xref: /linux/drivers/mmc/core/core.c (revision 87c34ed3aba9249cb06d1a1f100cd3618f29268c)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39 
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43 
44 static struct workqueue_struct *workqueue;
45 
46 /*
47  * Enabling software CRCs on the data blocks can be a significant (30%)
48  * performance cost, and for other reasons may not always be desired.
49  * So we allow it it to be disabled.
50  */
51 bool use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
53 
54 /*
55  * We normally treat cards as removed during suspend if they are not
56  * known to be on a non-removable bus, to avoid the risk of writing
57  * back data to a different card after resume.  Allow this to be
58  * overridden if necessary.
59  */
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 bool mmc_assume_removable;
62 #else
63 bool mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 	removable,
69 	"MMC/SD cards are removable and may be removed during suspend");
70 
71 /*
72  * Internal function. Schedule delayed work in the MMC work queue.
73  */
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 				     unsigned long delay)
76 {
77 	return queue_delayed_work(workqueue, work, delay);
78 }
79 
80 /*
81  * Internal function. Flush all scheduled work from the MMC work queue.
82  */
83 static void mmc_flush_scheduled_work(void)
84 {
85 	flush_workqueue(workqueue);
86 }
87 
88 #ifdef CONFIG_FAIL_MMC_REQUEST
89 
90 /*
91  * Internal function. Inject random data errors.
92  * If mmc_data is NULL no errors are injected.
93  */
94 static void mmc_should_fail_request(struct mmc_host *host,
95 				    struct mmc_request *mrq)
96 {
97 	struct mmc_command *cmd = mrq->cmd;
98 	struct mmc_data *data = mrq->data;
99 	static const int data_errors[] = {
100 		-ETIMEDOUT,
101 		-EILSEQ,
102 		-EIO,
103 	};
104 
105 	if (!data)
106 		return;
107 
108 	if (cmd->error || data->error ||
109 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 		return;
111 
112 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
114 }
115 
116 #else /* CONFIG_FAIL_MMC_REQUEST */
117 
118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 					   struct mmc_request *mrq)
120 {
121 }
122 
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
124 
125 /**
126  *	mmc_request_done - finish processing an MMC request
127  *	@host: MMC host which completed request
128  *	@mrq: MMC request which request
129  *
130  *	MMC drivers should call this function when they have completed
131  *	their processing of a request.
132  */
133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
134 {
135 	struct mmc_command *cmd = mrq->cmd;
136 	int err = cmd->error;
137 
138 	if (err && cmd->retries && mmc_host_is_spi(host)) {
139 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 			cmd->retries = 0;
141 	}
142 
143 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
144 		/*
145 		 * Request starter must handle retries - see
146 		 * mmc_wait_for_req_done().
147 		 */
148 		if (mrq->done)
149 			mrq->done(mrq);
150 	} else {
151 		mmc_should_fail_request(host, mrq);
152 
153 		led_trigger_event(host->led, LED_OFF);
154 
155 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 			mmc_hostname(host), cmd->opcode, err,
157 			cmd->resp[0], cmd->resp[1],
158 			cmd->resp[2], cmd->resp[3]);
159 
160 		if (mrq->data) {
161 			pr_debug("%s:     %d bytes transferred: %d\n",
162 				mmc_hostname(host),
163 				mrq->data->bytes_xfered, mrq->data->error);
164 		}
165 
166 		if (mrq->stop) {
167 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
168 				mmc_hostname(host), mrq->stop->opcode,
169 				mrq->stop->error,
170 				mrq->stop->resp[0], mrq->stop->resp[1],
171 				mrq->stop->resp[2], mrq->stop->resp[3]);
172 		}
173 
174 		if (mrq->done)
175 			mrq->done(mrq);
176 
177 		mmc_host_clk_release(host);
178 	}
179 }
180 
181 EXPORT_SYMBOL(mmc_request_done);
182 
183 static void
184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
185 {
186 #ifdef CONFIG_MMC_DEBUG
187 	unsigned int i, sz;
188 	struct scatterlist *sg;
189 #endif
190 
191 	if (mrq->sbc) {
192 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
