1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "bus.h" 44 #include "host.h" 45 #include "sdio_bus.h" 46 #include "pwrseq.h" 47 48 #include "mmc_ops.h" 49 #include "sd_ops.h" 50 #include "sdio_ops.h" 51 52 /* If the device is not responding */ 53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 54 55 /* 56 * Background operations can take a long time, depending on the housekeeping 57 * operations the card has to perform. 58 */ 59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 60 61 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 62 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 63 64 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 65 66 /* 67 * Enabling software CRCs on the data blocks can be a significant (30%) 68 * performance cost, and for other reasons may not always be desired. 69 * So we allow it it to be disabled. 70 */ 71 bool use_spi_crc = 1; 72 module_param(use_spi_crc, bool, 0); 73 74 static int mmc_schedule_delayed_work(struct delayed_work *work, 75 unsigned long delay) 76 { 77 /* 78 * We use the system_freezable_wq, because of two reasons. 79 * First, it allows several works (not the same work item) to be 80 * executed simultaneously. Second, the queue becomes frozen when 81 * userspace becomes frozen during system PM. 82 */ 83 return queue_delayed_work(system_freezable_wq, work, delay); 84 } 85 86 #ifdef CONFIG_FAIL_MMC_REQUEST 87 88 /* 89 * Internal function. Inject random data errors. 90 * If mmc_data is NULL no errors are injected. 91 */ 92 static void mmc_should_fail_request(struct mmc_host *host, 93 struct mmc_request *mrq) 94 { 95 struct mmc_command *cmd = mrq->cmd; 96 struct mmc_data *data = mrq->data; 97 static const int data_errors[] = { 98 -ETIMEDOUT, 99 -EILSEQ, 100 -EIO, 101 }; 102 103 if (!data) 104 return; 105 106 if (cmd->error || data->error || 107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 108 return; 109 110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 112 } 113 114 #else /* CONFIG_FAIL_MMC_REQUEST */ 115 116 static inline void mmc_should_fail_request(struct mmc_host *host, 117 struct mmc_request *mrq) 118 { 119 } 120 121 #endif /* CONFIG_FAIL_MMC_REQUEST */ 122 123 static inline void mmc_complete_cmd(struct mmc_request *mrq) 124 { 125 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 126 complete_all(&mrq->cmd_completion); 127 } 128 129 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 130 { 131 if (!mrq->cap_cmd_during_tfr) 132 return; 133 134 mmc_complete_cmd(mrq); 135 136 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 137 mmc_hostname(host), mrq->cmd->opcode); 138 } 139 EXPORT_SYMBOL(mmc_command_done); 140 141 /** 142 * mmc_request_done - finish processing an MMC request 143 * @host: MMC host which completed request 144 * @mrq: MMC request which request 145 * 146 * MMC drivers should call this function when they have completed 147 * their processing of a request. 148 */ 149 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 150 { 151 struct mmc_command *cmd = mrq->cmd; 152 int err = cmd->error; 153 154 /* Flag re-tuning needed on CRC errors */ 155 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 156 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 157 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 158 (mrq->data && mrq->data->error == -EILSEQ) || 159 (mrq->stop && mrq->stop->error == -EILSEQ))) 160 mmc_retune_needed(host); 161 162 if (err && cmd->retries && mmc_host_is_spi(host)) { 163 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 164 cmd->retries = 0; 165 } 166 167 if (host->ongoing_mrq == mrq) 168 host->ongoing_mrq = NULL; 169 170 mmc_complete_cmd(mrq); 171 172 trace_mmc_request_done(host, mrq); 173 174 if (err && cmd->retries && !mmc_card_removed(host->card)) { 175 /* 176 * Request starter must handle retries - see 177 * mmc_wait_for_req_done(). 178 */ 179 if (mrq->done) 180 mrq->done(mrq); 181 } else { 182 mmc_should_fail_request(host, mrq); 183 184 if (!host->ongoing_mrq) 185 led_trigger_event(host->led, LED_OFF); 186 187 if (mrq->sbc) { 188 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 189 mmc_hostname(host), mrq->sbc->opcode, 190 mrq->sbc->error, 191 mrq->sbc->resp[0], mrq->sbc->resp[1], 192 mrq->sbc->resp[2], mrq->sbc->resp[3]); 193 } 194 195 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 196 mmc_hostname(host), cmd->opcode, err, 197 cmd->resp[0], cmd->resp[1], 198 cmd->resp[2], cmd->resp[3]); 199 200 if (mrq->data) { 201 pr_debug("%s: %d bytes transferred: %d\n", 202 mmc_hostname(host), 203 mrq->data->bytes_xfered, mrq->data->error); 204 } 205 206 if (mrq->stop) { 207 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 208 mmc_hostname(host), mrq->stop->opcode, 209 mrq->stop->error, 210 mrq->stop->resp[0], mrq->stop->resp[1], 211 mrq->stop->resp[2], mrq->stop->resp[3]); 212 } 213 214 if (mrq->done) 215 mrq->done(mrq); 216 } 217 } 218 219 EXPORT_SYMBOL(mmc_request_done); 220 221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 222 { 223 int err; 224 225 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 226 err = mmc_retune(host); 227 if (err) { 228 mrq->cmd->error = err; 229 mmc_request_done(host, mrq); 230 return; 231 } 232 233 /* 234 * For sdio rw commands we must wait for card busy otherwise some 235 * sdio devices won't work properly. 236 */ 237 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) { 238 int tries = 500; /* Wait aprox 500ms at maximum */ 239 240 while (host->ops->card_busy(host) && --tries) 241 mmc_delay(1); 242 243 if (tries == 0) { 244 mrq->cmd->error = -EBUSY; 245 mmc_request_done(host, mrq); 246 return; 247 } 248 } 249 250 if (mrq->cap_cmd_during_tfr) { 251 host->ongoing_mrq = mrq; 252 /* 253 * Retry path could come through here without having waiting on 254 * cmd_completion, so ensure it is reinitialised. 255 */ 256 reinit_completion(&mrq->cmd_completion); 257 } 258 259 trace_mmc_request_start(host, mrq); 260 261 host->ops->request(host, mrq); 262 } 263 264 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 265 { 266 #ifdef CONFIG_MMC_DEBUG 267 unsigned int i, sz; 268 struct scatterlist *sg; 269 #endif 270 mmc_retune_hold(host); 271 272 if (mmc_card_removed(host->card)) 273 return -ENOMEDIUM; 274 275 if (mrq->sbc) { 276 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 277 mmc_hostname(host), mrq->sbc->opcode, 278 mrq->sbc->arg, mrq->sbc->flags); 279 } 280 281 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 282 mmc_hostname(host), mrq->cmd->opcode, 283 mrq->cmd->arg, mrq->cmd->flags); 284 285 if (mrq->data) { 286 pr_debug("%s: blksz %d blocks %d flags %08x " 287 "tsac %d ms nsac %d\n", 288 mmc_hostname(host), mrq->data->blksz, 289 mrq->data->blocks, mrq->data->flags, 290 mrq->data->timeout_ns / 1000000, 291 mrq->data->timeout_clks); 292 } 293 294 if (mrq->stop) { 295 pr_debug("%s: CMD%u arg %08x flags %08x\n", 296 mmc_hostname(host), mrq->stop->opcode, 297 mrq->stop->arg, mrq->stop->flags); 298 } 299 300 WARN_ON(!host->claimed); 301 302 mrq->cmd->error = 0; 303 mrq->cmd->mrq = mrq; 304 if (mrq->sbc) { 305 mrq->sbc->error = 0; 306 mrq->sbc->mrq = mrq; 307 } 308 if (mrq->data) { 309 BUG_ON(mrq->data->blksz > host->max_blk_size); 310 BUG_ON(mrq->data->blocks > host->max_blk_count); 311 BUG_ON(mrq->data->blocks * mrq->data->blksz > 312 host->max_req_size); 313 314 #ifdef CONFIG_MMC_DEBUG 315 sz = 0; 316 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 317 sz += sg->length; 318 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 319 #endif 320 321 mrq->cmd->data = mrq->data; 322 mrq->data->error = 0; 323 mrq->data->mrq = mrq; 324 if (mrq->stop) { 325 mrq->data->stop = mrq->stop; 326 mrq->stop->error = 0; 327 mrq->stop->mrq = mrq; 328 } 329 } 330 led_trigger_event(host->led, LED_FULL); 331 __mmc_start_request(host, mrq); 332 333 return 0; 334 } 335 336 /** 337 * mmc_start_bkops - start BKOPS for supported cards 338 * @card: MMC card to start BKOPS 339 * @form_exception: A flag to indicate if this function was 340 * called due to an exception raised by the card 341 * 342 * Start background operations whenever requested. 343 * When the urgent BKOPS bit is set in a R1 command response 344 * then background operations should be started immediately. 345 */ 346 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 347 { 348 int err; 349 int timeout; 350 bool use_busy_signal; 351 352 BUG_ON(!card); 353 354 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 355 return; 356 357 err = mmc_read_bkops_status(card); 358 if (err) { 359 pr_err("%s: Failed to read bkops status: %d\n", 360 mmc_hostname(card->host), err); 361 return; 362 } 363 364 if (!card->ext_csd.raw_bkops_status) 365 return; 366 367 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 368 from_exception) 369 return; 370 371 mmc_claim_host(card->host); 372 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 373 timeout = MMC_BKOPS_MAX_TIMEOUT; 374 use_busy_signal = true; 375 } else { 376 timeout = 0; 377 use_busy_signal = false; 378 } 379 380 mmc_retune_hold(card->host); 381 382 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 383 EXT_CSD_BKOPS_START, 1, timeout, 384 use_busy_signal, true, false); 385 if (err) { 386 pr_warn("%s: Error %d starting bkops\n", 387 mmc_hostname(card->host), err); 388 mmc_retune_release(card->host); 389 goto out; 390 } 391 392 /* 393 * For urgent bkops status (LEVEL_2 and more) 394 * bkops executed synchronously, otherwise 395 * the operation is in progress 396 */ 397 if (!use_busy_signal) 398 mmc_card_set_doing_bkops(card); 399 else 400 mmc_retune_release(card->host); 401 out: 402 mmc_release_host(card->host); 403 } 404 EXPORT_SYMBOL(mmc_start_bkops); 405 406 /* 407 * mmc_wait_data_done() - done callback for data request 408 * @mrq: done data request 409 * 410 * Wakes up mmc context, passed as a callback to host controller driver 411 */ 412 static void mmc_wait_data_done(struct mmc_request *mrq) 413 { 414 struct mmc_context_info *context_info = &mrq->host->context_info; 415 416 context_info->is_done_rcv = true; 417 wake_up_interruptible(&context_info->wait); 418 } 419 420 static void mmc_wait_done(struct mmc_request *mrq) 421 { 422 complete(&mrq->completion); 423 } 424 425 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 426 { 427 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 428 429 /* 430 * If there is an ongoing transfer, wait for the command line to become 431 * available. 