1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/suspend.h> 27 #include <linux/fault-inject.h> 28 #include <linux/random.h> 29 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 35 #include "core.h" 36 #include "bus.h" 37 #include "host.h" 38 #include "sdio_bus.h" 39 40 #include "mmc_ops.h" 41 #include "sd_ops.h" 42 #include "sdio_ops.h" 43 44 static struct workqueue_struct *workqueue; 45 46 /* 47 * Enabling software CRCs on the data blocks can be a significant (30%) 48 * performance cost, and for other reasons may not always be desired. 49 * So we allow it it to be disabled. 50 */ 51 bool use_spi_crc = 1; 52 module_param(use_spi_crc, bool, 0); 53 54 /* 55 * We normally treat cards as removed during suspend if they are not 56 * known to be on a non-removable bus, to avoid the risk of writing 57 * back data to a different card after resume. Allow this to be 58 * overridden if necessary. 59 */ 60 #ifdef CONFIG_MMC_UNSAFE_RESUME 61 bool mmc_assume_removable; 62 #else 63 bool mmc_assume_removable = 1; 64 #endif 65 EXPORT_SYMBOL(mmc_assume_removable); 66 module_param_named(removable, mmc_assume_removable, bool, 0644); 67 MODULE_PARM_DESC( 68 removable, 69 "MMC/SD cards are removable and may be removed during suspend"); 70 71 /* 72 * Internal function. Schedule delayed work in the MMC work queue. 73 */ 74 static int mmc_schedule_delayed_work(struct delayed_work *work, 75 unsigned long delay) 76 { 77 return queue_delayed_work(workqueue, work, delay); 78 } 79 80 /* 81 * Internal function. Flush all scheduled work from the MMC work queue. 82 */ 83 static void mmc_flush_scheduled_work(void) 84 { 85 flush_workqueue(workqueue); 86 } 87 88 #ifdef CONFIG_FAIL_MMC_REQUEST 89 90 /* 91 * Internal function. Inject random data errors. 92 * If mmc_data is NULL no errors are injected. 93 */ 94 static void mmc_should_fail_request(struct mmc_host *host, 95 struct mmc_request *mrq) 96 { 97 struct mmc_command *cmd = mrq->cmd; 98 struct mmc_data *data = mrq->data; 99 static const int data_errors[] = { 100 -ETIMEDOUT, 101 -EILSEQ, 102 -EIO, 103 }; 104 105 if (!data) 106 return; 107 108 if (cmd->error || data->error || 109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 110 return; 111 112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)]; 113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9; 114 } 115 116 #else /* CONFIG_FAIL_MMC_REQUEST */ 117 118 static inline void mmc_should_fail_request(struct mmc_host *host, 119 struct mmc_request *mrq) 120 { 121 } 122 123 #endif /* CONFIG_FAIL_MMC_REQUEST */ 124 125 /** 126 * mmc_request_done - finish processing an MMC request 127 * @host: MMC host which completed request 128 * @mrq: MMC request which request 129 * 130 * MMC drivers should call this function when they have completed 131 * their processing of a request. 132 */ 133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 134 { 135 struct mmc_command *cmd = mrq->cmd; 136 int err = cmd->error; 137 138 if (err && cmd->retries && mmc_host_is_spi(host)) { 139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 140 cmd->retries = 0; 141 } 142 143 if (err && cmd->retries) { 144 /* 145 * Request starter must handle retries - see 146 * mmc_wait_for_req_done(). 147 */ 148 if (mrq->done) 149 mrq->done(mrq); 150 } else { 151 mmc_should_fail_request(host, mrq); 152 153 led_trigger_event(host->led, LED_OFF); 154 155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 156 mmc_hostname(host), cmd->opcode, err, 157 cmd->resp[0], cmd->resp[1], 158 cmd->resp[2], cmd->resp[3]); 159 160 if (mrq->data) { 161 pr_debug("%s: %d bytes transferred: %d\n", 162 mmc_hostname(host), 163 mrq->data->bytes_xfered, mrq->data->error); 164 } 165 166 if (mrq->stop) { 167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 168 mmc_hostname(host), mrq->stop->opcode, 169 mrq->stop->error, 170 mrq->stop->resp[0], mrq->stop->resp[1], 171 mrq->stop->resp[2], mrq->stop->resp[3]); 172 } 173 174 if (mrq->done) 175 mrq->done(mrq); 176 177 mmc_host_clk_release(host); 178 } 179 } 180 181 EXPORT_SYMBOL(mmc_request_done); 182 183 static void 184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 185 { 186 #ifdef CONFIG_MMC_DEBUG 187 unsigned int i, sz; 188 struct scatterlist *sg; 189 #endif 190 191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 192 mmc_hostname(host), mrq->cmd->opcode, 193 mrq->cmd->arg, mrq->cmd->flags); 194 195 if (mrq->data) { 196 pr_debug("%s: blksz %d blocks %d flags %08x " 197 "tsac %d ms nsac %d\n", 198 mmc_hostname(host), mrq->data->blksz, 199 mrq->data->blocks, mrq->data->flags, 200 mrq->data->timeout_ns / 1000000, 201 mrq->data->timeout_clks); 202 } 203 204 if (mrq->stop) { 205 pr_debug("%s: CMD%u arg %08x flags %08x\n", 206 mmc_hostname(host), mrq->stop->opcode, 207 mrq->stop->arg, mrq->stop->flags); 208 } 209 210 WARN_ON(!host->claimed); 211 212 mrq->cmd->error = 0; 213 mrq->cmd->mrq = mrq; 214 if (mrq->data) { 215 BUG_ON(mrq->data->blksz > host->max_blk_size); 216 BUG_ON(mrq->data->blocks > host->max_blk_count); 217 BUG_ON(mrq->data->blocks * mrq->data->blksz > 218 host->max_req_size); 219 220 #ifdef CONFIG_MMC_DEBUG 221 sz = 0; 222 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 223 sz += sg->length; 224 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 225 #endif 226 227 mrq->cmd->data = mrq->data; 228 mrq->data->error = 0; 229 mrq->data->mrq = mrq; 230 if (mrq->stop) { 231 mrq->data->stop = mrq->stop; 232 mrq->stop->error = 0; 233 mrq->stop->mrq = mrq; 234 } 235 } 236 mmc_host_clk_hold(host); 237 led_trigger_event(host->led, LED_FULL); 238 host->ops->request(host, mrq); 239 } 240 241 static void mmc_wait_done(struct mmc_request *mrq) 242 { 243 complete(&mrq->completion); 244 } 245 246 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 247 { 248 init_completion(&mrq->completion); 249 mrq->done = mmc_wait_done; 250 mmc_start_request(host, mrq); 251 } 252 253 static void mmc_wait_for_req_done(struct mmc_host *host, 254 struct mmc_request *mrq) 255 { 256 struct mmc_command *cmd; 257 258 while (1) { 259 wait_for_completion(&mrq->completion); 260 261 cmd = mrq->cmd; 262 if (!cmd->error || !cmd->retries) 263 break; 264 265 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 266 mmc_hostname(host), cmd->opcode, cmd->error); 267 cmd->retries--; 268 cmd->error = 0; 269 host->ops->request(host, mrq); 270 } 271 } 272 273 /** 274 * mmc_pre_req - Prepare for a new request 275 * @host: MMC host to prepare command 276 * @mrq: MMC request to prepare for 277 * @is_first_req: true if there is no previous started request 278 * that may run in parellel to this call, otherwise false 279 * 280 * mmc_pre_req() is called in prior to mmc_start_req() to let 281 * host prepare for the new request. Preparation of a request may be 282 * performed while another request is running on the host. 283 */ 284 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 285 bool is_first_req) 286 { 287 if (host->ops->pre_req) 288 host->ops->pre_req(host, mrq, is_first_req); 289 } 290 291 /** 292 * mmc_post_req - Post process a completed request 293 * @host: MMC host to post process command 294 * @mrq: MMC request to post process for 295 * @err: Error, if non zero, clean up any resources made in pre_req 296 * 297 * Let the host post process a completed request. Post processing of 298 * a request may be performed while another reuqest is running. 299 */ 300 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 301 int err) 302 { 303 if (host->ops->post_req) 304 host->ops->post_req(host, mrq, err); 305 } 306 307 /** 308 * mmc_start_req - start a non-blocking request 309 * @host: MMC host to start command 310 * @areq: async request to start 311 * @error: out parameter returns 0 for success, otherwise non zero 312 * 313 * Start a new MMC custom command request for a host. 314 * If there is on ongoing async request wait for completion 315 * of that request and start the new one and return. 316 * Does not wait for the new request to complete. 317 * 318 * Returns the completed request, NULL in case of none completed. 319 * Wait for the an ongoing request (previoulsy started) to complete and 320 * return the completed request. If there is no ongoing request, NULL 321 * is returned without waiting. NULL is not an error condition. 