	correct algorithm given the card type.
639  */
640 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
641 {
642 	unsigned int mult;
643 
644 	/*
645 	 * SDIO cards only define an upper 1 s limit on access.
646 	 */
647 	if (mmc_card_sdio(card)) {
648 		data->timeout_ns = 1000000000;
649 		data->timeout_clks = 0;
650 		return;
651 	}
652 
653 	/*
654 	 * SD cards use a 100 multiplier rather than 10
655 	 */
656 	mult = mmc_card_sd(card) ? 100 : 10;
657 
658 	/*
659 	 * Scale up the multiplier (and therefore the timeout) by
660 	 * the r2w factor for writes.
661 	 */
662 	if (data->flags & MMC_DATA_WRITE)
663 		mult <<= card->csd.r2w_factor;
664 
665 	data->timeout_ns = card->csd.tacc_ns * mult;
666 	data->timeout_clks = card->csd.tacc_clks * mult;
667 
668 	/*
669 	 * SD cards also have an upper limit on the timeout.
670 	 */
671 	if (mmc_card_sd(card)) {
672 		unsigned int timeout_us, limit_us;
673 
674 		timeout_us = data->timeout_ns / 1000;
675 		if (mmc_host_clk_rate(card->host))
676 			timeout_us += data->timeout_clks * 1000 /
677 				(mmc_host_clk_rate(card->host) / 1000);
678 
679 		if (data->flags & MMC_DATA_WRITE)
680 			/*
681 			 * The MMC spec "It is strongly recommended
682 			 * for hosts to implement more than 500ms
683 			 * timeout value even if the card indicates
684 			 * the 250ms maximum busy length."  Even the
685 			 * previous value of 300ms is known to be
686 			 * insufficient for some cards.
687 			 */
688 			limit_us = 3000000;
689 		else
690 			limit_us = 100000;
691 
692 		/*
693 		 * SDHC cards always use these fixed values.
694 		 */
695 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
696 			data->timeout_ns = limit_us * 1000;
697 			data->timeout_clks = 0;
698 		}
699 	}
700 
701 	/*
702 	 * Some cards require longer data read timeout than indicated in CSD.
703 	 * Address this by setting the read timeout to a "reasonably high"
704 	 * value. For the cards tested, 300ms has proven enough. If necessary,
705 	 * this value can be increased if other problematic cards require this.
706 	 */
707 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
708 		data->timeout_ns = 300000000;
709 		data->timeout_clks = 0;
710 	}
711 
712 	/*
713 	 * Some cards need very high timeouts if driven in SPI mode.
714 	 * The worst observed timeout was 900ms after writing a
715 	 * continuous stream of data until the internal logic
716 	 * overflowed.
717 	 */
718 	if (mmc_host_is_spi(card->host)) {
719 		if (data->flags & MMC_DATA_WRITE) {
720 			if (data->timeout_ns < 1000000000)
721 				data->timeout_ns = 1000000000;	/* 1s */
722 		} else {
723 			if (data->timeout_ns < 100000000)
724 				data->timeout_ns =  100000000;	/* 100ms */
725 		}
726 	}
727 }
728 EXPORT_SYMBOL(mmc_set_data_timeout);
729 
730 /**
731  *	mmc_align_data_size - pads a transfer size to a more optimal value
732  *	@card: the MMC card associated with the data transfer
733  *	@sz: original transfer size
734  *
735  *	Pads the original data size with a number of extra bytes in
736  *	order to avoid controller bugs and/or performance hits
737  *	(e.g. some controllers revert to PIO for certain sizes).
738  *
739  *	Returns the improved size, which might be unmodified.
740  *
741  *	Note that this function is only relevant when issuing a
742  *	single scatter gather entry.
743  */
744 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
745 {
746 	/*
747 	 * FIXME: We don't have a system for the controller to tell
748 	 * the core about its problems yet, so for now we just 32-bit
749 	 * align the size.
750 	 */
751 	sz = ((sz + 3) / 4) * 4;
752 
753 	return sz;
754 }
755 EXPORT_SYMBOL(mmc_align_data_size);
756 
757 /**
758  *	__mmc_claim_host - exclusively claim a host
759  *	@host: mmc host to claim
760  *	@abort: whether or not the operation should be aborted
761  *
762  *	Claim a host for a set of operations.  If @abort is non null and
763  *	dereference a non-zero value then this will return prematurely with
764  *	that non-zero value without acquiring the lock.  Returns zero
765  *	with the lock held otherwise.
766  */
767 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
768 {
769 	DECLARE_WAITQUEUE(wait, current);
770 	unsigned long flags;
771 	int stop;
772 
773 	might_sleep();
774 
775 	add_wait_queue(&host->wq, &wait);
776 	spin_lock_irqsave(&host->lock, flags);
777 	while (1) {
778 		set_current_state(TASK_UNINTERRUPTIBLE);
779 		stop = abort ? atomic_read(abort) : 0;
780 		if (stop || !host->claimed || host->claimer == current)
781 			break;
782 		spin_unlock_irqrestore(&host->lock, flags);
783 		schedule();
784 		spin_lock_irqsave(&host->lock, flags);
785 	}
786 	set_current_state(TASK_RUNNING);
787 	if (!stop) {
788 		host->claimed = 1;
789 		host->claimer = current;
790 		host->claim_cnt += 1;
791 	} else
792 		wake_up(&host->wq);
793 	spin_unlock_irqrestore(&host->lock, flags);
794 	remove_wait_queue(&host->wq, &wait);
795 	if (host->ops->enable && !stop && host->claim_cnt == 1)
796 		host->ops->enable(host);
797 	return stop;
798 }
799 
800 EXPORT_SYMBOL(__mmc_claim_host);
801 
802 /**
803  *	mmc_try_claim_host - try exclusively to claim a host
804  *	@host: mmc host to claim
805  *
806  *	Returns %1 if the host is claimed, %0 otherwise.
807  */
808 int mmc_try_claim_host(struct mmc_host *host)
809 {
810 	int claimed_host = 0;
811 	unsigned long flags;
812 
813 	spin_lock_irqsave(&host->lock, flags);
814 	if (!host->claimed || host->claimer == current) {
815 		host->claimed = 1;
816 		host->claimer = current;
817 		host->claim_cnt += 1;
818 		claimed_host = 1;
819 	}
820 	spin_unlock_irqrestore(&host->lock, flags);
821 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
822 		host->ops->enable(host);
823 	return claimed_host;
824 }
825 EXPORT_SYMBOL(mmc_try_claim_host);
826 
827 /**
828  *	mmc_release_host - release a host
829  *	@host: mmc host to release
830  *
831  *	Release a MMC host, allowing others to claim the host
832  *	for their operations.
833  */
834 void mmc_release_host(struct mmc_host *host)
835 {
836 	unsigned long flags;
837 
838 	WARN_ON(!host->claimed);
839 
840 	if (host->ops->disable && host->claim_cnt == 1)
841 		host->ops->disable(host);
842 
843 	spin_lock_irqsave(&host->lock, flags);
844 	if (--host->claim_cnt) {
845 		/* Release for nested claim */
846 		spin_unlock_irqrestore(&host->lock, flags);
847 	} else {
848 		host->claimed = 0;
849 		host->claimer = NULL;
850 		spin_unlock_irqrestore(&host->lock, flags);
851 		wake_up(&host->wq);
852 	}
853 }
854 EXPORT_SYMBOL(mmc_release_host);
855 
856 /*
857  * Internal function that does the actual ios call to the host driver,
858  * optionally printing some debug output.
