xref: /linux/drivers/mmc/core/core.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
51 
52 /*
53  * Background operations can take a long time, depending on the housekeeping
54  * operations the card has to perform.
55  */
56 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
57 
58 static struct workqueue_struct *workqueue;
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
69 /*
70  * Internal function. Schedule delayed work in the MMC work queue.
71  */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 				     unsigned long delay)
74 {
75 	return queue_delayed_work(workqueue, work, delay);
76 }
77 
78 /*
79  * Internal function. Flush all scheduled work from the MMC work queue.
80  */
81 static void mmc_flush_scheduled_work(void)
82 {
83 	flush_workqueue(workqueue);
84 }
85 
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87 
88 /*
89  * Internal function. Inject random data errors.
90  * If mmc_data is NULL no errors are injected.
91  */
92 static void mmc_should_fail_request(struct mmc_host *host,
93 				    struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	struct mmc_data *data = mrq->data;
97 	static const int data_errors[] = {
98 		-ETIMEDOUT,
99 		-EILSEQ,
100 		-EIO,
101 	};
102 
103 	if (!data)
104 		return;
105 
106 	if (cmd->error || data->error ||
107 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 		return;
109 
110 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113 
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115 
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 					   struct mmc_request *mrq)
118 {
119 }
120 
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122 
123 /**
124  *	mmc_request_done - finish processing an MMC request
125  *	@host: MMC host which completed request
126  *	@mrq: MMC request which request
127  *
128  *	MMC drivers should call this function when they have completed
129  *	their processing of a request.
130  */
131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132 {
133 	struct mmc_command *cmd = mrq->cmd;
134 	int err = cmd->error;
135 
136 	/* Flag re-tuning needed on CRC errors */
137 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
138 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
139 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
140 	    (mrq->data && mrq->data->error == -EILSEQ) ||
141 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
142 		mmc_retune_needed(host);
143 
144 	if (err && cmd->retries && mmc_host_is_spi(host)) {
145 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
146 			cmd->retries = 0;
147 	}
148 
149 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
150 		/*
151 		 * Request starter must handle retries - see
152 		 * mmc_wait_for_req_done().
153 		 */
154 		if (mrq->done)
155 			mrq->done(mrq);
156 	} else {
157 		mmc_should_fail_request(host, mrq);
158 
159 		led_trigger_event(host->led, LED_OFF);
160 
161 		if (mrq->sbc) {
162 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
163 				mmc_hostname(host), mrq->sbc->opcode,
164 				mrq->sbc->error,
165 				mrq->sbc->resp[0], mrq->sbc->resp[1],
166 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
167 		}
168 
169 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
170 			mmc_hostname(host), cmd->opcode, err,
171 			cmd->resp[0], cmd->resp[1],
172 			cmd->resp[2], cmd->resp[3]);
173 
174 		if (mrq->data) {
175 			pr_debug("%s:     %d bytes transferred: %d\n",
176 				mmc_hostname(host),
177 				mrq->data->bytes_xfered, mrq->data->error);
178 		}
179 
180 		if (mrq->stop) {
181 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
182 				mmc_hostname(host), mrq->stop->opcode,
183 				mrq->stop->error,
184 				mrq->stop->resp[0], mrq->stop->resp[1],
185 				mrq->stop->resp[2], mrq->stop->resp[3]);
186 		}
187 
188 		if (mrq->done)
189 			mrq->done(mrq);
190 	}
191 }
192 
193 EXPORT_SYMBOL(mmc_request_done);
194 
195 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196 {
197 	int err;
198 
199 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
200 	err = mmc_retune(host);
201 	if (err) {
202 		mrq->cmd->error = err;
203 		mmc_request_done(host, mrq);
204 		return;
205 	}
206 
207 	/*
208 	 * For sdio rw commands we must wait for card busy otherwise some
209 	 * sdio devices won't work properly.
210 	 */
211 	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
212 		int tries = 500; /* Wait aprox 500ms at maximum */
213 
214 		while (host->ops->card_busy(host) && --tries)
215 			mmc_delay(1);
216 
217 		if (tries == 0) {
218 			mrq->cmd->error = -EBUSY;
219 			mmc_request_done(host, mrq);
220 			return;
221 		}
222 	}
223 
224 	host->ops->request(host, mrq);
225 }
226 
227 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
228 {
229 #ifdef CONFIG_MMC_DEBUG
230 	unsigned int i, sz;
231 	struct scatterlist *sg;
232 #endif
233 	mmc_retune_hold(host);
234 
235 	if (mmc_card_removed(host->card))
236 		return -ENOMEDIUM;
237 
238 	if (mrq->sbc) {
239 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
240 			 mmc_hostname(host), mrq->sbc->opcode,
241 			 mrq->sbc->arg, mrq->sbc->flags);
242 	}
243 
244 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
245 		 mmc_hostname(host), mrq->cmd->opcode,
246 		 mrq->cmd->arg, mrq->cmd->flags);
247 
248 	if (mrq->data) {
249 		pr_debug("%s:     blksz %d blocks %d flags %08x "
250 			"tsac %d ms nsac %d\n",
251 			mmc_hostname(host), mrq->data->blksz,
252 			mrq->data->blocks, mrq->data->flags,
253 			mrq->data->timeout_ns / 1000000,
254 			mrq->data->timeout_clks);
255 	}
256 
257 	if (mrq->stop) {
258 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
259 			 mmc_hostname(host), mrq->stop->opcode,
260 			 mrq->stop->arg, mrq->stop->flags);
261 	}
262 
263 	WARN_ON(!host->claimed);
264 
265 	mrq->cmd->error = 0;
266 	mrq->cmd->mrq = mrq;
267 	if (mrq->sbc) {
268 		mrq->sbc->error = 0;
269 		mrq->sbc->mrq = mrq;
270 	}
271 	if (mrq->data) {
272 		BUG_ON(mrq->data->blksz > host->max_blk_size);
273 		BUG_ON(mrq->data->blocks > host->max_blk_count);
274 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
275 			host->max_req_size);
276 
277 #ifdef CONFIG_MMC_DEBUG
278 		sz = 0;
279 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
280 			sz += sg->length;
281 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
282 #endif
283 
284 		mrq->cmd->data = mrq->data;
285 		mrq->data->error = 0;
286 		mrq->data->mrq = mrq;
287 		if (mrq->stop) {
288 			mrq->data->stop = mrq->stop;
289 			mrq->stop->error = 0;
290 			mrq->stop->mrq = mrq;
291 		}
292 	}
293 	led_trigger_event(host->led, LED_FULL);
294 	__mmc_start_request(host, mrq);
295 
296 	return 0;
297 }
298 
299 /**
300  *	mmc_start_bkops - start BKOPS for supported cards
301  *	@card: MMC card to start BKOPS
302  *	@form_exception: A flag to indicate if this function was
303  *			 called due to an exception raised by the card
304  *
305  *	Start background operations whenever requested.
306  *	When the urgent BKOPS bit is set in a R1 command response
307  *	then background operations should be started immediately.
308 */
309 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
310 {
311 	int err;
312 	int timeout;
313 	bool use_busy_signal;
314 
315 	BUG_ON(!card);
316 
317 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
318 		return;
319 
320 	err = mmc_read_bkops_status(card);
321 	if (err) {
322 		pr_err("%s: Failed to read bkops status: %d\n",
323 		       mmc_hostname(card->host), err);
324 		return;
325 	}
326 
327 	if (!card->ext_csd.raw_bkops_status)
328 		return;
329 
330 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
331 	    from_exception)
332 		return;
333 
334 	mmc_claim_host(card->host);
335 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
336 		timeout = MMC_BKOPS_MAX_TIMEOUT;
337 		use_busy_signal = true;
338 	} else {
339 		timeout = 0;
340 		use_busy_signal = false;
341 	}
342 
343 	mmc_retune_hold(card->host);
344 
345 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
346 			EXT_CSD_BKOPS_START, 1, timeout,
347 			use_busy_signal, true, false);
348 	if (err) {
349 		pr_warn("%s: Error %d starting bkops\n",
350 			mmc_hostname(card->host), err);
351 		mmc_retune_release(card->host);
352 		goto out;
353 	}
354 
355 	/*
356 	 * For urgent bkops status (LEVEL_2 and more)
357 	 * bkops executed synchronously, otherwise
358 	 * the operation is in progress
359 	 */
360 	if (!use_busy_signal)
361 		mmc_card_set_doing_bkops(card);
362 	else
363 		mmc_retune_release(card->host);
364 out:
365 	mmc_release_host(card->host);
366 }
367 EXPORT_SYMBOL(mmc_start_bkops);
368 
369 /*
370  * mmc_wait_data_done() - done callback for data request
371  * @mrq: done data request
372  *
373  * Wakes up mmc context, passed as a callback to host controller driver
374  */
375 static void mmc_wait_data_done(struct mmc_request *mrq)
376 {
377 	struct mmc_context_info *context_info = &mrq->host->context_info;
378 
379 	context_info->is_done_rcv = true;
380 	wake_up_interruptible(&context_info->wait);
381 }
382 
383 static void mmc_wait_done(struct mmc_request *mrq)
384 {
385 	complete(&mrq->completion);
386 }
387 
388 /*
389  *__mmc_start_data_req() - starts data request
390  * @host: MMC host to start the request
391  * @mrq: data request to start
392  *
393  * Sets the done callback to be called when request is completed by the card.
394  * Starts data mmc request execution
395  */
396 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
397 {
398 	int err;
399 
400 	mrq->done = mmc_wait_data_done;
401 	mrq->host = host;
402 
403 	err = mmc_start_request(host, mrq);
404 	if (err) {
405 		mrq->cmd->error = err;
406 		mmc_wait_data_done(mrq);
407 	}
408 
409 	return err;
410 }
411 
412 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
413 {
414 	int err;
415 
416 	init_completion(&mrq->completion);
417 	mrq->done = mmc_wait_done;
418 
419 	err = mmc_start_request(host, mrq);
420 	if (err) {
421 		mrq->cmd->error = err;
422 		complete(&mrq->completion);
423 	}
424 
425 	return err;
426 }
427 
428 /*
429  * mmc_wait_for_data_req_done() - wait for request completed
430  * @host: MMC host to prepare the command.
431  * @mrq: MMC request to wait for
432  *
433  * Blocks MMC context till host controller will ack end of data request
434  * execution or new request notification arrives from the block layer.
435  * Handles command retries.
436  *
437  * Returns enum mmc_blk_status after checking errors.