193 			 mmc_hostname(host), mrq->sbc->opcode,
194 			 mrq->sbc->arg, mrq->sbc->flags);
195 	}
196 
197 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
198 		 mmc_hostname(host), mrq->cmd->opcode,
199 		 mrq->cmd->arg, mrq->cmd->flags);
200 
201 	if (mrq->data) {
202 		pr_debug("%s:     blksz %d blocks %d flags %08x "
203 			"tsac %d ms nsac %d\n",
204 			mmc_hostname(host), mrq->data->blksz,
205 			mrq->data->blocks, mrq->data->flags,
206 			mrq->data->timeout_ns / 1000000,
207 			mrq->data->timeout_clks);
208 	}
209 
210 	if (mrq->stop) {
211 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
212 			 mmc_hostname(host), mrq->stop->opcode,
213 			 mrq->stop->arg, mrq->stop->flags);
214 	}
215 
216 	WARN_ON(!host->claimed);
217 
218 	mrq->cmd->error = 0;
219 	mrq->cmd->mrq = mrq;
220 	if (mrq->data) {
221 		BUG_ON(mrq->data->blksz > host->max_blk_size);
222 		BUG_ON(mrq->data->blocks > host->max_blk_count);
223 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
224 			host->max_req_size);
225 
226 #ifdef CONFIG_MMC_DEBUG
227 		sz = 0;
228 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
229 			sz += sg->length;
230 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
231 #endif
232 
233 		mrq->cmd->data = mrq->data;
234 		mrq->data->error = 0;
235 		mrq->data->mrq = mrq;
236 		if (mrq->stop) {
237 			mrq->data->stop = mrq->stop;
238 			mrq->stop->error = 0;
239 			mrq->stop->mrq = mrq;
240 		}
241 	}
242 	mmc_host_clk_hold(host);
243 	led_trigger_event(host->led, LED_FULL);
244 	host->ops->request(host, mrq);
245 }
246 
247 static void mmc_wait_done(struct mmc_request *mrq)
248 {
249 	complete(&mrq->completion);
250 }
251 
252 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
253 {
254 	init_completion(&mrq->completion);
255 	mrq->done = mmc_wait_done;
256 	if (mmc_card_removed(host->card)) {
257 		mrq->cmd->error = -ENOMEDIUM;
258 		complete(&mrq->completion);
259 		return -ENOMEDIUM;
260 	}
261 	mmc_start_request(host, mrq);
262 	return 0;
263 }
264 
265 static void mmc_wait_for_req_done(struct mmc_host *host,
266 				  struct mmc_request *mrq)
267 {
268 	struct mmc_command *cmd;
269 
270 	while (1) {
271 		wait_for_completion(&mrq->completion);
272 
273 		cmd = mrq->cmd;
274 		if (!cmd->error || !cmd->retries ||
275 		    mmc_card_removed(host->card))
276 			break;
277 
278 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
279 			 mmc_hostname(host), cmd->opcode, cmd->error);
280 		cmd->retries--;
281 		cmd->error = 0;
282 		host->ops->request(host, mrq);
283 	}
284 }
285 
286 /**
287  *	mmc_pre_req - Prepare for a new request
288  *	@host: MMC host to prepare command
289  *	@mrq: MMC request to prepare for
290  *	@is_first_req: true if there is no previous started request
291  *                     that may run in parellel to this call, otherwise false
292  *
293  *	mmc_pre_req() is called in prior to mmc_start_req() to let
294  *	host prepare for the new request. Preparation of a request may be
295  *	performed while another request is running on the host.
296  */
297 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
298 		 bool is_first_req)
299 {
300 	if (host->ops->pre_req) {
301 		mmc_host_clk_hold(host);
302 		host->ops->pre_req(host, mrq, is_first_req);
303 		mmc_host_clk_release(host);
304 	}
305 }
306 
307 /**
308  *	mmc_post_req - Post process a completed request
309  *	@host: MMC host to post process command
310  *	@mrq: MMC request to post process for
311  *	@err: Error, if non zero, clean up any resources made in pre_req
312  *
313  *	Let the host post process a completed request. Post processing of
314  *	a request may be performed while another reuqest is running.
315  */
316 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
317 			 int err)
318 {
319 	if (host->ops->post_req) {
320 		mmc_host_clk_hold(host);
321 		host->ops->post_req(host, mrq, err);
322 		mmc_host_clk_release(host);
323 	}
324 }
325 
326 /**
327  *	mmc_start_req - start a non-blocking request
328  *	@host: MMC host to start command
329  *	@areq: async request to start
330  *	@error: out parameter returns 0 for success, otherwise non zero
331  *
332  *	Start a new MMC custom command request for a host.