859  */
860 static inline void mmc_set_ios(struct mmc_host *host)
861 {
862 	struct mmc_ios *ios = &host->ios;
863 
864 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
865 		"width %u timing %u\n",
866 		 mmc_hostname(host), ios->clock, ios->bus_mode,
867 		 ios->power_mode, ios->chip_select, ios->vdd,
868 		 ios->bus_width, ios->timing);
869 
870 	if (ios->clock > 0)
871 		mmc_set_ungated(host);
872 	host->ops->set_ios(host, ios);
873 }
874 
875 /*
876  * Control chip select pin on a host.
877  */
878 void mmc_set_chip_select(struct mmc_host *host, int mode)
879 {
880 	mmc_host_clk_hold(host);
881 	host->ios.chip_select = mode;
882 	mmc_set_ios(host);
883 	mmc_host_clk_release(host);
884 }
885 
886 /*
887  * Sets the host clock to the highest possible frequency that
888  * is below "hz".
889  */
890 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
891 {
892 	WARN_ON(hz < host->f_min);
893 
894 	if (hz > host->f_max)
895 		hz = host->f_max;
896 
897 	host->ios.clock = hz;
898 	mmc_set_ios(host);
899 }
900 
901 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
902 {
903 	mmc_host_clk_hold(host);
904 	__mmc_set_clock(host, hz);
905 	mmc_host_clk_release(host);
906 }
907 
908 #ifdef CONFIG_MMC_CLKGATE
909 /*
910  * This gates the clock by setting it to 0 Hz.
911  */
912 void mmc_gate_clock(struct mmc_host *host)
913 {
914 	unsigned long flags;
915 
916 	spin_lock_irqsave(&host->clk_lock, flags);
917 	host->clk_old = host->ios.clock;
918 	host->ios.clock = 0;
919 	host->clk_gated = true;
920 	spin_unlock_irqrestore(&host->clk_lock, flags);
921 	mmc_set_ios(host);
922 }
923 
924 /*
925  * This restores the clock from gating by using the cached
926  * clock value.
927  */
928 void mmc_ungate_clock(struct mmc_host *host)
929 {
930 	/*
931 	 * We should previously have gated the clock, so the clock shall
932 	 * be 0 here! The clock may however be 0 during initialization,
933 	 * when some request operations are performed before setting
934 	 * the frequency. When ungate is requested in that situation
935 	 * we just ignore the call.
936 	 */
937 	if (host->clk_old) {
938 		BUG_ON(host->ios.clock);
939 		/* This call will also set host->clk_gated to false */
940 		__mmc_set_clock(host, host->clk_old);
941 	}
942 }
943 
944 void mmc_set_ungated(struct mmc_host *host)
945 {
946 	unsigned long flags;
947 
948 	/*
949 	 * We've been given a new frequency while the clock is gated,
950 	 * so make sure we regard this as ungating it.
951 	 */
952 	spin_lock_irqsave(&host->clk_lock, flags);
953 	host->clk_gated = false;
954 	spin_unlock_irqrestore(&host->clk_lock, flags);
955 }
956 
957 #else
958 void mmc_set_ungated(struct mmc_host *host)
959 {
960 }
961 #endif
962 
963 /*
964  * Change the bus mode (open drain/push-pull) of a host.
965  */
966 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
967 {
968 	mmc_host_clk_hold(host);
969 	host->ios.bus_mode = mode;
970 	mmc_set_ios(host);
971 	mmc_host_clk_release(host);
972 }
973 
974 /*
975  * Change data bus width of a host.
976  */
977 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
978 {
979 	mmc_host_clk_hold(host);
980 	host->ios.bus_width = width;
981 	mmc_set_ios(host);
982 	mmc_host_clk_release(host);
983 }
984 
985 /**
986  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
987  * @vdd:	voltage (mV)
988  * @low_bits:	prefer low bits in boundary cases
989  *
990  * This function returns the OCR bit number according to the provided @vdd
991  * value. If conversion is not possible a negative errno value returned.
992  *
993  * Depending on the @low_bits flag the function prefers low or high OCR bits
994  * on boundary voltages. For example,
995  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
996  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
997  *
998  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
999  */
1000 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1001 {
1002 	const int max_bit = ilog2(MMC_VDD_35_36);
1003 	int bit;
1004 
1005 	if (vdd < 1650 || vdd > 3600)
1006 		return -EINVAL;
1007 
1008 	if (vdd >= 1650 && vdd <= 1950)
1009 		return ilog2(MMC_VDD_165_195);
1010 
1011 	if (low_bits)
1012 		vdd -= 1;
1013 
1014 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1015 	bit = (vdd - 2000) / 100 + 8;
1016 	if (bit > max_bit)
1017 		return max_bit;
1018 	return bit;
1019 }
1020 
1021 /**
1022  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1023  * @vdd_min:	minimum voltage value (mV)
1024  * @vdd_max:	maximum voltage value (mV)
1025  *
1026  * This function returns the OCR mask bits according to the provided @vdd_min
1027  * and @vdd_max values. If conversion is not possible the function returns 0.
1028  *
1029  * Notes wrt boundary cases:
1030  * This function sets the OCR bits for all boundary voltages, for example
1031  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1032  * MMC_VDD_34_35 mask.
1033  */
1034 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1035 {
1036 	u32 mask = 0;
1037 
1038 	if (vdd_max < vdd_min)
1039 		return 0;
1040 
1041 	/* Prefer high bits for the boundary vdd_max values. */
1042 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1043 	if (vdd_max < 0)
1044 		return 0;
1045 
1046 	/* Prefer low bits for the boundary vdd_min values. */
1047 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1048 	if (vdd_min < 0)
1049 		return 0;
1050 
1051 	/* Fill the mask, from max bit to min bit. */
1052 	while (vdd_max >= vdd_min)
1053 		mask |= 1 << vdd_max--;
1054 
1055 	return mask;
1056 }
1057 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1058 
1059 #ifdef CONFIG_REGULATOR
1060 
1061 /**
1062  * mmc_regulator_get_ocrmask - return mask of supported voltages
1063  * @supply: regulator to use
1064  *
1065  * This returns either a negative errno, or a mask of voltages that
1066  * can be provided to MMC/SD/SDIO devices using the specified voltage
1067  * regulator.  This would normally be called before registering the
1068  * MMC host adapter.
1069  */
1070 int mmc_regulator_get_ocrmask(struct regulator *supply)
1071 {
1072 	int			result = 0;
1073 	int			count;
1074 	int			i;
1075 
1076 	count = regulator_count_voltages(supply);
1077 	if (count < 0)
1078 		return count;
1079 
1080 	for (i = 0; i < count; i++) {
1081 		int		vdd_uV;
1082 		int		vdd_mV;
1083 
1084 		vdd_uV = regulator_list_voltage(supply, i);
1085 		if (vdd_uV <= 0)
1086 			continue;
1087 
1088 		vdd_mV = vdd_uV / 1000;
1089 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1090 	}
1091 
1092 	return result;
1093 }
1094 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1095 
1096 /**
1097  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1098  * @mmc: the host to regulate
1099  * @supply: regulator to use
1100  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1101  *
1102  * Returns zero on success, else negative errno.
1103  *
1104  * MMC host drivers may use this to enable or disable a regulator using
1105  * a particular supply voltage.  This would normally be called from the
1106  * set_ios() method.
1107  */
1108 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1109 			struct regulator *supply,
1110 			unsigned short vdd_bit)
1111 {
1112 	int			result = 0;
1113 	int			min_uV, max_uV;
1114 
1115 	if (vdd_bit) {
1116 		int		tmp;
1117 		int		voltage;
1118 
1119 		/*
1120 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1121 		 * bits this regulator doesn't quite support ... don't
1122 		 * be too picky, most cards and regulators are OK with
1123 		 * a 0.1V range goof (it's a small error percentage).