322 */ 323 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 324 struct mmc_async_req *areq, int *error) 325 { 326 int err = 0; 327 struct mmc_async_req *data = host->areq; 328 329 /* Prepare a new request */ 330 if (areq) 331 mmc_pre_req(host, areq->mrq, !host->areq); 332 333 if (host->areq) { 334 mmc_wait_for_req_done(host, host->areq->mrq); 335 err = host->areq->err_check(host->card, host->areq); 336 if (err) { 337 /* post process the completed failed request */ 338 mmc_post_req(host, host->areq->mrq, 0); 339 if (areq) 340 /* 341 * Cancel the new prepared request, because 342 * it can't run until the failed 343 * request has been properly handled. 344 */ 345 mmc_post_req(host, areq->mrq, -EINVAL); 346 347 host->areq = NULL; 348 goto out; 349 } 350 } 351 352 if (areq) 353 __mmc_start_req(host, areq->mrq); 354 355 if (host->areq) 356 mmc_post_req(host, host->areq->mrq, 0); 357 358 host->areq = areq; 359 out: 360 if (error) 361 *error = err; 362 return data; 363 } 364 EXPORT_SYMBOL(mmc_start_req); 365 366 /** 367 * mmc_wait_for_req - start a request and wait for completion 368 * @host: MMC host to start command 369 * @mrq: MMC request to start 370 * 371 * Start a new MMC custom command request for a host, and wait 372 * for the command to complete. Does not attempt to parse the 373 * response. 374 */ 375 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 376 { 377 __mmc_start_req(host, mrq); 378 mmc_wait_for_req_done(host, mrq); 379 } 380 EXPORT_SYMBOL(mmc_wait_for_req); 381 382 /** 383 * mmc_interrupt_hpi - Issue for High priority Interrupt 384 * @card: the MMC card associated with the HPI transfer 385 * 386 * Issued High Priority Interrupt, and check for card status 387 * util out-of prg-state. 388 */ 389 int mmc_interrupt_hpi(struct mmc_card *card) 390 { 391 int err; 392 u32 status; 393 394 BUG_ON(!card); 395 396 if (!card->ext_csd.hpi_en) { 397 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 398 return 1; 399 } 400 401 mmc_claim_host(card->host); 402 err = mmc_send_status(card, &status); 403 if (err) { 404 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 405 goto out; 406 } 407 408 /* 409 * If the card status is in PRG-state, we can send the HPI command. 410 */ 411 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) { 412 do { 413 /* 414 * We don't know when the HPI command will finish 415 * processing, so we need to resend HPI until out 416 * of prg-state, and keep checking the card status 417 * with SEND_STATUS. If a timeout error occurs when 418 * sending the HPI command, we are already out of 419 * prg-state. 420 */ 421 err = mmc_send_hpi_cmd(card, &status); 422 if (err) 423 pr_debug("%s: abort HPI (%d error)\n", 424 mmc_hostname(card->host), err); 425 426 err = mmc_send_status(card, &status); 427 if (err) 428 break; 429 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG); 430 } else 431 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host)); 432 433 out: 434 mmc_release_host(card->host); 435 return err; 436 } 437 EXPORT_SYMBOL(mmc_interrupt_hpi); 438 439 /** 440 * mmc_wait_for_cmd - start a command and wait for completion 441 * @host: MMC host to start command 442 * @cmd: MMC command to start 443 * @retries: maximum number of retries 444 * 445 * Start a new MMC command for a host, and wait for the command 446 * to complete. Return any error that occurred while the command 447 * was executing. Do not attempt to parse the response. 448 */ 449 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 450 { 451 struct mmc_request mrq = {NULL}; 452 453 WARN_ON(!host->claimed); 454 455 memset(cmd->resp, 0, sizeof(cmd->resp)); 456 cmd->retries = retries; 457 458 mrq.cmd = cmd; 459 cmd->data = NULL; 460 461 mmc_wait_for_req(host, &mrq); 462 463 return cmd->error; 464 } 465 466 EXPORT_SYMBOL(mmc_wait_for_cmd); 467 468 /** 469 * mmc_set_data_timeout - set the timeout for a data command 470 * @data: data phase for command 471 * @card: the MMC card associated with the data transfer 472 * 473 * Computes the data timeout parameters according to the 474 * correct algorithm given the card type. 475 */ 476 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 477 { 478 unsigned int mult; 479 480 /* 481 * SDIO cards only define an upper 1 s limit on access. 482 */ 483 if (mmc_card_sdio(card)) { 484 data->timeout_ns = 1000000000; 485 data->timeout_clks = 0; 486 return; 487 } 488 489 /* 490 * SD cards use a 100 multiplier rather than 10 491 */ 492 mult = mmc_card_sd(card) ? 100 : 10; 493 494 /* 495 * Scale up the multiplier (and therefore the timeout) by 496 * the r2w factor for writes. 497 */ 498 if (data->flags & MMC_DATA_WRITE) 499 mult <<= card->csd.r2w_factor; 500 501 data->timeout_ns = card->csd.tacc_ns * mult; 502 data->timeout_clks = card->csd.tacc_clks * mult; 503 504 /* 505 * SD cards also have an upper limit on the timeout. 506 */ 507 if (mmc_card_sd(card)) { 508 unsigned int timeout_us, limit_us; 509 510 timeout_us = data->timeout_ns / 1000; 511 if (mmc_host_clk_rate(card->host)) 512 timeout_us += data->timeout_clks * 1000 / 513 (mmc_host_clk_rate(card->host) / 1000); 514 515 if (data->flags & MMC_DATA_WRITE) 516 /* 517 * The limit is really 250 ms, but that is 518 * insufficient for some crappy cards. 519 */ 520 limit_us = 300000; 521 else 522 limit_us = 100000; 523 524 /* 525 * SDHC cards always use these fixed values. 526 */ 527 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 528 data->timeout_ns = limit_us * 1000; 529 data->timeout_clks = 0; 530 } 531 } 532 533 /* 534 * Some cards require longer data read timeout than indicated in CSD. 535 * Address this by setting the read timeout to a "reasonably high" 536 * value. For the cards tested, 300ms has proven enough. If necessary, 537 * this value can be increased if other problematic cards require this. 538 */ 539 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 540 data->timeout_ns = 300000000; 541 data->timeout_clks = 0; 542 } 543 544 /* 545 * Some cards need very high timeouts if driven in SPI mode. 546 * The worst observed timeout was 900ms after writing a 547 * continuous stream of data until the internal logic 548 * overflowed. 549 */ 550 if (mmc_host_is_spi(card->host)) { 551 if (data->flags & MMC_DATA_WRITE) { 552 if (data->timeout_ns < 1000000000) 553 data->timeout_ns = 1000000000; /* 1s */ 554 } else { 555 if (data->timeout_ns < 100000000) 556 data->timeout_ns = 100000000; /* 100ms */ 557 } 558 } 559 } 560 EXPORT_SYMBOL(mmc_set_data_timeout); 561 562 /** 563 * mmc_align_data_size - pads a transfer size to a more optimal value 564 * @card: the MMC card associated with the data transfer 565 * @sz: original transfer size 566 * 567 * Pads the original data size with a number of extra bytes in 568 * order to avoid controller bugs and/or performance hits 569 * (e.g. some controllers revert to PIO for certain sizes). 570 * 571 * Returns the improved size, which might be unmodified. 572 * 573 * Note that this function is only relevant when issuing a 574 * single scatter gather entry. 575 */ 576 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 577 { 578 /* 579 * FIXME: We don't have a system for the controller to tell 580 * the core about its problems yet, so for now we just 32-bit 581 * align the size. 582 */ 583 sz = ((sz + 3) / 4) * 4; 584 585 return sz; 586 } 587 EXPORT_SYMBOL(mmc_align_data_size); 588 589 /** 590 * mmc_host_enable - enable a host. 591 * @host: mmc host to enable 592 * 593 * Hosts that support power saving can use the 'enable' and 'disable' 594 * methods to exit and enter power saving states. For more information 595 * see comments for struct mmc_host_ops. 596 */ 597 int mmc_host_enable(struct mmc_host *host) 598 { 599 if (!