333  *	If there is on ongoing async request wait for completion
334  *	of that request and start the new one and return.
335  *	Does not wait for the new request to complete.
336  *
337  *      Returns the completed request, NULL in case of none completed.
338  *	Wait for the an ongoing request (previoulsy started) to complete and
339  *	return the completed request. If there is no ongoing request, NULL
340  *	is returned without waiting. NULL is not an error condition.
341  */
342 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
343 				    struct mmc_async_req *areq, int *error)
344 {
345 	int err = 0;
346 	int start_err = 0;
347 	struct mmc_async_req *data = host->areq;
348 
349 	/* Prepare a new request */
350 	if (areq)
351 		mmc_pre_req(host, areq->mrq, !host->areq);
352 
353 	if (host->areq) {
354 		mmc_wait_for_req_done(host, host->areq->mrq);
355 		err = host->areq->err_check(host->card, host->areq);
356 	}
357 
358 	if (!err && areq)
359 		start_err = __mmc_start_req(host, areq->mrq);
360 
361 	if (host->areq)
362 		mmc_post_req(host, host->areq->mrq, 0);
363 
364 	 /* Cancel a prepared request if it was not started. */
365 	if ((err || start_err) && areq)
366 			mmc_post_req(host, areq->mrq, -EINVAL);
367 
368 	if (err)
369 		host->areq = NULL;
370 	else
371 		host->areq = areq;
372 
373 	if (error)
374 		*error = err;
375 	return data;
376 }
377 EXPORT_SYMBOL(mmc_start_req);
378 
379 /**
380  *	mmc_wait_for_req - start a request and wait for completion
381  *	@host: MMC host to start command
382  *	@mrq: MMC request to start
383  *
384  *	Start a new MMC custom command request for a host, and wait
385  *	for the command to complete. Does not attempt to parse the
386  *	response.
387  */
388 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
389 {
390 	__mmc_start_req(host, mrq);
391 	mmc_wait_for_req_done(host, mrq);
392 }
393 EXPORT_SYMBOL(mmc_wait_for_req);
394 
395 /**
396  *	mmc_interrupt_hpi - Issue for High priority Interrupt
397  *	@card: the MMC card associated with the HPI transfer
398  *
399  *	Issued High Priority Interrupt, and check for card status
400  *	util out-of prg-state.
401  */
402 int mmc_interrupt_hpi(struct mmc_card *card)
403 {
404 	int err;
405 	u32 status;
406 
407 	BUG_ON(!card);
408 
409 	if (!card->ext_csd.hpi_en) {
410 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
411 		return 1;
412 	}
413 
414 	mmc_claim_host(card->host);
415 	err = mmc_send_status(card, &status);
416 	if (err) {
417 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
418 		goto out;
419 	}
420 
421 	/*
422 	 * If the card status is in PRG-state, we can send the HPI command.
423 	 */
424 	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
425 		do {
426 			/*
427 			 * We don't know when the HPI command will finish
428 			 * processing, so we need to resend HPI until out
429 			 * of prg-state, and keep checking the card status
430 			 * with SEND_STATUS.  If a timeout error occurs when
431 			 * sending the HPI command, we are already out of
432 			 * prg-state.
433 			 */
434 			err = mmc_send_hpi_cmd(card, &status);
435 			if (err)
436 				pr_debug("%s: abort HPI (%d error)\n",
437 					 mmc_hostname(card->host), err);
438 
439 			err = mmc_send_status(card, &status);
440 			if (err)
441 				break;
442 		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
443 	} else
444 		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
445 
446 out:
447 	mmc_release_host(card->host);
448 	return err;
449 }
450 EXPORT_SYMBOL(mmc_interrupt_hpi);
451 
452 /**
453  *	mmc_wait_for_cmd - start a command and wait for completion
454  *	@host: MMC host to start command
455  *	@cmd: MMC command to start
456  *	@retries: maximum number of retries
457  *
458  *	Start a new MMC command for a host, and wait for the command
459  *	to complete.  Return any error that occurred while the command
460  *	was executing.  Do not attempt to parse the response.