438  */
439 static int mmc_wait_for_data_req_done(struct mmc_host *host,
440 				      struct mmc_request *mrq,
441 				      struct mmc_async_req *next_req)
442 {
443 	struct mmc_command *cmd;
444 	struct mmc_context_info *context_info = &host->context_info;
445 	int err;
446 	unsigned long flags;
447 
448 	while (1) {
449 		wait_event_interruptible(context_info->wait,
450 				(context_info->is_done_rcv ||
451 				 context_info->is_new_req));
452 		spin_lock_irqsave(&context_info->lock, flags);
453 		context_info->is_waiting_last_req = false;
454 		spin_unlock_irqrestore(&context_info->lock, flags);
455 		if (context_info->is_done_rcv) {
456 			context_info->is_done_rcv = false;
457 			context_info->is_new_req = false;
458 			cmd = mrq->cmd;
459 
460 			if (!cmd->error || !cmd->retries ||
461 			    mmc_card_removed(host->card)) {
462 				err = host->areq->err_check(host->card,
463 							    host->areq);
464 				break; /* return err */
465 			} else {
466 				mmc_retune_recheck(host);
467 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
468 					mmc_hostname(host),
469 					cmd->opcode, cmd->error);
470 				cmd->retries--;
471 				cmd->error = 0;
472 				__mmc_start_request(host, mrq);
473 				continue; /* wait for done/new event again */
474 			}
475 		} else if (context_info->is_new_req) {
476 			context_info->is_new_req = false;
477 			if (!next_req)
478 				return MMC_BLK_NEW_REQUEST;
479 		}
480 	}
481 	mmc_retune_release(host);
482 	return err;
483 }
484 
485 static void mmc_wait_for_req_done(struct mmc_host *host,
486 				  struct mmc_request *mrq)
487 {
488 	struct mmc_command *cmd;
489 
490 	while (1) {
491 		wait_for_completion(&mrq->completion);
492 
493 		cmd = mrq->cmd;
494 
495 		/*
496 		 * If host has timed out waiting for the sanitize
497 		 * to complete, card might be still in programming state
498 		 * so let's try to bring the card out of programming
499 		 * state.
500 		 */
501 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
502 			if (!mmc_interrupt_hpi(host->card)) {
503 				pr_warn("%s: %s: Interrupted sanitize\n",
504 					mmc_hostname(host), __func__);
505 				cmd->error = 0;
506 				break;
507 			} else {
508 				pr_err("%s: %s: Failed to interrupt sanitize\n",
509 				       mmc_hostname(host), __func__);
510 			}
511 		}
512 		if (!cmd->error || !cmd->retries ||
513 		    mmc_card_removed(host->card))
514 			break;
515 
516 		mmc_retune_recheck(host);
517 
518 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
519 			 mmc_hostname(host), cmd->opcode, cmd->error);
520 		cmd->retries--;
521 		cmd->error = 0;
522 		__mmc_start_request(host, mrq);
523 	}
524 
525 	mmc_retune_release(host);
526 }
527 
528 /**
529  *	mmc_pre_req - Prepare for a new request
530  *	@host: MMC host to prepare command
531  *	@mrq: MMC request to prepare for
532  *	@is_first_req: true if there is no previous started request
533  *                     that may run in parellel to this call, otherwise false
534  *
535  *	mmc_pre_req() is called in prior to mmc_start_req() to let
536  *	host prepare for the new request. Preparation of a request may be
537  *	performed while another request is running on the host.
538  */
539 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
540 		 bool is_first_req)
541 {
542 	if (host->ops->pre_req)
543 		host->ops->pre_req(host, mrq, is_first_req);
544 }
545 
546 /**
547  *	mmc_post_req - Post process a completed request
548  *	@host: MMC host to post process command
549  *	@mrq: MMC request to post process for
550  *	@err: Error, if non zero, clean up any resources made in pre_req
551  *
552  *	Let the host post process a completed request. Post processing of
553  *	a request may be performed while another reuqest is running.
554  */
555 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
556 			 int err)
557 {
558 	if (host->ops->post_req)
559 		host->ops->post_req(host, mrq, err);
560 }
561 
562 /**
563  *	mmc_start_req - start a non-blocking request
564  *	@host: MMC host to start command
565  *	@areq: async request to start
566  *	@error: out parameter returns 0 for success, otherwise non zero
567  *
568  *	Start a new MMC custom command request for a host.
569  *	If there is on ongoing async request wait for completion
570  *	of that request and start the new one and return.
571  *	Does not wait for the new request to complete.
572  *
573  *      Returns the completed request, NULL in case of none completed.
574  *	Wait for the an ongoing request (previoulsy started) to complete and
575  *	return the completed request. If there is no ongoing request, NULL
576  *	is returned without waiting. NULL is not an error condition.
577  */
578 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
579 				    struct mmc_async_req *areq, int *error)
580 {
581 	int err = 0;
582 	int start_err = 0;
583 	struct mmc_async_req *data = host->areq;
584 
585 	/* Prepare a new request */
586 	if (areq)
587 		mmc_pre_req(host, areq->mrq, !host->areq);
588 
589 	if (host->areq) {
590 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
591 		if (err == MMC_BLK_NEW_REQUEST) {
592 			if (error)
593 				*error = err;
594 			/*
595 			 * The previous request was not completed,
596 			 * nothing to return
597 			 */
598 			return NULL;
599 		}
600 		/*
601 		 * Check BKOPS urgency for each R1 response
602 		 */
603 		if (host->card && mmc_card_mmc(host->card) &&
604 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
605 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
606 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
607 
608 			/* Cancel the prepared request */
609 			if (areq)
610 				mmc_post_req(host, areq->mrq, -EINVAL);
611 
612 			mmc_start_bkops(host->card, true);
613 
614 			/* prepare the request again */
615 			if (areq)
616 				mmc_pre_req(host, areq->mrq, !host->areq);
617 		}
618 	}
619 
620 	if (!err && areq)
621 		start_err = __mmc_start_data_req(host, areq->mrq);
622 
623 	if (host->areq)
624 		mmc_post_req(host, host->areq->mrq, 0);
625 
626 	 /* Cancel a prepared request if it was not started. */
627 	if ((err || start_err) && areq)
628 		mmc_post_req(host, areq->mrq, -EINVAL);
629 
630 	if (err)
631 		host->areq = NULL;
632 	else
633 		host->areq = areq;
634 
635 	if (error)
636 		*error = err;
637 	return data;
638 }
639 EXPORT_SYMBOL(mmc_start_req);
640 
641 /**
642  *	mmc_wait_for_req - start a request and wait for completion
643  *	@host: MMC host to start command
644  *	@mrq: MMC request to start
645  *
646  *	Start a new MMC custom command request for a host, and wait
647  *	for the command to complete. Does not attempt to parse the
648  *	response.
649  */
650 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
651 {
652 	__mmc_start_req(host, mrq);
653 	mmc_wait_for_req_done(host, mrq);
654 }
655 EXPORT_SYMBOL(mmc_wait_for_req);
656 
657 /**
658  *	mmc_interrupt_hpi - Issue for High priority Interrupt
659  *	@card: the MMC card associated with the HPI transfer
660  *
661  *	Issued High Priority Interrupt, and check for card status
662  *	until out-of prg-state.
663  */
664 int mmc_interrupt_hpi(struct mmc_card *card)
665 {
666 	int err;
667 	u32 status;
668 	unsigned long prg_wait;
669 
670 	BUG_ON(!card);
671 
672 	if (!card->ext_csd.hpi_en) {
673 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
674 		return 1;
675 	}
676 
677 	mmc_claim_host(card->host);
678 	err = mmc_send_status(card, &status);
679 	if (err) {
680 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
681 		goto out;
682 	}
683 
684 	switch (R1_CURRENT_STATE(status)) {
685 	case R1_STATE_IDLE:
686 	case R1_STATE_READY:
687 	case R1_STATE_STBY:
688 	case R1_STATE_TRAN:
689 		/*
690 		 * In idle and transfer states, HPI is not needed and the caller
691 		 * can issue the next intended command immediately
692 		 */
693 		goto out;
694 	case R1_STATE_PRG:
695 		break;
696 	default:
697 		/* In all other states, it's illegal to issue HPI */
698 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
699 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
700 		err = -EINVAL;
701 		goto out;
702 	}
703 
704 	err = mmc_send_hpi_cmd(card, &status);
705 	if (err)
706 		goto out;
707 
708 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
709 	do {
710 		err = mmc_send_status(card, &status);
711 
712 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
713 			break;
714 		if (time_after(jiffies, prg_wait))
715 			err = -ETIMEDOUT;
716 	} while (!err);
717 
718 out:
719 	mmc_release_host(card->host);
720 	return err;
721 }
722 EXPORT_SYMBOL(mmc_interrupt_hpi);
723 
724 /**
725  *	mmc_wait_for_cmd - start a command and wait for completion
726  *	@host: MMC host to start command
727  *	@cmd: MMC command to start
728  *	@retries: maximum number of retries
729  *
730  *	Start a new MMC command for a host, and wait for the command
731  *	to complete.  Return any error that occurred while the command
732  *	was executing.  Do not attempt to parse the response.
733  */
734 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
735 {
736 	struct mmc_request mrq = {NULL};
737 
738 	WARN_ON(!host->claimed);
739 
740 	memset(cmd->resp, 0, sizeof(cmd->resp));
741 	cmd->retries = retries;
742 
743 	mrq.cmd = cmd;
744 	cmd->data = NULL;
745 
746 	mmc_wait_for_req(host, &mrq);
747 
748 	return cmd->error;
749 }
750 
751 EXPORT_SYMBOL(mmc_wait_for_cmd);
752 
753 /**
754  *	mmc_stop_bkops - stop ongoing BKOPS
755  *	@card: MMC card to check BKOPS
756  *
757  *	Send HPI command to stop ongoing background operations to
758  *	allow rapid servicing of foreground operations, e.g. read/
759  *	writes. Wait until the card comes out of the programming state
760  *	to avoid errors in servicing read/write requests.
761  */
762 int mmc_stop_bkops(struct mmc_card *card)
763 {
764 	int err = 0;
765 
766 	BUG_ON(!card);
767 	err = mmc_interrupt_hpi(card);
768 
769 	/*
770 	 * If err is EINVAL, we can't issue an HPI.
771 	 * It should complete the BKOPS.
772 	 */
773 	if (!err || (err == -EINVAL)) {
774 		mmc_card_clr_doing_bkops(card);
775 		mmc_retune_release(card->host);
776 		err = 0;
777 	}
778 
779 	return err;
780 }
781 EXPORT_SYMBOL(mmc_stop_bkops);
782 
783 int mmc_read_bkops_status(struct mmc_card *card)
784 {
785 	int err;
786 	u8 *ext_csd;
787 
788 	mmc_claim_host(card->host);
789 	err = mmc_get_ext_csd(card, &ext_csd);
790 	mmc_release_host(card->host);
791 	if (err)
792 		return err;
793 
794 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
795 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
796 	kfree(ext_csd);
797 	return 0;
798 }
799 EXPORT_SYMBOL(mmc_read_bkops_status);
800 
801 /**
802  *	mmc_set_data_timeout - set the timeout for a data command
803  *	@data: data phase for command
804  *	@card: the MMC card associated with the data transfer
805  *
806  *	Computes the data timeout parameters according to the
807  *	correct algorithm given the card type.