1124 		 */
1125 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1126 		if (tmp == 0) {
1127 			min_uV = 1650 * 1000;
1128 			max_uV = 1950 * 1000;
1129 		} else {
1130 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1131 			max_uV = min_uV + 100 * 1000;
1132 		}
1133 
1134 		/*
1135 		 * If we're using a fixed/static regulator, don't call
1136 		 * regulator_set_voltage; it would fail.
1137 		 */
1138 		voltage = regulator_get_voltage(supply);
1139 
1140 		if (regulator_count_voltages(supply) == 1)
1141 			min_uV = max_uV = voltage;
1142 
1143 		if (voltage < 0)
1144 			result = voltage;
1145 		else if (voltage < min_uV || voltage > max_uV)
1146 			result = regulator_set_voltage(supply, min_uV, max_uV);
1147 		else
1148 			result = 0;
1149 
1150 		if (result == 0 && !mmc->regulator_enabled) {
1151 			result = regulator_enable(supply);
1152 			if (!result)
1153 				mmc->regulator_enabled = true;
1154 		}
1155 	} else if (mmc->regulator_enabled) {
1156 		result = regulator_disable(supply);
1157 		if (result == 0)
1158 			mmc->regulator_enabled = false;
1159 	}
1160 
1161 	if (result)
1162 		dev_err(mmc_dev(mmc),
1163 			"could not set regulator OCR (%d)\n", result);
1164 	return result;
1165 }
1166 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1167 
1168 int mmc_regulator_get_supply(struct mmc_host *mmc)
1169 {
1170 	struct device *dev = mmc_dev(mmc);
1171 	struct regulator *supply;
1172 	int ret;
1173 
1174 	supply = devm_regulator_get(dev, "vmmc");
1175 	mmc->supply.vmmc = supply;
1176 	mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1177 
1178 	if (IS_ERR(supply))
1179 		return PTR_ERR(supply);
1180 
1181 	ret = mmc_regulator_get_ocrmask(supply);
1182 	if (ret > 0)
1183 		mmc->ocr_avail = ret;
1184 	else
1185 		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1186 
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1190 
1191 #endif /* CONFIG_REGULATOR */
1192 
1193 /*
1194  * Mask off any voltages we don't support and select
1195  * the lowest voltage
1196  */
1197 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1198 {
1199 	int bit;
1200 
1201 	ocr &= host->ocr_avail;
1202 
1203 	bit = ffs(ocr);
1204 	if (bit) {
1205 		bit -= 1;
1206 
1207 		ocr &= 3 << bit;
1208 
1209 		mmc_host_clk_hold(host);
1210 		host->ios.vdd = bit;
1211 		mmc_set_ios(host);
1212 		mmc_host_clk_release(host);
1213 	} else {
1214 		pr_warning("%s: host doesn't support card's voltages\n",
1215 				mmc_hostname(host));
1216 		ocr = 0;
1217 	}
1218 
1219 	return ocr;
1220 }
1221 
1222 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1223 {
1224 	struct mmc_command cmd = {0};
1225 	int err = 0;
1226 
1227 	BUG_ON(!host);
1228 
1229 	/*
1230 	 * Send CMD11 only if the request is to switch the card to
1231 	 * 1.8V signalling.
1232 	 */
1233 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1234 		cmd.opcode = SD_SWITCH_VOLTAGE;
1235 		cmd.arg = 0;
1236 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1237 
1238 		err = mmc_wait_for_cmd(host, &cmd, 0);
1239 		if (err)
1240 			return err;
1241 
1242 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1243 			return -EIO;
1244 	}
1245 
1246 	host->ios.signal_voltage = signal_voltage;
1247 
1248 	if (host->ops->start_signal_voltage_switch) {
1249 		mmc_host_clk_hold(host);
1250 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1251 		mmc_host_clk_release(host);
1252 	}
1253 
1254 	return err;
1255 }
1256 
1257 /*
1258  * Select timing parameters for host.
1259  */
1260 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1261 {
1262 	mmc_host_clk_hold(host);
1263 	host->ios.timing = timing;
1264 	mmc_set_ios(host);
1265 	mmc_host_clk_release(host);
1266 }
1267 
1268 /*
1269  * Select appropriate driver type for host.
1270  */
1271 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1272 {
1273 	mmc_host_clk_hold(host);
1274 	host->ios.drv_type = drv_type;
1275 	mmc_set_ios(host);
1276 	mmc_host_clk_release(host);
1277 }
1278 
1279 /*
1280  * Apply power to the MMC stack.  This is a two-stage process.
1281  * First, we enable power to the card without the clock running.
1282  * We then wait a bit for the power to stabilise.  Finally,
1283  * enable the bus drivers and clock to the card.
1284  *
1285  * We must _NOT_ enable the clock prior to power stablising.
1286  *
1287  * If a host does all the power sequencing itself, ignore the
1288  * initial MMC_POWER_UP stage.
1289  */
1290 static void mmc_power_up(struct mmc_host *host)
1291 {
1292 	int bit;
1293 
1294 	if (host->ios.power_mode == MMC_POWER_ON)
1295 		return;
1296 
1297 	mmc_host_clk_hold(host);
1298 
1299 	/* If ocr is set, we use it */
1300 	if (host->ocr)
1301 		bit = ffs(host->ocr) - 1;
1302 	else
1303 		bit = fls(host->ocr_avail) - 1;
1304 
1305 	host->ios.vdd = bit;
1306 	if (mmc_host_is_spi(host))
1307 		host->ios.chip_select = MMC_CS_HIGH;
1308 	else
1309 		host->ios.chip_select = MMC_CS_DONTCARE;
1310 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1311 	host->ios.power_mode = MMC_POWER_UP;
1312 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1313 	host->ios.timing = MMC_TIMING_LEGACY;
1314 	mmc_set_ios(host);
1315 
1316 	/* Set signal voltage to 3.3V */
1317 	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false);
1318 
1319 	/*
1320 	 * This delay should be sufficient to allow the power supply
1321 	 * to reach the minimum voltage.
1322 	 */
1323 	mmc_delay(10);
1324 
1325 	host->ios.clock = host->f_init;
1326 
1327 	host->ios.power_mode = MMC_POWER_ON;
1328 	mmc_set_ios(host);
1329 
1330 	/*
1331 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1332 	 * time required to reach a stable voltage.
1333 	 */
1334 	mmc_delay(10);
1335 
1336 	mmc_host_clk_release(host);
1337 }
1338 
1339 void mmc_power_off(struct mmc_host *host)
1340 {
1341 	if (host->ios.power_mode == MMC_POWER_OFF)
1342 		return;
1343 
1344 	mmc_host_clk_hold(host);
1345 
1346 	host->ios.clock = 0;
1347 	host->ios.vdd = 0;
1348 
1349 
1350 	/*
1351 	 * Reset ocr mask to be the highest possible voltage supported for
1352 	 * this mmc host. This value will be used at next power up.
1353 	 */
1354 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1355 
1356 	if (!mmc_host_is_spi(host)) {
1357 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1358 		host->ios.chip_select = MMC_CS_DONTCARE;
1359 	}
1360 	host->ios.power_mode = MMC_POWER_OFF;
1361 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1362 	host->ios.timing = MMC_TIMING_LEGACY;
1363 	mmc_set_ios(host);
1364 
1365 	/*
1366 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1367 	 * XO-1.5, require a short delay after poweroff before the card
1368 	 * can be successfully turned on again.
1369 	 */
1370 	mmc_delay(1);
1371 
1372 	mmc_host_clk_release(host);
1373 }
1374 
1375 /*
1376  * Cleanup when the last reference to the bus operator is dropped.