461  */
462 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
463 {
464 	struct mmc_request mrq = {NULL};
465 
466 	WARN_ON(!host->claimed);
467 
468 	memset(cmd->resp, 0, sizeof(cmd->resp));
469 	cmd->retries = retries;
470 
471 	mrq.cmd = cmd;
472 	cmd->data = NULL;
473 
474 	mmc_wait_for_req(host, &mrq);
475 
476 	return cmd->error;
477 }
478 
479 EXPORT_SYMBOL(mmc_wait_for_cmd);
480 
481 /**
482  *	mmc_set_data_timeout - set the timeout for a data command
483  *	@data: data phase for command
484  *	@card: the MMC card associated with the data transfer
485  *
486  *	Computes the data timeout parameters according to the
487  *	correct algorithm given the card type.
488  */
489 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
490 {
491 	unsigned int mult;
492 
493 	/*
494 	 * SDIO cards only define an upper 1 s limit on access.
495 	 */
496 	if (mmc_card_sdio(card)) {
497 		data->timeout_ns = 1000000000;
498 		data->timeout_clks = 0;
499 		return;
500 	}
501 
502 	/*
503 	 * SD cards use a 100 multiplier rather than 10
504 	 */
505 	mult = mmc_card_sd(card) ? 100 : 10;
506 
507 	/*
508 	 * Scale up the multiplier (and therefore the timeout) by
509 	 * the r2w factor for writes.
510 	 */
511 	if (data->flags & MMC_DATA_WRITE)
512 		mult <<= card->csd.r2w_factor;
513 
514 	data->timeout_ns = card->csd.tacc_ns * mult;
515 	data->timeout_clks = card->csd.tacc_clks * mult;
516 
517 	/*
518 	 * SD cards also have an upper limit on the timeout.
519 	 */
520 	if (mmc_card_sd(card)) {
521 		unsigned int timeout_us, limit_us;
522 
523 		timeout_us = data->timeout_ns / 1000;
524 		if (mmc_host_clk_rate(card->host))
525 			timeout_us += data->timeout_clks * 1000 /
526 				(mmc_host_clk_rate(card->host) / 1000);
527 
528 		if (data->flags & MMC_DATA_WRITE)
529 			/*
530 			 * The limit is really 250 ms, but that is
531 			 * insufficient for some crappy cards.
532 			 */
533 			limit_us = 300000;
534 		else
535 			limit_us = 100000;
536 
537 		/*
538 		 * SDHC cards always use these fixed values.
539 		 */
540 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
541 			data->timeout_ns = limit_us * 1000;
542 			data->timeout_clks = 0;
543 		}
544 	}
545 
546 	/*
547 	 * Some cards require longer data read timeout than indicated in CSD.
548 	 * Address this by setting the read timeout to a "reasonably high"
549 	 * value. For the cards tested, 300ms has proven enough. If necessary,
550 	 * this value can be increased if other problematic cards require this.
551 	 */
552 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
553 		data->timeout_ns = 300000000;
554 		data->timeout_clks = 0;
555 	}
556 
557 	/*
558 	 * Some cards need very high timeouts if driven in SPI mode.
559 	 * The worst observed timeout was 900ms after writing a
560 	 * continuous stream of data until the internal logic
561 	 * overflowed.
562 	 */
563 	if (mmc_host_is_spi(card->host)) {
564 		if (data->flags & MMC_DATA_WRITE) {
565 			if (data->timeout_ns < 1000000000)
566 				data->timeout_ns = 1000000000;	/* 1s */
567 		} else {
568 			if (data->timeout_ns < 100000000)
569 				data->timeout_ns =  100000000;	/* 100ms */
570 		}
571 	}
572 }
573 EXPORT_SYMBOL(mmc_set_data_timeout);
574 
575 /**
576  *	mmc_align_data_size - pads a transfer size to a more optimal value
577  *	@card: the MMC card associated with the data transfer
578  *	@sz: original transfer size
579  *
580  *	Pads the original data size with a number of extra bytes in
581  *	order to avoid controller bugs and/or performance hits
582  *	(e.g. some controllers revert to PIO for certain sizes).
583  *
584  *	Returns the improved size, which might be unmodified.
585  *
586  *	Note that this function is only relevant when issuing a
587  *	single scatter gather entry.