808  */
809 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
810 {
811 	unsigned int mult;
812 
813 	/*
814 	 * SDIO cards only define an upper 1 s limit on access.
815 	 */
816 	if (mmc_card_sdio(card)) {
817 		data->timeout_ns = 1000000000;
818 		data->timeout_clks = 0;
819 		return;
820 	}
821 
822 	/*
823 	 * SD cards use a 100 multiplier rather than 10
824 	 */
825 	mult = mmc_card_sd(card) ? 100 : 10;
826 
827 	/*
828 	 * Scale up the multiplier (and therefore the timeout) by
829 	 * the r2w factor for writes.
830 	 */
831 	if (data->flags & MMC_DATA_WRITE)
832 		mult <<= card->csd.r2w_factor;
833 
834 	data->timeout_ns = card->csd.tacc_ns * mult;
835 	data->timeout_clks = card->csd.tacc_clks * mult;
836 
837 	/*
838 	 * SD cards also have an upper limit on the timeout.
839 	 */
840 	if (mmc_card_sd(card)) {
841 		unsigned int timeout_us, limit_us;
842 
843 		timeout_us = data->timeout_ns / 1000;
844 		if (card->host->ios.clock)
845 			timeout_us += data->timeout_clks * 1000 /
846 				(card->host->ios.clock / 1000);
847 
848 		if (data->flags & MMC_DATA_WRITE)
849 			/*
850 			 * The MMC spec "It is strongly recommended
851 			 * for hosts to implement more than 500ms
852 			 * timeout value even if the card indicates
853 			 * the 250ms maximum busy length."  Even the
854 			 * previous value of 300ms is known to be
855 			 * insufficient for some cards.
856 			 */
857 			limit_us = 3000000;
858 		else
859 			limit_us = 100000;
860 
861 		/*
862 		 * SDHC cards always use these fixed values.
863 		 */
864 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
865 			data->timeout_ns = limit_us * 1000;
866 			data->timeout_clks = 0;
867 		}
868 
869 		/* assign limit value if invalid */
870 		if (timeout_us == 0)
871 			data->timeout_ns = limit_us * 1000;
872 	}
873 
874 	/*
875 	 * Some cards require longer data read timeout than indicated in CSD.
876 	 * Address this by setting the read timeout to a "reasonably high"
877 	 * value. For the cards tested, 300ms has proven enough. If necessary,
878 	 * this value can be increased if other problematic cards require this.
879 	 */
880 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
881 		data->timeout_ns = 300000000;
882 		data->timeout_clks = 0;
883 	}
884 
885 	/*
886 	 * Some cards need very high timeouts if driven in SPI mode.
887 	 * The worst observed timeout was 900ms after writing a
888 	 * continuous stream of data until the internal logic
889 	 * overflowed.
890 	 */
891 	if (mmc_host_is_spi(card->host)) {
892 		if (data->flags & MMC_DATA_WRITE) {
893 			if (data->timeout_ns < 1000000000)
894 				data->timeout_ns = 1000000000;	/* 1s */
895 		} else {
896 			if (data->timeout_ns < 100000000)
897 				data->timeout_ns =  100000000;	/* 100ms */
898 		}
899 	}
900 }
901 EXPORT_SYMBOL(mmc_set_data_timeout);
902 
903 /**
904  *	mmc_align_data_size - pads a transfer size to a more optimal value
905  *	@card: the MMC card associated with the data transfer
906  *	@sz: original transfer size
907  *
908  *	Pads the original data size with a number of extra bytes in
909  *	order to avoid controller bugs and/or performance hits
910  *	(e.g. some controllers revert to PIO for certain sizes).
911  *
912  *	Returns the improved size, which might be unmodified.
913  *
914  *	Note that this function is only relevant when issuing a
915  *	single scatter gather entry.
916  */
917 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
918 {
919 	/*
920 	 * FIXME: We don't have a system for the controller to tell
921 	 * the core about its problems yet, so for now we just 32-bit
922 	 * align the size.
923 	 */
924 	sz = ((sz + 3) / 4) * 4;
925 
926 	return sz;
927 }
928 EXPORT_SYMBOL(mmc_align_data_size);
929 
930 /**
931  *	__mmc_claim_host - exclusively claim a host
932  *	@host: mmc host to claim
933  *	@abort: whether or not the operation should be aborted
934  *
935  *	Claim a host for a set of operations.  If @abort is non null and
936  *	dereference a non-zero value then this will return prematurely with
937  *	that non-zero value without acquiring the lock.  Returns zero
938  *	with the lock held otherwise.
939  */
940 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
941 {
942 	DECLARE_WAITQUEUE(wait, current);
943 	unsigned long flags;
944 	int stop;
945 	bool pm = false;
946 
947 	might_sleep();
948 
949 	add_wait_queue(&host->wq, &wait);
950 	spin_lock_irqsave(&host->lock, flags);
951 	while (1) {
952 		set_current_state(TASK_UNINTERRUPTIBLE);
953 		stop = abort ? atomic_read(abort) : 0;
954 		if (stop || !host->claimed || host->claimer == current)
955 			break;
956 		spin_unlock_irqrestore(&host->lock, flags);
957 		schedule();
958 		spin_lock_irqsave(&host->lock, flags);
959 	}
960 	set_current_state(TASK_RUNNING);
961 	if (!stop) {
962 		host->claimed = 1;
963 		host->claimer = current;
964 		host->claim_cnt += 1;
965 		if (host->claim_cnt == 1)
966 			pm = true;
967 	} else
968 		wake_up(&host->wq);
969 	spin_unlock_irqrestore(&host->lock, flags);
970 	remove_wait_queue(&host->wq, &wait);
971 
972 	if (pm)
973 		pm_runtime_get_sync(mmc_dev(host));
974 
975 	return stop;
976 }
977 EXPORT_SYMBOL(__mmc_claim_host);
978 
979 /**
980  *	mmc_release_host - release a host
981  *	@host: mmc host to release
982  *
983  *	Release a MMC host, allowing others to claim the host
984  *	for their operations.
985  */
986 void mmc_release_host(struct mmc_host *host)
987 {
988 	unsigned long flags;
989 
990 	WARN_ON(!host->claimed);
991 
992 	spin_lock_irqsave(&host->lock, flags);
993 	if (--host->claim_cnt) {
994 		/* Release for nested claim */
995 		spin_unlock_irqrestore(&host->lock, flags);
996 	} else {
997 		host->claimed = 0;
998 		host->claimer = NULL;
999 		spin_unlock_irqrestore(&host->lock, flags);
1000 		wake_up(&host->wq);
1001 		pm_runtime_mark_last_busy(mmc_dev(host));
1002 		pm_runtime_put_autosuspend(mmc_dev(host));
1003 	}
1004 }
1005 EXPORT_SYMBOL(mmc_release_host);
1006 
1007 /*
1008  * This is a helper function, which fetches a runtime pm reference for the
1009  * card device and also claims the host.
1010  */
1011 void mmc_get_card(struct mmc_card *card)
1012 {
1013 	pm_runtime_get_sync(&card->dev);
1014 	mmc_claim_host(card->host);
1015 }
1016 EXPORT_SYMBOL(mmc_get_card);
1017 
1018 /*
1019  * This is a helper function, which releases the host and drops the runtime
1020  * pm reference for the card device.
1021  */
1022 void mmc_put_card(struct mmc_card *card)
1023 {
1024 	mmc_release_host(card->host);
1025 	pm_runtime_mark_last_busy(&card->dev);
1026 	pm_runtime_put_autosuspend(&card->dev);
1027 }
1028 EXPORT_SYMBOL(mmc_put_card);
1029 
1030 /*
1031  * Internal function that does the actual ios call to the host driver,
1032  * optionally printing some debug output.
1033  */
1034 static inline void mmc_set_ios(struct mmc_host *host)
1035 {
1036 	struct mmc_ios *ios = &host->ios;
1037 
1038 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1039 		"width %u timing %u\n",
1040 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1041 		 ios->power_mode, ios->chip_select, ios->vdd,
1042 		 ios->bus_width, ios->timing);
1043 
1044 	host->ops->set_ios(host, ios);
1045 }
1046 
1047 /*
1048  * Control chip select pin on a host.
1049  */
1050 void mmc_set_chip_select(struct mmc_host *host, int mode)
1051 {
1052 	host->ios.chip_select = mode;
1053 	mmc_set_ios(host);
1054 }
1055 
1056 /*
1057  * Sets the host clock to the highest possible frequency that
1058  * is below "hz".
1059  */
1060 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1061 {
1062 	WARN_ON(hz && hz < host->f_min);
1063 
1064 	if (hz > host->f_max)
1065 		hz = host->f_max;
1066 
1067 	host->ios.clock = hz;
1068 	mmc_set_ios(host);
1069 }
1070 
1071 int mmc_execute_tuning(struct mmc_card *card)
1072 {
1073 	struct mmc_host *host = card->host;
1074 	u32 opcode;
1075 	int err;
1076 
1077 	if (!host->ops->execute_tuning)
1078 		return 0;
1079 
1080 	if (mmc_card_mmc(card))
1081 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1082 	else
1083 		opcode = MMC_SEND_TUNING_BLOCK;
1084 
1085 	err = host->ops->execute_tuning(host, opcode);
1086 
1087 	if (err)
1088 		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1089 	else
1090 		mmc_retune_enable(host);
1091 
1092 	return err;
1093 }
1094 
1095 /*
1096  * Change the bus mode (open drain/push-pull) of a host.
1097  */
1098 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1099 {
1100 	host->ios.bus_mode = mode;
1101 	mmc_set_ios(host);
1102 }
1103 
1104 /*
1105  * Change data bus width of a host.
1106  */
1107 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1108 {
1109 	host->ios.bus_width = width;
1110 	mmc_set_ios(host);
1111 }
1112 
1113 /*
1114  * Set initial state after a power cycle or a hw_reset.
1115  */
1116 void mmc_set_initial_state(struct mmc_host *host)
1117 {
1118 	mmc_retune_disable(host);
1119 
1120 	if (mmc_host_is_spi(host))
1121 		host->ios.chip_select = MMC_CS_HIGH;
1122 	else
1123 		host->ios.chip_select = MMC_CS_DONTCARE;
1124 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1126 	host->ios.timing = MMC_TIMING_LEGACY;
1127 	host->ios.drv_type = 0;
1128 
1129 	mmc_set_ios(host);
1130 }
1131 
1132 /**
1133  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1134  * @vdd:	voltage (mV)
1135  * @low_bits:	prefer low bits in boundary cases
1136  *
1137  * This function returns the OCR bit number according to the provided @vdd
1138  * value. If conversion is not possible a negative errno value returned.