1377  */
1378 static void __mmc_release_bus(struct mmc_host *host)
1379 {
1380 	BUG_ON(!host);
1381 	BUG_ON(host->bus_refs);
1382 	BUG_ON(!host->bus_dead);
1383 
1384 	host->bus_ops = NULL;
1385 }
1386 
1387 /*
1388  * Increase reference count of bus operator
1389  */
1390 static inline void mmc_bus_get(struct mmc_host *host)
1391 {
1392 	unsigned long flags;
1393 
1394 	spin_lock_irqsave(&host->lock, flags);
1395 	host->bus_refs++;
1396 	spin_unlock_irqrestore(&host->lock, flags);
1397 }
1398 
1399 /*
1400  * Decrease reference count of bus operator and free it if
1401  * it is the last reference.
1402  */
1403 static inline void mmc_bus_put(struct mmc_host *host)
1404 {
1405 	unsigned long flags;
1406 
1407 	spin_lock_irqsave(&host->lock, flags);
1408 	host->bus_refs--;
1409 	if ((host->bus_refs == 0) && host->bus_ops)
1410 		__mmc_release_bus(host);
1411 	spin_unlock_irqrestore(&host->lock, flags);
1412 }
1413 
1414 /*
1415  * Assign a mmc bus handler to a host. Only one bus handler may control a
1416  * host at any given time.
1417  */
1418 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1419 {
1420 	unsigned long flags;
1421 
1422 	BUG_ON(!host);
1423 	BUG_ON(!ops);
1424 
1425 	WARN_ON(!host->claimed);
1426 
1427 	spin_lock_irqsave(&host->lock, flags);
1428 
1429 	BUG_ON(host->bus_ops);
1430 	BUG_ON(host->bus_refs);
1431 
1432 	host->bus_ops = ops;
1433 	host->bus_refs = 1;
1434 	host->bus_dead = 0;
1435 
1436 	spin_unlock_irqrestore(&host->lock, flags);
1437 }
1438 
1439 /*
1440  * Remove the current bus handler from a host.
1441  */
1442 void mmc_detach_bus(struct mmc_host *host)
1443 {
1444 	unsigned long flags;
1445 
1446 	BUG_ON(!host);
1447 
1448 	WARN_ON(!host->claimed);
1449 	WARN_ON(!host->bus_ops);
1450 
1451 	spin_lock_irqsave(&host->lock, flags);
1452 
1453 	host->bus_dead = 1;
1454 
1455 	spin_unlock_irqrestore(&host->lock, flags);
1456 
1457 	mmc_bus_put(host);
1458 }
1459 
1460 /**
1461  *	mmc_detect_change - process change of state on a MMC socket
1462  *	@host: host which changed state.
1463  *	@delay: optional delay to wait before detection (jiffies)
1464  *
1465  *	MMC drivers should call this when they detect a card has been
1466  *	inserted or removed. The MMC layer will confirm that any
1467  *	present card is still functional, and initialize any newly
1468  *	inserted.
1469  */
1470 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1471 {
1472 #ifdef CONFIG_MMC_DEBUG
1473 	unsigned long flags;
1474 	spin_lock_irqsave(&host->lock, flags);
1475 	WARN_ON(host->removed);
1476 	spin_unlock_irqrestore(&host->lock, flags);
1477 #endif
1478 	host->detect_change = 1;
1479 	mmc_schedule_delayed_work(&host->detect, delay);
1480 }
1481 
1482 EXPORT_SYMBOL(mmc_detect_change);
1483 
1484 void mmc_init_erase(struct mmc_card *card)
1485 {
1486 	unsigned int sz;
1487 
1488 	if (is_power_of_2(card->erase_size))
1489 		card->erase_shift = ffs(card->erase_size) - 1;
1490 	else
1491 		card->erase_shift = 0;
1492 
1493 	/*
1494 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1495 	 * card.  That is not desirable because it can take a long time
1496 	 * (minutes) potentially delaying more important I/O, and also the
1497 	 * timeout calculations become increasingly hugely over-estimated.
1498 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1499 	 * to that size and alignment.
1500 	 *
1501 	 * For SD cards that define Allocation Unit size, limit erases to one
1502 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1503 	 * Erase Size, whether it is switched on or not, limit to that size.
1504 	 * Otherwise just have a stab at a good value.  For modern cards it
1505 	 * will end up being 4MiB.  Note that if the value is too small, it
1506 	 * can end up taking longer to erase.
1507 	 */
1508 	if (mmc_card_sd(card) && card->ssr.au) {
1509 		card->pref_erase = card->ssr.au;
1510 		card->erase_shift = ffs(card->ssr.au) - 1;
1511 	} else if (card->ext_csd.hc_erase_size) {
1512 		card->pref_erase = card->ext_csd.hc_erase_size;
1513 	} else {
1514 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1515 		if (sz < 128)
1516 			card->pref_erase = 512 * 1024 / 512;
1517 		else if (sz < 512)
1518 			card->pref_erase = 1024 * 1024 / 512;
1519 		else if (sz < 1024)
1520 			card->pref_erase = 2 * 1024 * 1024 / 512;
1521 		else
1522 			card->pref_erase = 4 * 1024 * 1024 / 512;
1523 		if (card->pref_erase < card->erase_size)
1524 			card->pref_erase = card->erase_size;
1525 		else {
1526 			sz = card->pref_erase % card->erase_size;
1527 			if (sz)
1528 				card->pref_erase += card->erase_size - sz;
1529 		}
1530 	}
1531 }
1532 
1533 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1534 				          unsigned int arg, unsigned int qty)
1535 {
1536 	unsigned int erase_timeout;
1537 
1538 	if (arg == MMC_DISCARD_ARG ||
1539 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1540 		erase_timeout = card->ext_csd.trim_timeout;
1541 	} else if (card->ext_csd.erase_group_def & 1) {
1542 		/* High Capacity Erase Group Size uses HC timeouts */
1543 		if (arg == MMC_TRIM_ARG)
1544 			erase_timeout = card->ext_csd.trim_timeout;
1545 		else
1546 			erase_timeout = card->ext_csd.hc_erase_timeout;
1547 	} else {
1548 		/* CSD Erase Group Size uses write timeout */
1549 		unsigned int mult = (10 << card->csd.r2w_factor);
1550 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1551 		unsigned int timeout_us;
1552 
1553 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1554 		if (card->csd.tacc_ns < 1000000)
1555 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1556 		else
1557 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1558 
1559 		/*
1560 		 * ios.clock is only a target.  The real clock rate might be
1561 		 * less but not that much less, so fudge it by multiplying by 2.
1562 		 */
1563 		timeout_clks <<= 1;
1564 		timeout_us += (timeout_clks * 1000) /
1565 			      (mmc_host_clk_rate(card->host) / 1000);
1566 
1567 		erase_timeout = timeout_us / 1000;
1568 
1569 		/*
1570 		 * Theoretically, the calculation could underflow so round up
1571 		 * to 1ms in that case.
1572 		 */
1573 		if (!erase_timeout)
1574 			erase_timeout = 1;
1575 	}
1576 
1577 	/* Multiplier for secure operations */
1578 	if (arg & MMC_SECURE_ARGS) {
1579 		if (arg == MMC_SECURE_ERASE_ARG)
1580 			erase_timeout *= card->ext_csd.sec_erase_mult;
1581 		else
1582 			erase_timeout *= card->ext_csd.sec_trim_mult;
1583 	}
1584 
1585 	erase_timeout *= qty;
1586 
1587 	/*
1588 	 * Ensure at least a 1 second timeout for SPI as per
1589 	 * 'mmc_set_data_timeout()'
1590 	 */
1591 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1592 		erase_timeout = 1000;
1593 
1594 	return erase_timeout;
1595 }
1596 
1597 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1598 					 unsigned int arg,
1599 					 unsigned int qty)
1600 {
1601 	unsigned int erase_timeout;
1602 
1603 	if (card->ssr.erase_timeout) {
1604 		/* Erase timeout specified in SD Status Register (SSR) */
1605 		erase_timeout = card->ssr.erase_timeout * qty +
1606 				card->ssr.erase_offset;
1607 	} else {
1608 		/*
1609 		 * Erase timeout not specified in SD Status Register (SSR) so
1610 		 * use 250ms per write block.