(host->caps & MMC_CAP_DISABLE)) 600 return 0; 601 602 if (host->en_dis_recurs) 603 return 0; 604 605 if (host->nesting_cnt++) 606 return 0; 607 608 cancel_delayed_work_sync(&host->disable); 609 610 if (host->enabled) 611 return 0; 612 613 if (host->ops->enable) { 614 int err; 615 616 host->en_dis_recurs = 1; 617 err = host->ops->enable(host); 618 host->en_dis_recurs = 0; 619 620 if (err) { 621 pr_debug("%s: enable error %d\n", 622 mmc_hostname(host), err); 623 return err; 624 } 625 } 626 host->enabled = 1; 627 return 0; 628 } 629 EXPORT_SYMBOL(mmc_host_enable); 630 631 static int mmc_host_do_disable(struct mmc_host *host, int lazy) 632 { 633 if (host->ops->disable) { 634 int err; 635 636 host->en_dis_recurs = 1; 637 err = host->ops->disable(host, lazy); 638 host->en_dis_recurs = 0; 639 640 if (err < 0) { 641 pr_debug("%s: disable error %d\n", 642 mmc_hostname(host), err); 643 return err; 644 } 645 if (err > 0) { 646 unsigned long delay = msecs_to_jiffies(err); 647 648 mmc_schedule_delayed_work(&host->disable, delay); 649 } 650 } 651 host->enabled = 0; 652 return 0; 653 } 654 655 /** 656 * mmc_host_disable - disable a host. 657 * @host: mmc host to disable 658 * 659 * Hosts that support power saving can use the 'enable' and 'disable' 660 * methods to exit and enter power saving states. For more information 661 * see comments for struct mmc_host_ops. 662 */ 663 int mmc_host_disable(struct mmc_host *host) 664 { 665 int err; 666 667 if (!(host->caps & MMC_CAP_DISABLE)) 668 return 0; 669 670 if (host->en_dis_recurs) 671 return 0; 672 673 if (--host->nesting_cnt) 674 return 0; 675 676 if (!host->enabled) 677 return 0; 678 679 err = mmc_host_do_disable(host, 0); 680 return err; 681 } 682 EXPORT_SYMBOL(mmc_host_disable); 683 684 /** 685 * __mmc_claim_host - exclusively claim a host 686 * @host: mmc host to claim 687 * @abort: whether or not the operation should be aborted 688 * 689 * Claim a host for a set of operations. If @abort is non null and 690 * dereference a non-zero value then this will return prematurely with 691 * that non-zero value without acquiring the lock. Returns zero 692 * with the lock held otherwise. 693 */ 694 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 695 { 696 DECLARE_WAITQUEUE(wait, current); 697 unsigned long flags; 698 int stop; 699 700 might_sleep(); 701 702 add_wait_queue(&host->wq, &wait); 703 spin_lock_irqsave(&host->lock, flags); 704 while (1) { 705 set_current_state(TASK_UNINTERRUPTIBLE); 706 stop = abort ? atomic_read(abort) : 0; 707 if (stop || !host->claimed || host->claimer == current) 708 break; 709 spin_unlock_irqrestore(&host->lock, flags); 710 schedule(); 711 spin_lock_irqsave(&host->lock, flags); 712 } 713 set_current_state(TASK_RUNNING); 714 if (!stop) { 715 host->claimed = 1; 716 host->claimer = current; 717 host->claim_cnt += 1; 718 } else 719 wake_up(&host->wq); 720 spin_unlock_irqrestore(&host->lock, flags); 721 remove_wait_queue(&host->wq, &wait); 722 if (!stop) 723 mmc_host_enable(host); 724 return stop; 725 } 726 727 EXPORT_SYMBOL(__mmc_claim_host); 728 729 /** 730 * mmc_try_claim_host - try exclusively to claim a host 731 * @host: mmc host to claim 732 * 733 * Returns %1 if the host is claimed, %0 otherwise. 734 */ 735 int mmc_try_claim_host(struct mmc_host *host) 736 { 737 int claimed_host = 0; 738 unsigned long flags; 739 740 spin_lock_irqsave(&host->lock, flags); 741 if (!host->claimed || host->claimer == current) { 742 host->claimed = 1; 743 host->claimer = current; 744 host->claim_cnt += 1; 745 claimed_host = 1; 746 } 747 spin_unlock_irqrestore(&host->lock, flags); 748 return claimed_host; 749 } 750 EXPORT_SYMBOL(mmc_try_claim_host); 751 752 /** 753 * mmc_do_release_host - release a claimed host 754 * @host: mmc host to release 755 * 756 * If you successfully claimed a host, this function will 757 * release it again. 758 */ 759 void mmc_do_release_host(struct mmc_host *host) 760 { 761 unsigned long flags; 762 763 spin_lock_irqsave(&host->lock, flags); 764 if (--host->claim_cnt) { 765 /* Release for nested claim */ 766 spin_unlock_irqrestore(&host->lock, flags); 767 } else { 768 host->claimed = 0; 769 host->claimer = NULL; 770 spin_unlock_irqrestore(&host->lock, flags); 771 wake_up(&host->wq); 772 } 773 } 774 EXPORT_SYMBOL(mmc_do_release_host); 775 776 void mmc_host_deeper_disable(struct work_struct *work) 777 { 778 struct mmc_host *host = 779 container_of(work, struct mmc_host, disable.work); 780 781 /* If the host is claimed then we do not want to disable it anymore */ 782 if (!mmc_try_claim_host(host)) 783 return; 784 mmc_host_do_disable(host, 1); 785 mmc_do_release_host(host); 786 } 787 788 /** 789 * mmc_host_lazy_disable - lazily disable a host. 790 * @host: mmc host to disable 791 * 792 * Hosts that support power saving can use the 'enable' and 'disable' 793 * methods to exit and enter power saving states. For more information 794 * see comments for struct mmc_host_ops. 795 */ 796 int mmc_host_lazy_disable(struct mmc_host *host) 797 { 798 if (!(host->caps & MMC_CAP_DISABLE)) 799 return 0; 800 801 if (host->en_dis_recurs) 802 return 0; 803 804 if (--host->nesting_cnt) 805 return 0; 806 807 if (!host->enabled) 808 return 0; 809 810 if (host->disable_delay) { 811 mmc_schedule_delayed_work(&host->disable, 812 msecs_to_jiffies(host->disable_delay)); 813 return 0; 814 } else 815 return mmc_host_do_disable(host, 1); 816 } 817 EXPORT_SYMBOL(mmc_host_lazy_disable); 818 819 /** 820 * mmc_release_host - release a host 821 * @host: mmc host to release 822 * 823 * Release a MMC host, allowing others to claim the host 824 * for their operations. 825 */ 826 void mmc_release_host(struct mmc_host *host) 827 { 828 WARN_ON(!host->claimed); 829 830 mmc_host_lazy_disable(host); 831 832 mmc_do_release_host(host); 833 } 834 835 EXPORT_SYMBOL(mmc_release_host); 836 837 /* 838 * Internal function that does the actual ios call to the host driver, 839 * optionally printing some debug output. 840 */ 841 static inline void mmc_set_ios(struct mmc_host *host) 842 { 843 struct mmc_ios *ios = &host->ios; 844 845 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 846 "width %u timing %u\n", 847 mmc_hostname(host), ios->clock, ios->bus_mode, 848 ios->power_mode, ios->chip_select, ios->vdd, 849 ios->bus_width, ios->timing); 850 851 if (ios->clock > 0) 852 mmc_set_ungated(host); 853 host->ops->set_ios(host, ios); 854 } 855 856 /* 857 * Control chip select pin on a host. 858 */ 859 void mmc_set_chip_select(struct mmc_host *host, int mode) 860 { 861 mmc_host_clk_hold(host); 862 host->ios.chip_select = mode; 863 mmc_set_ios(host); 864 mmc_host_clk_release(host); 865 } 866 867 /* 868 * Sets the host clock to the highest possible frequency that 869 * is below "hz". 870 */ 871 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 872 { 873 WARN_ON(hz < host->f_min); 874 875 if (hz > host->f_max) 876 hz = host->f_max; 877 878 host->ios.clock = hz; 879 mmc_set_ios(host); 880 } 881 882 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 883 { 884 mmc_host_clk_hold(host); 885 __mmc_set_clock(host, hz); 886 mmc_host_clk_release(host); 887 } 888 889 #ifdef CONFIG_MMC_CLKGATE 890 /* 891 * This gates the clock by setting it to 0 Hz. 892 */ 893 void mmc_gate_clock(struct mmc_host *host) 894 { 895 unsigned long flags; 896 897 spin_lock_irqsave(&host->clk_lock, flags); 898 host->clk_old = host->ios.clock; 899 host->ios.clock = 0; 900 host->clk_gated = true; 901 spin_unlock_irqrestore(&host->clk_lock, flags); 902 mmc_set_ios(host); 903 } 904 905 /* 906 * This restores the clock from gating by using the cached 907 * clock value. 908 */ 909 void mmc_ungate_clock(struct mmc_host *host) 910 { 911 /* 912 * We should previously have gated the clock, so the clock shall 913 * be 0 here! The clock may however be 0 during initialization, 914 * when some request operations are performed before setting 915 * the frequency. When ungate is requested in that situation 916 * we just ignore the call. 917 */ 918 if (host->clk_old) { 919 BUG_ON(host->ios.clock); 920 /* This call will also set host->clk_gated to false */ 921 __mmc_set_clock(host, host->clk_old); 922 } 923 } 924 925 void mmc_set_ungated(struct mmc_host *host) 926 { 927 unsigned long flags; 928 929 /* 930 * We've been given a new frequency while the clock is gated, 931 * so make sure we regard this as ungating it. 932 */ 933 spin_lock_irqsave(&host->clk_lock, flags); 934 host->clk_gated = false; 935 spin_unlock_irqrestore(&host->clk_lock, flags); 936 } 937 938 #else 939 void mmc_set_ungated(struct mmc_host *host) 940 { 941 } 942 #endif 943 944 /* 945 * Change the bus mode (open drain/push-pull) of a host. 946 */ 947 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 948 { 949 mmc_host_clk_hold(host); 950 host->ios.bus_mode = mode; 951 mmc_set_ios(host); 952 mmc_host_clk_release(host); 953 } 954 955 /* 956 * Change data bus width of a host. 957 */ 958 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 959 { 960 mmc_host_clk_hold(host); 961 host->ios.bus_width = width; 962 mmc_set_ios(host); 963 mmc_host_clk_release(host); 964 } 965 966 /** 967 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 968 * @vdd: voltage (mV) 969 * @low_bits: prefer low bits in boundary cases 970 * 971 * This function returns the OCR bit number according to the provided @vdd 972 * value. If conversion is not possible a negative errno value returned. 