xref: /linux/drivers/mmc/core/core.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39 
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43 
44 static struct workqueue_struct *workqueue;
45 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
46 
47 /*
48  * Enabling software CRCs on the data blocks can be a significant (30%)
49  * performance cost, and for other reasons may not always be desired.
50  * So we allow it it to be disabled.
51  */
52 bool use_spi_crc = 1;
53 module_param(use_spi_crc, bool, 0);
54 
55 /*
56  * We normally treat cards as removed during suspend if they are not
57  * known to be on a non-removable bus, to avoid the risk of writing
58  * back data to a different card after resume.  Allow this to be
59  * overridden if necessary.
60  */
61 #ifdef CONFIG_MMC_UNSAFE_RESUME
62 bool mmc_assume_removable;
63 #else
64 bool mmc_assume_removable = 1;
65 #endif
66 EXPORT_SYMBOL(mmc_assume_removable);
67 module_param_named(removable, mmc_assume_removable, bool, 0644);
68 MODULE_PARM_DESC(
69 	removable,
70 	"MMC/SD cards are removable and may be removed during suspend");
71 
72 /*
73  * Internal function. Schedule delayed work in the MMC work queue.
74  */
75 static int mmc_schedule_delayed_work(struct delayed_work *work,
76 				     unsigned long delay)
77 {
78 	return queue_delayed_work(workqueue, work, delay);
79 }
80 
81 /*
82  * Internal function. Flush all scheduled work from the MMC work queue.
83  */
84 static void mmc_flush_scheduled_work(void)
85 {
86 	flush_workqueue(workqueue);
87 }
88 
89 #ifdef CONFIG_FAIL_MMC_REQUEST
90 
91 /*
92  * Internal function. Inject random data errors.
93  * If mmc_data is NULL no errors are injected.
94  */
95 static void mmc_should_fail_request(struct mmc_host *host,
96 				    struct mmc_request *mrq)
97 {
98 	struct mmc_command *cmd = mrq->cmd;
99 	struct mmc_data *data = mrq->data;
100 	static const int data_errors[] = {
101 		-ETIMEDOUT,
102 		-EILSEQ,
103 		-EIO,
104 	};
105 
106 	if (!data)
107 		return;
108 
109 	if (cmd->error || data->error ||
110 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
111 		return;
112 
113 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
114 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
115 }
116 
117 #else /* CONFIG_FAIL_MMC_REQUEST */
118 
119 static inline void mmc_should_fail_request(struct mmc_host *host,
120 					   struct mmc_request *mrq)
121 {
122 }
123 
124 #endif /* CONFIG_FAIL_MMC_REQUEST */
125 
126 /**
127  *	mmc_request_done - finish processing an MMC request
128  *	@host: MMC host which completed request
129  *	@mrq: MMC request which request
130  *
131  *	MMC drivers should call this function when they have completed
132  *	their processing of a request.
133  */
134 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
135 {
136 	struct mmc_command *cmd = mrq->cmd;
137 	int err = cmd->error;
138 
139 	if (err && cmd->retries && mmc_host_is_spi(host)) {
140 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
141 			cmd->retries = 0;
142 	}
143 
144 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
145 		/*
146 		 * Request starter must handle retries - see
147 		 * mmc_wait_for_req_done().
148 		 */
149 		if (mrq->done)
150 			mrq->done(mrq);
151 	} else {
152 		mmc_should_fail_request(host, mrq);
153 
154 		led_trigger_event(host->led, LED_OFF);
155 
156 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
157 			mmc_hostname(host), cmd->opcode, err,
158 			cmd->resp[0], cmd->resp[1],
159 			cmd->resp[2], cmd->resp[3]);
160 
161 		if (mrq->data) {
162 			pr_debug("%s:     %d bytes transferred: %d\n",
163 				mmc_hostname(host),
164 				mrq->data->bytes_xfered, mrq->data->error);
165 		}
166 
167 		if (mrq->stop) {
168 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
169 				mmc_hostname(host), mrq->stop->opcode,
170 				mrq->stop->error,
171 				mrq->stop->resp[0], mrq->stop->resp[1],
172 				mrq->stop->resp[2], mrq->stop->resp[3]);
173 		}
174 
175 		if (mrq->done)
176 			mrq->done(mrq);
177 
178 		mmc_host_clk_release(host);
179 	}
180 }
181 
182 EXPORT_SYMBOL(mmc_request_done);
183 
184 static void
185 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
186 {
187 #ifdef CONFIG_MMC_DEBUG
188 	unsigned int i, sz;
189 	struct scatterlist *sg;
190 #endif
191 
192 	if (mrq->sbc) {
193 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
194 			 mmc_hostname(host), mrq->sbc->opcode,
195 			 mrq->sbc->arg, mrq->sbc->flags);
196 	}
197 
198 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
199 		 mmc_hostname(host), mrq->cmd->opcode,
200 		 mrq->cmd->arg, mrq->cmd->flags);
201 
202 	if (mrq->data) {
203 		pr_debug("%s:     blksz %d blocks %d flags %08x "
204 			"tsac %d ms nsac %d\n",
205 			mmc_hostname(host), mrq->data->blksz,
206 			mrq->data->blocks, mrq->data->flags,
207 			mrq->data->timeout_ns / 1000000,
208 			mrq->data->timeout_clks);
209 	}
210 
211 	if (mrq->stop) {
212 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
213 			 mmc_hostname(host), mrq->stop->opcode,
214 			 mrq->stop->arg, mrq->stop->flags);
215 	}
216 
217 	WARN_ON(!host->claimed);
218 
219 	mrq->cmd->error = 0;
220 	mrq->cmd->mrq = mrq;
221 	if (mrq->data) {
222 		BUG_ON(mrq->data->blksz > host->max_blk_size);
223 		BUG_ON(mrq->data->blocks > host->max_blk_count);
224 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
225 			host->max_req_size);
226 
227 #ifdef CONFIG_MMC_DEBUG
228 		sz = 0;
229 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
230 			sz += sg->length;
231 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
232 #endif
233 
234 		mrq->cmd->data = mrq->data;
235 		mrq->data->error = 0;
236 		mrq->data->mrq = mrq;
237 		if (mrq->stop) {
238 			mrq->data->stop = mrq->stop;
239 			mrq->stop->error = 0;
240 			mrq->stop->mrq = mrq;
241 		}
242 	}
243 	mmc_host_clk_hold(host);
244 	led_trigger_event(host->led, LED_FULL);
245 	host->ops->request(host, mrq);
246 }
247 
248 static void mmc_wait_done(struct mmc_request *mrq)
249 {
250 	complete(&mrq->completion);
251 }
252 
253 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
254 {
255 	init_completion(&mrq->completion);
256 	mrq->done = mmc_wait_done;
257 	if (mmc_card_removed(host->card)) {
258 		mrq->cmd->error = -ENOMEDIUM;
259 		complete(&mrq->completion);
260 		return -ENOMEDIUM;
261 	}
262 	mmc_start_request(host, mrq);
263 	return 0;
264 }
265 
266 static void mmc_wait_for_req_done(struct mmc_host *host,
267 				  struct mmc_request *mrq)
268 {
269 	struct mmc_command *cmd;
270 
271 	while (1) {
272 		wait_for_completion(&mrq->completion);
273 
274 		cmd = mrq->cmd;
275 		if (!cmd->error || !cmd->retries ||
276 		    mmc_card_removed(host->card))
277 			break;
278 
279 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
280 			 mmc_hostname(host), cmd->opcode, cmd->error);
281 		cmd->retries--;
282 		cmd->error = 0;
283 		host->ops->request(host, mrq);
284 	}
285 }
286 
287 /**
288  *	mmc_pre_req - Prepare for a new request
289  *	@host: MMC host to prepare command
290  *	@mrq: MMC request to prepare for
291  *	@is_first_req: true if there is no previous started request
292  *                     that may run in parellel to this call, otherwise false
293  *
294  *	mmc_pre_req() is called in prior to mmc_start_req() to let
295  *	host prepare for the new request. Preparation of a request may be
296  *	performed while another request is running on the host.
297  */
298 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
299 		 bool is_first_req)
300 {
301 	if (host->ops->pre_req) {
302 		mmc_host_clk_hold(host);
303 		host->ops->pre_req(host, mrq, is_first_req);
304 		mmc_host_clk_release(host);
305 	}
306 }
307 
308 /**
309  *	mmc_post_req - Post process a completed request
310  *	@host: MMC host to post process command
311  *	@mrq: MMC request to post process for
312  *	@err: Error, if non zero, clean up any resources made in pre_req
313  *
314  *	Let the host post process a completed request. Post processing of
315  *	a request may be performed while another reuqest is running.
316  */
317 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
318 			 int err)
319 {
320 	if (host->ops->post_req) {
321 		mmc_host_clk_hold(host);
322 		host->ops->post_req(host, mrq, err);
323 		mmc_host_clk_release(host);
324 	}
325 }
326 
327 /**
328  *	mmc_start_req - start a non-blocking request
329  *	@host: MMC host to start command
330  *	@areq: async request to start
331  *	@error: out parameter returns 0 for success, otherwise non zero
332  *
333  *	Start a new MMC custom command request for a host.
334  *	If there is on ongoing async request wait for completion
335  *	of that request and start the new one and return.
336  *	Does not wait for the new request to complete.
337  *
338  *      Returns the completed request, NULL in case of none completed.
339  *	Wait for the an ongoing request (previoulsy started) to complete and
340  *	return the completed request. If there is no ongoing request, NULL
341  *	is returned without waiting. NULL is not an error condition.