1611 		 */
1612 		erase_timeout = 250 * qty;
1613 	}
1614 
1615 	/* Must not be less than 1 second */
1616 	if (erase_timeout < 1000)
1617 		erase_timeout = 1000;
1618 
1619 	return erase_timeout;
1620 }
1621 
1622 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1623 				      unsigned int arg,
1624 				      unsigned int qty)
1625 {
1626 	if (mmc_card_sd(card))
1627 		return mmc_sd_erase_timeout(card, arg, qty);
1628 	else
1629 		return mmc_mmc_erase_timeout(card, arg, qty);
1630 }
1631 
1632 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1633 			unsigned int to, unsigned int arg)
1634 {
1635 	struct mmc_command cmd = {0};
1636 	unsigned int qty = 0;
1637 	unsigned long timeout;
1638 	int err;
1639 
1640 	/*
1641 	 * qty is used to calculate the erase timeout which depends on how many
1642 	 * erase groups (or allocation units in SD terminology) are affected.
1643 	 * We count erasing part of an erase group as one erase group.
1644 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1645 	 * erase group size is almost certainly also power of 2, but it does not
1646 	 * seem to insist on that in the JEDEC standard, so we fall back to
1647 	 * division in that case.  SD may not specify an allocation unit size,
1648 	 * in which case the timeout is based on the number of write blocks.
1649 	 *
1650 	 * Note that the timeout for secure trim 2 will only be correct if the
1651 	 * number of erase groups specified is the same as the total of all
1652 	 * preceding secure trim 1 commands.  Since the power may have been
1653 	 * lost since the secure trim 1 commands occurred, it is generally
1654 	 * impossible to calculate the secure trim 2 timeout correctly.
1655 	 */
1656 	if (card->erase_shift)
1657 		qty += ((to >> card->erase_shift) -
1658 			(from >> card->erase_shift)) + 1;
1659 	else if (mmc_card_sd(card))
1660 		qty += to - from + 1;
1661 	else
1662 		qty += ((to / card->erase_size) -
1663 			(from / card->erase_size)) + 1;
1664 
1665 	if (!mmc_card_blockaddr(card)) {
1666 		from <<= 9;
1667 		to <<= 9;
1668 	}
1669 
1670 	if (mmc_card_sd(card))
1671 		cmd.opcode = SD_ERASE_WR_BLK_START;
1672 	else
1673 		cmd.opcode = MMC_ERASE_GROUP_START;
1674 	cmd.arg = from;
1675 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1676 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677 	if (err) {
1678 		pr_err("mmc_erase: group start error %d, "
1679 		       "status %#x\n", err, cmd.resp[0]);
1680 		err = -EIO;
1681 		goto out;
1682 	}
1683 
1684 	memset(&cmd, 0, sizeof(struct mmc_command));
1685 	if (mmc_card_sd(card))
1686 		cmd.opcode = SD_ERASE_WR_BLK_END;
1687 	else
1688 		cmd.opcode = MMC_ERASE_GROUP_END;
1689 	cmd.arg = to;
1690 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1691 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1692 	if (err) {
1693 		pr_err("mmc_erase: group end error %d, status %#x\n",
1694 		       err, cmd.resp[0]);
1695 		err = -EIO;
1696 		goto out;
1697 	}
1698 
1699 	memset(&cmd, 0, sizeof(struct mmc_command));
1700 	cmd.opcode = MMC_ERASE;
1701 	cmd.arg = arg;
1702 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1703 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1704 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1705 	if (err) {
1706 		pr_err("mmc_erase: erase error %d, status %#x\n",
1707 		       err, cmd.resp[0]);
1708 		err = -EIO;
1709 		goto out;
1710 	}
1711 
1712 	if (mmc_host_is_spi(card->host))
1713 		goto out;
1714 
1715 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1716 	do {
1717 		memset(&cmd, 0, sizeof(struct mmc_command));
1718 		cmd.opcode = MMC_SEND_STATUS;
1719 		cmd.arg = card->rca << 16;
1720 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1721 		/* Do not retry else we can't see errors */
1722 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1723 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1724 			pr_err("error %d requesting status %#x\n",
1725 				err, cmd.resp[0]);
1726 			err = -EIO;
1727 			goto out;
1728 		}
1729 
1730 		/* Timeout if the device never becomes ready for data and
1731 		 * never leaves the program state.
1732 		 */
1733 		if (time_after(jiffies, timeout)) {
1734 			pr_err("%s: Card stuck in programming state! %s\n",
1735 				mmc_hostname(card->host), __func__);
1736 			err =  -EIO;
1737 			goto out;
1738 		}
1739 
1740 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1741 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1742 out:
1743 	return err;
1744 }
1745 
1746 /**
1747  * mmc_erase - erase sectors.
1748  * @card: card to erase
1749  * @from: first sector to erase
1750  * @nr: number of sectors to erase
1751  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1752  *
1753  * Caller must claim host before calling this function.
1754  */
1755 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1756 	      unsigned int arg)
1757 {
1758 	unsigned int rem, to = from + nr;
1759 
1760 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1761 	    !(card->csd.cmdclass & CCC_ERASE))
1762 		return -EOPNOTSUPP;
1763 
1764 	if (!card->erase_size)
1765 		return -EOPNOTSUPP;
1766 
1767 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1768 		return -EOPNOTSUPP;
1769 
1770 	if ((arg & MMC_SECURE_ARGS) &&
1771 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1772 		return -EOPNOTSUPP;
1773 
1774 	if ((arg & MMC_TRIM_ARGS) &&
1775 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1776 		return -EOPNOTSUPP;
1777 
1778 	if (arg == MMC_SECURE_ERASE_ARG) {
1779 		if (from % card->erase_size || nr % card->erase_size)
1780 			return -EINVAL;
1781 	}
1782 
1783 	if (arg == MMC_ERASE_ARG) {
1784 		rem = from % card->erase_size;
1785 		if (rem) {
1786 			rem = card->erase_size - rem;
1787 			from += rem;
1788 			if (nr > rem)
1789 				nr -= rem;
1790 			else
1791 				return 0;
1792 		}
1793 		rem = nr % card->erase_size;
1794 		if (rem)
1795 			nr -= rem;
1796 	}
1797 
1798 	if (nr == 0)
1799 		return 0;
1800 
1801 	to = from + nr;
1802 
1803 	if (to <= from)
1804 		return -EINVAL;
1805 
1806 	/* 'from' and 'to' are inclusive */
1807 	to -= 1;
1808 
1809 	return mmc_do_erase(card, from, to, arg);
1810 }
1811 EXPORT_SYMBOL(mmc_erase);
1812 
1813 int mmc_can_erase(struct mmc_card *card)
1814 {
1815 	if ((card->host->caps & MMC_CAP_ERASE) &&
1816 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1817 		return 1;
1818 	return 0;
1819 }
1820 EXPORT_SYMBOL(mmc_can_erase);
1821 
1822 int mmc_can_trim(struct mmc_card *card)
1823 {
1824 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1825 		return 1;
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL(mmc_can_trim);
1829 
1830 int mmc_can_discard(struct mmc_card *card)
1831 {
1832 	/*
1833 	 * As there's no way to detect the discard support bit at v4.5
1834 	 * use the s/w feature support filed.