432 */ 433 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 434 wait_for_completion(&ongoing_mrq->cmd_completion); 435 } 436 437 /* 438 *__mmc_start_data_req() - starts data request 439 * @host: MMC host to start the request 440 * @mrq: data request to start 441 * 442 * Sets the done callback to be called when request is completed by the card. 443 * Starts data mmc request execution 444 * If an ongoing transfer is already in progress, wait for the command line 445 * to become available before sending another command. 446 */ 447 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 448 { 449 int err; 450 451 mmc_wait_ongoing_tfr_cmd(host); 452 453 mrq->done = mmc_wait_data_done; 454 mrq->host = host; 455 456 init_completion(&mrq->cmd_completion); 457 458 err = mmc_start_request(host, mrq); 459 if (err) { 460 mrq->cmd->error = err; 461 mmc_complete_cmd(mrq); 462 mmc_wait_data_done(mrq); 463 } 464 465 return err; 466 } 467 468 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 469 { 470 int err; 471 472 mmc_wait_ongoing_tfr_cmd(host); 473 474 init_completion(&mrq->completion); 475 mrq->done = mmc_wait_done; 476 477 init_completion(&mrq->cmd_completion); 478 479 err = mmc_start_request(host, mrq); 480 if (err) { 481 mrq->cmd->error = err; 482 mmc_complete_cmd(mrq); 483 complete(&mrq->completion); 484 } 485 486 return err; 487 } 488 489 /* 490 * mmc_wait_for_data_req_done() - wait for request completed 491 * @host: MMC host to prepare the command. 492 * @mrq: MMC request to wait for 493 * 494 * Blocks MMC context till host controller will ack end of data request 495 * execution or new request notification arrives from the block layer. 496 * Handles command retries. 497 * 498 * Returns enum mmc_blk_status after checking errors. 499 */ 500 static int mmc_wait_for_data_req_done(struct mmc_host *host, 501 struct mmc_request *mrq, 502 struct mmc_async_req *next_req) 503 { 504 struct mmc_command *cmd; 505 struct mmc_context_info *context_info = &host->context_info; 506 int err; 507 unsigned long flags; 508 509 while (1) { 510 wait_event_interruptible(context_info->wait, 511 (context_info->is_done_rcv || 512 context_info->is_new_req)); 513 spin_lock_irqsave(&context_info->lock, flags); 514 context_info->is_waiting_last_req = false; 515 spin_unlock_irqrestore(&context_info->lock, flags); 516 if (context_info->is_done_rcv) { 517 context_info->is_done_rcv = false; 518 context_info->is_new_req = false; 519 cmd = mrq->cmd; 520 521 if (!cmd->error || !cmd->retries || 522 mmc_card_removed(host->card)) { 523 err = host->areq->err_check(host->card, 524 host->areq); 525 break; /* return err */ 526 } else { 527 mmc_retune_recheck(host); 528 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 529 mmc_hostname(host), 530 cmd->opcode, cmd->error); 531 cmd->retries--; 532 cmd->error = 0; 533 __mmc_start_request(host, mrq); 534 continue; /* wait for done/new event again */ 535 } 536 } else if (context_info->is_new_req) { 537 context_info->is_new_req = false; 538 if (!next_req) 539 return MMC_BLK_NEW_REQUEST; 540 } 541 } 542 mmc_retune_release(host); 543 return err; 544 } 545 546 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 547 { 548 struct mmc_command *cmd; 549 550 while (1) { 551 wait_for_completion(&mrq->completion); 552 553 cmd = mrq->cmd; 554 555 /* 556 * If host has timed out waiting for the sanitize 557 * to complete, card might be still in programming state 558 * so let's try to bring the card out of programming 559 * state. 560 */ 561 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 562 if (!mmc_interrupt_hpi(host->card)) { 563 pr_warn("%s: %s: Interrupted sanitize\n", 564 mmc_hostname(host), __func__); 565 cmd->error = 0; 566 break; 567 } else { 568 pr_err("%s: %s: Failed to interrupt sanitize\n", 569 mmc_hostname(host), __func__); 570 } 571 } 572 if (!cmd->error || !cmd->retries || 573 mmc_card_removed(host->card)) 574 break; 575 576 mmc_retune_recheck(host); 577 578 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 579 mmc_hostname(host), cmd->opcode, cmd->error); 580 cmd->retries--; 581 cmd->error = 0; 582 __mmc_start_request(host, mrq); 583 } 584 585 mmc_retune_release(host); 586 } 587 EXPORT_SYMBOL(mmc_wait_for_req_done); 588 589 /** 590 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 591 * @host: MMC host 592 * @mrq: MMC request 593 * 594 * mmc_is_req_done() is used with requests that have 595 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 596 * starting a request and before waiting for it to complete. That is, 597 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 598 * and before mmc_wait_for_req_done(). If it is called at other times the 599 * result is not meaningful. 600 */ 601 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 602 { 603 if (host->areq) 604 return host->context_info.is_done_rcv; 605 else 606 return completion_done(&mrq->completion); 607 } 608 EXPORT_SYMBOL(mmc_is_req_done); 609 610 /** 611 * mmc_pre_req - Prepare for a new request 612 * @host: MMC host to prepare command 613 * @mrq: MMC request to prepare for 614 * @is_first_req: true if there is no previous started request 615 * that may run in parellel to this call, otherwise false 616 * 617 * mmc_pre_req() is called in prior to mmc_start_req() to let 618 * host prepare for the new request. Preparation of a request may be 619 * performed while another request is running on the host. 620 */ 621 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 622 bool is_first_req) 623 { 624 if (host->ops->pre_req) 625 host->ops->pre_req(host, mrq, is_first_req); 626 } 627 628 /** 629 * mmc_post_req - Post process a completed request 630 * @host: MMC host to post process command 631 * @mrq: MMC request to post process for 632 * @err: Error, if non zero, clean up any resources made in pre_req 633 * 634 * Let the host post process a completed request. Post processing of 635 * a request may be performed while another reuqest is running. 636 */ 637 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 638 int err) 639 { 640 if (host->ops->post_req) 641 host->ops->post_req(host, mrq, err); 642 } 643 644 /** 645 * mmc_start_req - start a non-blocking request 646 * @host: MMC host to start command 647 * @areq: async request to start 648 * @error: out parameter returns 0 for success, otherwise non zero 649 * 650 * Start a new MMC custom command request for a host. 651 * If there is on ongoing async request wait for completion 652 * of that request and start the new one and return. 653 * Does not wait for the new request to complete. 654 * 655 * Returns the completed request, NULL in case of none completed. 656 * Wait for the an ongoing request (previoulsy started) to complete and 657 * return the completed request. If there is no ongoing request, NULL 658 * is returned without waiting. NULL is not an error condition. 659 */ 660 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 661 struct mmc_async_req *areq, int *error) 662 { 663 int err = 0; 664 int start_err = 0; 665 struct mmc_async_req *data = host->areq; 666 667 /* Prepare a new request */ 668 if (areq) 669 mmc_pre_req(host, areq->mrq, !host->areq); 670 671 if (host->areq) { 672 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 673 if (err == MMC_BLK_NEW_REQUEST) { 674 if (error) 675 *error = err; 676 /* 677 * The previous request was not completed, 678 * nothing to return 679 */ 680 return NULL; 681 } 682 /* 683 * Check BKOPS urgency for each R1 response 684 */ 685 if (host->card && mmc_card_mmc(host->card) && 686 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 687 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 688 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 689 690 /* Cancel the prepared request */ 691 if (areq) 692 mmc_post_req(host, areq->mrq, -EINVAL); 693 694 mmc_start_bkops(host->card, true); 695 696 /* prepare the request again */ 697 if (areq) 698 mmc_pre_req(host, areq->mrq, !host->areq); 699 } 700 } 701 702 if (!err && areq) 703 start_err = __mmc_start_data_req(host, areq->mrq); 704 705 if (host->areq) 706 mmc_post_req(host, host->areq->mrq, 0); 707 708 /* Cancel a prepared request if it was not started. */ 709 if ((err || start_err) && areq) 710 mmc_post_req(host, areq->mrq, -EINVAL); 711 712 if (err) 713 host->areq = NULL; 714 else 715 host->areq = areq; 716 717 if (error) 718 *error = err; 719 return data; 720 } 721 EXPORT_SYMBOL(mmc_start_req); 722 723 /** 724 * mmc_wait_for_req - start a request and wait for completion 725 * @host: MMC host to start command 726 * @mrq: MMC request to start 727 * 728 * Start a new MMC custom command request for a host, and wait 729 * for the command to complete. In the case of 'cap_cmd_during_tfr' 730 * requests, the transfer is ongoing and the caller can issue further 731 * commands that do not use the data lines, and then wait by calling 732 * mmc_wait_for_req_done(). 733 * Does not attempt to parse the response. 734 */ 735 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 736 { 737 __mmc_start_req(host, mrq); 738 739 if (!mrq->cap_cmd_during_tfr) 740 mmc_wait_for_req_done(host, mrq); 741 } 742 EXPORT_SYMBOL(mmc_wait_for_req); 743 744 /** 745 * mmc_interrupt_hpi - Issue for High priority Interrupt 746 * @card: the MMC card associated with the HPI transfer 747 * 748 * Issued High Priority Interrupt, and check for card status 749 * until out-of prg-state. 750 */ 751 int mmc_interrupt_hpi(struct mmc_card *card) 752 { 753 int err; 754 u32 status; 755 unsigned long prg_wait; 756 757 BUG_ON(!card); 758 759 if (!card->ext_csd.hpi_en) { 760 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 761 return 1; 762 } 763 764 mmc_claim_host(card->host); 765 err = mmc_send_status(card, &status); 766 if (err) { 767 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 768 goto out; 769 } 770 771 switch (R1_CURRENT_STATE(status)) { 772 case R1_STATE_IDLE: 773 case R1_STATE_READY: 774 case R1_STATE_STBY: 775 case R1_STATE_TRAN: 776 /* 777 * In idle and transfer states, HPI is not needed and the caller 778 * can issue the next intended command immediately 779 */ 780 goto out; 781 case R1_STATE_PRG: 782 break; 783 default: 784 /* In all other states, it's illegal to issue HPI */ 785 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 786 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 787 err = -EINVAL; 788 goto out; 789 } 790 791 err = mmc_send_hpi_cmd(card, &status); 792 if (err) 793 goto out; 794 795 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 796 do { 797 err = mmc_send_status(card, &status); 798 799 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 800 break; 801 if (time_after(jiffies, prg_wait)) 802 err = -ETIMEDOUT; 803 } while (!err); 804 805 out: 806 mmc_release_host(card->host); 807 return err; 808 } 809 EXPORT_SYMBOL(mmc_interrupt_hpi); 810 811 /** 812 * mmc_wait_for_cmd - start a command and wait for completion 813 * @host: MMC host to start command 814 * @cmd: MMC command to start 815 * @retries: maximum number of retries 816 * 817 * Start a new MMC command for a host, and wait for the command 818 * to complete. Return any error that occurred while the command 819 * was executing. Do not attempt to parse the response. 