1139  *
1140  * Depending on the @low_bits flag the function prefers low or high OCR bits
1141  * on boundary voltages. For example,
1142  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1143  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1144  *
1145  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1146  */
1147 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1148 {
1149 	const int max_bit = ilog2(MMC_VDD_35_36);
1150 	int bit;
1151 
1152 	if (vdd < 1650 || vdd > 3600)
1153 		return -EINVAL;
1154 
1155 	if (vdd >= 1650 && vdd <= 1950)
1156 		return ilog2(MMC_VDD_165_195);
1157 
1158 	if (low_bits)
1159 		vdd -= 1;
1160 
1161 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1162 	bit = (vdd - 2000) / 100 + 8;
1163 	if (bit > max_bit)
1164 		return max_bit;
1165 	return bit;
1166 }
1167 
1168 /**
1169  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1170  * @vdd_min:	minimum voltage value (mV)
1171  * @vdd_max:	maximum voltage value (mV)
1172  *
1173  * This function returns the OCR mask bits according to the provided @vdd_min
1174  * and @vdd_max values. If conversion is not possible the function returns 0.
1175  *
1176  * Notes wrt boundary cases:
1177  * This function sets the OCR bits for all boundary voltages, for example
1178  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1179  * MMC_VDD_34_35 mask.
1180  */
1181 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1182 {
1183 	u32 mask = 0;
1184 
1185 	if (vdd_max < vdd_min)
1186 		return 0;
1187 
1188 	/* Prefer high bits for the boundary vdd_max values. */
1189 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1190 	if (vdd_max < 0)
1191 		return 0;
1192 
1193 	/* Prefer low bits for the boundary vdd_min values. */
1194 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1195 	if (vdd_min < 0)
1196 		return 0;
1197 
1198 	/* Fill the mask, from max bit to min bit. */
1199 	while (vdd_max >= vdd_min)
1200 		mask |= 1 << vdd_max--;
1201 
1202 	return mask;
1203 }
1204 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1205 
1206 #ifdef CONFIG_OF
1207 
1208 /**
1209  * mmc_of_parse_voltage - return mask of supported voltages
1210  * @np: The device node need to be parsed.
1211  * @mask: mask of voltages available for MMC/SD/SDIO
1212  *
1213  * 1. Return zero on success.
1214  * 2. Return negative errno: voltage-range is invalid.
1215  */
1216 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1217 {
1218 	const u32 *voltage_ranges;
1219 	int num_ranges, i;
1220 
1221 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1222 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1223 	if (!voltage_ranges || !num_ranges) {
1224 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1225 		return -EINVAL;
1226 	}
1227 
1228 	for (i = 0; i < num_ranges; i++) {
1229 		const int j = i * 2;
1230 		u32 ocr_mask;
1231 
1232 		ocr_mask = mmc_vddrange_to_ocrmask(
1233 				be32_to_cpu(voltage_ranges[j]),
1234 				be32_to_cpu(voltage_ranges[j + 1]));
1235 		if (!ocr_mask) {
1236 			pr_err("%s: voltage-range #%d is invalid\n",
1237 				np->full_name, i);
1238 			return -EINVAL;
1239 		}
1240 		*mask |= ocr_mask;
1241 	}
1242 
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(mmc_of_parse_voltage);
1246 
1247 #endif /* CONFIG_OF */
1248 
1249 static int mmc_of_get_func_num(struct device_node *node)
1250 {
1251 	u32 reg;
1252 	int ret;
1253 
1254 	ret = of_property_read_u32(node, "reg", &reg);
1255 	if (ret < 0)
1256 		return ret;
1257 
1258 	return reg;
1259 }
1260 
1261 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1262 		unsigned func_num)
1263 {
1264 	struct device_node *node;
1265 
1266 	if (!host->parent || !host->parent->of_node)
1267 		return NULL;
1268 
1269 	for_each_child_of_node(host->parent->of_node, node) {
1270 		if (mmc_of_get_func_num(node) == func_num)
1271 			return node;
1272 	}
1273 
1274 	return NULL;
1275 }
1276 
1277 #ifdef CONFIG_REGULATOR
1278 
1279 /**
1280  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1281  * @vdd_bit:	OCR bit number
1282  * @min_uV:	minimum voltage value (mV)
1283  * @max_uV:	maximum voltage value (mV)
1284  *
1285  * This function returns the voltage range according to the provided OCR
1286  * bit number. If conversion is not possible a negative errno value returned.
1287  */
1288 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1289 {
1290 	int		tmp;
1291 
1292 	if (!vdd_bit)
1293 		return -EINVAL;
1294 
1295 	/*
1296 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1297 	 * bits this regulator doesn't quite support ... don't
1298 	 * be too picky, most cards and regulators are OK with
1299 	 * a 0.1V range goof (it's a small error percentage).
1300 	 */
1301 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1302 	if (tmp == 0) {
1303 		*min_uV = 1650 * 1000;
1304 		*max_uV = 1950 * 1000;
1305 	} else {
1306 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1307 		*max_uV = *min_uV + 100 * 1000;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 /**
1314  * mmc_regulator_get_ocrmask - return mask of supported voltages
1315  * @supply: regulator to use
1316  *
1317  * This returns either a negative errno, or a mask of voltages that
1318  * can be provided to MMC/SD/SDIO devices using the specified voltage
1319  * regulator.  This would normally be called before registering the
1320  * MMC host adapter.
1321  */
1322 int mmc_regulator_get_ocrmask(struct regulator *supply)
1323 {
1324 	int			result = 0;
1325 	int			count;
1326 	int			i;
1327 	int			vdd_uV;
1328 	int			vdd_mV;
1329 
1330 	count = regulator_count_voltages(supply);
1331 	if (count < 0)
1332 		return count;
1333 
1334 	for (i = 0; i < count; i++) {
1335 		vdd_uV = regulator_list_voltage(supply, i);
1336 		if (vdd_uV <= 0)
1337 			continue;
1338 
1339 		vdd_mV = vdd_uV / 1000;
1340 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1341 	}
1342 
1343 	if (!result) {
1344 		vdd_uV = regulator_get_voltage(supply);
1345 		if (vdd_uV <= 0)
1346 			return vdd_uV;
1347 
1348 		vdd_mV = vdd_uV / 1000;
1349 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1350 	}
1351 
1352 	return result;
1353 }
1354 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1355 
1356 /**
1357  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1358  * @mmc: the host to regulate
1359  * @supply: regulator to use
1360  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1361  *
1362  * Returns zero on success, else negative errno.
1363  *
1364  * MMC host drivers may use this to enable or disable a regulator using
1365  * a particular supply voltage.  This would normally be called from the
1366  * set_ios() method.
1367  */
1368 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1369 			struct regulator *supply,
1370 			unsigned short vdd_bit)
1371 {
1372 	int			result = 0;
1373 	int			min_uV, max_uV;
1374 
1375 	if (vdd_bit) {
1376 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1377 
1378 		result = regulator_set_voltage(supply, min_uV, max_uV);
1379 		if (result == 0 && !mmc->regulator_enabled) {
1380 			result = regulator_enable(supply);
1381 			if (!result)
1382 				mmc->regulator_enabled = true;
1383 		}
1384 	} else if (mmc->regulator_enabled) {
1385 		result = regulator_disable(supply);
1386 		if (result == 0)
1387 			mmc->regulator_enabled = false;
1388 	}
1389 
1390 	if (result)
1391 		dev_err(mmc_dev(mmc),
1392 			"could not set regulator OCR (%d)\n", result);
1393 	return result;
1394 }
1395 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1396 
1397 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1398 						  int min_uV, int target_uV,
1399 						  int max_uV)
1400 {
1401 	/*
1402 	 * Check if supported first to avoid errors since we may try several
1403 	 * signal levels during power up and don't want to show errors.
1404 	 */
1405 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1406 		return -EINVAL;
1407 
1408 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1409 					     max_uV);
1410 }
1411 
1412 /**
1413  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1414  *
1415  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1416  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1417  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1418  * SD card spec also define VQMMC in terms of VMMC.
1419  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1420  *
1421  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1422  * requested voltage.  This is definitely a good idea for UHS where there's a
1423  * separate regulator on the card that's trying to make 1.8V and it's best if
1424  * we match.
1425  *
1426  * This function is expected to be used by a controller's
1427  * start_signal_voltage_switch() function.
1428  */
1429 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1430 {
1431 	struct device *dev = mmc_dev(mmc);
1432 	int ret, volt, min_uV, max_uV;
1433 
1434 	/* If no vqmmc supply then we can't change the voltage */
1435 	if (IS_ERR(mmc->supply.vqmmc))
1436 		return -EINVAL;
1437 
1438 	switch (ios->signal_voltage) {
1439 	case MMC_SIGNAL_VOLTAGE_120:
1440 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1441 						1100000, 1200000, 1300000);
1442 	case MMC_SIGNAL_VOLTAGE_180:
1443 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1444 						1700000, 1800000, 1950000);
1445 	case MMC_SIGNAL_VOLTAGE_330:
1446 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1447 		if (ret < 0)
1448 			return ret;
1449 
1450 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1451 			__func__, volt, max_uV);
1452 
1453 		min_uV = max(volt - 300000, 2700000);
1454 		max_uV = min(max_uV + 200000, 3600000);
1455 
1456 		/*
1457 		 * Due to a limitation in the current implementation of
1458 		 * regulator_set_voltage_triplet() which is taking the lowest
1459 		 * voltage possible if below the target, search for a suitable
1460 		 * voltage in two steps and try to stay close to vmmc
1461 		 * with a 0.3V tolerance at first.
1462 		 */
1463 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1464 						min_uV, volt, max_uV))
1465 			return 0;
1466 
1467 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1468 						2700000, volt, 3600000);
1469 	default:
1470 		return -EINVAL;
1471 	}
1472 }
1473 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1474 
1475 #endif /* CONFIG_REGULATOR */
1476 
1477 int mmc_regulator_get_supply(struct mmc_host *mmc)
1478 {
1479 	struct device *dev = mmc_dev(mmc);
1480 	int ret;
1481 
1482 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1483 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1484 
1485 	if (IS_ERR(mmc->supply.vmmc)) {
1486 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1487 			return -EPROBE_DEFER;
1488 		dev_info(dev, "No vmmc regulator found\n");
1489 	} else {
1490 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1491 		if (ret > 0)
1492 			mmc->ocr_avail = ret;
1493 		else
1494 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1495 	}
1496 
1497 	if (IS_ERR(mmc->supply.vqmmc)) {
1498 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1499 			return -EPROBE_DEFER;
1500 		dev_info(dev, "No vqmmc regulator found\n");
1501 	}
1502 
1503 	return 0;
1504 }
1505 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1506 
1507 /*
1508  * Mask off any voltages we don't support and select
1509  * the lowest voltage
1510  */
1511 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1512 {
1513 	int bit;
1514 
1515 	/*
1516 	 * Sanity check the voltages that the card claims to
1517 	 * support.