973 * 974 * Depending on the @low_bits flag the function prefers low or high OCR bits 975 * on boundary voltages. For example, 976 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 977 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 978 * 979 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 980 */ 981 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 982 { 983 const int max_bit = ilog2(MMC_VDD_35_36); 984 int bit; 985 986 if (vdd < 1650 || vdd > 3600) 987 return -EINVAL; 988 989 if (vdd >= 1650 && vdd <= 1950) 990 return ilog2(MMC_VDD_165_195); 991 992 if (low_bits) 993 vdd -= 1; 994 995 /* Base 2000 mV, step 100 mV, bit's base 8. */ 996 bit = (vdd - 2000) / 100 + 8; 997 if (bit > max_bit) 998 return max_bit; 999 return bit; 1000 } 1001 1002 /** 1003 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1004 * @vdd_min: minimum voltage value (mV) 1005 * @vdd_max: maximum voltage value (mV) 1006 * 1007 * This function returns the OCR mask bits according to the provided @vdd_min 1008 * and @vdd_max values. If conversion is not possible the function returns 0. 1009 * 1010 * Notes wrt boundary cases: 1011 * This function sets the OCR bits for all boundary voltages, for example 1012 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1013 * MMC_VDD_34_35 mask. 1014 */ 1015 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1016 { 1017 u32 mask = 0; 1018 1019 if (vdd_max < vdd_min) 1020 return 0; 1021 1022 /* Prefer high bits for the boundary vdd_max values. */ 1023 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1024 if (vdd_max < 0) 1025 return 0; 1026 1027 /* Prefer low bits for the boundary vdd_min values. */ 1028 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1029 if (vdd_min < 0) 1030 return 0; 1031 1032 /* Fill the mask, from max bit to min bit. */ 1033 while (vdd_max >= vdd_min) 1034 mask |= 1 << vdd_max--; 1035 1036 return mask; 1037 } 1038 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1039 1040 #ifdef CONFIG_REGULATOR 1041 1042 /** 1043 * mmc_regulator_get_ocrmask - return mask of supported voltages 1044 * @supply: regulator to use 1045 * 1046 * This returns either a negative errno, or a mask of voltages that 1047 * can be provided to MMC/SD/SDIO devices using the specified voltage 1048 * regulator. This would normally be called before registering the 1049 * MMC host adapter. 1050 */ 1051 int mmc_regulator_get_ocrmask(struct regulator *supply) 1052 { 1053 int result = 0; 1054 int count; 1055 int i; 1056 1057 count = regulator_count_voltages(supply); 1058 if (count < 0) 1059 return count; 1060 1061 for (i = 0; i < count; i++) { 1062 int vdd_uV; 1063 int vdd_mV; 1064 1065 vdd_uV = regulator_list_voltage(supply, i); 1066 if (vdd_uV <= 0) 1067 continue; 1068 1069 vdd_mV = vdd_uV / 1000; 1070 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1071 } 1072 1073 return result; 1074 } 1075 EXPORT_SYMBOL(mmc_regulator_get_ocrmask); 1076 1077 /** 1078 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1079 * @mmc: the host to regulate 1080 * @supply: regulator to use 1081 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1082 * 1083 * Returns zero on success, else negative errno. 1084 * 1085 * MMC host drivers may use this to enable or disable a regulator using 1086 * a particular supply voltage. This would normally be called from the 1087 * set_ios() method. 1088 */ 1089 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1090 struct regulator *supply, 1091 unsigned short vdd_bit) 1092 { 1093 int result = 0; 1094 int min_uV, max_uV; 1095 1096 if (vdd_bit) { 1097 int tmp; 1098 int voltage; 1099 1100 /* REVISIT mmc_vddrange_to_ocrmask() may have set some 1101 * bits this regulator doesn't quite support ... don't 1102 * be too picky, most cards and regulators are OK with 1103 * a 0.1V range goof (it's a small error percentage). 1104 */ 1105 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1106 if (tmp == 0) { 1107 min_uV = 1650 * 1000; 1108 max_uV = 1950 * 1000; 1109 } else { 1110 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1111 max_uV = min_uV + 100 * 1000; 1112 } 1113 1114 /* avoid needless changes to this voltage; the regulator 1115 * might not allow this operation 1116 */ 1117 voltage = regulator_get_voltage(supply); 1118 if (voltage < 0) 1119 result = voltage; 1120 else if (voltage < min_uV || voltage > max_uV) 1121 result = regulator_set_voltage(supply, min_uV, max_uV); 1122 else 1123 result = 0; 1124 1125 if (result == 0 && !mmc->regulator_enabled) { 1126 result = regulator_enable(supply); 1127 if (!result) 1128 mmc->regulator_enabled = true; 1129 } 1130 } else if (mmc->regulator_enabled) { 1131 result = regulator_disable(supply); 1132 if (result == 0) 1133 mmc->regulator_enabled = false; 1134 } 1135 1136 if (result) 1137 dev_err(mmc_dev(mmc), 1138 "could not set regulator OCR (%d)\n", result); 1139 return result; 1140 } 1141 EXPORT_SYMBOL(mmc_regulator_set_ocr); 1142 1143 #endif /* CONFIG_REGULATOR */ 1144 1145 /* 1146 * Mask off any voltages we don't support and select 1147 * the lowest voltage 1148 */ 1149 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1150 { 1151 int bit; 1152 1153 ocr &= host->ocr_avail; 1154 1155 bit = ffs(ocr); 1156 if (bit) { 1157 bit -= 1; 1158 1159 ocr &= 3 << bit; 1160 1161 mmc_host_clk_hold(host); 1162 host->ios.vdd = bit; 1163 mmc_set_ios(host); 1164 mmc_host_clk_release(host); 1165 } else { 1166 pr_warning("%s: host doesn't support card's voltages\n", 1167 mmc_hostname(host)); 1168 ocr = 0; 1169 } 1170 1171 return ocr; 1172 } 1173 1174 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) 1175 { 1176 struct mmc_command cmd = {0}; 1177 int err = 0; 1178 1179 BUG_ON(!host); 1180 1181 /* 1182 * Send CMD11 only if the request is to switch the card to 1183 * 1.8V signalling. 1184 */ 1185 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { 1186 cmd.opcode = SD_SWITCH_VOLTAGE; 1187 cmd.arg = 0; 1188 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1189 1190 err = mmc_wait_for_cmd(host, &cmd, 0); 1191 if (err) 1192 return err; 1193 1194 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1195 return -EIO; 1196 } 1197 1198 host->ios.signal_voltage = signal_voltage; 1199 1200 if (host->ops->start_signal_voltage_switch) 1201 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1202 1203 return err; 1204 } 1205 1206 /* 1207 * Select timing parameters for host. 1208 */ 1209 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1210 { 1211 mmc_host_clk_hold(host); 1212 host->ios.timing = timing; 1213 mmc_set_ios(host); 1214 mmc_host_clk_release(host); 1215 } 1216 1217 /* 1218 * Select appropriate driver type for host. 1219 */ 1220 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1221 { 1222 mmc_host_clk_hold(host); 1223 host->ios.drv_type = drv_type; 1224 mmc_set_ios(host); 1225 mmc_host_clk_release(host); 1226 } 1227 1228 static void mmc_poweroff_notify(struct mmc_host *host) 1229 { 1230 struct mmc_card *card; 1231 unsigned int timeout; 1232 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION; 1233 int err = 0; 1234 1235 card = host->card; 1236 1237 /* 1238 * Send power notify command only if card 1239 * is mmc and notify state is powered ON 1240 */ 1241 if (card && mmc_card_mmc(card) && 1242 (card->poweroff_notify_state == MMC_POWERED_ON)) { 1243 1244 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) { 1245 notify_type = EXT_CSD_POWER_OFF_SHORT; 1246 timeout = card->ext_csd.generic_cmd6_time; 1247 card->poweroff_notify_state = MMC_POWEROFF_SHORT; 1248 } else { 1249 notify_type = EXT_CSD_POWER_OFF_LONG; 1250 timeout = card->ext_csd.power_off_longtime; 1251 card->poweroff_notify_state = MMC_POWEROFF_LONG; 1252 } 1253 1254 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1255 EXT_CSD_POWER_OFF_NOTIFICATION, 1256 notify_type, timeout); 1257 1258 if (err && err != -EBADMSG) 1259 pr_err("Device failed to respond within %d poweroff " 1260 "time. Forcefully powering down the device\n", 1261 timeout); 1262 1263 /* Set the card state to no notification after the poweroff */ 1264 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION; 1265 } 1266 } 1267 1268 /* 1269 * Apply power to the MMC stack. This is a two-stage process. 