820 */ 821 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 822 { 823 struct mmc_request mrq = {NULL}; 824 825 WARN_ON(!host->claimed); 826 827 memset(cmd->resp, 0, sizeof(cmd->resp)); 828 cmd->retries = retries; 829 830 mrq.cmd = cmd; 831 cmd->data = NULL; 832 833 mmc_wait_for_req(host, &mrq); 834 835 return cmd->error; 836 } 837 838 EXPORT_SYMBOL(mmc_wait_for_cmd); 839 840 /** 841 * mmc_stop_bkops - stop ongoing BKOPS 842 * @card: MMC card to check BKOPS 843 * 844 * Send HPI command to stop ongoing background operations to 845 * allow rapid servicing of foreground operations, e.g. read/ 846 * writes. Wait until the card comes out of the programming state 847 * to avoid errors in servicing read/write requests. 848 */ 849 int mmc_stop_bkops(struct mmc_card *card) 850 { 851 int err = 0; 852 853 BUG_ON(!card); 854 err = mmc_interrupt_hpi(card); 855 856 /* 857 * If err is EINVAL, we can't issue an HPI. 858 * It should complete the BKOPS. 859 */ 860 if (!err || (err == -EINVAL)) { 861 mmc_card_clr_doing_bkops(card); 862 mmc_retune_release(card->host); 863 err = 0; 864 } 865 866 return err; 867 } 868 EXPORT_SYMBOL(mmc_stop_bkops); 869 870 int mmc_read_bkops_status(struct mmc_card *card) 871 { 872 int err; 873 u8 *ext_csd; 874 875 mmc_claim_host(card->host); 876 err = mmc_get_ext_csd(card, &ext_csd); 877 mmc_release_host(card->host); 878 if (err) 879 return err; 880 881 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 882 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 883 kfree(ext_csd); 884 return 0; 885 } 886 EXPORT_SYMBOL(mmc_read_bkops_status); 887 888 /** 889 * mmc_set_data_timeout - set the timeout for a data command 890 * @data: data phase for command 891 * @card: the MMC card associated with the data transfer 892 * 893 * Computes the data timeout parameters according to the 894 * correct algorithm given the card type. 895 */ 896 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 897 { 898 unsigned int mult; 899 900 /* 901 * SDIO cards only define an upper 1 s limit on access. 902 */ 903 if (mmc_card_sdio(card)) { 904 data->timeout_ns = 1000000000; 905 data->timeout_clks = 0; 906 return; 907 } 908 909 /* 910 * SD cards use a 100 multiplier rather than 10 911 */ 912 mult = mmc_card_sd(card) ? 100 : 10; 913 914 /* 915 * Scale up the multiplier (and therefore the timeout) by 916 * the r2w factor for writes. 917 */ 918 if (data->flags & MMC_DATA_WRITE) 919 mult <<= card->csd.r2w_factor; 920 921 data->timeout_ns = card->csd.tacc_ns * mult; 922 data->timeout_clks = card->csd.tacc_clks * mult; 923 924 /* 925 * SD cards also have an upper limit on the timeout. 926 */ 927 if (mmc_card_sd(card)) { 928 unsigned int timeout_us, limit_us; 929 930 timeout_us = data->timeout_ns / 1000; 931 if (card->host->ios.clock) 932 timeout_us += data->timeout_clks * 1000 / 933 (card->host->ios.clock / 1000); 934 935 if (data->flags & MMC_DATA_WRITE) 936 /* 937 * The MMC spec "It is strongly recommended 938 * for hosts to implement more than 500ms 939 * timeout value even if the card indicates 940 * the 250ms maximum busy length." Even the 941 * previous value of 300ms is known to be 942 * insufficient for some cards. 943 */ 944 limit_us = 3000000; 945 else 946 limit_us = 100000; 947 948 /* 949 * SDHC cards always use these fixed values. 950 */ 951 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 952 data->timeout_ns = limit_us * 1000; 953 data->timeout_clks = 0; 954 } 955 956 /* assign limit value if invalid */ 957 if (timeout_us == 0) 958 data->timeout_ns = limit_us * 1000; 959 } 960 961 /* 962 * Some cards require longer data read timeout than indicated in CSD. 963 * Address this by setting the read timeout to a "reasonably high" 964 * value. For the cards tested, 600ms has proven enough. If necessary, 965 * this value can be increased if other problematic cards require this. 966 */ 967 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 968 data->timeout_ns = 600000000; 969 data->timeout_clks = 0; 970 } 971 972 /* 973 * Some cards need very high timeouts if driven in SPI mode. 974 * The worst observed timeout was 900ms after writing a 975 * continuous stream of data until the internal logic 976 * overflowed. 977 */ 978 if (mmc_host_is_spi(card->host)) { 979 if (data->flags & MMC_DATA_WRITE) { 980 if (data->timeout_ns < 1000000000) 981 data->timeout_ns = 1000000000; /* 1s */ 982 } else { 983 if (data->timeout_ns < 100000000) 984 data->timeout_ns = 100000000; /* 100ms */ 985 } 986 } 987 } 988 EXPORT_SYMBOL(mmc_set_data_timeout); 989 990 /** 991 * mmc_align_data_size - pads a transfer size to a more optimal value 992 * @card: the MMC card associated with the data transfer 993 * @sz: original transfer size 994 * 995 * Pads the original data size with a number of extra bytes in 996 * order to avoid controller bugs and/or performance hits 997 * (e.g. some controllers revert to PIO for certain sizes). 998 * 999 * Returns the improved size, which might be unmodified. 1000 * 1001 * Note that this function is only relevant when issuing a 1002 * single scatter gather entry. 1003 */ 1004 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 1005 { 1006 /* 1007 * FIXME: We don't have a system for the controller to tell 1008 * the core about its problems yet, so for now we just 32-bit 1009 * align the size. 1010 */ 1011 sz = ((sz + 3) / 4) * 4; 1012 1013 return sz; 1014 } 1015 EXPORT_SYMBOL(mmc_align_data_size); 1016 1017 /** 1018 * __mmc_claim_host - exclusively claim a host 1019 * @host: mmc host to claim 1020 * @abort: whether or not the operation should be aborted 1021 * 1022 * Claim a host for a set of operations. If @abort is non null and 1023 * dereference a non-zero value then this will return prematurely with 1024 * that non-zero value without acquiring the lock. Returns zero 1025 * with the lock held otherwise. 1026 */ 1027 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 1028 { 1029 DECLARE_WAITQUEUE(wait, current); 1030 unsigned long flags; 1031 int stop; 1032 bool pm = false; 1033 1034 might_sleep(); 1035 1036 add_wait_queue(&host->wq, &wait); 1037 spin_lock_irqsave(&host->lock, flags); 1038 while (1) { 1039 set_current_state(TASK_UNINTERRUPTIBLE); 1040 stop = abort ? atomic_read(abort) : 0; 1041 if (stop || !host->claimed || host->claimer == current) 1042 break; 1043 spin_unlock_irqrestore(&host->lock, flags); 1044 schedule(); 1045 spin_lock_irqsave(&host->lock, flags); 1046 } 1047 set_current_state(TASK_RUNNING); 1048 if (!stop) { 1049 host->claimed = 1; 1050 host->claimer = current; 1051 host->claim_cnt += 1; 1052 if (host->claim_cnt == 1) 1053 pm = true; 1054 } else 1055 wake_up(&host->wq); 1056 spin_unlock_irqrestore(&host->lock, flags); 1057 remove_wait_queue(&host->wq, &wait); 1058 1059 if (pm) 1060 pm_runtime_get_sync(mmc_dev(host)); 1061 1062 return stop; 1063 } 1064 EXPORT_SYMBOL(__mmc_claim_host); 1065 1066 /** 1067 * mmc_release_host - release a host 1068 * @host: mmc host to release 1069 * 1070 * Release a MMC host, allowing others to claim the host 1071 * for their operations. 1072 */ 1073 void mmc_release_host(struct mmc_host *host) 1074 { 1075 unsigned long flags; 1076 1077 WARN_ON(!host->claimed); 1078 1079 spin_lock_irqsave(&host->lock, flags); 1080 if (--host->claim_cnt) { 1081 /* Release for nested claim */ 1082 spin_unlock_irqrestore(&host->lock, flags); 1083 } else { 1084 host->claimed = 0; 1085 host->claimer = NULL; 1086 spin_unlock_irqrestore(&host->lock, flags); 1087 wake_up(&host->wq); 1088 pm_runtime_mark_last_busy(mmc_dev(host)); 1089 pm_runtime_put_autosuspend(mmc_dev(host)); 1090 } 1091 } 1092 EXPORT_SYMBOL(mmc_release_host); 1093 1094 /* 1095 * This is a helper function, which fetches a runtime pm reference for the 1096 * card device and also claims the host. 1097 */ 1098 void mmc_get_card(struct mmc_card *card) 1099 { 1100 pm_runtime_get_sync(&card->dev); 1101 mmc_claim_host(card->host); 1102 } 1103 EXPORT_SYMBOL(mmc_get_card); 1104 1105 /* 1106 * This is a helper function, which releases the host and drops the runtime 1107 * pm reference for the card device. 1108 */ 1109 void mmc_put_card(struct mmc_card *card) 1110 { 1111 mmc_release_host(card->host); 1112 pm_runtime_mark_last_busy(&card->dev); 1113 pm_runtime_put_autosuspend(&card->dev); 1114 } 1115 EXPORT_SYMBOL(mmc_put_card); 1116 1117 /* 1118 * Internal function that does the actual ios call to the host driver, 1119 * optionally printing some debug output. 1120 */ 1121 static inline void mmc_set_ios(struct mmc_host *host) 1122 { 1123 struct mmc_ios *ios = &host->ios; 1124 1125 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1126 "width %u timing %u\n", 1127 mmc_hostname(host), ios->clock, ios->bus_mode, 1128 ios->power_mode, ios->chip_select, ios->vdd, 1129 1 << ios->bus_width, ios->timing); 1130 1131 host->ops->set_ios(host, ios); 1132 } 1133 1134 /* 1135 * Control chip select pin on a host. 1136 */ 1137 void mmc_set_chip_select(struct mmc_host *host, int mode) 1138 { 1139 host->ios.chip_select = mode; 1140 mmc_set_ios(host); 1141 } 1142 1143 /* 1144 * Sets the host clock to the highest possible frequency that 1145 * is below "hz". 1146 */ 1147 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1148 { 1149 WARN_ON(hz && hz < host->f_min); 1150 1151 if (hz > host->f_max) 1152 hz = host->f_max; 1153 1154 host->ios.clock = hz; 1155 mmc_set_ios(host); 1156 } 1157 1158 int mmc_execute_tuning(struct mmc_card *card) 1159 { 1160 struct mmc_host *host = card->host; 1161 u32 opcode; 1162 int err; 1163 1164 if (!host->ops->execute_tuning) 1165 return 0; 1166 1167 if (mmc_card_mmc(card)) 1168 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1169 else 1170 opcode = MMC_SEND_TUNING_BLOCK; 1171 1172 err = host->ops->execute_tuning(host, opcode); 1173 1174 if (err) 1175 pr_err("%s: tuning execution failed: %d\n", 1176 mmc_hostname(host), err); 1177 else 1178 mmc_retune_enable(host); 1179 1180 return err; 1181 } 1182 1183 /* 1184 * Change the bus mode (open drain/push-pull) of a host. 1185 */ 1186 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1187 { 1188 host->ios.bus_mode = mode; 1189 mmc_set_ios(host); 1190 } 1191 1192 /* 1193 * Change data bus width of a host. 1194 */ 1195 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1196 { 1197 host->ios.bus_width = width; 1198 mmc_set_ios(host); 1199 } 1200 1201 /* 1202 * Set initial state after a power cycle or a hw_reset. 