1518 	 */
1519 	if (ocr & 0x7F) {
1520 		dev_warn(mmc_dev(host),
1521 		"card claims to support voltages below defined range\n");
1522 		ocr &= ~0x7F;
1523 	}
1524 
1525 	ocr &= host->ocr_avail;
1526 	if (!ocr) {
1527 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1528 		return 0;
1529 	}
1530 
1531 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1532 		bit = ffs(ocr) - 1;
1533 		ocr &= 3 << bit;
1534 		mmc_power_cycle(host, ocr);
1535 	} else {
1536 		bit = fls(ocr) - 1;
1537 		ocr &= 3 << bit;
1538 		if (bit != host->ios.vdd)
1539 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1540 	}
1541 
1542 	return ocr;
1543 }
1544 
1545 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1546 {
1547 	int err = 0;
1548 	int old_signal_voltage = host->ios.signal_voltage;
1549 
1550 	host->ios.signal_voltage = signal_voltage;
1551 	if (host->ops->start_signal_voltage_switch)
1552 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1553 
1554 	if (err)
1555 		host->ios.signal_voltage = old_signal_voltage;
1556 
1557 	return err;
1558 
1559 }
1560 
1561 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1562 {
1563 	struct mmc_command cmd = {0};
1564 	int err = 0;
1565 	u32 clock;
1566 
1567 	BUG_ON(!host);
1568 
1569 	/*
1570 	 * Send CMD11 only if the request is to switch the card to
1571 	 * 1.8V signalling.
1572 	 */
1573 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1574 		return __mmc_set_signal_voltage(host, signal_voltage);
1575 
1576 	/*
1577 	 * If we cannot switch voltages, return failure so the caller
1578 	 * can continue without UHS mode
1579 	 */
1580 	if (!host->ops->start_signal_voltage_switch)
1581 		return -EPERM;
1582 	if (!host->ops->card_busy)
1583 		pr_warn("%s: cannot verify signal voltage switch\n",
1584 			mmc_hostname(host));
1585 
1586 	cmd.opcode = SD_SWITCH_VOLTAGE;
1587 	cmd.arg = 0;
1588 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1589 
1590 	err = mmc_wait_for_cmd(host, &cmd, 0);
1591 	if (err)
1592 		return err;
1593 
1594 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1595 		return -EIO;
1596 
1597 	/*
1598 	 * The card should drive cmd and dat[0:3] low immediately
1599 	 * after the response of cmd11, but wait 1 ms to be sure
1600 	 */
1601 	mmc_delay(1);
1602 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1603 		err = -EAGAIN;
1604 		goto power_cycle;
1605 	}
1606 	/*
1607 	 * During a signal voltage level switch, the clock must be gated
1608 	 * for 5 ms according to the SD spec
1609 	 */
1610 	clock = host->ios.clock;
1611 	host->ios.clock = 0;
1612 	mmc_set_ios(host);
1613 
1614 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1615 		/*
1616 		 * Voltages may not have been switched, but we've already
1617 		 * sent CMD11, so a power cycle is required anyway
1618 		 */
1619 		err = -EAGAIN;
1620 		goto power_cycle;
1621 	}
1622 
1623 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1624 	mmc_delay(10);
1625 	host->ios.clock = clock;
1626 	mmc_set_ios(host);
1627 
1628 	/* Wait for at least 1 ms according to spec */
1629 	mmc_delay(1);
1630 
1631 	/*
1632 	 * Failure to switch is indicated by the card holding
1633 	 * dat[0:3] low
1634 	 */
1635 	if (host->ops->card_busy && host->ops->card_busy(host))
1636 		err = -EAGAIN;
1637 
1638 power_cycle:
1639 	if (err) {
1640 		pr_debug("%s: Signal voltage switch failed, "
1641 			"power cycling card\n", mmc_hostname(host));
1642 		mmc_power_cycle(host, ocr);
1643 	}
1644 
1645 	return err;
1646 }
1647 
1648 /*
1649  * Select timing parameters for host.
1650  */
1651 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1652 {
1653 	host->ios.timing = timing;
1654 	mmc_set_ios(host);
1655 }
1656 
1657 /*
1658  * Select appropriate driver type for host.
1659  */
1660 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1661 {
1662 	host->ios.drv_type = drv_type;
1663 	mmc_set_ios(host);
1664 }
1665 
1666 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1667 			      int card_drv_type, int *drv_type)
1668 {
1669 	struct mmc_host *host = card->host;
1670 	int host_drv_type = SD_DRIVER_TYPE_B;
1671 
1672 	*drv_type = 0;
1673 
1674 	if (!host->ops->select_drive_strength)
1675 		return 0;
1676 
1677 	/* Use SD definition of driver strength for hosts */
1678 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1679 		host_drv_type |= SD_DRIVER_TYPE_A;
1680 
1681 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1682 		host_drv_type |= SD_DRIVER_TYPE_C;
1683 
1684 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1685 		host_drv_type |= SD_DRIVER_TYPE_D;
1686 
1687 	/*
1688 	 * The drive strength that the hardware can support
1689 	 * depends on the board design.  Pass the appropriate
1690 	 * information and let the hardware specific code
1691 	 * return what is possible given the options
1692 	 */
1693 	return host->ops->select_drive_strength(card, max_dtr,
1694 						host_drv_type,
1695 						card_drv_type,
1696 						drv_type);
1697 }
1698 
1699 /*
1700  * Apply power to the MMC stack.  This is a two-stage process.
1701  * First, we enable power to the card without the clock running.
1702  * We then wait a bit for the power to stabilise.  Finally,
1703  * enable the bus drivers and clock to the card.
1704  *
1705  * We must _NOT_ enable the clock prior to power stablising.
1706  *
1707  * If a host does all the power sequencing itself, ignore the
1708  * initial MMC_POWER_UP stage.
1709  */
1710 void mmc_power_up(struct mmc_host *host, u32 ocr)
1711 {
1712 	if (host->ios.power_mode == MMC_POWER_ON)
1713 		return;
1714 
1715 	mmc_pwrseq_pre_power_on(host);
1716 
1717 	host->ios.vdd = fls(ocr) - 1;
1718 	host->ios.power_mode = MMC_POWER_UP;
1719 	/* Set initial state and call mmc_set_ios */
1720 	mmc_set_initial_state(host);
1721 
1722 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1723 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1724 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1725 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1726 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1727 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1728 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1729 
1730 	/*
1731 	 * This delay should be sufficient to allow the power supply
1732 	 * to reach the minimum voltage.
1733 	 */
1734 	mmc_delay(10);
1735 
1736 	mmc_pwrseq_post_power_on(host);
1737 
1738 	host->ios.clock = host->f_init;
1739 
1740 	host->ios.power_mode = MMC_POWER_ON;
1741 	mmc_set_ios(host);
1742 
1743 	/*
1744 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1745 	 * time required to reach a stable voltage.
1746 	 */
1747 	mmc_delay(10);
1748 }
1749 
1750 void mmc_power_off(struct mmc_host *host)
1751 {
1752 	if (host->ios.power_mode == MMC_POWER_OFF)
1753 		return;
1754 
1755 	mmc_pwrseq_power_off(host);
1756 
1757 	host->ios.clock = 0;
1758 	host->ios.vdd = 0;
1759 
1760 	host->ios.power_mode = MMC_POWER_OFF;
1761 	/* Set initial state and call mmc_set_ios */
1762 	mmc_set_initial_state(host);
1763 
1764 	/*
1765 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1766 	 * XO-1.5, require a short delay after poweroff before the card
1767 	 * can be successfully turned on again.
1768 	 */
1769 	mmc_delay(1);
1770 }
1771 
1772 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1773 {
1774 	mmc_power_off(host);
1775 	/* Wait at least 1 ms according to SD spec */
1776 	mmc_delay(1);
1777 	mmc_power_up(host, ocr);
1778 }
1779 
1780 /*
1781  * Cleanup when the last reference to the bus operator is dropped.
1782  */
1783 static void __mmc_release_bus(struct mmc_host *host)
1784 {
1785 	BUG_ON(!host);
1786 	BUG_ON(host->bus_refs);
1787 	BUG_ON(!host->bus_dead);
1788 
1789 	host->bus_ops = NULL;
1790 }
1791 
1792 /*
1793  * Increase reference count of bus operator
1794  */
1795 static inline void mmc_bus_get(struct mmc_host *host)
1796 {
1797 	unsigned long flags;
1798 
1799 	spin_lock_irqsave(&host->lock, flags);
1800 	host->bus_refs++;
1801 	spin_unlock_irqrestore(&host->lock, flags);
1802 }
1803 
1804 /*
1805  * Decrease reference count of bus operator and free it if
1806  * it is the last reference.
1807  */
1808 static inline void mmc_bus_put(struct mmc_host *host)
1809 {
1810 	unsigned long flags;
1811 
1812 	spin_lock_irqsave(&host->lock, flags);
1813 	host->bus_refs--;
1814 	if ((host->bus_refs == 0) && host->bus_ops)
1815 		__mmc_release_bus(host);
1816 	spin_unlock_irqrestore(&host->lock, flags);
1817 }
1818 
1819 /*
1820  * Assign a mmc bus handler to a host. Only one bus handler may control a
1821  * host at any given time.
1822  */
1823 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1824 {
1825 	unsigned long flags;
1826 
1827 	BUG_ON(!host);
1828 	BUG_ON(!ops);
1829 
1830 	WARN_ON(!host->claimed);
1831 
1832 	spin_lock_irqsave(&host->lock, flags);
1833 
1834 	BUG_ON(host->bus_ops);
1835 	BUG_ON(host->bus_refs);
1836 
1837 	host->bus_ops = ops;
1838 	host->bus_refs = 1;
1839 	host->bus_dead = 0;
1840 
1841 	spin_unlock_irqrestore(&host->lock, flags);
1842 }
1843 
1844 /*
1845  * Remove the current bus handler from a host.