1270 * First, we enable power to the card without the clock running. 1271 * We then wait a bit for the power to stabilise. Finally, 1272 * enable the bus drivers and clock to the card. 1273 * 1274 * We must _NOT_ enable the clock prior to power stablising. 1275 * 1276 * If a host does all the power sequencing itself, ignore the 1277 * initial MMC_POWER_UP stage. 1278 */ 1279 static void mmc_power_up(struct mmc_host *host) 1280 { 1281 int bit; 1282 1283 mmc_host_clk_hold(host); 1284 1285 /* If ocr is set, we use it */ 1286 if (host->ocr) 1287 bit = ffs(host->ocr) - 1; 1288 else 1289 bit = fls(host->ocr_avail) - 1; 1290 1291 host->ios.vdd = bit; 1292 if (mmc_host_is_spi(host)) 1293 host->ios.chip_select = MMC_CS_HIGH; 1294 else 1295 host->ios.chip_select = MMC_CS_DONTCARE; 1296 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1297 host->ios.power_mode = MMC_POWER_UP; 1298 host->ios.bus_width = MMC_BUS_WIDTH_1; 1299 host->ios.timing = MMC_TIMING_LEGACY; 1300 mmc_set_ios(host); 1301 1302 /* 1303 * This delay should be sufficient to allow the power supply 1304 * to reach the minimum voltage. 1305 */ 1306 mmc_delay(10); 1307 1308 host->ios.clock = host->f_init; 1309 1310 host->ios.power_mode = MMC_POWER_ON; 1311 mmc_set_ios(host); 1312 1313 /* 1314 * This delay must be at least 74 clock sizes, or 1 ms, or the 1315 * time required to reach a stable voltage. 1316 */ 1317 mmc_delay(10); 1318 1319 mmc_host_clk_release(host); 1320 } 1321 1322 void mmc_power_off(struct mmc_host *host) 1323 { 1324 mmc_host_clk_hold(host); 1325 1326 host->ios.clock = 0; 1327 host->ios.vdd = 0; 1328 1329 mmc_poweroff_notify(host); 1330 1331 /* 1332 * Reset ocr mask to be the highest possible voltage supported for 1333 * this mmc host. This value will be used at next power up. 1334 */ 1335 host->ocr = 1 << (fls(host->ocr_avail) - 1); 1336 1337 if (!mmc_host_is_spi(host)) { 1338 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1339 host->ios.chip_select = MMC_CS_DONTCARE; 1340 } 1341 host->ios.power_mode = MMC_POWER_OFF; 1342 host->ios.bus_width = MMC_BUS_WIDTH_1; 1343 host->ios.timing = MMC_TIMING_LEGACY; 1344 mmc_set_ios(host); 1345 1346 /* 1347 * Some configurations, such as the 802.11 SDIO card in the OLPC 1348 * XO-1.5, require a short delay after poweroff before the card 1349 * can be successfully turned on again. 1350 */ 1351 mmc_delay(1); 1352 1353 mmc_host_clk_release(host); 1354 } 1355 1356 /* 1357 * Cleanup when the last reference to the bus operator is dropped. 1358 */ 1359 static void __mmc_release_bus(struct mmc_host *host) 1360 { 1361 BUG_ON(!host); 1362 BUG_ON(host->bus_refs); 1363 BUG_ON(!host->bus_dead); 1364 1365 host->bus_ops = NULL; 1366 } 1367 1368 /* 1369 * Increase reference count of bus operator 1370 */ 1371 static inline void mmc_bus_get(struct mmc_host *host) 1372 { 1373 unsigned long flags; 1374 1375 spin_lock_irqsave(&host->lock, flags); 1376 host->bus_refs++; 1377 spin_unlock_irqrestore(&host->lock, flags); 1378 } 1379 1380 /* 1381 * Decrease reference count of bus operator and free it if 1382 * it is the last reference. 1383 */ 1384 static inline void mmc_bus_put(struct mmc_host *host) 1385 { 1386 unsigned long flags; 1387 1388 spin_lock_irqsave(&host->lock, flags); 1389 host->bus_refs--; 1390 if ((host->bus_refs == 0) && host->bus_ops) 1391 __mmc_release_bus(host); 1392 spin_unlock_irqrestore(&host->lock, flags); 1393 } 1394 1395 /* 1396 * Assign a mmc bus handler to a host. Only one bus handler may control a 1397 * host at any given time. 1398 */ 1399 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1400 { 1401 unsigned long flags; 1402 1403 BUG_ON(!host); 1404 BUG_ON(!ops); 1405 1406 WARN_ON(!host->claimed); 1407 1408 spin_lock_irqsave(&host->lock, flags); 1409 1410 BUG_ON(host->bus_ops); 1411 BUG_ON(host->bus_refs); 1412 1413 host->bus_ops = ops; 1414 host->bus_refs = 1; 1415 host->bus_dead = 0; 1416 1417 spin_unlock_irqrestore(&host->lock, flags); 1418 } 1419 1420 /* 1421 * Remove the current bus handler from a host. 1422 */ 1423 void mmc_detach_bus(struct mmc_host *host) 1424 { 1425 unsigned long flags; 1426 1427 BUG_ON(!host); 1428 1429 WARN_ON(!host->claimed); 1430 WARN_ON(!host->bus_ops); 1431 1432 spin_lock_irqsave(&host->lock, flags); 1433 1434 host->bus_dead = 1; 1435 1436 spin_unlock_irqrestore(&host->lock, flags); 1437 1438 mmc_bus_put(host); 1439 } 1440 1441 /** 1442 * mmc_detect_change - process change of state on a MMC socket 1443 * @host: host which changed state. 1444 * @delay: optional delay to wait before detection (jiffies) 1445 * 1446 * MMC drivers should call this when they detect a card has been 1447 * inserted or removed. The MMC layer will confirm that any 1448 * present card is still functional, and initialize any newly 1449 * inserted. 1450 */ 1451 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1452 { 1453 #ifdef CONFIG_MMC_DEBUG 1454 unsigned long flags; 1455 spin_lock_irqsave(&host->lock, flags); 1456 WARN_ON(host->removed); 1457 spin_unlock_irqrestore(&host->lock, flags); 1458 #endif 1459 1460 mmc_schedule_delayed_work(&host->detect, delay); 1461 } 1462 1463 EXPORT_SYMBOL(mmc_detect_change); 1464 1465 void mmc_init_erase(struct mmc_card *card) 1466 { 1467 unsigned int sz; 1468 1469 if (is_power_of_2(card->erase_size)) 1470 card->erase_shift = ffs(card->erase_size) - 1; 1471 else 1472 card->erase_shift = 0; 1473 1474 /* 1475 * It is possible to erase an arbitrarily large area of an SD or MMC 1476 * card. That is not desirable because it can take a long time 1477 * (minutes) potentially delaying more important I/O, and also the 1478 * timeout calculations become increasingly hugely over-estimated. 1479 * Consequently, 'pref_erase' is defined as a guide to limit erases 1480 * to that size and alignment. 1481 * 1482 * For SD cards that define Allocation Unit size, limit erases to one 1483 * Allocation Unit at a time. For MMC cards that define High Capacity 1484 * Erase Size, whether it is switched on or not, limit to that size. 1485 * Otherwise just have a stab at a good value. For modern cards it 1486 * will end up being 4MiB. Note that if the value is too small, it 1487 * can end up taking longer to erase. 1488 */ 1489 if (mmc_card_sd(card) && card->ssr.au) { 1490 card->pref_erase = card->ssr.au; 1491 card->erase_shift = ffs(card->ssr.au) - 1; 1492 } else if (card->ext_csd.hc_erase_size) { 1493 card->pref_erase = card->ext_csd.hc_erase_size; 1494 } else { 1495 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1496 if (sz < 128) 1497 card->pref_erase = 512 * 1024 / 512; 1498 else if (sz < 512) 1499 card->pref_erase = 1024 * 1024 / 512; 1500 else if (sz < 1024) 1501 card->pref_erase = 2 * 1024 * 1024 / 512; 1502 else 1503 card->pref_erase = 4 * 1024 * 1024 / 512; 1504 if (card->pref_erase < card->erase_size) 1505 card->pref_erase = card->erase_size; 1506 else { 1507 sz = card->pref_erase % card->erase_size; 1508 if (sz) 1509 card->pref_erase += card->erase_size - sz; 1510 } 1511 } 1512 } 1513 1514 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1515 unsigned int arg, unsigned int qty) 1516 { 1517 unsigned int erase_timeout; 1518 1519 if (card->ext_csd.erase_group_def & 1) { 1520 /* High Capacity Erase Group Size uses HC timeouts */ 1521 if (arg == MMC_TRIM_ARG) 1522 erase_timeout = card->ext_csd.trim_timeout; 1523 else 1524 erase_timeout = card->ext_csd.hc_erase_timeout; 1525 } else { 1526 /* CSD Erase Group Size uses write timeout */ 1527 unsigned int mult = (10 << card->csd.r2w_factor); 1528 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1529 unsigned int timeout_us; 1530 1531 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1532 if (card->csd.tacc_ns < 1000000) 1533 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1534 else 1535 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1536 1537 /* 1538 * ios.clock is only a target. The real clock rate might be 1539 * less but not that much less, so fudge it by multiplying by 2. 