1835 	 */
1836 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1837 		return 1;
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(mmc_can_discard);
1841 
1842 int mmc_can_sanitize(struct mmc_card *card)
1843 {
1844 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1845 		return 0;
1846 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1847 		return 1;
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL(mmc_can_sanitize);
1851 
1852 int mmc_can_secure_erase_trim(struct mmc_card *card)
1853 {
1854 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1855 		return 1;
1856 	return 0;
1857 }
1858 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1859 
1860 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1861 			    unsigned int nr)
1862 {
1863 	if (!card->erase_size)
1864 		return 0;
1865 	if (from % card->erase_size || nr % card->erase_size)
1866 		return 0;
1867 	return 1;
1868 }
1869 EXPORT_SYMBOL(mmc_erase_group_aligned);
1870 
1871 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1872 					    unsigned int arg)
1873 {
1874 	struct mmc_host *host = card->host;
1875 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1876 	unsigned int last_timeout = 0;
1877 
1878 	if (card->erase_shift)
1879 		max_qty = UINT_MAX >> card->erase_shift;
1880 	else if (mmc_card_sd(card))
1881 		max_qty = UINT_MAX;
1882 	else
1883 		max_qty = UINT_MAX / card->erase_size;
1884 
1885 	/* Find the largest qty with an OK timeout */
1886 	do {
1887 		y = 0;
1888 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1889 			timeout = mmc_erase_timeout(card, arg, qty + x);
1890 			if (timeout > host->max_discard_to)
1891 				break;
1892 			if (timeout < last_timeout)
1893 				break;
1894 			last_timeout = timeout;
1895 			y = x;
1896 		}
1897 		qty += y;
1898 	} while (y);
1899 
1900 	if (!qty)
1901 		return 0;
1902 
1903 	if (qty == 1)
1904 		return 1;
1905 
1906 	/* Convert qty to sectors */
1907 	if (card->erase_shift)
1908 		max_discard = --qty << card->erase_shift;
1909 	else if (mmc_card_sd(card))
1910 		max_discard = qty;
1911 	else
1912 		max_discard = --qty * card->erase_size;
1913 
1914 	return max_discard;
1915 }
1916 
1917 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1918 {
1919 	struct mmc_host *host = card->host;
1920 	unsigned int max_discard, max_trim;
1921 
1922 	if (!host->max_discard_to)
1923 		return UINT_MAX;
1924 
1925 	/*
1926 	 * Without erase_group_def set, MMC erase timeout depends on clock
1927 	 * frequence which can change.  In that case, the best choice is
1928 	 * just the preferred erase size.
1929 	 */
1930 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1931 		return card->pref_erase;
1932 
1933 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1934 	if (mmc_can_trim(card)) {
1935 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1936 		if (max_trim < max_discard)
1937 			max_discard = max_trim;
1938 	} else if (max_discard < card->erase_size) {
1939 		max_discard = 0;
1940 	}
1941 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1942 		 mmc_hostname(host), max_discard, host->max_discard_to);
1943 	return max_discard;
1944 }
1945 EXPORT_SYMBOL(mmc_calc_max_discard);
1946 
1947 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1948 {
1949 	struct mmc_command cmd = {0};
1950 
1951 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1952 		return 0;
1953 
1954 	cmd.opcode = MMC_SET_BLOCKLEN;
1955 	cmd.arg = blocklen;
1956 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1957 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1958 }
1959 EXPORT_SYMBOL(mmc_set_blocklen);
1960 
1961 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
1962 			bool is_rel_write)
1963 {
1964 	struct mmc_command cmd = {0};
1965 
1966 	cmd.opcode = MMC_SET_BLOCK_COUNT;
1967 	cmd.arg = blockcount & 0x0000FFFF;
1968 	if (is_rel_write)
1969 		cmd.arg |= 1 << 31;
1970 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1971 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1972 }
1973 EXPORT_SYMBOL(mmc_set_blockcount);
1974 
1975 static void mmc_hw_reset_for_init(struct mmc_host *host)
1976 {
1977 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1978 		return;
1979 	mmc_host_clk_hold(host);
1980 	host->ops->hw_reset(host);
1981 	mmc_host_clk_release(host);
1982 }
1983 
1984 int mmc_can_reset(struct mmc_card *card)
1985 {
1986 	u8 rst_n_function;
1987 
1988 	if (!mmc_card_mmc(card))
1989 		return 0;
1990 	rst_n_function = card->ext_csd.rst_n_function;
1991 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1992 		return 0;
1993 	return 1;
1994 }
1995 EXPORT_SYMBOL(mmc_can_reset);
1996 
1997 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1998 {
1999 	struct mmc_card *card = host->card;
2000 
2001 	if (!host->bus_ops->power_restore)
2002 		return -EOPNOTSUPP;
2003 
2004 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2005 		return -EOPNOTSUPP;
2006 
2007 	if (!card)
2008 		return -EINVAL;
2009 
2010 	if (!mmc_can_reset(card))
2011 		return -EOPNOTSUPP;
2012 
2013 	mmc_host_clk_hold(host);
2014 	mmc_set_clock(host, host->f_init);
2015 
2016 	host->ops->hw_reset(host);
2017 
2018 	/* If the reset has happened, then a status command will fail */
2019 	if (check) {
2020 		struct mmc_command cmd = {0};
2021 		int err;
2022 
2023 		cmd.opcode = MMC_SEND_STATUS;
2024 		if (!mmc_host_is_spi(card->host))
2025 			cmd.arg = card->rca << 16;
2026 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2027 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2028 		if (!err) {
2029 			mmc_host_clk_release(host);
2030 			return -ENOSYS;
2031 		}
2032 	}
2033 
2034 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2035 	if (mmc_host_is_spi(host)) {
2036 		host->ios.chip_select = MMC_CS_HIGH;
2037 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2038 	} else {
2039 		host->ios.chip_select = MMC_CS_DONTCARE;
2040 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2041 	}
2042 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2043 	host->ios.timing = MMC_TIMING_LEGACY;
2044 	mmc_set_ios(host);
2045 
2046 	mmc_host_clk_release(host);
2047 
2048 	return host->bus_ops->power_restore(host);
2049 }
2050 
2051 int mmc_hw_reset(struct mmc_host *host)
2052 {
2053 	return mmc_do_hw_reset(host, 0);
2054 }
2055 EXPORT_SYMBOL(mmc_hw_reset);
2056 
2057 int mmc_hw_reset_check(struct mmc_host *host)
2058 {
2059 	return mmc_do_hw_reset(host, 1);
2060 }
2061 EXPORT_SYMBOL(mmc_hw_reset_check);
2062 
2063 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2064 {
2065 	host->f_init = freq;
2066 
2067 #ifdef CONFIG_MMC_DEBUG
2068 	pr_info("%s: %s: trying to init card at %u Hz\n",
2069 		mmc_hostname(host), __func__, host->f_init);
2070 #endif
2071 	mmc_power_up(host);
2072 
2073 	/*
2074 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2075 	 * do a hardware reset if possible.
2076 	 */
2077 	mmc_hw_reset_for_init(host);
2078 
2079 	/*
2080 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2081 	 * if the card is being re-initialized, just send it.  CMD52
2082 	 * should be ignored by SD/eMMC cards.
2083 	 */
2084 	sdio_reset(host);
2085 	mmc_go_idle(host);
2086 
2087 	mmc_send_if_cond(host, host->ocr_avail);
2088 
2089 	/* Order's important: probe SDIO, then SD, then MMC */
2090 	if (!mmc_attach_sdio(host))
2091 		return 0;
2092 	if (!mmc_attach_sd(host))
2093 		return 0;
2094 	if (!mmc_attach_mmc(host))
2095 		return 0;
2096 
2097 	mmc_power_off(host);
2098 	return -EIO;
2099 }
2100 
2101 int _mmc_detect_card_removed(struct mmc_host *host)
2102 {
2103 	int ret;
2104 
2105 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2106 		return 0;
2107 
2108 	if (!host->card || mmc_card_removed(host->card))
2109 		return 1;
2110 
2111 	ret = host->bus_ops->alive(host);
2112 	if (ret) {
2113 		mmc_card_set_removed(host->card);
2114 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2115 	}
2116 
2117 	return ret;
2118 }
2119 
2120 int mmc_detect_card_removed(struct mmc_host *host)
2121 {
2122 	struct mmc_card *card = host->card;
2123 	int ret;
2124 
2125 	WARN_ON(!host->claimed);
2126 
2127 	if (!card)
2128 		return 1;
2129 
2130 	ret = mmc_card_removed(card);
2131 	/*
2132 	 * The card will be considered unchanged unless we have been asked to
2133 	 * detect a change or host requires polling to provide card detection.