1846  */
1847 void mmc_detach_bus(struct mmc_host *host)
1848 {
1849 	unsigned long flags;
1850 
1851 	BUG_ON(!host);
1852 
1853 	WARN_ON(!host->claimed);
1854 	WARN_ON(!host->bus_ops);
1855 
1856 	spin_lock_irqsave(&host->lock, flags);
1857 
1858 	host->bus_dead = 1;
1859 
1860 	spin_unlock_irqrestore(&host->lock, flags);
1861 
1862 	mmc_bus_put(host);
1863 }
1864 
1865 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1866 				bool cd_irq)
1867 {
1868 #ifdef CONFIG_MMC_DEBUG
1869 	unsigned long flags;
1870 	spin_lock_irqsave(&host->lock, flags);
1871 	WARN_ON(host->removed);
1872 	spin_unlock_irqrestore(&host->lock, flags);
1873 #endif
1874 
1875 	/*
1876 	 * If the device is configured as wakeup, we prevent a new sleep for
1877 	 * 5 s to give provision for user space to consume the event.
1878 	 */
1879 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1880 		device_can_wakeup(mmc_dev(host)))
1881 		pm_wakeup_event(mmc_dev(host), 5000);
1882 
1883 	host->detect_change = 1;
1884 	mmc_schedule_delayed_work(&host->detect, delay);
1885 }
1886 
1887 /**
1888  *	mmc_detect_change - process change of state on a MMC socket
1889  *	@host: host which changed state.
1890  *	@delay: optional delay to wait before detection (jiffies)
1891  *
1892  *	MMC drivers should call this when they detect a card has been
1893  *	inserted or removed. The MMC layer will confirm that any
1894  *	present card is still functional, and initialize any newly
1895  *	inserted.
1896  */
1897 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1898 {
1899 	_mmc_detect_change(host, delay, true);
1900 }
1901 EXPORT_SYMBOL(mmc_detect_change);
1902 
1903 void mmc_init_erase(struct mmc_card *card)
1904 {
1905 	unsigned int sz;
1906 
1907 	if (is_power_of_2(card->erase_size))
1908 		card->erase_shift = ffs(card->erase_size) - 1;
1909 	else
1910 		card->erase_shift = 0;
1911 
1912 	/*
1913 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1914 	 * card.  That is not desirable because it can take a long time
1915 	 * (minutes) potentially delaying more important I/O, and also the
1916 	 * timeout calculations become increasingly hugely over-estimated.
1917 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1918 	 * to that size and alignment.
1919 	 *
1920 	 * For SD cards that define Allocation Unit size, limit erases to one
1921 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1922 	 * Erase Size, whether it is switched on or not, limit to that size.
1923 	 * Otherwise just have a stab at a good value.  For modern cards it
1924 	 * will end up being 4MiB.  Note that if the value is too small, it
1925 	 * can end up taking longer to erase.
1926 	 */
1927 	if (mmc_card_sd(card) && card->ssr.au) {
1928 		card->pref_erase = card->ssr.au;
1929 		card->erase_shift = ffs(card->ssr.au) - 1;
1930 	} else if (card->ext_csd.hc_erase_size) {
1931 		card->pref_erase = card->ext_csd.hc_erase_size;
1932 	} else if (card->erase_size) {
1933 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1934 		if (sz < 128)
1935 			card->pref_erase = 512 * 1024 / 512;
1936 		else if (sz < 512)
1937 			card->pref_erase = 1024 * 1024 / 512;
1938 		else if (sz < 1024)
1939 			card->pref_erase = 2 * 1024 * 1024 / 512;
1940 		else
1941 			card->pref_erase = 4 * 1024 * 1024 / 512;
1942 		if (card->pref_erase < card->erase_size)
1943 			card->pref_erase = card->erase_size;
1944 		else {
1945 			sz = card->pref_erase % card->erase_size;
1946 			if (sz)
1947 				card->pref_erase += card->erase_size - sz;
1948 		}
1949 	} else
1950 		card->pref_erase = 0;
1951 }
1952 
1953 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1954 				          unsigned int arg, unsigned int qty)
1955 {
1956 	unsigned int erase_timeout;
1957 
1958 	if (arg == MMC_DISCARD_ARG ||
1959 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1960 		erase_timeout = card->ext_csd.trim_timeout;
1961 	} else if (card->ext_csd.erase_group_def & 1) {
1962 		/* High Capacity Erase Group Size uses HC timeouts */
1963 		if (arg == MMC_TRIM_ARG)
1964 			erase_timeout = card->ext_csd.trim_timeout;
1965 		else
1966 			erase_timeout = card->ext_csd.hc_erase_timeout;
1967 	} else {
1968 		/* CSD Erase Group Size uses write timeout */
1969 		unsigned int mult = (10 << card->csd.r2w_factor);
1970 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1971 		unsigned int timeout_us;
1972 
1973 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1974 		if (card->csd.tacc_ns < 1000000)
1975 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1976 		else
1977 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1978 
1979 		/*
1980 		 * ios.clock is only a target.  The real clock rate might be
1981 		 * less but not that much less, so fudge it by multiplying by 2.
1982 		 */
1983 		timeout_clks <<= 1;
1984 		timeout_us += (timeout_clks * 1000) /
1985 			      (card->host->ios.clock / 1000);
1986 
1987 		erase_timeout = timeout_us / 1000;
1988 
1989 		/*
1990 		 * Theoretically, the calculation could underflow so round up
1991 		 * to 1ms in that case.
1992 		 */
1993 		if (!erase_timeout)
1994 			erase_timeout = 1;
1995 	}
1996 
1997 	/* Multiplier for secure operations */
1998 	if (arg & MMC_SECURE_ARGS) {
1999 		if (arg == MMC_SECURE_ERASE_ARG)
2000 			erase_timeout *= card->ext_csd.sec_erase_mult;
2001 		else
2002 			erase_timeout *= card->ext_csd.sec_trim_mult;
2003 	}
2004 
2005 	erase_timeout *= qty;
2006 
2007 	/*
2008 	 * Ensure at least a 1 second timeout for SPI as per
2009 	 * 'mmc_set_data_timeout()'
2010 	 */
2011 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2012 		erase_timeout = 1000;
2013 
2014 	return erase_timeout;
2015 }
2016 
2017 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2018 					 unsigned int arg,
2019 					 unsigned int qty)
2020 {
2021 	unsigned int erase_timeout;
2022 
2023 	if (card->ssr.erase_timeout) {
2024 		/* Erase timeout specified in SD Status Register (SSR) */
2025 		erase_timeout = card->ssr.erase_timeout * qty +
2026 				card->ssr.erase_offset;
2027 	} else {
2028 		/*
2029 		 * Erase timeout not specified in SD Status Register (SSR) so
2030 		 * use 250ms per write block.
2031 		 */
2032 		erase_timeout = 250 * qty;
2033 	}
2034 
2035 	/* Must not be less than 1 second */
2036 	if (erase_timeout < 1000)
2037 		erase_timeout = 1000;
2038 
2039 	return erase_timeout;
2040 }
2041 
2042 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2043 				      unsigned int arg,
2044 				      unsigned int qty)
2045 {
2046 	if (mmc_card_sd(card))
2047 		return mmc_sd_erase_timeout(card, arg, qty);
2048 	else
2049 		return mmc_mmc_erase_timeout(card, arg, qty);
2050 }
2051 
2052 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2053 			unsigned int to, unsigned int arg)
2054 {
2055 	struct mmc_command cmd = {0};
2056 	unsigned int qty = 0;
2057 	unsigned long timeout;
2058 	int err;
2059 
2060 	mmc_retune_hold(card->host);
2061 
2062 	/*
2063 	 * qty is used to calculate the erase timeout which depends on how many
2064 	 * erase groups (or allocation units in SD terminology) are affected.
2065 	 * We count erasing part of an erase group as one erase group.
2066 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2067 	 * erase group size is almost certainly also power of 2, but it does not
2068 	 * seem to insist on that in the JEDEC standard, so we fall back to
2069 	 * division in that case.  SD may not specify an allocation unit size,
2070 	 * in which case the timeout is based on the number of write blocks.
2071 	 *
2072 	 * Note that the timeout for secure trim 2 will only be correct if the
2073 	 * number of erase groups specified is the same as the total of all
2074 	 * preceding secure trim 1 commands.  Since the power may have been
2075 	 * lost since the secure trim 1 commands occurred, it is generally
2076 	 * impossible to calculate the secure trim 2 timeout correctly.
2077 	 */
2078 	if (card->erase_shift)
2079 		qty += ((to >> card->erase_shift) -
2080 			(from >> card->erase_shift)) + 1;
2081 	else if (mmc_card_sd(card))
2082 		qty += to - from + 1;
2083 	else
2084 		qty += ((to / card->erase_size) -
2085 			(from / card->erase_size)) + 1;
2086 
2087 	if (!mmc_card_blockaddr(card)) {
2088 		from <<= 9;
2089 		to <<= 9;
2090 	}
2091 
2092 	if (mmc_card_sd(card))
2093 		cmd.opcode = SD_ERASE_WR_BLK_START;
2094 	else
2095 		cmd.opcode = MMC_ERASE_GROUP_START;
2096 	cmd.arg = from;
2097 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2098 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2099 	if (err) {
2100 		pr_err("mmc_erase: group start error %d, "
2101 		       "status %#x\n", err, cmd.resp[0]);
2102 		err = -EIO;
2103 		goto out;
2104 	}
2105 
2106 	memset(&cmd, 0, sizeof(struct mmc_command));
2107 	if (mmc_card_sd(card))
2108 		cmd.opcode = SD_ERASE_WR_BLK_END;
2109 	else
2110 		cmd.opcode = MMC_ERASE_GROUP_END;
2111 	cmd.arg = to;
2112 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2113 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2114 	if (err) {
2115 		pr_err("mmc_erase: group end error %d, status %#x\n",
2116 		       err, cmd.resp[0]);
2117 		err = -EIO;
2118 		goto out;
2119 	}
2120 
2121 	memset(&cmd, 0, sizeof(struct mmc_command));
2122 	cmd.opcode = MMC_ERASE;
2123 	cmd.arg = arg;
2124 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2125 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2126 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2127 	if (err) {
2128 		pr_err("mmc_erase: erase error %d, status %#x\n",
2129 		       err, cmd.resp[0]);
2130 		err = -EIO;
2131 		goto out;
2132 	}
2133 
2134 	if (mmc_host_is_spi(card->host))
2135 		goto out;
2136 
2137 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2138 	do {
2139 		memset(&cmd, 0, sizeof(struct mmc_command));
2140 		cmd.opcode = MMC_SEND_STATUS;
2141 		cmd.arg = card->rca << 16;
2142 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2143 		/* Do not retry else we can't see errors */
2144 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2145 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2146 			pr_err("error %d requesting status %#x\n",
2147 				err, cmd.resp[0]);
2148 			err = -EIO;
2149 			goto out;
2150 		}
2151 
2152 		/* Timeout if the device never becomes ready for data and
2153 		 * never leaves the program state.