1540 */ 1541 timeout_clks <<= 1; 1542 timeout_us += (timeout_clks * 1000) / 1543 (mmc_host_clk_rate(card->host) / 1000); 1544 1545 erase_timeout = timeout_us / 1000; 1546 1547 /* 1548 * Theoretically, the calculation could underflow so round up 1549 * to 1ms in that case. 1550 */ 1551 if (!erase_timeout) 1552 erase_timeout = 1; 1553 } 1554 1555 /* Multiplier for secure operations */ 1556 if (arg & MMC_SECURE_ARGS) { 1557 if (arg == MMC_SECURE_ERASE_ARG) 1558 erase_timeout *= card->ext_csd.sec_erase_mult; 1559 else 1560 erase_timeout *= card->ext_csd.sec_trim_mult; 1561 } 1562 1563 erase_timeout *= qty; 1564 1565 /* 1566 * Ensure at least a 1 second timeout for SPI as per 1567 * 'mmc_set_data_timeout()' 1568 */ 1569 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1570 erase_timeout = 1000; 1571 1572 return erase_timeout; 1573 } 1574 1575 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1576 unsigned int arg, 1577 unsigned int qty) 1578 { 1579 unsigned int erase_timeout; 1580 1581 if (card->ssr.erase_timeout) { 1582 /* Erase timeout specified in SD Status Register (SSR) */ 1583 erase_timeout = card->ssr.erase_timeout * qty + 1584 card->ssr.erase_offset; 1585 } else { 1586 /* 1587 * Erase timeout not specified in SD Status Register (SSR) so 1588 * use 250ms per write block. 1589 */ 1590 erase_timeout = 250 * qty; 1591 } 1592 1593 /* Must not be less than 1 second */ 1594 if (erase_timeout < 1000) 1595 erase_timeout = 1000; 1596 1597 return erase_timeout; 1598 } 1599 1600 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1601 unsigned int arg, 1602 unsigned int qty) 1603 { 1604 if (mmc_card_sd(card)) 1605 return mmc_sd_erase_timeout(card, arg, qty); 1606 else 1607 return mmc_mmc_erase_timeout(card, arg, qty); 1608 } 1609 1610 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1611 unsigned int to, unsigned int arg) 1612 { 1613 struct mmc_command cmd = {0}; 1614 unsigned int qty = 0; 1615 int err; 1616 1617 /* 1618 * qty is used to calculate the erase timeout which depends on how many 1619 * erase groups (or allocation units in SD terminology) are affected. 1620 * We count erasing part of an erase group as one erase group. 1621 * For SD, the allocation units are always a power of 2. For MMC, the 1622 * erase group size is almost certainly also power of 2, but it does not 1623 * seem to insist on that in the JEDEC standard, so we fall back to 1624 * division in that case. SD may not specify an allocation unit size, 1625 * in which case the timeout is based on the number of write blocks. 1626 * 1627 * Note that the timeout for secure trim 2 will only be correct if the 1628 * number of erase groups specified is the same as the total of all 1629 * preceding secure trim 1 commands. Since the power may have been 1630 * lost since the secure trim 1 commands occurred, it is generally 1631 * impossible to calculate the secure trim 2 timeout correctly. 1632 */ 1633 if (card->erase_shift) 1634 qty += ((to >> card->erase_shift) - 1635 (from >> card->erase_shift)) + 1; 1636 else if (mmc_card_sd(card)) 1637 qty += to - from + 1; 1638 else 1639 qty += ((to / card->erase_size) - 1640 (from / card->erase_size)) + 1; 1641 1642 if (!mmc_card_blockaddr(card)) { 1643 from <<= 9; 1644 to <<= 9; 1645 } 1646 1647 if (mmc_card_sd(card)) 1648 cmd.opcode = SD_ERASE_WR_BLK_START; 1649 else 1650 cmd.opcode = MMC_ERASE_GROUP_START; 1651 cmd.arg = from; 1652 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1653 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1654 if (err) { 1655 pr_err("mmc_erase: group start error %d, " 1656 "status %#x\n", err, cmd.resp[0]); 1657 err = -EIO; 1658 goto out; 1659 } 1660 1661 memset(&cmd, 0, sizeof(struct mmc_command)); 1662 if (mmc_card_sd(card)) 1663 cmd.opcode = SD_ERASE_WR_BLK_END; 1664 else 1665 cmd.opcode = MMC_ERASE_GROUP_END; 1666 cmd.arg = to; 1667 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1668 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1669 if (err) { 1670 pr_err("mmc_erase: group end error %d, status %#x\n", 1671 err, cmd.resp[0]); 1672 err = -EIO; 1673 goto out; 1674 } 1675 1676 memset(&cmd, 0, sizeof(struct mmc_command)); 1677 cmd.opcode = MMC_ERASE; 1678 cmd.arg = arg; 1679 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1680 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); 1681 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1682 if (err) { 1683 pr_err("mmc_erase: erase error %d, status %#x\n", 1684 err, cmd.resp[0]); 1685 err = -EIO; 1686 goto out; 1687 } 1688 1689 if (mmc_host_is_spi(card->host)) 1690 goto out; 1691 1692 do { 1693 memset(&cmd, 0, sizeof(struct mmc_command)); 1694 cmd.opcode = MMC_SEND_STATUS; 1695 cmd.arg = card->rca << 16; 1696 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1697 /* Do not retry else we can't see errors */ 1698 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1699 if (err || (cmd.resp[0] & 0xFDF92000)) { 1700 pr_err("error %d requesting status %#x\n", 1701 err, cmd.resp[0]); 1702 err = -EIO; 1703 goto out; 1704 } 1705 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1706 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG); 1707 out: 1708 return err; 1709 } 1710 1711 /** 1712 * mmc_erase - erase sectors. 1713 * @card: card to erase 1714 * @from: first sector to erase 1715 * @nr: number of sectors to erase 1716 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1717 * 1718 * Caller must claim host before calling this function. 1719 */ 1720 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1721 unsigned int arg) 1722 { 1723 unsigned int rem, to = from + nr; 1724 1725 if (!(card->host->caps & MMC_CAP_ERASE) || 1726 !(card->csd.cmdclass & CCC_ERASE)) 1727 return -EOPNOTSUPP; 1728 1729 if (!card->erase_size) 1730 return -EOPNOTSUPP; 1731 1732 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 1733 return -EOPNOTSUPP; 1734 1735 if ((arg & MMC_SECURE_ARGS) && 1736 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1737 return -EOPNOTSUPP; 1738 1739 if ((arg & MMC_TRIM_ARGS) && 1740 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1741 return -EOPNOTSUPP; 1742 1743 if (arg == MMC_SECURE_ERASE_ARG) { 1744 if (from % card->erase_size || nr % card->erase_size) 1745 return -EINVAL; 1746 } 1747 1748 if (arg == MMC_ERASE_ARG) { 1749 rem = from % card->erase_size; 1750 if (rem) { 1751 rem = card->erase_size - rem; 1752 from += rem; 1753 if (nr > rem) 1754 nr -= rem; 1755 else 1756 return 0; 1757 } 1758 rem = nr % card->erase_size; 1759 if (rem) 1760 nr -= rem; 1761 } 1762 1763 if (nr == 0) 1764 return 0; 1765 1766 to = from + nr; 1767 1768 if (to <= from) 1769 return -EINVAL; 1770 1771 /* 'from' and 'to' are inclusive */ 1772 to -= 1; 1773 1774 return mmc_do_erase(card, from, to, arg); 1775 } 1776 EXPORT_SYMBOL(mmc_erase); 1777 1778 int mmc_can_erase(struct mmc_card *card) 1779 { 1780 if ((card->host->caps & MMC_CAP_ERASE) && 1781 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 1782 return 1; 1783 return 0; 1784 } 1785 EXPORT_SYMBOL(mmc_can_erase); 1786 1787 int mmc_can_trim(struct mmc_card *card) 1788 { 1789 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 1790 return 1; 1791 if (mmc_can_discard(card)) 1792 return 1; 1793 return 0; 1794 } 1795 EXPORT_SYMBOL(mmc_can_trim); 1796 1797 int mmc_can_discard(struct mmc_card *card) 1798 { 1799 /* 1800 * As there's no way to detect the discard support bit at v4.5 1801 * use the s/w feature support filed. 