2134 	 */
2135 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2136 	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2137 		return ret;
2138 
2139 	host->detect_change = 0;
2140 	if (!ret) {
2141 		ret = _mmc_detect_card_removed(host);
2142 		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2143 			/*
2144 			 * Schedule a detect work as soon as possible to let a
2145 			 * rescan handle the card removal.
2146 			 */
2147 			cancel_delayed_work(&host->detect);
2148 			mmc_detect_change(host, 0);
2149 		}
2150 	}
2151 
2152 	return ret;
2153 }
2154 EXPORT_SYMBOL(mmc_detect_card_removed);
2155 
2156 void mmc_rescan(struct work_struct *work)
2157 {
2158 	struct mmc_host *host =
2159 		container_of(work, struct mmc_host, detect.work);
2160 	int i;
2161 
2162 	if (host->rescan_disable)
2163 		return;
2164 
2165 	/* If there is a non-removable card registered, only scan once */
2166 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2167 		return;
2168 	host->rescan_entered = 1;
2169 
2170 	mmc_bus_get(host);
2171 
2172 	/*
2173 	 * if there is a _removable_ card registered, check whether it is
2174 	 * still present
2175 	 */
2176 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2177 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2178 		host->bus_ops->detect(host);
2179 
2180 	host->detect_change = 0;
2181 
2182 	/*
2183 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2184 	 * the card is no longer present.
2185 	 */
2186 	mmc_bus_put(host);
2187 	mmc_bus_get(host);
2188 
2189 	/* if there still is a card present, stop here */
2190 	if (host->bus_ops != NULL) {
2191 		mmc_bus_put(host);
2192 		goto out;
2193 	}
2194 
2195 	/*
2196 	 * Only we can add a new handler, so it's safe to
2197 	 * release the lock here.
2198 	 */
2199 	mmc_bus_put(host);
2200 
2201 	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2202 		mmc_claim_host(host);
2203 		mmc_power_off(host);
2204 		mmc_release_host(host);
2205 		goto out;
2206 	}
2207 
2208 	mmc_claim_host(host);
2209 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2210 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2211 			break;
2212 		if (freqs[i] <= host->f_min)
2213 			break;
2214 	}
2215 	mmc_release_host(host);
2216 
2217  out:
2218 	if (host->caps & MMC_CAP_NEEDS_POLL)
2219 		mmc_schedule_delayed_work(&host->detect, HZ);
2220 }
2221 
2222 void mmc_start_host(struct mmc_host *host)
2223 {
2224 	host->f_init = max(freqs[0], host->f_min);
2225 	host->rescan_disable = 0;
2226 	mmc_power_up(host);
2227 	mmc_detect_change(host, 0);
2228 }
2229 
2230 void mmc_stop_host(struct mmc_host *host)
2231 {
2232 #ifdef CONFIG_MMC_DEBUG
2233 	unsigned long flags;
2234 	spin_lock_irqsave(&host->lock, flags);
2235 	host->removed = 1;
2236 	spin_unlock_irqrestore(&host->lock, flags);
2237 #endif
2238 
2239 	host->rescan_disable = 1;
2240 	cancel_delayed_work_sync(&host->detect);
2241 	mmc_flush_scheduled_work();
2242 
2243 	/* clear pm flags now and let card drivers set them as needed */
2244 	host->pm_flags = 0;
2245 
2246 	mmc_bus_get(host);
2247 	if (host->bus_ops && !host->bus_dead) {
2248 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2249 		if (host->bus_ops->remove)
2250 			host->bus_ops->remove(host);
2251 
2252 		mmc_claim_host(host);
2253 		mmc_detach_bus(host);
2254 		mmc_power_off(host);
2255 		mmc_release_host(host);
2256 		mmc_bus_put(host);
2257 		return;
2258 	}
2259 	mmc_bus_put(host);
2260 
2261 	BUG_ON(host->card);
2262 
2263 	mmc_power_off(host);
2264 }
2265 
2266 int mmc_power_save_host(struct mmc_host *host)
2267 {
2268 	int ret = 0;
2269 
2270 #ifdef CONFIG_MMC_DEBUG
2271 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2272 #endif
2273 
2274 	mmc_bus_get(host);
2275 
2276 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2277 		mmc_bus_put(host);
2278 		return -EINVAL;
2279 	}
2280 
2281 	if (host->bus_ops->power_save)
2282 		ret = host->bus_ops->power_save(host);
2283 
2284 	mmc_bus_put(host);
2285 
2286 	mmc_power_off(host);
2287 
2288 	return ret;
2289 }
2290 EXPORT_SYMBOL(mmc_power_save_host);
2291 
2292 int mmc_power_restore_host(struct mmc_host *host)
2293 {
2294 	int ret;
2295 
2296 #ifdef CONFIG_MMC_DEBUG
2297 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2298 #endif
2299 
2300 	mmc_bus_get(host);
2301 
2302 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2303 		mmc_bus_put(host);
2304 		return -EINVAL;
2305 	}
2306 
2307 	mmc_power_up(host);
2308 	ret = host->bus_ops->power_restore(host);
2309 
2310 	mmc_bus_put(host);
2311 
2312 	return ret;
2313 }
2314 EXPORT_SYMBOL(mmc_power_restore_host);
2315 
2316 int mmc_card_awake(struct mmc_host *host)
2317 {
2318 	int err = -ENOSYS;
2319 
2320 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2321 		return 0;
2322 
2323 	mmc_bus_get(host);
2324 
2325 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2326 		err = host->bus_ops->awake(host);
2327 
2328 	mmc_bus_put(host);
2329 
2330 	return err;
2331 }
2332 EXPORT_SYMBOL(mmc_card_awake);
2333 
2334 int mmc_card_sleep(struct mmc_host *host)
2335 {
2336 	int err = -ENOSYS;
2337 
2338 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2339 		return 0;
2340 
2341 	mmc_bus_get(host);
2342 
2343 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2344 		err = host->bus_ops->sleep(host);
2345 
2346 	mmc_bus_put(host);
2347 
2348 	return err;
2349 }
2350 EXPORT_SYMBOL(mmc_card_sleep);
2351 
2352 int mmc_card_can_sleep(struct mmc_host *host)
2353 {
2354 	struct mmc_card *card = host->card;
2355 
2356 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2357 		return 1;
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL(mmc_card_can_sleep);
2361 
2362 /*
2363  * Flush the cache to the non-volatile storage.
2364  */
2365 int mmc_flush_cache(struct mmc_card *card)
2366 {
2367 	struct mmc_host *host = card->host;
2368 	int err = 0;
2369 
2370 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2371 		return err;
2372 
2373 	if (mmc_card_mmc(card) &&
2374 			(card->ext_csd.cache_size > 0) &&
2375 			(card->ext_csd.cache_ctrl & 1)) {
2376 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2377 				EXT_CSD_FLUSH_CACHE, 1, 0);
2378 		if (err)
2379 			pr_err("%s: cache flush error %d\n",
2380 					mmc_hostname(card->host), err);
2381 	}
2382 
2383 	return err;
2384 }
2385 EXPORT_SYMBOL(mmc_flush_cache);
2386 
2387 /*
2388  * Turn the cache ON/OFF.