342  */
343 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
344 				    struct mmc_async_req *areq, int *error)
345 {
346 	int err = 0;
347 	int start_err = 0;
348 	struct mmc_async_req *data = host->areq;
349 
350 	/* Prepare a new request */
351 	if (areq)
352 		mmc_pre_req(host, areq->mrq, !host->areq);
353 
354 	if (host->areq) {
355 		mmc_wait_for_req_done(host, host->areq->mrq);
356 		err = host->areq->err_check(host->card, host->areq);
357 	}
358 
359 	if (!err && areq)
360 		start_err = __mmc_start_req(host, areq->mrq);
361 
362 	if (host->areq)
363 		mmc_post_req(host, host->areq->mrq, 0);
364 
365 	 /* Cancel a prepared request if it was not started. */
366 	if ((err || start_err) && areq)
367 			mmc_post_req(host, areq->mrq, -EINVAL);
368 
369 	if (err)
370 		host->areq = NULL;
371 	else
372 		host->areq = areq;
373 
374 	if (error)
375 		*error = err;
376 	return data;
377 }
378 EXPORT_SYMBOL(mmc_start_req);
379 
380 /**
381  *	mmc_wait_for_req - start a request and wait for completion
382  *	@host: MMC host to start command
383  *	@mrq: MMC request to start
384  *
385  *	Start a new MMC custom command request for a host, and wait
386  *	for the command to complete. Does not attempt to parse the
387  *	response.
388  */
389 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
390 {
391 	__mmc_start_req(host, mrq);
392 	mmc_wait_for_req_done(host, mrq);
393 }
394 EXPORT_SYMBOL(mmc_wait_for_req);
395 
396 /**
397  *	mmc_interrupt_hpi - Issue for High priority Interrupt
398  *	@card: the MMC card associated with the HPI transfer
399  *
400  *	Issued High Priority Interrupt, and check for card status
401  *	util out-of prg-state.
402  */
403 int mmc_interrupt_hpi(struct mmc_card *card)
404 {
405 	int err;
406 	u32 status;
407 	unsigned long prg_wait;
408 
409 	BUG_ON(!card);
410 
411 	if (!card->ext_csd.hpi_en) {
412 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
413 		return 1;
414 	}
415 
416 	mmc_claim_host(card->host);
417 	err = mmc_send_status(card, &status);
418 	if (err) {
419 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
420 		goto out;
421 	}
422 
423 	switch (R1_CURRENT_STATE(status)) {
424 	case R1_STATE_IDLE:
425 	case R1_STATE_READY:
426 	case R1_STATE_STBY:
427 		/*
428 		 * In idle states, HPI is not needed and the caller
429 		 * can issue the next intended command immediately
430 		 */
431 		goto out;
432 	case R1_STATE_PRG:
433 		break;
434 	default:
435 		/* In all other states, it's illegal to issue HPI */
436 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
437 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
438 		err = -EINVAL;
439 		goto out;
440 	}
441 
442 	err = mmc_send_hpi_cmd(card, &status);
443 	if (err)
444 		goto out;
445 
446 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
447 	do {
448 		err = mmc_send_status(card, &status);
449 
450 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
451 			break;
452 		if (time_after(jiffies, prg_wait))
453 			err = -ETIMEDOUT;
454 	} while (!err);
455 
456 out:
457 	mmc_release_host(card->host);
458 	return err;
459 }
460 EXPORT_SYMBOL(mmc_interrupt_hpi);
461 
462 /**
463  *	mmc_wait_for_cmd - start a command and wait for completion
464  *	@host: MMC host to start command
465  *	@cmd: MMC command to start
466  *	@retries: maximum number of retries
467  *
468  *	Start a new MMC command for a host, and wait for the command
469  *	to complete.  Return any error that occurred while the command
470  *	was executing.  Do not attempt to parse the response.
471  */
472 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
473 {
474 	struct mmc_request mrq = {NULL};
475 
476 	WARN_ON(!host->claimed);
477 
478 	memset(cmd->resp, 0, sizeof(cmd->resp));
479 	cmd->retries = retries;
480 
481 	mrq.cmd = cmd;
482 	cmd->data = NULL;
483 
484 	mmc_wait_for_req(host, &mrq);
485 
486 	return cmd->error;
487 }
488 
489 EXPORT_SYMBOL(mmc_wait_for_cmd);
490 
491 /**
492  *	mmc_set_data_timeout - set the timeout for a data command
493  *	@data: data phase for command
494  *	@card: the MMC card associated with the data transfer
495  *
496  *	Computes the data timeout parameters according to the
497  *	correct algorithm given the card type.
498  */
499 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
500 {
501 	unsigned int mult;
502 
503 	/*
504 	 * SDIO cards only define an upper 1 s limit on access.
505 	 */
506 	if (mmc_card_sdio(card)) {
507 		data->timeout_ns = 1000000000;
508 		data->timeout_clks = 0;
509 		return;
510 	}
511 
512 	/*
513 	 * SD cards use a 100 multiplier rather than 10
514 	 */
515 	mult = mmc_card_sd(card) ? 100 : 10;
516 
517 	/*
518 	 * Scale up the multiplier (and therefore the timeout) by
519 	 * the r2w factor for writes.
520 	 */
521 	if (data->flags & MMC_DATA_WRITE)
522 		mult <<= card->csd.r2w_factor;
523 
524 	data->timeout_ns = card->csd.tacc_ns * mult;
525 	data->timeout_clks = card->csd.tacc_clks * mult;
526 
527 	/*
528 	 * SD cards also have an upper limit on the timeout.
529 	 */
530 	if (mmc_card_sd(card)) {
531 		unsigned int timeout_us, limit_us;
532 
533 		timeout_us = data->timeout_ns / 1000;
534 		if (mmc_host_clk_rate(card->host))
535 			timeout_us += data->timeout_clks * 1000 /
536 				(mmc_host_clk_rate(card->host) / 1000);
537 
538 		if (data->flags & MMC_DATA_WRITE)
539 			/*
540 			 * The MMC spec "It is strongly recommended
541 			 * for hosts to implement more than 500ms
542 			 * timeout value even if the card indicates
543 			 * the 250ms maximum busy length."  Even the
544 			 * previous value of 300ms is known to be
545 			 * insufficient for some cards.
546 			 */
547 			limit_us = 3000000;
548 		else
549 			limit_us = 100000;
550 
551 		/*
552 		 * SDHC cards always use these fixed values.
553 		 */
554 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
555 			data->timeout_ns = limit_us * 1000;
556 			data->timeout_clks = 0;
557 		}
558 	}
559 
560 	/*
561 	 * Some cards require longer data read timeout than indicated in CSD.
562 	 * Address this by setting the read timeout to a "reasonably high"
563 	 * value. For the cards tested, 300ms has proven enough. If necessary,
564 	 * this value can be increased if other problematic cards require this.
565 	 */
566 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
567 		data->timeout_ns = 300000000;
568 		data->timeout_clks = 0;
569 	}
570 
571 	/*
572 	 * Some cards need very high timeouts if driven in SPI mode.
573 	 * The worst observed timeout was 900ms after writing a
574 	 * continuous stream of data until the internal logic
575 	 * overflowed.
576 	 */
577 	if (mmc_host_is_spi(card->host)) {
578 		if (data->flags & MMC_DATA_WRITE) {
579 			if (data->timeout_ns < 1000000000)
580 				data->timeout_ns = 1000000000;	/* 1s */
581 		} else {
582 			if (data->timeout_ns < 100000000)
583 				data->timeout_ns =  100000000;	/* 100ms */
584 		}
585 	}
586 }
587 EXPORT_SYMBOL(mmc_set_data_timeout);
588 
589 /**
590  *	mmc_align_data_size - pads a transfer size to a more optimal value
591  *	@card: the MMC card associated with the data transfer
592  *	@sz: original transfer size
593  *
594  *	Pads the original data size with a number of extra bytes in
595  *	order to avoid controller bugs and/or performance hits
596  *	(e.g. some controllers revert to PIO for certain sizes).
597  *
598  *	Returns the improved size, which might be unmodified.
599  *
600  *	Note that this function is only relevant when issuing a
601  *	single scatter gather entry.
602  */
603 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
604 {
605 	/*
606 	 * FIXME: We don't have a system for the controller to tell
607 	 * the core about its problems yet, so for now we just 32-bit
608 	 * align the size.
609 	 */
610 	sz = ((sz + 3) / 4) * 4;
611 
612 	return sz;
613 }
614 EXPORT_SYMBOL(mmc_align_data_size);
615 
616 /**
617  *	__mmc_claim_host - exclusively claim a host
618  *	@host: mmc host to claim
619  *	@abort: whether or not the operation should be aborted
620  *
621  *	Claim a host for a set of operations.  If @abort is non null and
622  *	dereference a non-zero value then this will return prematurely with
623  *	that non-zero value without acquiring the lock.  Returns zero
624  *	with the lock held otherwise.