588  */
589 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
590 {
591 	/*
592 	 * FIXME: We don't have a system for the controller to tell
593 	 * the core about its problems yet, so for now we just 32-bit
594 	 * align the size.
595 	 */
596 	sz = ((sz + 3) / 4) * 4;
597 
598 	return sz;
599 }
600 EXPORT_SYMBOL(mmc_align_data_size);
601 
602 /**
603  *	__mmc_claim_host - exclusively claim a host
604  *	@host: mmc host to claim
605  *	@abort: whether or not the operation should be aborted
606  *
607  *	Claim a host for a set of operations.  If @abort is non null and
608  *	dereference a non-zero value then this will return prematurely with
609  *	that non-zero value without acquiring the lock.  Returns zero
610  *	with the lock held otherwise.
611  */
612 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
613 {
614 	DECLARE_WAITQUEUE(wait, current);
615 	unsigned long flags;
616 	int stop;
617 
618 	might_sleep();
619 
620 	add_wait_queue(&host->wq, &wait);
621 	spin_lock_irqsave(&host->lock, flags);
622 	while (1) {
623 		set_current_state(TASK_UNINTERRUPTIBLE);
624 		stop = abort ? atomic_read(abort) : 0;
625 		if (stop || !host->claimed || host->claimer == current)
626 			break;
627 		spin_unlock_irqrestore(&host->lock, flags);
628 		schedule();
629 		spin_lock_irqsave(&host->lock, flags);
630 	}
631 	set_current_state(TASK_RUNNING);
632 	if (!stop) {
633 		host->claimed = 1;
634 		host->claimer = current;
635 		host->claim_cnt += 1;
636 	} else
637 		wake_up(&host->wq);
638 	spin_unlock_irqrestore(&host->lock, flags);
639 	remove_wait_queue(&host->wq, &wait);
640 	if (host->ops->enable && !stop && host->claim_cnt == 1)
641 		host->ops->enable(host);
642 	return stop;
643 }
644 
645 EXPORT_SYMBOL(__mmc_claim_host);
646 
647 /**
648  *	mmc_try_claim_host - try exclusively to claim a host
649  *	@host: mmc host to claim
650  *
651  *	Returns %1 if the host is claimed, %0 otherwise.
652  */
653 int mmc_try_claim_host(struct mmc_host *host)
654 {
655 	int claimed_host = 0;
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&host->lock, flags);
659 	if (!host->claimed || host->claimer == current) {
660 		host->claimed = 1;
661 		host->claimer = current;
662 		host->claim_cnt += 1;
663 		claimed_host = 1;
664 	}
665 	spin_unlock_irqrestore(&host->lock, flags);
666 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
667 		host->ops->enable(host);
668 	return claimed_host;
669 }
670 EXPORT_SYMBOL(mmc_try_claim_host);
671 
672 /**
673  *	mmc_release_host - release a host
674  *	@host: mmc host to release
675  *
676  *	Release a MMC host, allowing others to claim the host
677  *	for their operations.
678  */
679 void mmc_release_host(struct mmc_host *host)
680 {
681 	unsigned long flags;
682 
683 	WARN_ON(!host->claimed);
684 
685 	if (host->ops->disable && host->claim_cnt == 1)
686 		host->ops->disable(host);
687 
688 	spin_lock_irqsave(&host->lock, flags);
689 	if (--host->claim_cnt) {
690 		/* Release for nested claim */
691 		spin_unlock_irqrestore(&host->lock, flags);
692 	} else {
693 		host->claimed = 0;
694 		host->claimer = NULL;
695 		spin_unlock_irqrestore(&host->lock, flags);
696 		wake_up(&host->wq);
697 	}
698 }
699 EXPORT_SYMBOL(mmc_release_host);
700 
701 /*
702  * Internal function that does the actual ios call to the host driver,
703  * optionally printing some debug output.
704  */
705 static inline void mmc_set_ios(struct mmc_host *host)
706 {
707 	struct mmc_ios *ios = &host->ios;
708 
709 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
710 		"width %u timing %u\n",
711 		 mmc_hostname(host), ios->clock, ios->bus_mode,
712 		 ios->power_mode, ios->chip_select, ios->vdd,
713 		 ios->bus_width, ios->timing);
714 
715 	if (ios->clock > 0)
716 		mmc_set_ungated(host);
717 	host->ops->set_ios(host, ios);
718 }
719 
720 /*
721  * Control chip select pin on a host.