2154 		 */
2155 		if (time_after(jiffies, timeout)) {
2156 			pr_err("%s: Card stuck in programming state! %s\n",
2157 				mmc_hostname(card->host), __func__);
2158 			err =  -EIO;
2159 			goto out;
2160 		}
2161 
2162 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2163 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2164 out:
2165 	mmc_retune_release(card->host);
2166 	return err;
2167 }
2168 
2169 /**
2170  * mmc_erase - erase sectors.
2171  * @card: card to erase
2172  * @from: first sector to erase
2173  * @nr: number of sectors to erase
2174  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2175  *
2176  * Caller must claim host before calling this function.
2177  */
2178 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2179 	      unsigned int arg)
2180 {
2181 	unsigned int rem, to = from + nr;
2182 	int err;
2183 
2184 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2185 	    !(card->csd.cmdclass & CCC_ERASE))
2186 		return -EOPNOTSUPP;
2187 
2188 	if (!card->erase_size)
2189 		return -EOPNOTSUPP;
2190 
2191 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2192 		return -EOPNOTSUPP;
2193 
2194 	if ((arg & MMC_SECURE_ARGS) &&
2195 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2196 		return -EOPNOTSUPP;
2197 
2198 	if ((arg & MMC_TRIM_ARGS) &&
2199 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2200 		return -EOPNOTSUPP;
2201 
2202 	if (arg == MMC_SECURE_ERASE_ARG) {
2203 		if (from % card->erase_size || nr % card->erase_size)
2204 			return -EINVAL;
2205 	}
2206 
2207 	if (arg == MMC_ERASE_ARG) {
2208 		rem = from % card->erase_size;
2209 		if (rem) {
2210 			rem = card->erase_size - rem;
2211 			from += rem;
2212 			if (nr > rem)
2213 				nr -= rem;
2214 			else
2215 				return 0;
2216 		}
2217 		rem = nr % card->erase_size;
2218 		if (rem)
2219 			nr -= rem;
2220 	}
2221 
2222 	if (nr == 0)
2223 		return 0;
2224 
2225 	to = from + nr;
2226 
2227 	if (to <= from)
2228 		return -EINVAL;
2229 
2230 	/* 'from' and 'to' are inclusive */
2231 	to -= 1;
2232 
2233 	/*
2234 	 * Special case where only one erase-group fits in the timeout budget:
2235 	 * If the region crosses an erase-group boundary on this particular
2236 	 * case, we will be trimming more than one erase-group which, does not
2237 	 * fit in the timeout budget of the controller, so we need to split it
2238 	 * and call mmc_do_erase() twice if necessary. This special case is
2239 	 * identified by the card->eg_boundary flag.
2240 	 */
2241 	rem = card->erase_size - (from % card->erase_size);
2242 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2243 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2244 		from += rem;
2245 		if ((err) || (to <= from))
2246 			return err;
2247 	}
2248 
2249 	return mmc_do_erase(card, from, to, arg);
2250 }
2251 EXPORT_SYMBOL(mmc_erase);
2252 
2253 int mmc_can_erase(struct mmc_card *card)
2254 {
2255 	if ((card->host->caps & MMC_CAP_ERASE) &&
2256 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2257 		return 1;
2258 	return 0;
2259 }
2260 EXPORT_SYMBOL(mmc_can_erase);
2261 
2262 int mmc_can_trim(struct mmc_card *card)
2263 {
2264 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2265 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2266 		return 1;
2267 	return 0;
2268 }
2269 EXPORT_SYMBOL(mmc_can_trim);
2270 
2271 int mmc_can_discard(struct mmc_card *card)
2272 {
2273 	/*
2274 	 * As there's no way to detect the discard support bit at v4.5
2275 	 * use the s/w feature support filed.
2276 	 */
2277 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2278 		return 1;
2279 	return 0;
2280 }
2281 EXPORT_SYMBOL(mmc_can_discard);
2282 
2283 int mmc_can_sanitize(struct mmc_card *card)
2284 {
2285 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2286 		return 0;
2287 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2288 		return 1;
2289 	return 0;
2290 }
2291 EXPORT_SYMBOL(mmc_can_sanitize);
2292 
2293 int mmc_can_secure_erase_trim(struct mmc_card *card)
2294 {
2295 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2296 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2297 		return 1;
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2301 
2302 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2303 			    unsigned int nr)
2304 {
2305 	if (!card->erase_size)
2306 		return 0;
2307 	if (from % card->erase_size || nr % card->erase_size)
2308 		return 0;
2309 	return 1;
2310 }
2311 EXPORT_SYMBOL(mmc_erase_group_aligned);
2312 
2313 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2314 					    unsigned int arg)
2315 {
2316 	struct mmc_host *host = card->host;
2317 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2318 	unsigned int last_timeout = 0;
2319 
2320 	if (card->erase_shift)
2321 		max_qty = UINT_MAX >> card->erase_shift;
2322 	else if (mmc_card_sd(card))
2323 		max_qty = UINT_MAX;
2324 	else
2325 		max_qty = UINT_MAX / card->erase_size;
2326 
2327 	/* Find the largest qty with an OK timeout */
2328 	do {
2329 		y = 0;
2330 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2331 			timeout = mmc_erase_timeout(card, arg, qty + x);
2332 			if (timeout > host->max_busy_timeout)
2333 				break;
2334 			if (timeout < last_timeout)
2335 				break;
2336 			last_timeout = timeout;
2337 			y = x;
2338 		}
2339 		qty += y;
2340 	} while (y);
2341 
2342 	if (!qty)
2343 		return 0;
2344 
2345 	/*
2346 	 * When specifying a sector range to trim, chances are we might cross
2347 	 * an erase-group boundary even if the amount of sectors is less than
2348 	 * one erase-group.
2349 	 * If we can only fit one erase-group in the controller timeout budget,
2350 	 * we have to care that erase-group boundaries are not crossed by a
2351 	 * single trim operation. We flag that special case with "eg_boundary".
2352 	 * In all other cases we can just decrement qty and pretend that we
2353 	 * always touch (qty + 1) erase-groups as a simple optimization.
2354 	 */
2355 	if (qty == 1)
2356 		card->eg_boundary = 1;
2357 	else
2358 		qty--;
2359 
2360 	/* Convert qty to sectors */
2361 	if (card->erase_shift)
2362 		max_discard = qty << card->erase_shift;
2363 	else if (mmc_card_sd(card))
2364 		max_discard = qty + 1;
2365 	else
2366 		max_discard = qty * card->erase_size;
2367 
2368 	return max_discard;
2369 }
2370 
2371 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2372 {
2373 	struct mmc_host *host = card->host;
2374 	unsigned int max_discard, max_trim;
2375 
2376 	if (!host->max_busy_timeout)
2377 		return UINT_MAX;
2378 
2379 	/*
2380 	 * Without erase_group_def set, MMC erase timeout depends on clock
2381 	 * frequence which can change.  In that case, the best choice is
2382 	 * just the preferred erase size.
2383 	 */
2384 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2385 		return card->pref_erase;
2386 
2387 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2388 	if (mmc_can_trim(card)) {
2389 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2390 		if (max_trim < max_discard)
2391 			max_discard = max_trim;
2392 	} else if (max_discard < card->erase_size) {
2393 		max_discard = 0;
2394 	}
2395 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2396 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2397 	return max_discard;
2398 }
2399 EXPORT_SYMBOL(mmc_calc_max_discard);
2400 
2401 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2402 {
2403 	struct mmc_command cmd = {0};
2404 
2405 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2406 		return 0;
2407 
2408 	cmd.opcode = MMC_SET_BLOCKLEN;
2409 	cmd.arg = blocklen;
2410 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2411 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2412 }
2413 EXPORT_SYMBOL(mmc_set_blocklen);
2414 
2415 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2416 			bool is_rel_write)
2417 {
2418 	struct mmc_command cmd = {0};
2419 
2420 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2421 	cmd.arg = blockcount & 0x0000FFFF;
2422 	if (is_rel_write)
2423 		cmd.arg |= 1 << 31;
2424 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2425 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2426 }
2427 EXPORT_SYMBOL(mmc_set_blockcount);
2428 
2429 static void mmc_hw_reset_for_init(struct mmc_host *host)
2430 {
2431 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2432 		return;
2433 	host->ops->hw_reset(host);
2434 }
2435 
2436 int mmc_hw_reset(struct mmc_host *host)
2437 {
2438 	int ret;
2439 
2440 	if (!host->card)
2441 		return -EINVAL;
2442 
2443 	mmc_bus_get(host);
2444 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2445 		mmc_bus_put(host);
2446 		return -EOPNOTSUPP;
2447 	}
2448 
2449 	ret = host->bus_ops->reset(host);
2450 	mmc_bus_put(host);
2451 
2452 	if (ret != -EOPNOTSUPP)
2453 		pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2454 
2455 	return ret;
2456 }
2457 EXPORT_SYMBOL(mmc_hw_reset);
2458 
2459 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2460 {
2461 	host->f_init = freq;
2462 
2463 #ifdef CONFIG_MMC_DEBUG
2464 	pr_info("%s: %s: trying to init card at %u Hz\n",
2465 		mmc_hostname(host), __func__, host->f_init);
2466 #endif
2467 	mmc_power_up(host, host->ocr_avail);
2468 
2469 	/*
2470 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2471 	 * do a hardware reset if possible.
2472 	 */
2473 	mmc_hw_reset_for_init(host);
2474 
2475 	/*
2476 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2477 	 * if the card is being re-initialized, just send it.  CMD52
2478 	 * should be ignored by SD/eMMC cards.
2479 	 */
2480 	sdio_reset(host);
2481 	mmc_go_idle(host);
2482 
2483 	mmc_send_if_cond(host, host->ocr_avail);
2484 
2485 	/* Order's important: probe SDIO, then SD, then MMC */
2486 	if (!mmc_attach_sdio(host))
2487 		return 0;
2488 	if (!mmc_attach_sd(host))
2489 		return 0;
2490 	if (!mmc_attach_mmc(host))
2491 		return 0;
2492 
2493 	mmc_power_off(host);
2494 	return -EIO;
2495 }
2496 
2497 int _mmc_detect_card_removed(struct mmc_host *host)
2498 {
2499 	int ret;
2500 
2501 	if (host->caps & MMC_CAP_NONREMOVABLE)
2502 		return 0;
2503 
2504 	if (!host->card || mmc_card_removed(host->card))
2505 		return 1;
2506 
2507 	ret = host->bus_ops->alive(host);
2508 
2509 	/*
2510 	 * Card detect status and alive check may be out of sync if card is
2511 	 * removed slowly, when card detect switch changes while card/slot
2512 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 	 * detect work 200ms later for this case.