625  */
626 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
627 {
628 	DECLARE_WAITQUEUE(wait, current);
629 	unsigned long flags;
630 	int stop;
631 
632 	might_sleep();
633 
634 	add_wait_queue(&host->wq, &wait);
635 	spin_lock_irqsave(&host->lock, flags);
636 	while (1) {
637 		set_current_state(TASK_UNINTERRUPTIBLE);
638 		stop = abort ? atomic_read(abort) : 0;
639 		if (stop || !host->claimed || host->claimer == current)
640 			break;
641 		spin_unlock_irqrestore(&host->lock, flags);
642 		schedule();
643 		spin_lock_irqsave(&host->lock, flags);
644 	}
645 	set_current_state(TASK_RUNNING);
646 	if (!stop) {
647 		host->claimed = 1;
648 		host->claimer = current;
649 		host->claim_cnt += 1;
650 	} else
651 		wake_up(&host->wq);
652 	spin_unlock_irqrestore(&host->lock, flags);
653 	remove_wait_queue(&host->wq, &wait);
654 	if (host->ops->enable && !stop && host->claim_cnt == 1)
655 		host->ops->enable(host);
656 	return stop;
657 }
658 
659 EXPORT_SYMBOL(__mmc_claim_host);
660 
661 /**
662  *	mmc_try_claim_host - try exclusively to claim a host
663  *	@host: mmc host to claim
664  *
665  *	Returns %1 if the host is claimed, %0 otherwise.
666  */
667 int mmc_try_claim_host(struct mmc_host *host)
668 {
669 	int claimed_host = 0;
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&host->lock, flags);
673 	if (!host->claimed || host->claimer == current) {
674 		host->claimed = 1;
675 		host->claimer = current;
676 		host->claim_cnt += 1;
677 		claimed_host = 1;
678 	}
679 	spin_unlock_irqrestore(&host->lock, flags);
680 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
681 		host->ops->enable(host);
682 	return claimed_host;
683 }
684 EXPORT_SYMBOL(mmc_try_claim_host);
685 
686 /**
687  *	mmc_release_host - release a host
688  *	@host: mmc host to release
689  *
690  *	Release a MMC host, allowing others to claim the host
691  *	for their operations.
692  */
693 void mmc_release_host(struct mmc_host *host)
694 {
695 	unsigned long flags;
696 
697 	WARN_ON(!host->claimed);
698 
699 	if (host->ops->disable && host->claim_cnt == 1)
700 		host->ops->disable(host);
701 
702 	spin_lock_irqsave(&host->lock, flags);
703 	if (--host->claim_cnt) {
704 		/* Release for nested claim */
705 		spin_unlock_irqrestore(&host->lock, flags);
706 	} else {
707 		host->claimed = 0;
708 		host->claimer = NULL;
709 		spin_unlock_irqrestore(&host->lock, flags);
710 		wake_up(&host->wq);
711 	}
712 }
713 EXPORT_SYMBOL(mmc_release_host);
714 
715 /*
716  * Internal function that does the actual ios call to the host driver,
717  * optionally printing some debug output.
718  */
719 static inline void mmc_set_ios(struct mmc_host *host)
720 {
721 	struct mmc_ios *ios = &host->ios;
722 
723 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
724 		"width %u timing %u\n",
725 		 mmc_hostname(host), ios->clock, ios->bus_mode,
726 		 ios->power_mode, ios->chip_select, ios->vdd,
727 		 ios->bus_width, ios->timing);
728 
729 	if (ios->clock > 0)
730 		mmc_set_ungated(host);
731 	host->ops->set_ios(host, ios);
732 }
733 
734 /*
735  * Control chip select pin on a host.
736  */
737 void mmc_set_chip_select(struct mmc_host *host, int mode)
738 {
739 	mmc_host_clk_hold(host);
740 	host->ios.chip_select = mode;
741 	mmc_set_ios(host);
742 	mmc_host_clk_release(host);
743 }
744 
745 /*
746  * Sets the host clock to the highest possible frequency that
747  * is below "hz".
748  */
749 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
750 {
751 	WARN_ON(hz < host->f_min);
752 
753 	if (hz > host->f_max)
754 		hz = host->f_max;
755 
756 	host->ios.clock = hz;
757 	mmc_set_ios(host);
758 }
759 
760 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
761 {
762 	mmc_host_clk_hold(host);
763 	__mmc_set_clock(host, hz);
764 	mmc_host_clk_release(host);
765 }
766 
767 #ifdef CONFIG_MMC_CLKGATE
768 /*
769  * This gates the clock by setting it to 0 Hz.
770  */
771 void mmc_gate_clock(struct mmc_host *host)
772 {
773 	unsigned long flags;
774 
775 	spin_lock_irqsave(&host->clk_lock, flags);
776 	host->clk_old = host->ios.clock;
777 	host->ios.clock = 0;
778 	host->clk_gated = true;
779 	spin_unlock_irqrestore(&host->clk_lock, flags);
780 	mmc_set_ios(host);
781 }
782 
783 /*
784  * This restores the clock from gating by using the cached
785  * clock value.
786  */
787 void mmc_ungate_clock(struct mmc_host *host)
788 {
789 	/*
790 	 * We should previously have gated the clock, so the clock shall
791 	 * be 0 here! The clock may however be 0 during initialization,
792 	 * when some request operations are performed before setting
793 	 * the frequency. When ungate is requested in that situation
794 	 * we just ignore the call.
795 	 */
796 	if (host->clk_old) {
797 		BUG_ON(host->ios.clock);
798 		/* This call will also set host->clk_gated to false */
799 		__mmc_set_clock(host, host->clk_old);
800 	}
801 }
802 
803 void mmc_set_ungated(struct mmc_host *host)
804 {
805 	unsigned long flags;
806 
807 	/*
808 	 * We've been given a new frequency while the clock is gated,
809 	 * so make sure we regard this as ungating it.
810 	 */
811 	spin_lock_irqsave(&host->clk_lock, flags);
812 	host->clk_gated = false;
813 	spin_unlock_irqrestore(&host->clk_lock, flags);
814 }
815 
816 #else
817 void mmc_set_ungated(struct mmc_host *host)
818 {
819 }
820 #endif
821 
822 /*
823  * Change the bus mode (open drain/push-pull) of a host.
824  */
825 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
826 {
827 	mmc_host_clk_hold(host);
828 	host->ios.bus_mode = mode;
829 	mmc_set_ios(host);
830 	mmc_host_clk_release(host);
831 }
832 
833 /*
834  * Change data bus width of a host.
835  */
836 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
837 {
838 	mmc_host_clk_hold(host);
839 	host->ios.bus_width = width;
840 	mmc_set_ios(host);
841 	mmc_host_clk_release(host);
842 }
843 
844 /**
845  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
846  * @vdd:	voltage (mV)
847  * @low_bits:	prefer low bits in boundary cases
848  *
849  * This function returns the OCR bit number according to the provided @vdd
850  * value. If conversion is not possible a negative errno value returned.
851  *
852  * Depending on the @low_bits flag the function prefers low or high OCR bits
853  * on boundary voltages. For example,
854  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
855  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
856  *
857  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
858  */
859 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
860 {
861 	const int max_bit = ilog2(MMC_VDD_35_36);
862 	int bit;
863 
864 	if (vdd < 1650 || vdd > 3600)
865 		return -EINVAL;
866 
867 	if (vdd >= 1650 && vdd <= 1950)
868 		return ilog2(MMC_VDD_165_195);
869 
870 	if (low_bits)
871 		vdd -= 1;
872 
873 	/* Base 2000 mV, step 100 mV, bit's base 8. */
874 	bit = (vdd - 2000) / 100 + 8;
875 	if (bit > max_bit)
876 		return max_bit;
877 	return bit;
878 }
879 
880 /**
881  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
882  * @vdd_min:	minimum voltage value (mV)
883  * @vdd_max:	maximum voltage value (mV)
884  *
885  * This function returns the OCR mask bits according to the provided @vdd_min
886  * and @vdd_max values. If conversion is not possible the function returns 0.
887  *
888  * Notes wrt boundary cases:
889  * This function sets the OCR bits for all boundary voltages, for example
890  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
891  * MMC_VDD_34_35 mask.
892  */
893 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
894 {
895 	u32 mask = 0;
896 
897 	if (vdd_max < vdd_min)
898 		return 0;
899 
900 	/* Prefer high bits for the boundary vdd_max values. */
901 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
902 	if (vdd_max < 0)
903 		return 0;
904 
905 	/* Prefer low bits for the boundary vdd_min values. */
906 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
907 	if (vdd_min < 0)
908 		return 0;
909 
910 	/* Fill the mask, from max bit to min bit. */
911 	while (vdd_max >= vdd_min)
912 		mask |= 1 << vdd_max--;
913 
914 	return mask;
915 }
916 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
917 
918 #ifdef CONFIG_REGULATOR
919 
920 /**
921  * mmc_regulator_get_ocrmask - return mask of supported voltages
922  * @supply: regulator to use
923  *
924  * This returns either a negative errno, or a mask of voltages that
925  * can be provided to MMC/SD/SDIO devices using the specified voltage
926  * regulator.  This would normally be called before registering the
927  * MMC host adapter.
928  */
929 int mmc_regulator_get_ocrmask(struct regulator *supply)
930 {
931 	int			result = 0;
932 	int			count;
933 	int			i;
934 
935 	count = regulator_count_voltages(supply);
936 	if (count < 0)
937 		return count;
938 
939 	for (i = 0; i < count; i++) {
940 		int		vdd_uV;
941 		int		vdd_mV;
942 
943 		vdd_uV = regulator_list_voltage(supply, i);
944 		if (vdd_uV <= 0)
945 			continue;
946 
947 		vdd_mV = vdd_uV / 1000;
948 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
949 	}
950 
951 	return result;
952 }
953 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
954 
955 /**
956  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
957  * @mmc: the host to regulate
958  * @supply: regulator to use
959  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
960  *
961  * Returns zero on success, else negative errno.