1203 */ 1204 void mmc_set_initial_state(struct mmc_host *host) 1205 { 1206 mmc_retune_disable(host); 1207 1208 if (mmc_host_is_spi(host)) 1209 host->ios.chip_select = MMC_CS_HIGH; 1210 else 1211 host->ios.chip_select = MMC_CS_DONTCARE; 1212 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1213 host->ios.bus_width = MMC_BUS_WIDTH_1; 1214 host->ios.timing = MMC_TIMING_LEGACY; 1215 host->ios.drv_type = 0; 1216 host->ios.enhanced_strobe = false; 1217 1218 /* 1219 * Make sure we are in non-enhanced strobe mode before we 1220 * actually enable it in ext_csd. 1221 */ 1222 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1223 host->ops->hs400_enhanced_strobe) 1224 host->ops->hs400_enhanced_strobe(host, &host->ios); 1225 1226 mmc_set_ios(host); 1227 } 1228 1229 /** 1230 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1231 * @vdd: voltage (mV) 1232 * @low_bits: prefer low bits in boundary cases 1233 * 1234 * This function returns the OCR bit number according to the provided @vdd 1235 * value. If conversion is not possible a negative errno value returned. 1236 * 1237 * Depending on the @low_bits flag the function prefers low or high OCR bits 1238 * on boundary voltages. For example, 1239 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1240 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1241 * 1242 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1243 */ 1244 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1245 { 1246 const int max_bit = ilog2(MMC_VDD_35_36); 1247 int bit; 1248 1249 if (vdd < 1650 || vdd > 3600) 1250 return -EINVAL; 1251 1252 if (vdd >= 1650 && vdd <= 1950) 1253 return ilog2(MMC_VDD_165_195); 1254 1255 if (low_bits) 1256 vdd -= 1; 1257 1258 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1259 bit = (vdd - 2000) / 100 + 8; 1260 if (bit > max_bit) 1261 return max_bit; 1262 return bit; 1263 } 1264 1265 /** 1266 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1267 * @vdd_min: minimum voltage value (mV) 1268 * @vdd_max: maximum voltage value (mV) 1269 * 1270 * This function returns the OCR mask bits according to the provided @vdd_min 1271 * and @vdd_max values. If conversion is not possible the function returns 0. 1272 * 1273 * Notes wrt boundary cases: 1274 * This function sets the OCR bits for all boundary voltages, for example 1275 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1276 * MMC_VDD_34_35 mask. 1277 */ 1278 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1279 { 1280 u32 mask = 0; 1281 1282 if (vdd_max < vdd_min) 1283 return 0; 1284 1285 /* Prefer high bits for the boundary vdd_max values. */ 1286 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1287 if (vdd_max < 0) 1288 return 0; 1289 1290 /* Prefer low bits for the boundary vdd_min values. */ 1291 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1292 if (vdd_min < 0) 1293 return 0; 1294 1295 /* Fill the mask, from max bit to min bit. */ 1296 while (vdd_max >= vdd_min) 1297 mask |= 1 << vdd_max--; 1298 1299 return mask; 1300 } 1301 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1302 1303 #ifdef CONFIG_OF 1304 1305 /** 1306 * mmc_of_parse_voltage - return mask of supported voltages 1307 * @np: The device node need to be parsed. 1308 * @mask: mask of voltages available for MMC/SD/SDIO 1309 * 1310 * Parse the "voltage-ranges" DT property, returning zero if it is not 1311 * found, negative errno if the voltage-range specification is invalid, 1312 * or one if the voltage-range is specified and successfully parsed. 1313 */ 1314 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1315 { 1316 const u32 *voltage_ranges; 1317 int num_ranges, i; 1318 1319 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1320 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1321 if (!voltage_ranges) { 1322 pr_debug("%s: voltage-ranges unspecified\n", np->full_name); 1323 return 0; 1324 } 1325 if (!num_ranges) { 1326 pr_err("%s: voltage-ranges empty\n", np->full_name); 1327 return -EINVAL; 1328 } 1329 1330 for (i = 0; i < num_ranges; i++) { 1331 const int j = i * 2; 1332 u32 ocr_mask; 1333 1334 ocr_mask = mmc_vddrange_to_ocrmask( 1335 be32_to_cpu(voltage_ranges[j]), 1336 be32_to_cpu(voltage_ranges[j + 1])); 1337 if (!ocr_mask) { 1338 pr_err("%s: voltage-range #%d is invalid\n", 1339 np->full_name, i); 1340 return -EINVAL; 1341 } 1342 *mask |= ocr_mask; 1343 } 1344 1345 return 1; 1346 } 1347 EXPORT_SYMBOL(mmc_of_parse_voltage); 1348 1349 #endif /* CONFIG_OF */ 1350 1351 static int mmc_of_get_func_num(struct device_node *node) 1352 { 1353 u32 reg; 1354 int ret; 1355 1356 ret = of_property_read_u32(node, "reg", ®); 1357 if (ret < 0) 1358 return ret; 1359 1360 return reg; 1361 } 1362 1363 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1364 unsigned func_num) 1365 { 1366 struct device_node *node; 1367 1368 if (!host->parent || !host->parent->of_node) 1369 return NULL; 1370 1371 for_each_child_of_node(host->parent->of_node, node) { 1372 if (mmc_of_get_func_num(node) == func_num) 1373 return node; 1374 } 1375 1376 return NULL; 1377 } 1378 1379 #ifdef CONFIG_REGULATOR 1380 1381 /** 1382 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1383 * @vdd_bit: OCR bit number 1384 * @min_uV: minimum voltage value (mV) 1385 * @max_uV: maximum voltage value (mV) 1386 * 1387 * This function returns the voltage range according to the provided OCR 1388 * bit number. If conversion is not possible a negative errno value returned. 1389 */ 1390 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1391 { 1392 int tmp; 1393 1394 if (!vdd_bit) 1395 return -EINVAL; 1396 1397 /* 1398 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1399 * bits this regulator doesn't quite support ... don't 1400 * be too picky, most cards and regulators are OK with 1401 * a 0.1V range goof (it's a small error percentage). 1402 */ 1403 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1404 if (tmp == 0) { 1405 *min_uV = 1650 * 1000; 1406 *max_uV = 1950 * 1000; 1407 } else { 1408 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1409 *max_uV = *min_uV + 100 * 1000; 1410 } 1411 1412 return 0; 1413 } 1414 1415 /** 1416 * mmc_regulator_get_ocrmask - return mask of supported voltages 1417 * @supply: regulator to use 1418 * 1419 * This returns either a negative errno, or a mask of voltages that 1420 * can be provided to MMC/SD/SDIO devices using the specified voltage 1421 * regulator. This would normally be called before registering the 1422 * MMC host adapter. 1423 */ 1424 int mmc_regulator_get_ocrmask(struct regulator *supply) 1425 { 1426 int result = 0; 1427 int count; 1428 int i; 1429 int vdd_uV; 1430 int vdd_mV; 1431 1432 count = regulator_count_voltages(supply); 1433 if (count < 0) 1434 return count; 1435 1436 for (i = 0; i < count; i++) { 1437 vdd_uV = regulator_list_voltage(supply, i); 1438 if (vdd_uV <= 0) 1439 continue; 1440 1441 vdd_mV = vdd_uV / 1000; 1442 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1443 } 1444 1445 if (!result) { 1446 vdd_uV = regulator_get_voltage(supply); 1447 if (vdd_uV <= 0) 1448 return vdd_uV; 1449 1450 vdd_mV = vdd_uV / 1000; 1451 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1452 } 1453 1454 return result; 1455 } 1456 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1457 1458 /** 1459 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1460 * @mmc: the host to regulate 1461 * @supply: regulator to use 1462 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1463 * 1464 * Returns zero on success, else negative errno. 1465 * 1466 * MMC host drivers may use this to enable or disable a regulator using 1467 * a particular supply voltage. This would normally be called from the 1468 * set_ios() method. 1469 */ 1470 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1471 struct regulator *supply, 1472 unsigned short vdd_bit) 1473 { 1474 int result = 0; 1475 int min_uV, max_uV; 1476 1477 if (vdd_bit) { 1478 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1479 1480 result = regulator_set_voltage(supply, min_uV, max_uV); 1481 if (result == 0 && !mmc->regulator_enabled) { 1482 result = regulator_enable(supply); 1483 if (!result) 1484 mmc->regulator_enabled = true; 1485 } 1486 } else if (mmc->regulator_enabled) { 1487 result = regulator_disable(supply); 1488 if (result == 0) 1489 mmc->regulator_enabled = false; 1490 } 1491 1492 if (result) 1493 dev_err(mmc_dev(mmc), 1494 "could not set regulator OCR (%d)\n", result); 1495 return result; 1496 } 1497 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1498 1499 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1500 int min_uV, int target_uV, 1501 int max_uV) 1502 { 1503 /* 1504 * Check if supported first to avoid errors since we may try several 1505 * signal levels during power up and don't want to show errors. 1506 */ 1507 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1508 return -EINVAL; 1509 1510 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1511 max_uV); 1512 } 1513 1514 /** 1515 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1516 * 1517 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1518 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1519 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1520 * SD card spec also define VQMMC in terms of VMMC. 1521 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1522 * 1523 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1524 * requested voltage. This is definitely a good idea for UHS where there's a 1525 * separate regulator on the card that's trying to make 1.8V and it's best if 1526 * we match. 1527 * 1528 * This function is expected to be used by a controller's 1529 * start_signal_voltage_switch() function. 1530 */ 1531 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1532 { 1533 struct device *dev = mmc_dev(mmc); 1534 int ret, volt, min_uV, max_uV; 1535 1536 /* If no vqmmc supply then we can't change the voltage */ 1537 if (IS_ERR(mmc->supply.vqmmc)) 1538 return -EINVAL; 1539 1540 switch (ios->signal_voltage) { 1541 case MMC_SIGNAL_VOLTAGE_120: 1542 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1543 1100000, 1200000, 1300000); 1544 case MMC_SIGNAL_VOLTAGE_180: 1545 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1546 1700000, 1800000, 1950000); 1547 case MMC_SIGNAL_VOLTAGE_330: 1548 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1549 if (ret < 0) 1550 return ret; 1551 1552 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1553 __func__, volt, max_uV); 1554 1555 min_uV = max(volt - 300000, 2700000); 1556 max_uV = min(max_uV + 200000, 3600000); 1557 1558 /* 1559 * Due to a limitation in the current implementation of 1560 * regulator_set_voltage_triplet() which is taking the lowest 1561 * voltage possible if below the target, search for a suitable 1562 * voltage in two steps and try to stay close to vmmc 1563 * with a 0.3V tolerance at first. 