2515 	 */
2516 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517 		mmc_detect_change(host, msecs_to_jiffies(200));
2518 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519 	}
2520 
2521 	if (ret) {
2522 		mmc_card_set_removed(host->card);
2523 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 int mmc_detect_card_removed(struct mmc_host *host)
2530 {
2531 	struct mmc_card *card = host->card;
2532 	int ret;
2533 
2534 	WARN_ON(!host->claimed);
2535 
2536 	if (!card)
2537 		return 1;
2538 
2539 	ret = mmc_card_removed(card);
2540 	/*
2541 	 * The card will be considered unchanged unless we have been asked to
2542 	 * detect a change or host requires polling to provide card detection.
2543 	 */
2544 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2545 		return ret;
2546 
2547 	host->detect_change = 0;
2548 	if (!ret) {
2549 		ret = _mmc_detect_card_removed(host);
2550 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2551 			/*
2552 			 * Schedule a detect work as soon as possible to let a
2553 			 * rescan handle the card removal.
2554 			 */
2555 			cancel_delayed_work(&host->detect);
2556 			_mmc_detect_change(host, 0, false);
2557 		}
2558 	}
2559 
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(mmc_detect_card_removed);
2563 
2564 void mmc_rescan(struct work_struct *work)
2565 {
2566 	struct mmc_host *host =
2567 		container_of(work, struct mmc_host, detect.work);
2568 	int i;
2569 
2570 	if (host->trigger_card_event && host->ops->card_event) {
2571 		host->ops->card_event(host);
2572 		host->trigger_card_event = false;
2573 	}
2574 
2575 	if (host->rescan_disable)
2576 		return;
2577 
2578 	/* If there is a non-removable card registered, only scan once */
2579 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2580 		return;
2581 	host->rescan_entered = 1;
2582 
2583 	mmc_bus_get(host);
2584 
2585 	/*
2586 	 * if there is a _removable_ card registered, check whether it is
2587 	 * still present
2588 	 */
2589 	if (host->bus_ops && !host->bus_dead
2590 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2591 		host->bus_ops->detect(host);
2592 
2593 	host->detect_change = 0;
2594 
2595 	/*
2596 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2597 	 * the card is no longer present.
2598 	 */
2599 	mmc_bus_put(host);
2600 	mmc_bus_get(host);
2601 
2602 	/* if there still is a card present, stop here */
2603 	if (host->bus_ops != NULL) {
2604 		mmc_bus_put(host);
2605 		goto out;
2606 	}
2607 
2608 	/*
2609 	 * Only we can add a new handler, so it's safe to
2610 	 * release the lock here.
2611 	 */
2612 	mmc_bus_put(host);
2613 
2614 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2615 			host->ops->get_cd(host) == 0) {
2616 		mmc_claim_host(host);
2617 		mmc_power_off(host);
2618 		mmc_release_host(host);
2619 		goto out;
2620 	}
2621 
2622 	mmc_claim_host(host);
2623 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2624 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2625 			break;
2626 		if (freqs[i] <= host->f_min)
2627 			break;
2628 	}
2629 	mmc_release_host(host);
2630 
2631  out:
2632 	if (host->caps & MMC_CAP_NEEDS_POLL)
2633 		mmc_schedule_delayed_work(&host->detect, HZ);
2634 }
2635 
2636 void mmc_start_host(struct mmc_host *host)
2637 {
2638 	host->f_init = max(freqs[0], host->f_min);
2639 	host->rescan_disable = 0;
2640 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2641 
2642 	mmc_claim_host(host);
2643 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2644 		mmc_power_off(host);
2645 	else
2646 		mmc_power_up(host, host->ocr_avail);
2647 	mmc_release_host(host);
2648 
2649 	mmc_gpiod_request_cd_irq(host);
2650 	_mmc_detect_change(host, 0, false);
2651 }
2652 
2653 void mmc_stop_host(struct mmc_host *host)
2654 {
2655 #ifdef CONFIG_MMC_DEBUG
2656 	unsigned long flags;
2657 	spin_lock_irqsave(&host->lock, flags);
2658 	host->removed = 1;
2659 	spin_unlock_irqrestore(&host->lock, flags);
2660 #endif
2661 	if (host->slot.cd_irq >= 0)
2662 		disable_irq(host->slot.cd_irq);
2663 
2664 	host->rescan_disable = 1;
2665 	cancel_delayed_work_sync(&host->detect);
2666 	mmc_flush_scheduled_work();
2667 
2668 	/* clear pm flags now and let card drivers set them as needed */
2669 	host->pm_flags = 0;
2670 
2671 	mmc_bus_get(host);
2672 	if (host->bus_ops && !host->bus_dead) {
2673 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2674 		host->bus_ops->remove(host);
2675 		mmc_claim_host(host);
2676 		mmc_detach_bus(host);
2677 		mmc_power_off(host);
2678 		mmc_release_host(host);
2679 		mmc_bus_put(host);
2680 		return;
2681 	}
2682 	mmc_bus_put(host);
2683 
2684 	BUG_ON(host->card);
2685 
2686 	mmc_claim_host(host);
2687 	mmc_power_off(host);
2688 	mmc_release_host(host);
2689 }
2690 
2691 int mmc_power_save_host(struct mmc_host *host)
2692 {
2693 	int ret = 0;
2694 
2695 #ifdef CONFIG_MMC_DEBUG
2696 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2697 #endif
2698 
2699 	mmc_bus_get(host);
2700 
2701 	if (!host->bus_ops || host->bus_dead) {
2702 		mmc_bus_put(host);
2703 		return -EINVAL;
2704 	}
2705 
2706 	if (host->bus_ops->power_save)
2707 		ret = host->bus_ops->power_save(host);
2708 
2709 	mmc_bus_put(host);
2710 
2711 	mmc_power_off(host);
2712 
2713 	return ret;
2714 }
2715 EXPORT_SYMBOL(mmc_power_save_host);
2716 
2717 int mmc_power_restore_host(struct mmc_host *host)
2718 {
2719 	int ret;
2720 
2721 #ifdef CONFIG_MMC_DEBUG
2722 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2723 #endif
2724 
2725 	mmc_bus_get(host);
2726 
2727 	if (!host->bus_ops || host->bus_dead) {
2728 		mmc_bus_put(host);
2729 		return -EINVAL;
2730 	}
2731 
2732 	mmc_power_up(host, host->card->ocr);
2733 	ret = host->bus_ops->power_restore(host);
2734 
2735 	mmc_bus_put(host);
2736 
2737 	return ret;
2738 }
2739 EXPORT_SYMBOL(mmc_power_restore_host);
2740 
2741 /*
2742  * Flush the cache to the non-volatile storage.
2743  */
2744 int mmc_flush_cache(struct mmc_card *card)
2745 {
2746 	int err = 0;
2747 
2748 	if (mmc_card_mmc(card) &&
2749 			(card->ext_csd.cache_size > 0) &&
2750 			(card->ext_csd.cache_ctrl & 1)) {
2751 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2752 				EXT_CSD_FLUSH_CACHE, 1, 0);
2753 		if (err)
2754 			pr_err("%s: cache flush error %d\n",
2755 					mmc_hostname(card->host), err);
2756 	}
2757 
2758 	return err;
2759 }
2760 EXPORT_SYMBOL(mmc_flush_cache);
2761 
2762 #ifdef CONFIG_PM
2763 
2764 /* Do the card removal on suspend if card is assumed removeable
2765  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2766    to sync the card.
2767 */
2768 int mmc_pm_notify(struct notifier_block *notify_block,
2769 					unsigned long mode, void *unused)
2770 {
2771 	struct mmc_host *host = container_of(
2772 		notify_block, struct mmc_host, pm_notify);
2773 	unsigned long flags;
2774 	int err = 0;
2775 
2776 	switch (mode) {
2777 	case PM_HIBERNATION_PREPARE:
2778 	case PM_SUSPEND_PREPARE:
2779 	case PM_RESTORE_PREPARE:
2780 		spin_lock_irqsave(&host->lock, flags);
2781 		host->rescan_disable = 1;
2782 		spin_unlock_irqrestore(&host->lock, flags);
2783 		cancel_delayed_work_sync(&host->detect);
2784 
2785 		if (!host->bus_ops)
2786 			break;
2787 
2788 		/* Validate prerequisites for suspend */
2789 		if (host->bus_ops->pre_suspend)
2790 			err = host->bus_ops->pre_suspend(host);
2791 		if (!err)
2792 			break;
2793 
2794 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2795 		host->bus_ops->remove(host);
2796 		mmc_claim_host(host);
2797 		mmc_detach_bus(host);
2798 		mmc_power_off(host);
2799 		mmc_release_host(host);
2800 		host->pm_flags = 0;
2801 		break;
2802 
2803 	case PM_POST_SUSPEND:
2804 	case PM_POST_HIBERNATION:
2805 	case PM_POST_RESTORE:
2806 
2807 		spin_lock_irqsave(&host->lock, flags);
2808 		host->rescan_disable = 0;
2809 		spin_unlock_irqrestore(&host->lock, flags);
2810 		_mmc_detect_change(host, 0, false);
2811 
2812 	}
2813 
2814 	return 0;
2815 }
2816 #endif
2817 
2818 /**
2819  * mmc_init_context_info() - init synchronization context
2820  * @host: mmc host
2821  *
2822  * Init struct context_info needed to implement asynchronous
2823  * request mechanism, used by mmc core, host driver and mmc requests
2824  * supplier.
2825  */
2826 void mmc_init_context_info(struct mmc_host *host)
2827 {
2828 	spin_lock_init(&host->context_info.lock);
2829 	host->context_info.is_new_req = false;
2830 	host->context_info.is_done_rcv = false;
2831 	host->context_info.is_waiting_last_req = false;
2832 	init_waitqueue_head(&host->context_info.wait);
2833 }
2834 
2835 static int __init mmc_init(void)
2836 {
2837 	int ret;
2838 
2839 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2840 	if (!workqueue)
2841 		return -ENOMEM;
2842 
2843 	ret = mmc_register_bus();
2844 	if (ret)
2845 		goto destroy_workqueue;
2846 
2847 	ret = mmc_register_host_class();
2848 	if (ret)
2849 		goto unregister_bus;
2850 
2851 	ret = sdio_register_bus();
2852 	if (ret)
2853 		goto unregister_host_class;
2854 
2855 	return 0;
2856 
2857 unregister_host_class:
2858 	mmc_unregister_host_class();
2859 unregister_bus:
2860 	mmc_unregister_bus();
2861 destroy_workqueue:
2862 	destroy_workqueue(workqueue);
2863 
2864 	return ret;
2865 }
2866 
2867 static void __exit mmc_exit(void)
2868 {
2869 	sdio_unregister_bus();
2870 	mmc_unregister_host_class();
2871 	mmc_unregister_bus();
2872 	destroy_workqueue(workqueue);
2873 }
2874 
2875 subsys_initcall(mmc_init);
2876 module_exit(mmc_exit);
2877 
2878 MODULE_LICENSE("GPL");
2879