962  *
963  * MMC host drivers may use this to enable or disable a regulator using
964  * a particular supply voltage.  This would normally be called from the
965  * set_ios() method.
966  */
967 int mmc_regulator_set_ocr(struct mmc_host *mmc,
968 			struct regulator *supply,
969 			unsigned short vdd_bit)
970 {
971 	int			result = 0;
972 	int			min_uV, max_uV;
973 
974 	if (vdd_bit) {
975 		int		tmp;
976 		int		voltage;
977 
978 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
979 		 * bits this regulator doesn't quite support ... don't
980 		 * be too picky, most cards and regulators are OK with
981 		 * a 0.1V range goof (it's a small error percentage).
982 		 */
983 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
984 		if (tmp == 0) {
985 			min_uV = 1650 * 1000;
986 			max_uV = 1950 * 1000;
987 		} else {
988 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
989 			max_uV = min_uV + 100 * 1000;
990 		}
991 
992 		/* avoid needless changes to this voltage; the regulator
993 		 * might not allow this operation
994 		 */
995 		voltage = regulator_get_voltage(supply);
996 
997 		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
998 			min_uV = max_uV = voltage;
999 
1000 		if (voltage < 0)
1001 			result = voltage;
1002 		else if (voltage < min_uV || voltage > max_uV)
1003 			result = regulator_set_voltage(supply, min_uV, max_uV);
1004 		else
1005 			result = 0;
1006 
1007 		if (result == 0 && !mmc->regulator_enabled) {
1008 			result = regulator_enable(supply);
1009 			if (!result)
1010 				mmc->regulator_enabled = true;
1011 		}
1012 	} else if (mmc->regulator_enabled) {
1013 		result = regulator_disable(supply);
1014 		if (result == 0)
1015 			mmc->regulator_enabled = false;
1016 	}
1017 
1018 	if (result)
1019 		dev_err(mmc_dev(mmc),
1020 			"could not set regulator OCR (%d)\n", result);
1021 	return result;
1022 }
1023 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1024 
1025 int mmc_regulator_get_supply(struct mmc_host *mmc)
1026 {
1027 	struct device *dev = mmc_dev(mmc);
1028 	struct regulator *supply;
1029 	int ret;
1030 
1031 	supply = devm_regulator_get(dev, "vmmc");
1032 	mmc->supply.vmmc = supply;
1033 	mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1034 
1035 	if (IS_ERR(supply))
1036 		return PTR_ERR(supply);
1037 
1038 	ret = mmc_regulator_get_ocrmask(supply);
1039 	if (ret > 0)
1040 		mmc->ocr_avail = ret;
1041 	else
1042 		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1043 
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1047 
1048 #endif /* CONFIG_REGULATOR */
1049 
1050 /*
1051  * Mask off any voltages we don't support and select
1052  * the lowest voltage
1053  */
1054 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1055 {
1056 	int bit;
1057 
1058 	ocr &= host->ocr_avail;
1059 
1060 	bit = ffs(ocr);
1061 	if (bit) {
1062 		bit -= 1;
1063 
1064 		ocr &= 3 << bit;
1065 
1066 		mmc_host_clk_hold(host);
1067 		host->ios.vdd = bit;
1068 		mmc_set_ios(host);
1069 		mmc_host_clk_release(host);
1070 	} else {
1071 		pr_warning("%s: host doesn't support card's voltages\n",
1072 				mmc_hostname(host));
1073 		ocr = 0;
1074 	}
1075 
1076 	return ocr;
1077 }
1078 
1079 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1080 {
1081 	struct mmc_command cmd = {0};
1082 	int err = 0;
1083 
1084 	BUG_ON(!host);
1085 
1086 	/*
1087 	 * Send CMD11 only if the request is to switch the card to
1088 	 * 1.8V signalling.
1089 	 */
1090 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1091 		cmd.opcode = SD_SWITCH_VOLTAGE;
1092 		cmd.arg = 0;
1093 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1094 
1095 		err = mmc_wait_for_cmd(host, &cmd, 0);
1096 		if (err)
1097 			return err;
1098 
1099 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1100 			return -EIO;
1101 	}
1102 
1103 	host->ios.signal_voltage = signal_voltage;
1104 
1105 	if (host->ops->start_signal_voltage_switch) {
1106 		mmc_host_clk_hold(host);
1107 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1108 		mmc_host_clk_release(host);
1109 	}
1110 
1111 	return err;
1112 }
1113 
1114 /*
1115  * Select timing parameters for host.
1116  */
1117 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1118 {
1119 	mmc_host_clk_hold(host);
1120 	host->ios.timing = timing;
1121 	mmc_set_ios(host);
1122 	mmc_host_clk_release(host);
1123 }
1124 
1125 /*
1126  * Select appropriate driver type for host.
1127  */
1128 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1129 {
1130 	mmc_host_clk_hold(host);
1131 	host->ios.drv_type = drv_type;
1132 	mmc_set_ios(host);
1133 	mmc_host_clk_release(host);
1134 }
1135 
1136 static void mmc_poweroff_notify(struct mmc_host *host)
1137 {
1138 	struct mmc_card *card;
1139 	unsigned int timeout;
1140 	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1141 	int err = 0;
1142 
1143 	card = host->card;
1144 	mmc_claim_host(host);
1145 
1146 	/*
1147 	 * Send power notify command only if card
1148 	 * is mmc and notify state is powered ON
1149 	 */
1150 	if (card && mmc_card_mmc(card) &&
1151 	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1152 
1153 		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1154 			notify_type = EXT_CSD_POWER_OFF_SHORT;
1155 			timeout = card->ext_csd.generic_cmd6_time;
1156 			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1157 		} else {
1158 			notify_type = EXT_CSD_POWER_OFF_LONG;
1159 			timeout = card->ext_csd.power_off_longtime;
1160 			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1161 		}
1162 
1163 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1164 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1165 				 notify_type, timeout);
1166 
1167 		if (err && err != -EBADMSG)
1168 			pr_err("Device failed to respond within %d poweroff "
1169 			       "time. Forcefully powering down the device\n",
1170 			       timeout);
1171 
1172 		/* Set the card state to no notification after the poweroff */
1173 		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1174 	}
1175 	mmc_release_host(host);
1176 }
1177 
1178 /*
1179  * Apply power to the MMC stack.  This is a two-stage process.
1180  * First, we enable power to the card without the clock running.
1181  * We then wait a bit for the power to stabilise.  Finally,
1182  * enable the bus drivers and clock to the card.
1183  *
1184  * We must _NOT_ enable the clock prior to power stablising.
1185  *
1186  * If a host does all the power sequencing itself, ignore the
1187  * initial MMC_POWER_UP stage.
1188  */
1189 static void mmc_power_up(struct mmc_host *host)
1190 {
1191 	int bit;
1192 
1193 	if (host->ios.power_mode == MMC_POWER_ON)
1194 		return;
1195 
1196 	mmc_host_clk_hold(host);
1197 
1198 	/* If ocr is set, we use it */
1199 	if (host->ocr)
1200 		bit = ffs(host->ocr) - 1;
1201 	else
1202 		bit = fls(host->ocr_avail) - 1;
1203 
1204 	host->ios.vdd = bit;
1205 	if (mmc_host_is_spi(host))
1206 		host->ios.chip_select = MMC_CS_HIGH;
1207 	else
1208 		host->ios.chip_select = MMC_CS_DONTCARE;
1209 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1210 	host->ios.power_mode = MMC_POWER_UP;
1211 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1212 	host->ios.timing = MMC_TIMING_LEGACY;
1213 	mmc_set_ios(host);
1214 
1215 	/* Set signal voltage to 3.3V */
1216 	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false);
1217 
1218 	/*
1219 	 * This delay should be sufficient to allow the power supply
1220 	 * to reach the minimum voltage.
1221 	 */
1222 	mmc_delay(10);
1223 
1224 	host->ios.clock = host->f_init;
1225 
1226 	host->ios.power_mode = MMC_POWER_ON;
1227 	mmc_set_ios(host);
1228 
1229 	/*
1230 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1231 	 * time required to reach a stable voltage.
1232 	 */
1233 	mmc_delay(10);
1234 
1235 	mmc_host_clk_release(host);
1236 }
1237 
1238 void mmc_power_off(struct mmc_host *host)
1239 {
1240 	int err = 0;
1241 
1242 	if (host->ios.power_mode == MMC_POWER_OFF)
1243 		return;
1244 
1245 	mmc_host_clk_hold(host);
1246 
1247 	host->ios.clock = 0;
1248 	host->ios.vdd = 0;
1249 
1250 	/*
1251 	 * For eMMC 4.5 device send AWAKE command before
1252 	 * POWER_OFF_NOTIFY command, because in sleep state
1253 	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1254 	 */
1255 	if (host->card && mmc_card_is_sleep(host->card) &&
1256 	    host->bus_ops->resume) {
1257 		err = host->bus_ops->resume(host);
1258 
1259 		if (!err)
1260 			mmc_poweroff_notify(host);
1261 		else
1262 			pr_warning("%s: error %d during resume "
1263 				   "(continue with poweroff sequence)\n",
1264 				   mmc_hostname(host), err);
1265 	}
1266 
1267 	/*
1268 	 * Reset ocr mask to be the highest possible voltage supported for
1269 	 * this mmc host. This value will be used at next power up.