2389  * Turning the cache OFF shall trigger flushing of the data
2390  * to the non-volatile storage.
2391  */
2392 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2393 {
2394 	struct mmc_card *card = host->card;
2395 	unsigned int timeout;
2396 	int err = 0;
2397 
2398 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2399 			mmc_card_is_removable(host))
2400 		return err;
2401 
2402 	mmc_claim_host(host);
2403 	if (card && mmc_card_mmc(card) &&
2404 			(card->ext_csd.cache_size > 0)) {
2405 		enable = !!enable;
2406 
2407 		if (card->ext_csd.cache_ctrl ^ enable) {
2408 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2409 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2410 					EXT_CSD_CACHE_CTRL, enable, timeout);
2411 			if (err)
2412 				pr_err("%s: cache %s error %d\n",
2413 						mmc_hostname(card->host),
2414 						enable ? "on" : "off",
2415 						err);
2416 			else
2417 				card->ext_csd.cache_ctrl = enable;
2418 		}
2419 	}
2420 	mmc_release_host(host);
2421 
2422 	return err;
2423 }
2424 EXPORT_SYMBOL(mmc_cache_ctrl);
2425 
2426 #ifdef CONFIG_PM
2427 
2428 /**
2429  *	mmc_suspend_host - suspend a host
2430  *	@host: mmc host
2431  */
2432 int mmc_suspend_host(struct mmc_host *host)
2433 {
2434 	int err = 0;
2435 
2436 	cancel_delayed_work(&host->detect);
2437 	mmc_flush_scheduled_work();
2438 
2439 	err = mmc_cache_ctrl(host, 0);
2440 	if (err)
2441 		goto out;
2442 
2443 	mmc_bus_get(host);
2444 	if (host->bus_ops && !host->bus_dead) {
2445 		if (host->bus_ops->suspend) {
2446 			if (mmc_card_doing_bkops(host->card)) {
2447 				err = mmc_stop_bkops(host->card);
2448 				if (err)
2449 					goto out;
2450 			}
2451 			err = host->bus_ops->suspend(host);
2452 		}
2453 
2454 		if (err == -ENOSYS || !host->bus_ops->resume) {
2455 			/*
2456 			 * We simply "remove" the card in this case.
2457 			 * It will be redetected on resume.  (Calling
2458 			 * bus_ops->remove() with a claimed host can
2459 			 * deadlock.)
2460 			 */
2461 			if (host->bus_ops->remove)
2462 				host->bus_ops->remove(host);
2463 			mmc_claim_host(host);
2464 			mmc_detach_bus(host);
2465 			mmc_power_off(host);
2466 			mmc_release_host(host);
2467 			host->pm_flags = 0;
2468 			err = 0;
2469 		}
2470 	}
2471 	mmc_bus_put(host);
2472 
2473 	if (!err && !mmc_card_keep_power(host))
2474 		mmc_power_off(host);
2475 
2476 out:
2477 	return err;
2478 }
2479 
2480 EXPORT_SYMBOL(mmc_suspend_host);
2481 
2482 /**
2483  *	mmc_resume_host - resume a previously suspended host
2484  *	@host: mmc host
2485  */
2486 int mmc_resume_host(struct mmc_host *host)
2487 {
2488 	int err = 0;
2489 
2490 	mmc_bus_get(host);
2491 	if (host->bus_ops && !host->bus_dead) {
2492 		if (!mmc_card_keep_power(host)) {
2493 			mmc_power_up(host);
2494 			mmc_select_voltage(host, host->ocr);
2495 			/*
2496 			 * Tell runtime PM core we just powered up the card,
2497 			 * since it still believes the card is powered off.
2498 			 * Note that currently runtime PM is only enabled
2499 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2500 			 */
2501 			if (mmc_card_sdio(host->card) &&
2502 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2503 				pm_runtime_disable(&host->card->dev);
2504 				pm_runtime_set_active(&host->card->dev);
2505 				pm_runtime_enable(&host->card->dev);
2506 			}
2507 		}
2508 		BUG_ON(!host->bus_ops->resume);
2509 		err = host->bus_ops->resume(host);
2510 		if (err) {
2511 			pr_warning("%s: error %d during resume "
2512 					    "(card was removed?)\n",
2513 					    mmc_hostname(host), err);
2514 			err = 0;
2515 		}
2516 	}
2517 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2518 	mmc_bus_put(host);
2519 
2520 	return err;
2521 }
2522 EXPORT_SYMBOL(mmc_resume_host);
2523 
2524 /* Do the card removal on suspend if card is assumed removeable
2525  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2526    to sync the card.
2527 */
2528 int mmc_pm_notify(struct notifier_block *notify_block,
2529 					unsigned long mode, void *unused)
2530 {
2531 	struct mmc_host *host = container_of(
2532 		notify_block, struct mmc_host, pm_notify);
2533 	unsigned long flags;
2534 	int err = 0;
2535 
2536 	switch (mode) {
2537 	case PM_HIBERNATION_PREPARE:
2538 	case PM_SUSPEND_PREPARE:
2539 		if (host->card && mmc_card_mmc(host->card) &&
2540 		    mmc_card_doing_bkops(host->card)) {
2541 			err = mmc_stop_bkops(host->card);
2542 			if (err) {
2543 				pr_err("%s: didn't stop bkops\n",
2544 					mmc_hostname(host));
2545 				return err;
2546 			}
2547 			mmc_card_clr_doing_bkops(host->card);
2548 		}
2549 
2550 		spin_lock_irqsave(&host->lock, flags);
2551 		host->rescan_disable = 1;
2552 		spin_unlock_irqrestore(&host->lock, flags);
2553 		cancel_delayed_work_sync(&host->detect);
2554 
2555 		if (!host->bus_ops || host->bus_ops->suspend)
2556 			break;
2557 
2558 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2559 		if (host->bus_ops->remove)
2560 			host->bus_ops->remove(host);
2561 
2562 		mmc_claim_host(host);
2563 		mmc_detach_bus(host);
2564 		mmc_power_off(host);
2565 		mmc_release_host(host);
2566 		host->pm_flags = 0;
2567 		break;
2568 
2569 	case PM_POST_SUSPEND:
2570 	case PM_POST_HIBERNATION:
2571 	case PM_POST_RESTORE:
2572 
2573 		spin_lock_irqsave(&host->lock, flags);
2574 		host->rescan_disable = 0;
2575 		spin_unlock_irqrestore(&host->lock, flags);
2576 		mmc_detect_change(host, 0);
2577 
2578 	}
2579 
2580 	return 0;
2581 }
2582 #endif
2583 
2584 static int __init mmc_init(void)
2585 {
2586 	int ret;
2587 
2588 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2589 	if (!workqueue)
2590 		return -ENOMEM;
2591 
2592 	ret = mmc_register_bus();
2593 	if (ret)
2594 		goto destroy_workqueue;
2595 
2596 	ret = mmc_register_host_class();
2597 	if (ret)
2598 		goto unregister_bus;
2599 
2600 	ret = sdio_register_bus();
2601 	if (ret)
2602 		goto unregister_host_class;
2603 
2604 	return 0;
2605 
2606 unregister_host_class:
2607 	mmc_unregister_host_class();
2608 unregister_bus:
2609 	mmc_unregister_bus();
2610 destroy_workqueue:
2611 	destroy_workqueue(workqueue);
2612 
2613 	return ret;
2614 }
2615 
2616 static void __exit mmc_exit(void)
2617 {
2618 	sdio_unregister_bus();
2619 	mmc_unregister_host_class();
2620 	mmc_unregister_bus();
2621 	destroy_workqueue(workqueue);
2622 }
2623 
2624 subsys_initcall(mmc_init);
2625 module_exit(mmc_exit);
2626 
2627 MODULE_LICENSE("GPL");
2628