1564 */ 1565 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1566 min_uV, volt, max_uV)) 1567 return 0; 1568 1569 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1570 2700000, volt, 3600000); 1571 default: 1572 return -EINVAL; 1573 } 1574 } 1575 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1576 1577 #endif /* CONFIG_REGULATOR */ 1578 1579 int mmc_regulator_get_supply(struct mmc_host *mmc) 1580 { 1581 struct device *dev = mmc_dev(mmc); 1582 int ret; 1583 1584 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1585 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1586 1587 if (IS_ERR(mmc->supply.vmmc)) { 1588 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1589 return -EPROBE_DEFER; 1590 dev_dbg(dev, "No vmmc regulator found\n"); 1591 } else { 1592 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1593 if (ret > 0) 1594 mmc->ocr_avail = ret; 1595 else 1596 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1597 } 1598 1599 if (IS_ERR(mmc->supply.vqmmc)) { 1600 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1601 return -EPROBE_DEFER; 1602 dev_dbg(dev, "No vqmmc regulator found\n"); 1603 } 1604 1605 return 0; 1606 } 1607 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1608 1609 /* 1610 * Mask off any voltages we don't support and select 1611 * the lowest voltage 1612 */ 1613 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1614 { 1615 int bit; 1616 1617 /* 1618 * Sanity check the voltages that the card claims to 1619 * support. 1620 */ 1621 if (ocr & 0x7F) { 1622 dev_warn(mmc_dev(host), 1623 "card claims to support voltages below defined range\n"); 1624 ocr &= ~0x7F; 1625 } 1626 1627 ocr &= host->ocr_avail; 1628 if (!ocr) { 1629 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1630 return 0; 1631 } 1632 1633 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1634 bit = ffs(ocr) - 1; 1635 ocr &= 3 << bit; 1636 mmc_power_cycle(host, ocr); 1637 } else { 1638 bit = fls(ocr) - 1; 1639 ocr &= 3 << bit; 1640 if (bit != host->ios.vdd) 1641 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1642 } 1643 1644 return ocr; 1645 } 1646 1647 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1648 { 1649 int err = 0; 1650 int old_signal_voltage = host->ios.signal_voltage; 1651 1652 host->ios.signal_voltage = signal_voltage; 1653 if (host->ops->start_signal_voltage_switch) 1654 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1655 1656 if (err) 1657 host->ios.signal_voltage = old_signal_voltage; 1658 1659 return err; 1660 1661 } 1662 1663 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1664 { 1665 struct mmc_command cmd = {0}; 1666 int err = 0; 1667 u32 clock; 1668 1669 BUG_ON(!host); 1670 1671 /* 1672 * Send CMD11 only if the request is to switch the card to 1673 * 1.8V signalling. 1674 */ 1675 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1676 return __mmc_set_signal_voltage(host, signal_voltage); 1677 1678 /* 1679 * If we cannot switch voltages, return failure so the caller 1680 * can continue without UHS mode 1681 */ 1682 if (!host->ops->start_signal_voltage_switch) 1683 return -EPERM; 1684 if (!host->ops->card_busy) 1685 pr_warn("%s: cannot verify signal voltage switch\n", 1686 mmc_hostname(host)); 1687 1688 cmd.opcode = SD_SWITCH_VOLTAGE; 1689 cmd.arg = 0; 1690 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1691 1692 err = mmc_wait_for_cmd(host, &cmd, 0); 1693 if (err) 1694 return err; 1695 1696 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1697 return -EIO; 1698 1699 /* 1700 * The card should drive cmd and dat[0:3] low immediately 1701 * after the response of cmd11, but wait 1 ms to be sure 1702 */ 1703 mmc_delay(1); 1704 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1705 err = -EAGAIN; 1706 goto power_cycle; 1707 } 1708 /* 1709 * During a signal voltage level switch, the clock must be gated 1710 * for 5 ms according to the SD spec 1711 */ 1712 clock = host->ios.clock; 1713 host->ios.clock = 0; 1714 mmc_set_ios(host); 1715 1716 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1717 /* 1718 * Voltages may not have been switched, but we've already 1719 * sent CMD11, so a power cycle is required anyway 1720 */ 1721 err = -EAGAIN; 1722 goto power_cycle; 1723 } 1724 1725 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1726 mmc_delay(10); 1727 host->ios.clock = clock; 1728 mmc_set_ios(host); 1729 1730 /* Wait for at least 1 ms according to spec */ 1731 mmc_delay(1); 1732 1733 /* 1734 * Failure to switch is indicated by the card holding 1735 * dat[0:3] low 1736 */ 1737 if (host->ops->card_busy && host->ops->card_busy(host)) 1738 err = -EAGAIN; 1739 1740 power_cycle: 1741 if (err) { 1742 pr_debug("%s: Signal voltage switch failed, " 1743 "power cycling card\n", mmc_hostname(host)); 1744 mmc_power_cycle(host, ocr); 1745 } 1746 1747 return err; 1748 } 1749 1750 /* 1751 * Select timing parameters for host. 1752 */ 1753 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1754 { 1755 host->ios.timing = timing; 1756 mmc_set_ios(host); 1757 } 1758 1759 /* 1760 * Select appropriate driver type for host. 1761 */ 1762 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1763 { 1764 host->ios.drv_type = drv_type; 1765 mmc_set_ios(host); 1766 } 1767 1768 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1769 int card_drv_type, int *drv_type) 1770 { 1771 struct mmc_host *host = card->host; 1772 int host_drv_type = SD_DRIVER_TYPE_B; 1773 1774 *drv_type = 0; 1775 1776 if (!host->ops->select_drive_strength) 1777 return 0; 1778 1779 /* Use SD definition of driver strength for hosts */ 1780 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1781 host_drv_type |= SD_DRIVER_TYPE_A; 1782 1783 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1784 host_drv_type |= SD_DRIVER_TYPE_C; 1785 1786 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1787 host_drv_type |= SD_DRIVER_TYPE_D; 1788 1789 /* 1790 * The drive strength that the hardware can support 1791 * depends on the board design. Pass the appropriate 1792 * information and let the hardware specific code 1793 * return what is possible given the options 1794 */ 1795 return host->ops->select_drive_strength(card, max_dtr, 1796 host_drv_type, 1797 card_drv_type, 1798 drv_type); 1799 } 1800 1801 /* 1802 * Apply power to the MMC stack. This is a two-stage process. 1803 * First, we enable power to the card without the clock running. 1804 * We then wait a bit for the power to stabilise. Finally, 1805 * enable the bus drivers and clock to the card. 1806 * 1807 * We must _NOT_ enable the clock prior to power stablising. 1808 * 1809 * If a host does all the power sequencing itself, ignore the 1810 * initial MMC_POWER_UP stage. 1811 */ 1812 void mmc_power_up(struct mmc_host *host, u32 ocr) 1813 { 1814 if (host->ios.power_mode == MMC_POWER_ON) 1815 return; 1816 1817 mmc_pwrseq_pre_power_on(host); 1818 1819 host->ios.vdd = fls(ocr) - 1; 1820 host->ios.power_mode = MMC_POWER_UP; 1821 /* Set initial state and call mmc_set_ios */ 1822 mmc_set_initial_state(host); 1823 1824 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1825 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1826 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1827 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1828 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1829 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1830 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1831 1832 /* 1833 * This delay should be sufficient to allow the power supply 1834 * to reach the minimum voltage. 1835 */ 1836 mmc_delay(10); 1837 1838 mmc_pwrseq_post_power_on(host); 1839 1840 host->ios.clock = host->f_init; 1841 1842 host->ios.power_mode = MMC_POWER_ON; 1843 mmc_set_ios(host); 1844 1845 /* 1846 * This delay must be at least 74 clock sizes, or 1 ms, or the 1847 * time required to reach a stable voltage. 1848 */ 1849 mmc_delay(10); 1850 } 1851 1852 void mmc_power_off(struct mmc_host *host) 1853 { 1854 if (host->ios.power_mode == MMC_POWER_OFF) 1855 return; 1856 1857 mmc_pwrseq_power_off(host); 1858 1859 host->ios.clock = 0; 1860 host->ios.vdd = 0; 1861 1862 host->ios.power_mode = MMC_POWER_OFF; 1863 /* Set initial state and call mmc_set_ios */ 1864 mmc_set_initial_state(host); 1865 1866 /* 1867 * Some configurations, such as the 802.11 SDIO card in the OLPC 1868 * XO-1.5, require a short delay after poweroff before the card 1869 * can be successfully turned on again. 1870 */ 1871 mmc_delay(1); 1872 } 1873 1874 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1875 { 1876 mmc_power_off(host); 1877 /* Wait at least 1 ms according to SD spec */ 1878 mmc_delay(1); 1879 mmc_power_up(host, ocr); 1880 } 1881 1882 /* 1883 * Cleanup when the last reference to the bus operator is dropped. 1884 */ 1885 static void __mmc_release_bus(struct mmc_host *host) 1886 { 1887 BUG_ON(!host); 1888 BUG_ON(host->bus_refs); 1889 BUG_ON(!host->bus_dead); 1890 1891 host->bus_ops = NULL; 1892 } 1893 1894 /* 1895 * Increase reference count of bus operator 1896 */ 1897 static inline void mmc_bus_get(struct mmc_host *host) 1898 { 1899 unsigned long flags; 1900 1901 spin_lock_irqsave(&host->lock, flags); 1902 host->bus_refs++; 1903 spin_unlock_irqrestore(&host->lock, flags); 1904 } 1905 1906 /* 1907 * Decrease reference count of bus operator and free it if 1908 * it is the last reference. 1909 */ 1910 static inline void mmc_bus_put(struct mmc_host *host) 1911 { 1912 unsigned long flags; 1913 1914 spin_lock_irqsave(&host->lock, flags); 1915 host->bus_refs--; 1916 if ((host->bus_refs == 0) && host->bus_ops) 1917 __mmc_release_bus(host); 1918 spin_unlock_irqrestore(&host->lock, flags); 1919 } 1920 1921 /* 1922 * Assign a mmc bus handler to a host. Only one bus handler may control a 1923 * host at any given time. 1924 */ 1925 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1926 { 1927 unsigned long flags; 1928 1929 BUG_ON(!host); 1930 BUG_ON(!ops); 1931 1932 WARN_ON(!host->claimed); 1933 1934 spin_lock_irqsave(&host->lock, flags); 1935 1936 BUG_ON(host->bus_ops); 1937 BUG_ON(host->bus_refs); 1938 1939 host->bus_ops = ops; 1940 host->bus_refs = 1; 1941 host->bus_dead = 0; 1942 1943 spin_unlock_irqrestore(&host->lock, flags); 1944 } 1945 1946 /* 1947 * Remove the current bus handler from a host. 1948 */ 1949 void mmc_detach_bus(struct mmc_host *host) 1950 { 1951 unsigned long flags; 1952 1953 BUG_ON(!host); 1954 1955 WARN_ON(!host->claimed); 1956 WARN_ON(!host->bus_ops); 1957 1958 spin_lock_irqsave(&host->lock, flags); 1959 1960 host->bus_dead = 1; 1961 1962 spin_unlock_irqrestore(&host->lock, flags); 1963 1964 mmc_bus_put(host); 1965 } 1966 1967 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1968 bool cd_irq) 1969 { 1970 #ifdef CONFIG_MMC_DEBUG 1971 unsigned long flags; 1972 spin_lock_irqsave(&host->lock, flags); 1973 WARN_ON(host->removed); 1974 spin_unlock_irqrestore(&host->lock, flags); 1975 #endif 1976 1977 /* 1978 * If the device is configured as wakeup, we prevent a new sleep for 1979 * 5 s to give provision for user space to consume the event. 