1270 	 */
1271 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1272 
1273 	if (!mmc_host_is_spi(host)) {
1274 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1275 		host->ios.chip_select = MMC_CS_DONTCARE;
1276 	}
1277 	host->ios.power_mode = MMC_POWER_OFF;
1278 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1279 	host->ios.timing = MMC_TIMING_LEGACY;
1280 	mmc_set_ios(host);
1281 
1282 	/*
1283 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1284 	 * XO-1.5, require a short delay after poweroff before the card
1285 	 * can be successfully turned on again.
1286 	 */
1287 	mmc_delay(1);
1288 
1289 	mmc_host_clk_release(host);
1290 }
1291 
1292 /*
1293  * Cleanup when the last reference to the bus operator is dropped.
1294  */
1295 static void __mmc_release_bus(struct mmc_host *host)
1296 {
1297 	BUG_ON(!host);
1298 	BUG_ON(host->bus_refs);
1299 	BUG_ON(!host->bus_dead);
1300 
1301 	host->bus_ops = NULL;
1302 }
1303 
1304 /*
1305  * Increase reference count of bus operator
1306  */
1307 static inline void mmc_bus_get(struct mmc_host *host)
1308 {
1309 	unsigned long flags;
1310 
1311 	spin_lock_irqsave(&host->lock, flags);
1312 	host->bus_refs++;
1313 	spin_unlock_irqrestore(&host->lock, flags);
1314 }
1315 
1316 /*
1317  * Decrease reference count of bus operator and free it if
1318  * it is the last reference.
1319  */
1320 static inline void mmc_bus_put(struct mmc_host *host)
1321 {
1322 	unsigned long flags;
1323 
1324 	spin_lock_irqsave(&host->lock, flags);
1325 	host->bus_refs--;
1326 	if ((host->bus_refs == 0) && host->bus_ops)
1327 		__mmc_release_bus(host);
1328 	spin_unlock_irqrestore(&host->lock, flags);
1329 }
1330 
1331 /*
1332  * Assign a mmc bus handler to a host. Only one bus handler may control a
1333  * host at any given time.
1334  */
1335 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1336 {
1337 	unsigned long flags;
1338 
1339 	BUG_ON(!host);
1340 	BUG_ON(!ops);
1341 
1342 	WARN_ON(!host->claimed);
1343 
1344 	spin_lock_irqsave(&host->lock, flags);
1345 
1346 	BUG_ON(host->bus_ops);
1347 	BUG_ON(host->bus_refs);
1348 
1349 	host->bus_ops = ops;
1350 	host->bus_refs = 1;
1351 	host->bus_dead = 0;
1352 
1353 	spin_unlock_irqrestore(&host->lock, flags);
1354 }
1355 
1356 /*
1357  * Remove the current bus handler from a host.
1358  */
1359 void mmc_detach_bus(struct mmc_host *host)
1360 {
1361 	unsigned long flags;
1362 
1363 	BUG_ON(!host);
1364 
1365 	WARN_ON(!host->claimed);
1366 	WARN_ON(!host->bus_ops);
1367 
1368 	spin_lock_irqsave(&host->lock, flags);
1369 
1370 	host->bus_dead = 1;
1371 
1372 	spin_unlock_irqrestore(&host->lock, flags);
1373 
1374 	mmc_bus_put(host);
1375 }
1376 
1377 /**
1378  *	mmc_detect_change - process change of state on a MMC socket
1379  *	@host: host which changed state.
1380  *	@delay: optional delay to wait before detection (jiffies)
1381  *
1382  *	MMC drivers should call this when they detect a card has been
1383  *	inserted or removed. The MMC layer will confirm that any
1384  *	present card is still functional, and initialize any newly
1385  *	inserted.
1386  */
1387 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1388 {
1389 #ifdef CONFIG_MMC_DEBUG
1390 	unsigned long flags;
1391 	spin_lock_irqsave(&host->lock, flags);
1392 	WARN_ON(host->removed);
1393 	spin_unlock_irqrestore(&host->lock, flags);
1394 #endif
1395 	host->detect_change = 1;
1396 	mmc_schedule_delayed_work(&host->detect, delay);
1397 }
1398 
1399 EXPORT_SYMBOL(mmc_detect_change);
1400 
1401 void mmc_init_erase(struct mmc_card *card)
1402 {
1403 	unsigned int sz;
1404 
1405 	if (is_power_of_2(card->erase_size))
1406 		card->erase_shift = ffs(card->erase_size) - 1;
1407 	else
1408 		card->erase_shift = 0;
1409 
1410 	/*
1411 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1412 	 * card.  That is not desirable because it can take a long time
1413 	 * (minutes) potentially delaying more important I/O, and also the
1414 	 * timeout calculations become increasingly hugely over-estimated.
1415 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1416 	 * to that size and alignment.
1417 	 *
1418 	 * For SD cards that define Allocation Unit size, limit erases to one
1419 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1420 	 * Erase Size, whether it is switched on or not, limit to that size.
1421 	 * Otherwise just have a stab at a good value.  For modern cards it
1422 	 * will end up being 4MiB.  Note that if the value is too small, it
1423 	 * can end up taking longer to erase.
1424 	 */
1425 	if (mmc_card_sd(card) && card->ssr.au) {
1426 		card->pref_erase = card->ssr.au;
1427 		card->erase_shift = ffs(card->ssr.au) - 1;
1428 	} else if (card->ext_csd.hc_erase_size) {
1429 		card->pref_erase = card->ext_csd.hc_erase_size;
1430 	} else {
1431 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1432 		if (sz < 128)
1433 			card->pref_erase = 512 * 1024 / 512;
1434 		else if (sz < 512)
1435 			card->pref_erase = 1024 * 1024 / 512;
1436 		else if (sz < 1024)
1437 			card->pref_erase = 2 * 1024 * 1024 / 512;
1438 		else
1439 			card->pref_erase = 4 * 1024 * 1024 / 512;
1440 		if (card->pref_erase < card->erase_size)
1441 			card->pref_erase = card->erase_size;
1442 		else {
1443 			sz = card->pref_erase % card->erase_size;
1444 			if (sz)
1445 				card->pref_erase += card->erase_size - sz;
1446 		}
1447 	}
1448 }
1449 
1450 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1451 				          unsigned int arg, unsigned int qty)
1452 {
1453 	unsigned int erase_timeout;
1454 
1455 	if (arg == MMC_DISCARD_ARG ||
1456 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1457 		erase_timeout = card->ext_csd.trim_timeout;
1458 	} else if (card->ext_csd.erase_group_def & 1) {
1459 		/* High Capacity Erase Group Size uses HC timeouts */
1460 		if (arg == MMC_TRIM_ARG)
1461 			erase_timeout = card->ext_csd.trim_timeout;
1462 		else
1463 			erase_timeout = card->ext_csd.hc_erase_timeout;
1464 	} else {
1465 		/* CSD Erase Group Size uses write timeout */
1466 		unsigned int mult = (10 << card->csd.r2w_factor);
1467 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1468 		unsigned int timeout_us;
1469 
1470 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1471 		if (card->csd.tacc_ns < 1000000)
1472 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1473 		else
1474 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1475 
1476 		/*
1477 		 * ios.clock is only a target.  The real clock rate might be
1478 		 * less but not that much less, so fudge it by multiplying by 2.
1479 		 */
1480 		timeout_clks <<= 1;
1481 		timeout_us += (timeout_clks * 1000) /
1482 			      (mmc_host_clk_rate(card->host) / 1000);
1483 
1484 		erase_timeout = timeout_us / 1000;
1485 
1486 		/*
1487 		 * Theoretically, the calculation could underflow so round up
1488 		 * to 1ms in that case.
1489 		 */
1490 		if (!erase_timeout)
1491 			erase_timeout = 1;
1492 	}
1493 
1494 	/* Multiplier for secure operations */
1495 	if (arg & MMC_SECURE_ARGS) {
1496 		if (arg == MMC_SECURE_ERASE_ARG)
1497 			erase_timeout *= card->ext_csd.sec_erase_mult;
1498 		else
1499 			erase_timeout *= card->ext_csd.sec_trim_mult;
1500 	}
1501 
1502 	erase_timeout *= qty;
1503 
1504 	/*
1505 	 * Ensure at least a 1 second timeout for SPI as per
1506 	 * 'mmc_set_data_timeout()'
1507 	 */
1508 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1509 		erase_timeout = 1000;
1510 
1511 	return erase_timeout;
1512 }
1513 
1514 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1515 					 unsigned int arg,
1516 					 unsigned int qty)
1517 {
1518 	unsigned int erase_timeout;
1519 
1520 	if (card->ssr.erase_timeout) {
1521 		/* Erase timeout specified in SD Status Register (SSR) */
1522 		erase_timeout = card->ssr.erase_timeout * qty +
1523 				card->ssr.erase_offset;
1524 	} else {
1525 		/*
1526 		 * Erase timeout not specified in SD Status Register (SSR) so
1527 		 * use 250ms per write block.
1528 		 */
1529 		erase_timeout = 250 * qty;
1530 	}
1531 
1532 	/* Must not be less than 1 second */
1533 	if (erase_timeout < 1000)
1534 		erase_timeout = 1000;
1535 
1536 	return erase_timeout;
1537 }
1538 
1539 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1540 				      unsigned int arg,
1541 				      unsigned int qty)
1542 {
1543 	if (mmc_card_sd(card))
1544 		return mmc_sd_erase_timeout(card, arg, qty);
1545 	else
1546 		return mmc_mmc_erase_timeout(card, arg, qty);
1547 }
1548 
1549 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1550 			unsigned int to, unsigned int arg)
1551 {
1552 	struct mmc_command cmd = {0};
1553 	unsigned int qty = 0;
1554 	int err;
1555 
1556 	/*
1557 	 * qty is used to calculate the erase timeout which depends on how many
1558 	 * erase groups (or allocation units in SD terminology) are affected.