1802 */ 1803 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1804 return 1; 1805 return 0; 1806 } 1807 EXPORT_SYMBOL(mmc_can_discard); 1808 1809 int mmc_can_sanitize(struct mmc_card *card) 1810 { 1811 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1812 return 1; 1813 return 0; 1814 } 1815 EXPORT_SYMBOL(mmc_can_sanitize); 1816 1817 int mmc_can_secure_erase_trim(struct mmc_card *card) 1818 { 1819 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 1820 return 1; 1821 return 0; 1822 } 1823 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1824 1825 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1826 unsigned int nr) 1827 { 1828 if (!card->erase_size) 1829 return 0; 1830 if (from % card->erase_size || nr % card->erase_size) 1831 return 0; 1832 return 1; 1833 } 1834 EXPORT_SYMBOL(mmc_erase_group_aligned); 1835 1836 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1837 unsigned int arg) 1838 { 1839 struct mmc_host *host = card->host; 1840 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 1841 unsigned int last_timeout = 0; 1842 1843 if (card->erase_shift) 1844 max_qty = UINT_MAX >> card->erase_shift; 1845 else if (mmc_card_sd(card)) 1846 max_qty = UINT_MAX; 1847 else 1848 max_qty = UINT_MAX / card->erase_size; 1849 1850 /* Find the largest qty with an OK timeout */ 1851 do { 1852 y = 0; 1853 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1854 timeout = mmc_erase_timeout(card, arg, qty + x); 1855 if (timeout > host->max_discard_to) 1856 break; 1857 if (timeout < last_timeout) 1858 break; 1859 last_timeout = timeout; 1860 y = x; 1861 } 1862 qty += y; 1863 } while (y); 1864 1865 if (!qty) 1866 return 0; 1867 1868 if (qty == 1) 1869 return 1; 1870 1871 /* Convert qty to sectors */ 1872 if (card->erase_shift) 1873 max_discard = --qty << card->erase_shift; 1874 else if (mmc_card_sd(card)) 1875 max_discard = qty; 1876 else 1877 max_discard = --qty * card->erase_size; 1878 1879 return max_discard; 1880 } 1881 1882 unsigned int mmc_calc_max_discard(struct mmc_card *card) 1883 { 1884 struct mmc_host *host = card->host; 1885 unsigned int max_discard, max_trim; 1886 1887 if (!host->max_discard_to) 1888 return UINT_MAX; 1889 1890 /* 1891 * Without erase_group_def set, MMC erase timeout depends on clock 1892 * frequence which can change. In that case, the best choice is 1893 * just the preferred erase size. 1894 */ 1895 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1896 return card->pref_erase; 1897 1898 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1899 if (mmc_can_trim(card)) { 1900 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1901 if (max_trim < max_discard) 1902 max_discard = max_trim; 1903 } else if (max_discard < card->erase_size) { 1904 max_discard = 0; 1905 } 1906 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1907 mmc_hostname(host), max_discard, host->max_discard_to); 1908 return max_discard; 1909 } 1910 EXPORT_SYMBOL(mmc_calc_max_discard); 1911 1912 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1913 { 1914 struct mmc_command cmd = {0}; 1915 1916 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 1917 return 0; 1918 1919 cmd.opcode = MMC_SET_BLOCKLEN; 1920 cmd.arg = blocklen; 1921 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1922 return mmc_wait_for_cmd(card->host, &cmd, 5); 1923 } 1924 EXPORT_SYMBOL(mmc_set_blocklen); 1925 1926 static void mmc_hw_reset_for_init(struct mmc_host *host) 1927 { 1928 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1929 return; 1930 mmc_host_clk_hold(host); 1931 host->ops->hw_reset(host); 1932 mmc_host_clk_release(host); 1933 } 1934 1935 int mmc_can_reset(struct mmc_card *card) 1936 { 1937 u8 rst_n_function; 1938 1939 if (!mmc_card_mmc(card)) 1940 return 0; 1941 rst_n_function = card->ext_csd.rst_n_function; 1942 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 1943 return 0; 1944 return 1; 1945 } 1946 EXPORT_SYMBOL(mmc_can_reset); 1947 1948 static int mmc_do_hw_reset(struct mmc_host *host, int check) 1949 { 1950 struct mmc_card *card = host->card; 1951 1952 if (!host->bus_ops->power_restore) 1953 return -EOPNOTSUPP; 1954 1955 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1956 return -EOPNOTSUPP; 1957 1958 if (!card) 1959 return -EINVAL; 1960 1961 if (!mmc_can_reset(card)) 1962 return -EOPNOTSUPP; 1963 1964 mmc_host_clk_hold(host); 1965 mmc_set_clock(host, host->f_init); 1966 1967 host->ops->hw_reset(host); 1968 1969 /* If the reset has happened, then a status command will fail */ 1970 if (check) { 1971 struct mmc_command cmd = {0}; 1972 int err; 1973 1974 cmd.opcode = MMC_SEND_STATUS; 1975 if (!mmc_host_is_spi(card->host)) 1976 cmd.arg = card->rca << 16; 1977 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 1978 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1979 if (!err) { 1980 mmc_host_clk_release(host); 1981 return -ENOSYS; 1982 } 1983 } 1984 1985 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); 1986 if (mmc_host_is_spi(host)) { 1987 host->ios.chip_select = MMC_CS_HIGH; 1988 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1989 } else { 1990 host->ios.chip_select = MMC_CS_DONTCARE; 1991 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1992 } 1993 host->ios.bus_width = MMC_BUS_WIDTH_1; 1994 host->ios.timing = MMC_TIMING_LEGACY; 1995 mmc_set_ios(host); 1996 1997 mmc_host_clk_release(host); 1998 1999 return host->bus_ops->power_restore(host); 2000 } 2001 2002 int mmc_hw_reset(struct mmc_host *host) 2003 { 2004 return mmc_do_hw_reset(host, 0); 2005 } 2006 EXPORT_SYMBOL(mmc_hw_reset); 2007 2008 int mmc_hw_reset_check(struct mmc_host *host) 2009 { 2010 return mmc_do_hw_reset(host, 1); 2011 } 2012 EXPORT_SYMBOL(mmc_hw_reset_check); 2013 2014 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2015 { 2016 host->f_init = freq; 2017 2018 #ifdef CONFIG_MMC_DEBUG 2019 pr_info("%s: %s: trying to init card at %u Hz\n", 2020 mmc_hostname(host), __func__, host->f_init); 2021 #endif 2022 mmc_power_up(host); 2023 2024 /* 2025 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2026 * do a hardware reset if possible. 2027 */ 2028 mmc_hw_reset_for_init(host); 2029 2030 /* 2031 * sdio_reset sends CMD52 to reset card. Since we do not know 2032 * if the card is being re-initialized, just send it. CMD52 2033 * should be ignored by SD/eMMC cards. 2034 */ 2035 sdio_reset(host); 2036 mmc_go_idle(host); 2037 2038 mmc_send_if_cond(host, host->ocr_avail); 2039 2040 /* Order's important: probe SDIO, then SD, then MMC */ 2041 if (!mmc_attach_sdio(host)) 2042 return 0; 2043 if (!mmc_attach_sd(host)) 2044 return 0; 2045 if (!mmc_attach_mmc(host)) 2046 return 0; 2047 2048 mmc_power_off(host); 2049 return -EIO; 2050 } 2051 2052 void mmc_rescan(struct work_struct *work) 2053 { 2054 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 2055 struct mmc_host *host = 2056 container_of(work, struct mmc_host, detect.work); 2057 int i; 2058 2059 if (host->rescan_disable) 2060 return; 2061 2062 mmc_bus_get(host); 2063 2064 /* 2065 * if there is a _removable_ card registered, check whether it is 2066 * still present 2067 */ 2068 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead 2069 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2070 host->bus_ops->detect(host); 2071 2072 /* 2073 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2074 * the card is no longer present. 2075 */ 2076 mmc_bus_put(host); 2077 mmc_bus_get(host); 2078 2079 /* if there still is a card present, stop here */ 2080 if (host->bus_ops != NULL) { 2081 mmc_bus_put(host); 2082 goto out; 2083 } 2084 2085 /* 2086 * Only we can add a new handler, so it's safe to 2087 * release the lock here. 2088 */ 2089 mmc_bus_put(host); 2090 2091 if (host->ops->get_cd && host->ops->get_cd(host) == 0) 2092 goto out; 2093 2094 mmc_claim_host(host); 2095 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2096 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2097 break; 2098 if (freqs[i] <= host->f_min) 2099 break; 2100 } 2101 mmc_release_host(host); 2102 2103 out: 2104 if (host->caps & MMC_CAP_NEEDS_POLL) 2105 mmc_schedule_delayed_work(&host->detect, HZ); 2106 } 2107 2108 void mmc_start_host(struct mmc_host *host) 2109 { 2110 mmc_power_off(host); 2111 mmc_detect_change(host, 0); 2112 } 2113 2114 void mmc_stop_host(struct mmc_host *host) 2115 { 2116 #ifdef CONFIG_MMC_DEBUG 2117 unsigned long flags; 2118 spin_lock_irqsave(&host->lock, flags); 2119 host->removed = 1; 2120 spin_unlock_irqrestore(&host->lock, flags); 2121 #endif 2122 2123 if (host->caps & MMC_CAP_DISABLE) 2124 cancel_delayed_work(&host->disable); 2125 cancel_delayed_work_sync(&host->detect); 2126 mmc_flush_scheduled_work(); 2127 2128 /* clear pm flags now and let card drivers set them as needed */ 2129 host->pm_flags = 0; 2130 2131 mmc_bus_get(host); 2132 if (host->bus_ops && !host->bus_dead) { 2133 if (host->bus_ops->remove) 2134 host->bus_ops->remove(host); 2135 2136 mmc_claim_host(host); 2137 mmc_detach_bus(host); 2138 mmc_power_off(host); 2139 mmc_release_host(host); 2140 mmc_bus_put(host); 2141 return; 2142 } 2143 mmc_bus_put(host); 2144 2145 BUG_ON(host->card); 2146 2147 mmc_power_off(host); 2148 } 2149 2150 int mmc_power_save_host(struct mmc_host *host) 2151 { 2152 int ret = 0; 2153 2154 #ifdef CONFIG_MMC_DEBUG 2155 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2156 #endif 2157 2158 mmc_bus_get(host); 2159 2160 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2161 mmc_bus_put(host); 2162 return -EINVAL; 2163 } 2164 2165 if (host->bus_ops->power_save) 2166 ret = host->bus_ops->power_save(host); 2167 2168 mmc_bus_put(host); 2169 2170 mmc_power_off(host); 2171 2172 return ret; 2173 } 2174 EXPORT_SYMBOL(mmc_power_save_host); 2175 2176 int mmc_power_restore_host(struct mmc_host *host) 2177 { 2178 int ret; 2179 2180 #ifdef CONFIG_MMC_DEBUG 2181 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2182 #endif 2183 2184 mmc_bus_get(host); 2185 2186 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2187 mmc_bus_put(host); 2188 return -EINVAL; 2189 } 2190 2191 mmc_power_up(host); 2192 ret = host->bus_ops->power_restore(host); 2193 2194 mmc_bus_put(host); 2195 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(mmc_power_restore_host); 2199 2200 int mmc_card_awake(struct mmc_host *host) 2201 { 2202 int err = -ENOSYS; 2203 2204 mmc_bus_get(host); 2205 2206 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 2207 err = host->bus_ops->awake(host); 2208 2209 mmc_bus_put(host); 2210 2211 return err; 2212 } 2213 EXPORT_SYMBOL(mmc_card_awake); 2214 2215 int mmc_card_sleep(struct mmc_host *host) 2216 { 2217 int err = -ENOSYS; 2218 2219 mmc_bus_get(host); 2220 2221 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep) 2222 err = host->bus_ops->sleep(host); 2223 2224 mmc_bus_put(host); 2225 2226 return err; 2227 } 2228 EXPORT_SYMBOL(mmc_card_sleep); 2229 2230 int mmc_card_can_sleep(struct mmc_host *host) 2231 { 2232 struct mmc_card *card = host->card; 2233 2234 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) 2235 return 1; 2236 return 0; 2237 } 2238 EXPORT_SYMBOL(mmc_card_can_sleep); 2239 2240 /* 2241 * Flush the cache to the non-volatile storage. 2242 */ 2243 int mmc_flush_cache(struct mmc_card *card) 2244 { 2245 struct mmc_host *host = card->host; 2246 int err = 0; 2247 2248 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) 2249 return err; 2250 2251 if (mmc_card_mmc(card) && 2252 (card->ext_csd.cache_size > 0) && 2253 (card->ext_csd.cache_ctrl & 1)) { 2254 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2255 EXT_CSD_FLUSH_CACHE, 1, 0); 2256 if (err) 2257 pr_err("%s: cache flush error %d\n", 2258 mmc_hostname(card->host), err); 2259 } 2260 2261 return err; 2262 } 2263 EXPORT_SYMBOL(mmc_flush_cache); 2264 2265 /* 2266 * Turn the cache ON/OFF. 2267 * Turning the cache OFF shall trigger flushing of the data 2268 * to the non-volatile storage. 2269 */ 2270 int mmc_cache_ctrl(struct mmc_host *host, u8 enable) 2271 { 2272 struct mmc_card *card = host->card; 2273 int err = 0; 2274 2275 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) || 2276 mmc_card_is_removable(host)) 2277 return err; 2278 2279 if (card && mmc_card_mmc(card) && 2280 (card->ext_csd.cache_size > 0)) { 2281 enable = !!enable; 2282 2283 if (card->ext_csd.cache_ctrl ^ enable) 2284 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2285 EXT_CSD_CACHE_CTRL, enable, 0); 2286 if (err) 2287 pr_err("%s: cache %s error %d\n", 2288 mmc_hostname(card->host), 2289 enable ? "on" : "off", 2290 err); 2291 else 2292 card->ext_csd.cache_ctrl = enable; 2293 } 2294 2295 return err; 2296 } 2297 EXPORT_SYMBOL(mmc_cache_ctrl); 2298 2299 #ifdef CONFIG_PM 2300 2301 /** 2302 * mmc_suspend_host - suspend a host 2303 * @host: mmc host 2304 */ 2305 int mmc_suspend_host(struct mmc_host *host) 2306 { 2307 int err = 0; 2308 2309 if (host->caps & MMC_CAP_DISABLE) 2310 cancel_delayed_work(&host->disable); 2311 cancel_delayed_work(&host->detect); 2312 mmc_flush_scheduled_work(); 2313 err = mmc_cache_ctrl(host, 0); 2314 if (err) 2315 goto out; 2316 2317 mmc_bus_get(host); 2318 if (host->bus_ops && !host->bus_dead) { 2319 2320 /* 2321 * A long response time is not acceptable for device drivers 2322 * when doing suspend. Prevent mmc_claim_host in the suspend 2323 * sequence, to potentially wait "forever" by trying to 2324 * pre-claim the host. 2325 */ 2326 if (mmc_try_claim_host(host)) { 2327 if (host->bus_ops->suspend) { 2328 /* 2329 * For eMMC 4.5 device send notify command 2330 * before sleep, because in sleep state eMMC 4.5 2331 * devices respond to only RESET and AWAKE cmd 2332 */ 2333 mmc_poweroff_notify(host); 2334 err = host->bus_ops->suspend(host); 2335 } 2336 mmc_do_release_host(host); 2337 2338 if (err == -ENOSYS || !host->bus_ops->resume) { 2339 /* 2340 * We simply "remove" the card in this case. 2341 * It will be redetected on resume. 2342 */ 2343 if (host->bus_ops->remove) 2344 host->bus_ops->remove(host); 2345 mmc_claim_host(host); 2346 mmc_detach_bus(host); 2347 mmc_power_off(host); 2348 mmc_release_host(host); 2349 host->pm_flags = 0; 2350 err = 0; 2351 } 2352 } else { 2353 err = -EBUSY; 2354 } 2355 } 2356 mmc_bus_put(host); 2357 2358 if (!err && !mmc_card_keep_power(host)) 2359 mmc_power_off(host); 2360 2361 out: 2362 return err; 2363 } 2364 2365 EXPORT_SYMBOL(mmc_suspend_host); 2366 2367 /** 2368 * mmc_resume_host - resume a previously suspended host 2369 * @host: mmc host 2370 */ 2371 int mmc_resume_host(struct mmc_host *host) 2372 { 2373 int err = 0; 2374 2375 mmc_bus_get(host); 2376 if (host->bus_ops && !host->bus_dead) { 2377 if (!mmc_card_keep_power(host)) { 2378 mmc_power_up(host); 2379 mmc_select_voltage(host, host->ocr); 2380 /* 2381 * Tell runtime PM core we just powered up the card, 2382 * since it still believes the card is powered off. 2383 * Note that currently runtime PM is only enabled 2384 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD 2385 */ 2386 if (mmc_card_sdio(host->card) && 2387 (host->caps & MMC_CAP_POWER_OFF_CARD)) { 2388 pm_runtime_disable(&host->card->dev); 2389 pm_runtime_set_active(&host->card->dev); 2390 pm_runtime_enable(&host->card->dev); 2391 } 2392 } 2393 BUG_ON(!host->bus_ops->resume); 2394 err = host->bus_ops->resume(host); 2395 if (err) { 2396 pr_warning("%s: error %d during resume " 2397 "(card was removed?)\n", 2398 mmc_hostname(host), err); 2399 err = 0; 2400 } 2401 } 2402 host->pm_flags &= ~MMC_PM_KEEP_POWER; 2403 mmc_bus_put(host); 2404 2405 return err; 2406 } 2407 EXPORT_SYMBOL(mmc_resume_host); 2408 2409 /* Do the card removal on suspend if card is assumed removeable 2410 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2411 to sync the card. 2412 */ 2413 int mmc_pm_notify(struct notifier_block *notify_block, 2414 unsigned long mode, void *unused) 2415 { 2416 struct mmc_host *host = container_of( 2417 notify_block, struct mmc_host, pm_notify); 2418 unsigned long flags; 2419 2420 2421 switch (mode) { 2422 case PM_HIBERNATION_PREPARE: 2423 case PM_SUSPEND_PREPARE: 2424 2425 spin_lock_irqsave(&host->lock, flags); 2426 host->rescan_disable = 1; 2427 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT; 2428 spin_unlock_irqrestore(&host->lock, flags); 2429 cancel_delayed_work_sync(&host->detect); 2430 2431 if (!host->bus_ops || host->bus_ops->suspend) 2432 break; 2433 2434 mmc_claim_host(host); 2435 2436 if (host->bus_ops->remove) 2437 host->bus_ops->remove(host); 2438 2439 mmc_detach_bus(host); 2440 mmc_power_off(host); 2441 mmc_release_host(host); 2442 host->pm_flags = 0; 2443 break; 2444 2445 case PM_POST_SUSPEND: 2446 case PM_POST_HIBERNATION: 2447 case PM_POST_RESTORE: 2448 2449 spin_lock_irqsave(&host->lock, flags); 2450 host->rescan_disable = 0; 2451 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG; 2452 spin_unlock_irqrestore(&host->lock, flags); 2453 mmc_detect_change(host, 0); 2454 2455 } 2456 2457 return 0; 2458 } 2459 #endif 2460 2461 static int __init mmc_init(void) 2462 { 2463 int ret; 2464 2465 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2466 if (!workqueue) 2467 return -ENOMEM; 2468 2469 ret = mmc_register_bus(); 2470 if (ret) 2471 goto destroy_workqueue; 2472 2473 ret = mmc_register_host_class(); 2474 if (ret) 2475 goto unregister_bus; 2476 2477 ret = sdio_register_bus(); 2478 if (ret) 2479 goto unregister_host_class; 2480 2481 return 0; 2482 2483 unregister_host_class: 2484 mmc_unregister_host_class(); 2485 unregister_bus: 2486 mmc_unregister_bus(); 2487 destroy_workqueue: 2488 destroy_workqueue(workqueue); 2489 2490 return ret; 2491 } 2492 2493 static void __exit mmc_exit(void) 2494 { 2495 sdio_unregister_bus(); 2496 mmc_unregister_host_class(); 2497 mmc_unregister_bus(); 2498 destroy_workqueue(workqueue); 2499 } 2500 2501 subsys_initcall(mmc_init); 2502 module_exit(mmc_exit); 2503 2504 MODULE_LICENSE("GPL"); 2505