1980 */ 1981 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1982 device_can_wakeup(mmc_dev(host))) 1983 pm_wakeup_event(mmc_dev(host), 5000); 1984 1985 host->detect_change = 1; 1986 mmc_schedule_delayed_work(&host->detect, delay); 1987 } 1988 1989 /** 1990 * mmc_detect_change - process change of state on a MMC socket 1991 * @host: host which changed state. 1992 * @delay: optional delay to wait before detection (jiffies) 1993 * 1994 * MMC drivers should call this when they detect a card has been 1995 * inserted or removed. The MMC layer will confirm that any 1996 * present card is still functional, and initialize any newly 1997 * inserted. 1998 */ 1999 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 2000 { 2001 _mmc_detect_change(host, delay, true); 2002 } 2003 EXPORT_SYMBOL(mmc_detect_change); 2004 2005 void mmc_init_erase(struct mmc_card *card) 2006 { 2007 unsigned int sz; 2008 2009 if (is_power_of_2(card->erase_size)) 2010 card->erase_shift = ffs(card->erase_size) - 1; 2011 else 2012 card->erase_shift = 0; 2013 2014 /* 2015 * It is possible to erase an arbitrarily large area of an SD or MMC 2016 * card. That is not desirable because it can take a long time 2017 * (minutes) potentially delaying more important I/O, and also the 2018 * timeout calculations become increasingly hugely over-estimated. 2019 * Consequently, 'pref_erase' is defined as a guide to limit erases 2020 * to that size and alignment. 2021 * 2022 * For SD cards that define Allocation Unit size, limit erases to one 2023 * Allocation Unit at a time. 2024 * For MMC, have a stab at ai good value and for modern cards it will 2025 * end up being 4MiB. Note that if the value is too small, it can end 2026 * up taking longer to erase. Also note, erase_size is already set to 2027 * High Capacity Erase Size if available when this function is called. 2028 */ 2029 if (mmc_card_sd(card) && card->ssr.au) { 2030 card->pref_erase = card->ssr.au; 2031 card->erase_shift = ffs(card->ssr.au) - 1; 2032 } else if (card->erase_size) { 2033 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 2034 if (sz < 128) 2035 card->pref_erase = 512 * 1024 / 512; 2036 else if (sz < 512) 2037 card->pref_erase = 1024 * 1024 / 512; 2038 else if (sz < 1024) 2039 card->pref_erase = 2 * 1024 * 1024 / 512; 2040 else 2041 card->pref_erase = 4 * 1024 * 1024 / 512; 2042 if (card->pref_erase < card->erase_size) 2043 card->pref_erase = card->erase_size; 2044 else { 2045 sz = card->pref_erase % card->erase_size; 2046 if (sz) 2047 card->pref_erase += card->erase_size - sz; 2048 } 2049 } else 2050 card->pref_erase = 0; 2051 } 2052 2053 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 2054 unsigned int arg, unsigned int qty) 2055 { 2056 unsigned int erase_timeout; 2057 2058 if (arg == MMC_DISCARD_ARG || 2059 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 2060 erase_timeout = card->ext_csd.trim_timeout; 2061 } else if (card->ext_csd.erase_group_def & 1) { 2062 /* High Capacity Erase Group Size uses HC timeouts */ 2063 if (arg == MMC_TRIM_ARG) 2064 erase_timeout = card->ext_csd.trim_timeout; 2065 else 2066 erase_timeout = card->ext_csd.hc_erase_timeout; 2067 } else { 2068 /* CSD Erase Group Size uses write timeout */ 2069 unsigned int mult = (10 << card->csd.r2w_factor); 2070 unsigned int timeout_clks = card->csd.tacc_clks * mult; 2071 unsigned int timeout_us; 2072 2073 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 2074 if (card->csd.tacc_ns < 1000000) 2075 timeout_us = (card->csd.tacc_ns * mult) / 1000; 2076 else 2077 timeout_us = (card->csd.tacc_ns / 1000) * mult; 2078 2079 /* 2080 * ios.clock is only a target. The real clock rate might be 2081 * less but not that much less, so fudge it by multiplying by 2. 2082 */ 2083 timeout_clks <<= 1; 2084 timeout_us += (timeout_clks * 1000) / 2085 (card->host->ios.clock / 1000); 2086 2087 erase_timeout = timeout_us / 1000; 2088 2089 /* 2090 * Theoretically, the calculation could underflow so round up 2091 * to 1ms in that case. 2092 */ 2093 if (!erase_timeout) 2094 erase_timeout = 1; 2095 } 2096 2097 /* Multiplier for secure operations */ 2098 if (arg & MMC_SECURE_ARGS) { 2099 if (arg == MMC_SECURE_ERASE_ARG) 2100 erase_timeout *= card->ext_csd.sec_erase_mult; 2101 else 2102 erase_timeout *= card->ext_csd.sec_trim_mult; 2103 } 2104 2105 erase_timeout *= qty; 2106 2107 /* 2108 * Ensure at least a 1 second timeout for SPI as per 2109 * 'mmc_set_data_timeout()' 2110 */ 2111 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2112 erase_timeout = 1000; 2113 2114 return erase_timeout; 2115 } 2116 2117 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2118 unsigned int arg, 2119 unsigned int qty) 2120 { 2121 unsigned int erase_timeout; 2122 2123 if (card->ssr.erase_timeout) { 2124 /* Erase timeout specified in SD Status Register (SSR) */ 2125 erase_timeout = card->ssr.erase_timeout * qty + 2126 card->ssr.erase_offset; 2127 } else { 2128 /* 2129 * Erase timeout not specified in SD Status Register (SSR) so 2130 * use 250ms per write block. 2131 */ 2132 erase_timeout = 250 * qty; 2133 } 2134 2135 /* Must not be less than 1 second */ 2136 if (erase_timeout < 1000) 2137 erase_timeout = 1000; 2138 2139 return erase_timeout; 2140 } 2141 2142 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2143 unsigned int arg, 2144 unsigned int qty) 2145 { 2146 if (mmc_card_sd(card)) 2147 return mmc_sd_erase_timeout(card, arg, qty); 2148 else 2149 return mmc_mmc_erase_timeout(card, arg, qty); 2150 } 2151 2152 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2153 unsigned int to, unsigned int arg) 2154 { 2155 struct mmc_command cmd = {0}; 2156 unsigned int qty = 0, busy_timeout = 0; 2157 bool use_r1b_resp = false; 2158 unsigned long timeout; 2159 int err; 2160 2161 mmc_retune_hold(card->host); 2162 2163 /* 2164 * qty is used to calculate the erase timeout which depends on how many 2165 * erase groups (or allocation units in SD terminology) are affected. 2166 * We count erasing part of an erase group as one erase group. 2167 * For SD, the allocation units are always a power of 2. For MMC, the 2168 * erase group size is almost certainly also power of 2, but it does not 2169 * seem to insist on that in the JEDEC standard, so we fall back to 2170 * division in that case. SD may not specify an allocation unit size, 2171 * in which case the timeout is based on the number of write blocks. 2172 * 2173 * Note that the timeout for secure trim 2 will only be correct if the 2174 * number of erase groups specified is the same as the total of all 2175 * preceding secure trim 1 commands. Since the power may have been 2176 * lost since the secure trim 1 commands occurred, it is generally 2177 * impossible to calculate the secure trim 2 timeout correctly. 2178 */ 2179 if (card->erase_shift) 2180 qty += ((to >> card->erase_shift) - 2181 (from >> card->erase_shift)) + 1; 2182 else if (mmc_card_sd(card)) 2183 qty += to - from + 1; 2184 else 2185 qty += ((to / card->erase_size) - 2186 (from / card->erase_size)) + 1; 2187 2188 if (!mmc_card_blockaddr(card)) { 2189 from <<= 9; 2190 to <<= 9; 2191 } 2192 2193 if (mmc_card_sd(card)) 2194 cmd.opcode = SD_ERASE_WR_BLK_START; 2195 else 2196 cmd.opcode = MMC_ERASE_GROUP_START; 2197 cmd.arg = from; 2198 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2199 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2200 if (err) { 2201 pr_err("mmc_erase: group start error %d, " 2202 "status %#x\n", err, cmd.resp[0]); 2203 err = -EIO; 2204 goto out; 2205 } 2206 2207 memset(&cmd, 0, sizeof(struct mmc_command)); 2208 if (mmc_card_sd(card)) 2209 cmd.opcode = SD_ERASE_WR_BLK_END; 2210 else 2211 cmd.opcode = MMC_ERASE_GROUP_END; 2212 cmd.arg = to; 2213 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2214 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2215 if (err) { 2216 pr_err("mmc_erase: group end error %d, status %#x\n", 2217 err, cmd.resp[0]); 2218 err = -EIO; 2219 goto out; 2220 } 2221 2222 memset(&cmd, 0, sizeof(struct mmc_command)); 2223 cmd.opcode = MMC_ERASE; 2224 cmd.arg = arg; 2225 busy_timeout = mmc_erase_timeout(card, arg, qty); 2226 /* 2227 * If the host controller supports busy signalling and the timeout for 2228 * the erase operation does not exceed the max_busy_timeout, we should 2229 * use R1B response. Or we need to prevent the host from doing hw busy 2230 * detection, which is done by converting to a R1 response instead. 2231 */ 2232 if (card->host->max_busy_timeout && 2233 busy_timeout > card->host->max_busy_timeout) { 2234 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2235 } else { 2236 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2237 cmd.busy_timeout = busy_timeout; 2238 use_r1b_resp = true; 2239 } 2240 2241 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2242 if (err) { 2243 pr_err("mmc_erase: erase error %d, status %#x\n", 2244 err, cmd.resp[0]); 2245 err = -EIO; 2246 goto out; 2247 } 2248 2249 if (mmc_host_is_spi(card->host)) 2250 goto out; 2251 2252 /* 2253 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2254 * shall be avoided. 2255 */ 2256 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2257 goto out; 2258 2259 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2260 do { 2261 memset(&cmd, 0, sizeof(struct mmc_command)); 2262 cmd.opcode = MMC_SEND_STATUS; 2263 cmd.arg = card->rca << 16; 2264 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2265 /* Do not retry else we can't see errors */ 2266 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2267 if (err || (cmd.resp[0] & 0xFDF92000)) { 2268 pr_err("error %d requesting status %#x\n", 2269 err, cmd.resp[0]); 2270 err = -EIO; 2271 goto out; 2272 } 2273 2274 /* Timeout if the device never becomes ready for data and 2275 * never leaves the program state. 