1559 	 * We count erasing part of an erase group as one erase group.
1560 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1561 	 * erase group size is almost certainly also power of 2, but it does not
1562 	 * seem to insist on that in the JEDEC standard, so we fall back to
1563 	 * division in that case.  SD may not specify an allocation unit size,
1564 	 * in which case the timeout is based on the number of write blocks.
1565 	 *
1566 	 * Note that the timeout for secure trim 2 will only be correct if the
1567 	 * number of erase groups specified is the same as the total of all
1568 	 * preceding secure trim 1 commands.  Since the power may have been
1569 	 * lost since the secure trim 1 commands occurred, it is generally
1570 	 * impossible to calculate the secure trim 2 timeout correctly.
1571 	 */
1572 	if (card->erase_shift)
1573 		qty += ((to >> card->erase_shift) -
1574 			(from >> card->erase_shift)) + 1;
1575 	else if (mmc_card_sd(card))
1576 		qty += to - from + 1;
1577 	else
1578 		qty += ((to / card->erase_size) -
1579 			(from / card->erase_size)) + 1;
1580 
1581 	if (!mmc_card_blockaddr(card)) {
1582 		from <<= 9;
1583 		to <<= 9;
1584 	}
1585 
1586 	if (mmc_card_sd(card))
1587 		cmd.opcode = SD_ERASE_WR_BLK_START;
1588 	else
1589 		cmd.opcode = MMC_ERASE_GROUP_START;
1590 	cmd.arg = from;
1591 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1592 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1593 	if (err) {
1594 		pr_err("mmc_erase: group start error %d, "
1595 		       "status %#x\n", err, cmd.resp[0]);
1596 		err = -EIO;
1597 		goto out;
1598 	}
1599 
1600 	memset(&cmd, 0, sizeof(struct mmc_command));
1601 	if (mmc_card_sd(card))
1602 		cmd.opcode = SD_ERASE_WR_BLK_END;
1603 	else
1604 		cmd.opcode = MMC_ERASE_GROUP_END;
1605 	cmd.arg = to;
1606 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1607 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1608 	if (err) {
1609 		pr_err("mmc_erase: group end error %d, status %#x\n",
1610 		       err, cmd.resp[0]);
1611 		err = -EIO;
1612 		goto out;
1613 	}
1614 
1615 	memset(&cmd, 0, sizeof(struct mmc_command));
1616 	cmd.opcode = MMC_ERASE;
1617 	cmd.arg = arg;
1618 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1619 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1620 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1621 	if (err) {
1622 		pr_err("mmc_erase: erase error %d, status %#x\n",
1623 		       err, cmd.resp[0]);
1624 		err = -EIO;
1625 		goto out;
1626 	}
1627 
1628 	if (mmc_host_is_spi(card->host))
1629 		goto out;
1630 
1631 	do {
1632 		memset(&cmd, 0, sizeof(struct mmc_command));
1633 		cmd.opcode = MMC_SEND_STATUS;
1634 		cmd.arg = card->rca << 16;
1635 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1636 		/* Do not retry else we can't see errors */
1637 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1638 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1639 			pr_err("error %d requesting status %#x\n",
1640 				err, cmd.resp[0]);
1641 			err = -EIO;
1642 			goto out;
1643 		}
1644 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1645 		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1646 out:
1647 	return err;
1648 }
1649 
1650 /**
1651  * mmc_erase - erase sectors.
1652  * @card: card to erase
1653  * @from: first sector to erase
1654  * @nr: number of sectors to erase
1655  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1656  *
1657  * Caller must claim host before calling this function.
1658  */
1659 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1660 	      unsigned int arg)
1661 {
1662 	unsigned int rem, to = from + nr;
1663 
1664 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1665 	    !(card->csd.cmdclass & CCC_ERASE))
1666 		return -EOPNOTSUPP;
1667 
1668 	if (!card->erase_size)
1669 		return -EOPNOTSUPP;
1670 
1671 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1672 		return -EOPNOTSUPP;
1673 
1674 	if ((arg & MMC_SECURE_ARGS) &&
1675 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1676 		return -EOPNOTSUPP;
1677 
1678 	if ((arg & MMC_TRIM_ARGS) &&
1679 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1680 		return -EOPNOTSUPP;
1681 
1682 	if (arg == MMC_SECURE_ERASE_ARG) {
1683 		if (from % card->erase_size || nr % card->erase_size)
1684 			return -EINVAL;
1685 	}
1686 
1687 	if (arg == MMC_ERASE_ARG) {
1688 		rem = from % card->erase_size;
1689 		if (rem) {
1690 			rem = card->erase_size - rem;
1691 			from += rem;
1692 			if (nr > rem)
1693 				nr -= rem;
1694 			else
1695 				return 0;
1696 		}
1697 		rem = nr % card->erase_size;
1698 		if (rem)
1699 			nr -= rem;
1700 	}
1701 
1702 	if (nr == 0)
1703 		return 0;
1704 
1705 	to = from + nr;
1706 
1707 	if (to <= from)
1708 		return -EINVAL;
1709 
1710 	/* 'from' and 'to' are inclusive */
1711 	to -= 1;
1712 
1713 	return mmc_do_erase(card, from, to, arg);
1714 }
1715 EXPORT_SYMBOL(mmc_erase);
1716 
1717 int mmc_can_erase(struct mmc_card *card)
1718 {
1719 	if ((card->host->caps & MMC_CAP_ERASE) &&
1720 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1721 		return 1;
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(mmc_can_erase);
1725 
1726 int mmc_can_trim(struct mmc_card *card)
1727 {
1728 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1729 		return 1;
1730 	return 0;
1731 }
1732 EXPORT_SYMBOL(mmc_can_trim);
1733 
1734 int mmc_can_discard(struct mmc_card *card)
1735 {
1736 	/*
1737 	 * As there's no way to detect the discard support bit at v4.5
1738 	 * use the s/w feature support filed.
1739 	 */
1740 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1741 		return 1;
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL(mmc_can_discard);
1745 
1746 int mmc_can_sanitize(struct mmc_card *card)
1747 {
1748 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1749 		return 0;
1750 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1751 		return 1;
1752 	return 0;
1753 }
1754 EXPORT_SYMBOL(mmc_can_sanitize);
1755 
1756 int mmc_can_secure_erase_trim(struct mmc_card *card)
1757 {
1758 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1759 		return 1;
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1763 
1764 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1765 			    unsigned int nr)
1766 {
1767 	if (!card->erase_size)
1768 		return 0;
1769 	if (from % card->erase_size || nr % card->erase_size)
1770 		return 0;
1771 	return 1;
1772 }
1773 EXPORT_SYMBOL(mmc_erase_group_aligned);
1774 
1775 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1776 					    unsigned int arg)
1777 {
1778 	struct mmc_host *host = card->host;
1779 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1780 	unsigned int last_timeout = 0;
1781 
1782 	if (card->erase_shift)
1783 		max_qty = UINT_MAX >> card->erase_shift;
1784 	else if (mmc_card_sd(card))
1785 		max_qty = UINT_MAX;
1786 	else
1787 		max_qty = UINT_MAX / card->erase_size;
1788 
1789 	/* Find the largest qty with an OK timeout */
1790 	do {
1791 		y = 0;
1792 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1793 			timeout = mmc_erase_timeout(card, arg, qty + x);
1794 			if (timeout > host->max_discard_to)
1795 				break;
1796 			if (timeout < last_timeout)
1797 				break;
1798 			last_timeout = timeout;
1799 			y = x;
1800 		}
1801 		qty += y;
1802 	} while (y);
1803 
1804 	if (!qty)
1805 		return 0;
1806 
1807 	if (qty == 1)
1808 		return 1;
1809 
1810 	/* Convert qty to sectors */
1811 	if (card->erase_shift)
1812 		max_discard = --qty << card->erase_shift;
1813 	else if (mmc_card_sd(card))
1814 		max_discard = qty;
1815 	else
1816 		max_discard = --qty * card->erase_size;
1817 
1818 	return max_discard;
1819 }
1820 
1821 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1822 {
1823 	struct mmc_host *host = card->host;
1824 	unsigned int max_discard, max_trim;
1825 
1826 	if (!host->max_discard_to)
1827 		return UINT_MAX;
1828 
1829 	/*
1830 	 * Without erase_group_def set, MMC erase timeout depends on clock
1831 	 * frequence which can change.  In that case, the best choice is
1832 	 * just the preferred erase size.
1833 	 */
1834 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1835 		return card->pref_erase;
1836 
1837 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1838 	if (mmc_can_trim(card)) {
1839 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1840 		if (max_trim < max_discard)
1841 			max_discard = max_trim;
1842 	} else if (max_discard < card->erase_size) {
1843 		max_discard = 0;
1844 	}
1845 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1846 		 mmc_hostname(host), max_discard, host->max_discard_to);
1847 	return max_discard;
1848 }
1849 EXPORT_SYMBOL(mmc_calc_max_discard);
1850 
1851 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1852 {
1853 	struct mmc_command cmd = {0};
1854 
1855 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1856 		return 0;
1857 
1858 	cmd.opcode = MMC_SET_BLOCKLEN;
1859 	cmd.arg = blocklen;
1860 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1861 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1862 }
1863 EXPORT_SYMBOL(mmc_set_blocklen);
1864 
1865 static void mmc_hw_reset_for_init(struct mmc_host *host)
1866 {
1867 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1868 		return;
1869 	mmc_host_clk_hold(host);
1870 	host->ops->hw_reset(host);
1871 	mmc_host_clk_release(host);
1872 }
1873 
1874 int mmc_can_reset(struct mmc_card *card)
1875 {
1876 	u8 rst_n_function;
1877 
1878 	if (!mmc_card_mmc(card))
1879 		return 0;
1880 	rst_n_function = card->ext_csd.rst_n_function;
1881 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1882 		return 0;
1883 	return 1;
1884 }
1885 EXPORT_SYMBOL(mmc_can_reset);
1886 
1887 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1888 {
1889 	struct mmc_card *card = host->card;
1890 
1891 	if (!host->bus_ops->power_restore)
1892 		return -EOPNOTSUPP;
1893 
1894 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1895 		return -EOPNOTSUPP;
1896 
1897 	if (!card)
1898 		return -EINVAL;
1899 
1900 	if (!mmc_can_reset(card))
1901 		return -EOPNOTSUPP;
1902 
1903 	mmc_host_clk_hold(host);
1904 	mmc_set_clock(host, host->f_init);
1905 
1906 	host->ops->hw_reset(host);
1907 
1908 	/* If the reset has happened, then a status command will fail */
1909 	if (check) {
1910 		struct mmc_command cmd = {0};
1911 		int err;
1912 
1913 		cmd.opcode = MMC_SEND_STATUS;
1914 		if (!mmc_host_is_spi(card->host))
1915 			cmd.arg = card->rca << 16;
1916 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1917 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1918 		if (!err) {
1919 			mmc_host_clk_release(host);
1920 			return -ENOSYS;
1921 		}
1922 	}
1923 
1924 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1925 	if (mmc_host_is_spi(host)) {
1926 		host->ios.chip_select = MMC_CS_HIGH;
1927 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1928 	} else {
1929 		host->ios.chip_select = MMC_CS_DONTCARE;
1930 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1931 	}
1932 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1933 	host->ios.timing = MMC_TIMING_LEGACY;
1934 	mmc_set_ios(host);
1935 
1936 	mmc_host_clk_release(host);
1937 
1938 	return host->bus_ops->power_restore(host);
1939 }
1940 
1941 int mmc_hw_reset(struct mmc_host *host)
1942 {
1943 	return mmc_do_hw_reset(host, 0);
1944 }
1945 EXPORT_SYMBOL(mmc_hw_reset);
1946 
1947 int mmc_hw_reset_check(struct mmc_host *host)
1948 {
1949 	return mmc_do_hw_reset(host, 1);
1950 }
1951 EXPORT_SYMBOL(mmc_hw_reset_check);
1952 
1953 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1954 {
1955 	host->f_init = freq;
1956 
1957 #ifdef CONFIG_MMC_DEBUG
1958 	pr_info("%s: %s: trying to init card at %u Hz\n",
1959 		mmc_hostname(host), __func__, host->f_init);
1960 #endif
1961 	mmc_power_up(host);
1962 
1963 	/*
1964 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1965 	 * do a hardware reset if possible.
1966 	 */
1967 	mmc_hw_reset_for_init(host);
1968 
1969 	/*
1970 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1971 	 * if the card is being re-initialized, just send it.  CMD52
1972 	 * should be ignored by SD/eMMC cards.
1973 	 */
1974 	sdio_reset(host);
1975 	mmc_go_idle(host);
1976 
1977 	mmc_send_if_cond(host, host->ocr_avail);
1978 
1979 	/* Order's important: probe SDIO, then SD, then MMC */
1980 	if (!mmc_attach_sdio(host))
1981 		return 0;
1982 	if (!mmc_attach_sd(host))
1983 		return 0;
1984 	if (!mmc_attach_mmc(host))
1985 		return 0;
1986 
1987 	mmc_power_off(host);
1988 	return -EIO;
1989 }
1990 
1991 int _mmc_detect_card_removed(struct mmc_host *host)
1992 {
1993 	int ret;
1994 
1995 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1996 		return 0;
1997 
1998 	if (!host->card || mmc_card_removed(host->card))
1999 		return 1;
2000 
2001 	ret = host->bus_ops->alive(host);
2002 	if (ret) {
2003 		mmc_card_set_removed(host->card);
2004 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2005 	}
2006 
2007 	return ret;
2008 }
2009 
2010 int mmc_detect_card_removed(struct mmc_host *host)
2011 {
2012 	struct mmc_card *card = host->card;
2013 	int ret;
2014 
2015 	WARN_ON(!host->claimed);
2016 
2017 	if (!card)
2018 		return 1;
2019 
2020 	ret = mmc_card_removed(card);
2021 	/*
2022 	 * The card will be considered unchanged unless we have been asked to
2023 	 * detect a change or host requires polling to provide card detection.
2024 	 */
2025 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2026 	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2027 		return ret;
2028 
2029 	host->detect_change = 0;
2030 	if (!ret) {
2031 		ret = _mmc_detect_card_removed(host);
2032 		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2033 			/*
2034 			 * Schedule a detect work as soon as possible to let a
2035 			 * rescan handle the card removal.
2036 			 */
2037 			cancel_delayed_work(&host->detect);
2038 			mmc_detect_change(host, 0);
2039 		}
2040 	}
2041 
2042 	return ret;
2043 }
2044 EXPORT_SYMBOL(mmc_detect_card_removed);
2045 
2046 void mmc_rescan(struct work_struct *work)
2047 {
2048 	struct mmc_host *host =
2049 		container_of(work, struct mmc_host, detect.work);
2050 	int i;
2051 
2052 	if (host->rescan_disable)
2053 		return;
2054 
2055 	mmc_bus_get(host);
2056 
2057 	/*
2058 	 * if there is a _removable_ card registered, check whether it is
2059 	 * still present
2060 	 */
2061 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2062 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2063 		host->bus_ops->detect(host);
2064 
2065 	host->detect_change = 0;
2066 
2067 	/*
2068 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2069 	 * the card is no longer present.
2070 	 */
2071 	mmc_bus_put(host);
2072 	mmc_bus_get(host);
2073 
2074 	/* if there still is a card present, stop here */
2075 	if (host->bus_ops != NULL) {
2076 		mmc_bus_put(host);
2077 		goto out;
2078 	}
2079 
2080 	/*
2081 	 * Only we can add a new handler, so it's safe to
2082 	 * release the lock here.
2083 	 */
2084 	mmc_bus_put(host);
2085 
2086 	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2087 		mmc_claim_host(host);
2088 		mmc_power_off(host);
2089 		mmc_release_host(host);
2090 		goto out;
2091 	}
2092 
2093 	mmc_claim_host(host);
2094 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2095 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2096 			break;
2097 		if (freqs[i] <= host->f_min)
2098 			break;
2099 	}
2100 	mmc_release_host(host);
2101 
2102  out:
2103 	if (host->caps & MMC_CAP_NEEDS_POLL)
2104 		mmc_schedule_delayed_work(&host->detect, HZ);
2105 }
2106 
2107 void mmc_start_host(struct mmc_host *host)
2108 {
2109 	host->f_init = max(freqs[0], host->f_min);
2110 	host->rescan_disable = 0;
2111 	mmc_power_up(host);
2112 	mmc_detect_change(host, 0);
2113 }
2114 
2115 void mmc_stop_host(struct mmc_host *host)
2116 {
2117 #ifdef CONFIG_MMC_DEBUG
2118 	unsigned long flags;
2119 	spin_lock_irqsave(&host->lock, flags);
2120 	host->removed = 1;
2121 	spin_unlock_irqrestore(&host->lock, flags);
2122 #endif
2123 
2124 	host->rescan_disable = 1;
2125 	cancel_delayed_work_sync(&host->detect);
2126 	mmc_flush_scheduled_work();
2127 
2128 	/* clear pm flags now and let card drivers set them as needed */
2129 	host->pm_flags = 0;
2130 
2131 	mmc_bus_get(host);
2132 	if (host->bus_ops && !host->bus_dead) {
2133 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2134 		if (host->bus_ops->remove)
2135 			host->bus_ops->remove(host);
2136 
2137 		mmc_claim_host(host);
2138 		mmc_detach_bus(host);
2139 		mmc_power_off(host);
2140 		mmc_release_host(host);
2141 		mmc_bus_put(host);
2142 		return;
2143 	}
2144 	mmc_bus_put(host);
2145 
2146 	BUG_ON(host->card);
2147 
2148 	mmc_power_off(host);
2149 }
2150 
2151 int mmc_power_save_host(struct mmc_host *host)
2152 {
2153 	int ret = 0;
2154 
2155 #ifdef CONFIG_MMC_DEBUG
2156 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2157 #endif
2158 
2159 	mmc_bus_get(host);
2160 
2161 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2162 		mmc_bus_put(host);
2163 		return -EINVAL;
2164 	}
2165 
2166 	if (host->bus_ops->power_save)
2167 		ret = host->bus_ops->power_save(host);
2168 
2169 	mmc_bus_put(host);
2170 
2171 	mmc_power_off(host);
2172 
2173 	return ret;
2174 }
2175 EXPORT_SYMBOL(mmc_power_save_host);
2176 
2177 int mmc_power_restore_host(struct mmc_host *host)
2178 {
2179 	int ret;
2180 
2181 #ifdef CONFIG_MMC_DEBUG
2182 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2183 #endif
2184 
2185 	mmc_bus_get(host);
2186 
2187 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2188 		mmc_bus_put(host);
2189 		return -EINVAL;
2190 	}
2191 
2192 	mmc_power_up(host);
2193 	ret = host->bus_ops->power_restore(host);
2194 
2195 	mmc_bus_put(host);
2196 
2197 	return ret;
2198 }
2199 EXPORT_SYMBOL(mmc_power_restore_host);
2200 
2201 int mmc_card_awake(struct mmc_host *host)
2202 {
2203 	int err = -ENOSYS;
2204 
2205 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2206 		return 0;
2207 
2208 	mmc_bus_get(host);
2209 
2210 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2211 		err = host->bus_ops->awake(host);
2212 
2213 	mmc_bus_put(host);
2214 
2215 	return err;
2216 }
2217 EXPORT_SYMBOL(mmc_card_awake);
2218 
2219 int mmc_card_sleep(struct mmc_host *host)
2220 {
2221 	int err = -ENOSYS;
2222 
2223 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2224 		return 0;
2225 
2226 	mmc_bus_get(host);
2227 
2228 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2229 		err = host->bus_ops->sleep(host);
2230 
2231 	mmc_bus_put(host);
2232 
2233 	return err;
2234 }
2235 EXPORT_SYMBOL(mmc_card_sleep);
2236 
2237 int mmc_card_can_sleep(struct mmc_host *host)
2238 {
2239 	struct mmc_card *card = host->card;
2240 
2241 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2242 		return 1;
2243 	return 0;
2244 }
2245 EXPORT_SYMBOL(mmc_card_can_sleep);
2246 
2247 /*
2248  * Flush the cache to the non-volatile storage.