2276 */ 2277 if (time_after(jiffies, timeout)) { 2278 pr_err("%s: Card stuck in programming state! %s\n", 2279 mmc_hostname(card->host), __func__); 2280 err = -EIO; 2281 goto out; 2282 } 2283 2284 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2285 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2286 out: 2287 mmc_retune_release(card->host); 2288 return err; 2289 } 2290 2291 static unsigned int mmc_align_erase_size(struct mmc_card *card, 2292 unsigned int *from, 2293 unsigned int *to, 2294 unsigned int nr) 2295 { 2296 unsigned int from_new = *from, nr_new = nr, rem; 2297 2298 /* 2299 * When the 'card->erase_size' is power of 2, we can use round_up/down() 2300 * to align the erase size efficiently. 2301 */ 2302 if (is_power_of_2(card->erase_size)) { 2303 unsigned int temp = from_new; 2304 2305 from_new = round_up(temp, card->erase_size); 2306 rem = from_new - temp; 2307 2308 if (nr_new > rem) 2309 nr_new -= rem; 2310 else 2311 return 0; 2312 2313 nr_new = round_down(nr_new, card->erase_size); 2314 } else { 2315 rem = from_new % card->erase_size; 2316 if (rem) { 2317 rem = card->erase_size - rem; 2318 from_new += rem; 2319 if (nr_new > rem) 2320 nr_new -= rem; 2321 else 2322 return 0; 2323 } 2324 2325 rem = nr_new % card->erase_size; 2326 if (rem) 2327 nr_new -= rem; 2328 } 2329 2330 if (nr_new == 0) 2331 return 0; 2332 2333 *to = from_new + nr_new; 2334 *from = from_new; 2335 2336 return nr_new; 2337 } 2338 2339 /** 2340 * mmc_erase - erase sectors. 2341 * @card: card to erase 2342 * @from: first sector to erase 2343 * @nr: number of sectors to erase 2344 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2345 * 2346 * Caller must claim host before calling this function. 2347 */ 2348 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2349 unsigned int arg) 2350 { 2351 unsigned int rem, to = from + nr; 2352 int err; 2353 2354 if (!(card->host->caps & MMC_CAP_ERASE) || 2355 !(card->csd.cmdclass & CCC_ERASE)) 2356 return -EOPNOTSUPP; 2357 2358 if (!card->erase_size) 2359 return -EOPNOTSUPP; 2360 2361 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2362 return -EOPNOTSUPP; 2363 2364 if ((arg & MMC_SECURE_ARGS) && 2365 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2366 return -EOPNOTSUPP; 2367 2368 if ((arg & MMC_TRIM_ARGS) && 2369 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2370 return -EOPNOTSUPP; 2371 2372 if (arg == MMC_SECURE_ERASE_ARG) { 2373 if (from % card->erase_size || nr % card->erase_size) 2374 return -EINVAL; 2375 } 2376 2377 if (arg == MMC_ERASE_ARG) 2378 nr = mmc_align_erase_size(card, &from, &to, nr); 2379 2380 if (nr == 0) 2381 return 0; 2382 2383 if (to <= from) 2384 return -EINVAL; 2385 2386 /* 'from' and 'to' are inclusive */ 2387 to -= 1; 2388 2389 /* 2390 * Special case where only one erase-group fits in the timeout budget: 2391 * If the region crosses an erase-group boundary on this particular 2392 * case, we will be trimming more than one erase-group which, does not 2393 * fit in the timeout budget of the controller, so we need to split it 2394 * and call mmc_do_erase() twice if necessary. This special case is 2395 * identified by the card->eg_boundary flag. 2396 */ 2397 rem = card->erase_size - (from % card->erase_size); 2398 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2399 err = mmc_do_erase(card, from, from + rem - 1, arg); 2400 from += rem; 2401 if ((err) || (to <= from)) 2402 return err; 2403 } 2404 2405 return mmc_do_erase(card, from, to, arg); 2406 } 2407 EXPORT_SYMBOL(mmc_erase); 2408 2409 int mmc_can_erase(struct mmc_card *card) 2410 { 2411 if ((card->host->caps & MMC_CAP_ERASE) && 2412 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2413 return 1; 2414 return 0; 2415 } 2416 EXPORT_SYMBOL(mmc_can_erase); 2417 2418 int mmc_can_trim(struct mmc_card *card) 2419 { 2420 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2421 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2422 return 1; 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(mmc_can_trim); 2426 2427 int mmc_can_discard(struct mmc_card *card) 2428 { 2429 /* 2430 * As there's no way to detect the discard support bit at v4.5 2431 * use the s/w feature support filed. 2432 */ 2433 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2434 return 1; 2435 return 0; 2436 } 2437 EXPORT_SYMBOL(mmc_can_discard); 2438 2439 int mmc_can_sanitize(struct mmc_card *card) 2440 { 2441 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2442 return 0; 2443 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2444 return 1; 2445 return 0; 2446 } 2447 EXPORT_SYMBOL(mmc_can_sanitize); 2448 2449 int mmc_can_secure_erase_trim(struct mmc_card *card) 2450 { 2451 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2452 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2453 return 1; 2454 return 0; 2455 } 2456 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2457 2458 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2459 unsigned int nr) 2460 { 2461 if (!card->erase_size) 2462 return 0; 2463 if (from % card->erase_size || nr % card->erase_size) 2464 return 0; 2465 return 1; 2466 } 2467 EXPORT_SYMBOL(mmc_erase_group_aligned); 2468 2469 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2470 unsigned int arg) 2471 { 2472 struct mmc_host *host = card->host; 2473 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2474 unsigned int last_timeout = 0; 2475 unsigned int max_busy_timeout = host->max_busy_timeout ? 2476 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 2477 2478 if (card->erase_shift) { 2479 max_qty = UINT_MAX >> card->erase_shift; 2480 min_qty = card->pref_erase >> card->erase_shift; 2481 } else if (mmc_card_sd(card)) { 2482 max_qty = UINT_MAX; 2483 min_qty = card->pref_erase; 2484 } else { 2485 max_qty = UINT_MAX / card->erase_size; 2486 min_qty = card->pref_erase / card->erase_size; 2487 } 2488 2489 /* 2490 * We should not only use 'host->max_busy_timeout' as the limitation 2491 * when deciding the max discard sectors. We should set a balance value 2492 * to improve the erase speed, and it can not get too long timeout at 2493 * the same time. 2494 * 2495 * Here we set 'card->pref_erase' as the minimal discard sectors no 2496 * matter what size of 'host->max_busy_timeout', but if the 2497 * 'host->max_busy_timeout' is large enough for more discard sectors, 2498 * then we can continue to increase the max discard sectors until we 2499 * get a balance value. In cases when the 'host->max_busy_timeout' 2500 * isn't specified, use the default max erase timeout. 2501 */ 2502 do { 2503 y = 0; 2504 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2505 timeout = mmc_erase_timeout(card, arg, qty + x); 2506 2507 if (qty + x > min_qty && timeout > max_busy_timeout) 2508 break; 2509 2510 if (timeout < last_timeout) 2511 break; 2512 last_timeout = timeout; 2513 y = x; 2514 } 2515 qty += y; 2516 } while (y); 2517 2518 if (!qty) 2519 return 0; 2520 2521 /* 2522 * When specifying a sector range to trim, chances are we might cross 2523 * an erase-group boundary even if the amount of sectors is less than 2524 * one erase-group. 2525 * If we can only fit one erase-group in the controller timeout budget, 2526 * we have to care that erase-group boundaries are not crossed by a 2527 * single trim operation. We flag that special case with "eg_boundary". 2528 * In all other cases we can just decrement qty and pretend that we 2529 * always touch (qty + 1) erase-groups as a simple optimization. 2530 */ 2531 if (qty == 1) 2532 card->eg_boundary = 1; 2533 else 2534 qty--; 2535 2536 /* Convert qty to sectors */ 2537 if (card->erase_shift) 2538 max_discard = qty << card->erase_shift; 2539 else if (mmc_card_sd(card)) 2540 max_discard = qty + 1; 2541 else 2542 max_discard = qty * card->erase_size; 2543 2544 return max_discard; 2545 } 2546 2547 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2548 { 2549 struct mmc_host *host = card->host; 2550 unsigned int max_discard, max_trim; 2551 2552 /* 2553 * Without erase_group_def set, MMC erase timeout depends on clock 2554 * frequence which can change. In that case, the best choice is 2555 * just the preferred erase size. 2556 */ 2557 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2558 return card->pref_erase; 2559 2560 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2561 if (mmc_can_trim(card)) { 2562 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2563 if (max_trim < max_discard) 2564 max_discard = max_trim; 2565 } else if (max_discard < card->erase_size) { 2566 max_discard = 0; 2567 } 2568 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2569 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2570 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2571 return max_discard; 2572 } 2573 EXPORT_SYMBOL(mmc_calc_max_discard); 2574 2575 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2576 { 2577 struct mmc_command cmd = {0}; 2578 2579 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2580 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2581 return 0; 2582 2583 cmd.opcode = MMC_SET_BLOCKLEN; 2584 cmd.arg = blocklen; 2585 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2586 return mmc_wait_for_cmd(card->host, &cmd, 5); 2587 } 2588 EXPORT_SYMBOL(mmc_set_blocklen); 2589 2590 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2591 bool is_rel_write) 2592 { 2593 struct mmc_command cmd = {0}; 2594 2595 cmd.opcode = MMC_SET_BLOCK_COUNT; 2596 cmd.arg = blockcount & 0x0000FFFF; 2597 if (is_rel_write) 2598 cmd.arg |= 1 << 31; 2599 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2600 return mmc_wait_for_cmd(card->host, &cmd, 5); 2601 } 2602 EXPORT_SYMBOL(mmc_set_blockcount); 2603 2604 static void mmc_hw_reset_for_init(struct mmc_host *host) 2605 { 2606 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2607 return; 2608 host->ops->hw_reset(host); 2609 } 2610 2611 int mmc_hw_reset(struct mmc_host *host) 2612 { 2613 int ret; 2614 2615 if (!host->card) 2616 return -EINVAL; 2617 2618 mmc_bus_get(host); 2619 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2620 mmc_bus_put(host); 2621 return -EOPNOTSUPP; 2622 } 2623 2624 ret = host->bus_ops->reset(host); 2625 mmc_bus_put(host); 2626 2627 if (ret) 2628 pr_warn("%s: tried to reset card, got error %d\n", 2629 mmc_hostname(host), ret); 2630 2631 return ret; 2632 } 2633 EXPORT_SYMBOL(mmc_hw_reset); 2634 2635 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2636 { 2637 host->f_init = freq; 2638 2639 #ifdef CONFIG_MMC_DEBUG 2640 pr_info("%s: %s: trying to init card at %u Hz\n", 2641 mmc_hostname(host), __func__, host->f_init); 2642 #endif 2643 mmc_power_up(host, host->ocr_avail); 2644 2645 /* 2646 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2647 * do a hardware reset if possible. 2648 */ 2649 mmc_hw_reset_for_init(host); 2650 2651 /* 2652 * sdio_reset sends CMD52 to reset card. Since we do not know 2653 * if the card is being re-initialized, just send it. CMD52 2654 * should be ignored by SD/eMMC cards. 2655 * Skip it if we already know that we do not support SDIO commands 2656 */ 2657 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2658 sdio_reset(host); 2659 2660 mmc_go_idle(host); 2661 2662 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2663 mmc_send_if_cond(host, host->ocr_avail); 2664 2665 /* Order's important: probe SDIO, then SD, then MMC */ 2666 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2667 if (!mmc_attach_sdio(host)) 2668 return 0; 2669 2670 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2671 if (!mmc_attach_sd(host)) 2672 return 0; 2673 2674 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2675 if (!mmc_attach_mmc(host)) 2676 return 0; 2677 2678 mmc_power_off(host); 2679 return -EIO; 2680 } 2681 2682 int _mmc_detect_card_removed(struct mmc_host *host) 2683 { 2684 int ret; 2685 2686 if (!host->card || mmc_card_removed(host->card)) 2687 return 1; 2688 2689 ret = host->bus_ops->alive(host); 2690 2691 /* 2692 * Card detect status and alive check may be out of sync if card is 2693 * removed slowly, when card detect switch changes while card/slot 2694 * pads are still contacted in hardware (refer to "SD Card Mechanical 2695 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2696 * detect work 200ms later for this case. 2697 */ 2698 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2699 mmc_detect_change(host, msecs_to_jiffies(200)); 2700 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2701 } 2702 2703 if (ret) { 2704 mmc_card_set_removed(host->card); 2705 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2706 } 2707 2708 return ret; 2709 } 2710 2711 int mmc_detect_card_removed(struct mmc_host *host) 2712 { 2713 struct mmc_card *card = host->card; 2714 int ret; 2715 2716 WARN_ON(!host->claimed); 2717 2718 if (!card) 2719 return 1; 2720 2721 if (!mmc_card_is_removable(host)) 2722 return 0; 2723 2724 ret = mmc_card_removed(card); 2725 /* 2726 * The card will be considered unchanged unless we have been asked to 2727 * detect a change or host requires polling to provide card detection. 2728 */ 2729 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2730 return ret; 2731 2732 host->detect_change = 0; 2733 if (!ret) { 2734 ret = _mmc_detect_card_removed(host); 2735 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2736 /* 2737 * Schedule a detect work as soon as possible to let a 2738 * rescan handle the card removal. 2739 */ 2740 cancel_delayed_work(&host->detect); 2741 _mmc_detect_change(host, 0, false); 2742 } 2743 } 2744 2745 return ret; 2746 } 2747 EXPORT_SYMBOL(mmc_detect_card_removed); 2748 2749 void mmc_rescan(struct work_struct *work) 2750 { 2751 struct mmc_host *host = 2752 container_of(work, struct mmc_host, detect.work); 2753 int i; 2754 2755 if (host->rescan_disable) 2756 return; 2757 2758 /* If there is a non-removable card registered, only scan once */ 2759 if (!mmc_card_is_removable(host) && host->rescan_entered) 2760 return; 2761 host->rescan_entered = 1; 2762 2763 if (host->trigger_card_event && host->ops->card_event) { 2764 mmc_claim_host(host); 2765 host->ops->card_event(host); 2766 mmc_release_host(host); 2767 host->trigger_card_event = false; 2768 } 2769 2770 mmc_bus_get(host); 2771 2772 /* 2773 * if there is a _removable_ card registered, check whether it is 2774 * still present 2775 */ 2776 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2777 host->bus_ops->detect(host); 2778 2779 host->detect_change = 0; 2780 2781 /* 2782 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2783 * the card is no longer present. 2784 */ 2785 mmc_bus_put(host); 2786 mmc_bus_get(host); 2787 2788 /* if there still is a card present, stop here */ 2789 if (host->bus_ops != NULL) { 2790 mmc_bus_put(host); 2791 goto out; 2792 } 2793 2794 /* 2795 * Only we can add a new handler, so it's safe to 2796 * release the lock here. 2797 */ 2798 mmc_bus_put(host); 2799 2800 mmc_claim_host(host); 2801 if (mmc_card_is_removable(host) && host->ops->get_cd && 2802 host->ops->get_cd(host) == 0) { 2803 mmc_power_off(host); 2804 mmc_release_host(host); 2805 goto out; 2806 } 2807 2808 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2809 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2810 break; 2811 if (freqs[i] <= host->f_min) 2812 break; 2813 } 2814 mmc_release_host(host); 2815 2816 out: 2817 if (host->caps & MMC_CAP_NEEDS_POLL) 2818 mmc_schedule_delayed_work(&host->detect, HZ); 2819 } 2820 2821 void mmc_start_host(struct mmc_host *host) 2822 { 2823 host->f_init = max(freqs[0], host->f_min); 2824 host->rescan_disable = 0; 2825 host->ios.power_mode = MMC_POWER_UNDEFINED; 2826 2827 mmc_claim_host(host); 2828 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2829 mmc_power_off(host); 2830 else 2831 mmc_power_up(host, host->ocr_avail); 2832 mmc_release_host(host); 2833 2834 mmc_gpiod_request_cd_irq(host); 2835 _mmc_detect_change(host, 0, false); 2836 } 2837 2838 void mmc_stop_host(struct mmc_host *host) 2839 { 2840 #ifdef CONFIG_MMC_DEBUG 2841 unsigned long flags; 2842 spin_lock_irqsave(&host->lock, flags); 2843 host->removed = 1; 2844 spin_unlock_irqrestore(&host->lock, flags); 2845 #endif 2846 if (host->slot.cd_irq >= 0) 2847 disable_irq(host->slot.cd_irq); 2848 2849 host->rescan_disable = 1; 2850 cancel_delayed_work_sync(&host->detect); 2851 2852 /* clear pm flags now and let card drivers set them as needed */ 2853 host->pm_flags = 0; 2854 2855 mmc_bus_get(host); 2856 if (host->bus_ops && !host->bus_dead) { 2857 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2858 host->bus_ops->remove(host); 2859 mmc_claim_host(host); 2860 mmc_detach_bus(host); 2861 mmc_power_off(host); 2862 mmc_release_host(host); 2863 mmc_bus_put(host); 2864 return; 2865 } 2866 mmc_bus_put(host); 2867 2868 BUG_ON(host->card); 2869 2870 mmc_claim_host(host); 2871 mmc_power_off(host); 2872 mmc_release_host(host); 2873 } 2874 2875 int mmc_power_save_host(struct mmc_host *host) 2876 { 2877 int ret = 0; 2878 2879 #ifdef CONFIG_MMC_DEBUG 2880 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2881 #endif 2882 2883 mmc_bus_get(host); 2884 2885 if (!host->bus_ops || host->bus_dead) { 2886 mmc_bus_put(host); 2887 return -EINVAL; 2888 } 2889 2890 if (host->bus_ops->power_save) 2891 ret = host->bus_ops->power_save(host); 2892 2893 mmc_bus_put(host); 2894 2895 mmc_power_off(host); 2896 2897 return ret; 2898 } 2899 EXPORT_SYMBOL(mmc_power_save_host); 2900 2901 int mmc_power_restore_host(struct mmc_host *host) 2902 { 2903 int ret; 2904 2905 #ifdef CONFIG_MMC_DEBUG 2906 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2907 #endif 2908 2909 mmc_bus_get(host); 2910 2911 if (!host->bus_ops || host->bus_dead) { 2912 mmc_bus_put(host); 2913 return -EINVAL; 2914 } 2915 2916 mmc_power_up(host, host->card->ocr); 2917 ret = host->bus_ops->power_restore(host); 2918 2919 mmc_bus_put(host); 2920 2921 return ret; 2922 } 2923 EXPORT_SYMBOL(mmc_power_restore_host); 2924 2925 /* 2926 * Flush the cache to the non-volatile storage. 2927 */ 2928 int mmc_flush_cache(struct mmc_card *card) 2929 { 2930 int err = 0; 2931 2932 if (mmc_card_mmc(card) && 2933 (card->ext_csd.cache_size > 0) && 2934 (card->ext_csd.cache_ctrl & 1)) { 2935 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2936 EXT_CSD_FLUSH_CACHE, 1, 0); 2937 if (err) 2938 pr_err("%s: cache flush error %d\n", 2939 mmc_hostname(card->host), err); 2940 } 2941 2942 return err; 2943 } 2944 EXPORT_SYMBOL(mmc_flush_cache); 2945 2946 #ifdef CONFIG_PM_SLEEP 2947 /* Do the card removal on suspend if card is assumed removeable 2948 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2949 to sync the card. 2950 */ 2951 static int mmc_pm_notify(struct notifier_block *notify_block, 2952 unsigned long mode, void *unused) 2953 { 2954 struct mmc_host *host = container_of( 2955 notify_block, struct mmc_host, pm_notify); 2956 unsigned long flags; 2957 int err = 0; 2958 2959 switch (mode) { 2960 case PM_HIBERNATION_PREPARE: 2961 case PM_SUSPEND_PREPARE: 2962 case PM_RESTORE_PREPARE: 2963 spin_lock_irqsave(&host->lock, flags); 2964 host->rescan_disable = 1; 2965 spin_unlock_irqrestore(&host->lock, flags); 2966 cancel_delayed_work_sync(&host->detect); 2967 2968 if (!host->bus_ops) 2969 break; 2970 2971 /* Validate prerequisites for suspend */ 2972 if (host->bus_ops->pre_suspend) 2973 err = host->bus_ops->pre_suspend(host); 2974 if (!err) 2975 break; 2976 2977 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2978 host->bus_ops->remove(host); 2979 mmc_claim_host(host); 2980 mmc_detach_bus(host); 2981 mmc_power_off(host); 2982 mmc_release_host(host); 2983 host->pm_flags = 0; 2984 break; 2985 2986 case PM_POST_SUSPEND: 2987 case PM_POST_HIBERNATION: 2988 case PM_POST_RESTORE: 2989 2990 spin_lock_irqsave(&host->lock, flags); 2991 host->rescan_disable = 0; 2992 spin_unlock_irqrestore(&host->lock, flags); 2993 _mmc_detect_change(host, 0, false); 2994 2995 } 2996 2997 return 0; 2998 } 2999 3000 void mmc_register_pm_notifier(struct mmc_host *host) 3001 { 3002 host->pm_notify.notifier_call = mmc_pm_notify; 3003 register_pm_notifier(&host->pm_notify); 3004 } 3005 3006 void mmc_unregister_pm_notifier(struct mmc_host *host) 3007 { 3008 unregister_pm_notifier(&host->pm_notify); 3009 } 3010 #endif 3011 3012 /** 3013 * mmc_init_context_info() - init synchronization context 3014 * @host: mmc host 3015 * 3016 * Init struct context_info needed to implement asynchronous 3017 * request mechanism, used by mmc core, host driver and mmc requests 3018 * supplier. 3019 */ 3020 void mmc_init_context_info(struct mmc_host *host) 3021 { 3022 spin_lock_init(&host->context_info.lock); 3023 host->context_info.is_new_req = false; 3024 host->context_info.is_done_rcv = false; 3025 host->context_info.is_waiting_last_req = false; 3026 init_waitqueue_head(&host->context_info.wait); 3027 } 3028 3029 static int __init mmc_init(void) 3030 { 3031 int ret; 3032 3033 ret = mmc_register_bus(); 3034 if (ret) 3035 return ret; 3036 3037 ret = mmc_register_host_class(); 3038 if (ret) 3039 goto unregister_bus; 3040 3041 ret = sdio_register_bus(); 3042 if (ret) 3043 goto unregister_host_class; 3044 3045 return 0; 3046 3047 unregister_host_class: 3048 mmc_unregister_host_class(); 3049 unregister_bus: 3050 mmc_unregister_bus(); 3051 return ret; 3052 } 3053 3054 static void __exit mmc_exit(void) 3055 { 3056 sdio_unregister_bus(); 3057 mmc_unregister_host_class(); 3058 mmc_unregister_bus(); 3059 } 3060 3061 subsys_initcall(mmc_init); 3062 module_exit(mmc_exit); 3063 3064 MODULE_LICENSE("GPL"); 3065