2249  */
2250 int mmc_flush_cache(struct mmc_card *card)
2251 {
2252 	struct mmc_host *host = card->host;
2253 	int err = 0;
2254 
2255 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2256 		return err;
2257 
2258 	if (mmc_card_mmc(card) &&
2259 			(card->ext_csd.cache_size > 0) &&
2260 			(card->ext_csd.cache_ctrl & 1)) {
2261 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2262 				EXT_CSD_FLUSH_CACHE, 1, 0);
2263 		if (err)
2264 			pr_err("%s: cache flush error %d\n",
2265 					mmc_hostname(card->host), err);
2266 	}
2267 
2268 	return err;
2269 }
2270 EXPORT_SYMBOL(mmc_flush_cache);
2271 
2272 /*
2273  * Turn the cache ON/OFF.
2274  * Turning the cache OFF shall trigger flushing of the data
2275  * to the non-volatile storage.
2276  */
2277 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2278 {
2279 	struct mmc_card *card = host->card;
2280 	unsigned int timeout;
2281 	int err = 0;
2282 
2283 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2284 			mmc_card_is_removable(host))
2285 		return err;
2286 
2287 	mmc_claim_host(host);
2288 	if (card && mmc_card_mmc(card) &&
2289 			(card->ext_csd.cache_size > 0)) {
2290 		enable = !!enable;
2291 
2292 		if (card->ext_csd.cache_ctrl ^ enable) {
2293 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2294 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2295 					EXT_CSD_CACHE_CTRL, enable, timeout);
2296 			if (err)
2297 				pr_err("%s: cache %s error %d\n",
2298 						mmc_hostname(card->host),
2299 						enable ? "on" : "off",
2300 						err);
2301 			else
2302 				card->ext_csd.cache_ctrl = enable;
2303 		}
2304 	}
2305 	mmc_release_host(host);
2306 
2307 	return err;
2308 }
2309 EXPORT_SYMBOL(mmc_cache_ctrl);
2310 
2311 #ifdef CONFIG_PM
2312 
2313 /**
2314  *	mmc_suspend_host - suspend a host
2315  *	@host: mmc host
2316  */
2317 int mmc_suspend_host(struct mmc_host *host)
2318 {
2319 	int err = 0;
2320 
2321 	cancel_delayed_work(&host->detect);
2322 	mmc_flush_scheduled_work();
2323 
2324 	err = mmc_cache_ctrl(host, 0);
2325 	if (err)
2326 		goto out;
2327 
2328 	mmc_bus_get(host);
2329 	if (host->bus_ops && !host->bus_dead) {
2330 
2331 		if (host->bus_ops->suspend)
2332 			err = host->bus_ops->suspend(host);
2333 
2334 		if (err == -ENOSYS || !host->bus_ops->resume) {
2335 			/*
2336 			 * We simply "remove" the card in this case.
2337 			 * It will be redetected on resume.  (Calling
2338 			 * bus_ops->remove() with a claimed host can
2339 			 * deadlock.)
2340 			 */
2341 			if (host->bus_ops->remove)
2342 				host->bus_ops->remove(host);
2343 			mmc_claim_host(host);
2344 			mmc_detach_bus(host);
2345 			mmc_power_off(host);
2346 			mmc_release_host(host);
2347 			host->pm_flags = 0;
2348 			err = 0;
2349 		}
2350 	}
2351 	mmc_bus_put(host);
2352 
2353 	if (!err && !mmc_card_keep_power(host))
2354 		mmc_power_off(host);
2355 
2356 out:
2357 	return err;
2358 }
2359 
2360 EXPORT_SYMBOL(mmc_suspend_host);
2361 
2362 /**
2363  *	mmc_resume_host - resume a previously suspended host
2364  *	@host: mmc host
2365  */
2366 int mmc_resume_host(struct mmc_host *host)
2367 {
2368 	int err = 0;
2369 
2370 	mmc_bus_get(host);
2371 	if (host->bus_ops && !host->bus_dead) {
2372 		if (!mmc_card_keep_power(host)) {
2373 			mmc_power_up(host);
2374 			mmc_select_voltage(host, host->ocr);
2375 			/*
2376 			 * Tell runtime PM core we just powered up the card,
2377 			 * since it still believes the card is powered off.
2378 			 * Note that currently runtime PM is only enabled
2379 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2380 			 */
2381 			if (mmc_card_sdio(host->card) &&
2382 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2383 				pm_runtime_disable(&host->card->dev);
2384 				pm_runtime_set_active(&host->card->dev);
2385 				pm_runtime_enable(&host->card->dev);
2386 			}
2387 		}
2388 		BUG_ON(!host->bus_ops->resume);
2389 		err = host->bus_ops->resume(host);
2390 		if (err) {
2391 			pr_warning("%s: error %d during resume "
2392 					    "(card was removed?)\n",
2393 					    mmc_hostname(host), err);
2394 			err = 0;
2395 		}
2396 	}
2397 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2398 	mmc_bus_put(host);
2399 
2400 	return err;
2401 }
2402 EXPORT_SYMBOL(mmc_resume_host);
2403 
2404 /* Do the card removal on suspend if card is assumed removeable
2405  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2406    to sync the card.
2407 */
2408 int mmc_pm_notify(struct notifier_block *notify_block,
2409 					unsigned long mode, void *unused)
2410 {
2411 	struct mmc_host *host = container_of(
2412 		notify_block, struct mmc_host, pm_notify);
2413 	unsigned long flags;
2414 
2415 
2416 	switch (mode) {
2417 	case PM_HIBERNATION_PREPARE:
2418 	case PM_SUSPEND_PREPARE:
2419 
2420 		spin_lock_irqsave(&host->lock, flags);
2421 		host->rescan_disable = 1;
2422 		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2423 		spin_unlock_irqrestore(&host->lock, flags);
2424 		cancel_delayed_work_sync(&host->detect);
2425 
2426 		if (!host->bus_ops || host->bus_ops->suspend)
2427 			break;
2428 
2429 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2430 		if (host->bus_ops->remove)
2431 			host->bus_ops->remove(host);
2432 
2433 		mmc_claim_host(host);
2434 		mmc_detach_bus(host);
2435 		mmc_power_off(host);
2436 		mmc_release_host(host);
2437 		host->pm_flags = 0;
2438 		break;
2439 
2440 	case PM_POST_SUSPEND:
2441 	case PM_POST_HIBERNATION:
2442 	case PM_POST_RESTORE:
2443 
2444 		spin_lock_irqsave(&host->lock, flags);
2445 		host->rescan_disable = 0;
2446 		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2447 		spin_unlock_irqrestore(&host->lock, flags);
2448 		mmc_detect_change(host, 0);
2449 
2450 	}
2451 
2452 	return 0;
2453 }
2454 #endif
2455 
2456 static int __init mmc_init(void)
2457 {
2458 	int ret;
2459 
2460 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2461 	if (!workqueue)
2462 		return -ENOMEM;
2463 
2464 	ret = mmc_register_bus();
2465 	if (ret)
2466 		goto destroy_workqueue;
2467 
2468 	ret = mmc_register_host_class();
2469 	if (ret)
2470 		goto unregister_bus;
2471 
2472 	ret = sdio_register_bus();
2473 	if (ret)
2474 		goto unregister_host_class;
2475 
2476 	return 0;
2477 
2478 unregister_host_class:
2479 	mmc_unregister_host_class();
2480 unregister_bus:
2481 	mmc_unregister_bus();
2482 destroy_workqueue:
2483 	destroy_workqueue(workqueue);
2484 
2485 	return ret;
2486 }
2487 
2488 static void __exit mmc_exit(void)
2489 {
2490 	sdio_unregister_bus();
2491 	mmc_unregister_host_class();
2492 	mmc_unregister_bus();
2493 	destroy_workqueue(workqueue);
2494 }
2495 
2496 subsys_initcall(mmc_init);
2497 module_exit(mmc_exit);
2498 
2499 MODULE_LICENSE("GPL");
2500