722  */
723 void mmc_set_chip_select(struct mmc_host *host, int mode)
724 {
725 	mmc_host_clk_hold(host);
726 	host->ios.chip_select = mode;
727 	mmc_set_ios(host);
728 	mmc_host_clk_release(host);
729 }
730 
731 /*
732  * Sets the host clock to the highest possible frequency that
733  * is below "hz".
734  */
735 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
736 {
737 	WARN_ON(hz < host->f_min);
738 
739 	if (hz > host->f_max)
740 		hz = host->f_max;
741 
742 	host->ios.clock = hz;
743 	mmc_set_ios(host);
744 }
745 
746 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
747 {
748 	mmc_host_clk_hold(host);
749 	__mmc_set_clock(host, hz);
750 	mmc_host_clk_release(host);
751 }
752 
753 #ifdef CONFIG_MMC_CLKGATE
754 /*
755  * This gates the clock by setting it to 0 Hz.
756  */
757 void mmc_gate_clock(struct mmc_host *host)
758 {
759 	unsigned long flags;
760 
761 	spin_lock_irqsave(&host->clk_lock, flags);
762 	host->clk_old = host->ios.clock;
763 	host->ios.clock = 0;
764 	host->clk_gated = true;
765 	spin_unlock_irqrestore(&host->clk_lock, flags);
766 	mmc_set_ios(host);
767 }
768 
769 /*
770  * This restores the clock from gating by using the cached
771  * clock value.
772  */
773 void mmc_ungate_clock(struct mmc_host *host)
774 {
775 	/*
776 	 * We should previously have gated the clock, so the clock shall
777 	 * be 0 here! The clock may however be 0 during initialization,
778 	 * when some request operations are performed before setting
779 	 * the frequency. When ungate is requested in that situation
780 	 * we just ignore the call.
781 	 */
782 	if (host->clk_old) {
783 		BUG_ON(host->ios.clock);
784 		/* This call will also set host->clk_gated to false */
785 		__mmc_set_clock(host, host->clk_old);
786 	}
787 }
788 
789 void mmc_set_ungated(struct mmc_host *host)
790 {
791 	unsigned long flags;
792 
793 	/*
794 	 * We've been given a new frequency while the clock is gated,
795 	 * so make sure we regard this as ungating it.
796 	 */
797 	spin_lock_irqsave(&host->clk_lock, flags);
798 	host->clk_gated = false;
799 	spin_unlock_irqrestore(&host->clk_lock, flags);
800 }
801 
802 #else
803 void mmc_set_ungated(struct mmc_host *host)
804 {
805 }
806 #endif
807 
808 /*
809  * Change the bus mode (open drain/push-pull) of a host.
810  */
811 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
812 {
813 	mmc_host_clk_hold(host);
814 	host->ios.bus_mode = mode;
815 	mmc_set_ios(host);
816 	mmc_host_clk_release(host);
817 }
818 
819 /*
820  * Change data bus width of a host.
821  */
822 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
823 {
824 	mmc_host_clk_hold(host);
825 	host->ios.bus_width = width;
826 	mmc_set_ios(host);
827 	mmc_host_clk_release(host);
828 }
829 
830 /**
831  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
832  * @vdd:	voltage (mV)
833  * @low_bits:	prefer low bits in boundary cases
834  *
835  * This function returns the OCR bit number according to the provided @vdd
836  * value. If conversion is not possible a negative errno value returned.
837  *
838  * Depending on the @low_bits flag the function prefers low or high OCR bits
839  * on boundary voltages. For example,
840  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
841  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
842  *
843  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
844  */
845 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
846 {
847 	const int max_bit = ilog2(MMC_VDD_35_36);
848 	int bit;
849 
850 	if (vdd < 1650 || vdd > 3600)
851 		return -EINVAL;
852 
853 	if (vdd >= 1650 && vdd <= 1950)
854 		return ilog2(MMC_VDD_165_195);
855 
856 	if (low_bits)
857 		vdd -= 1;
858 
859 	/* Base 2000 mV, step 100 mV, bit's base 8. */
860 	bit = (vdd - 2000) / 100 + 8;
861 	if (bit > max_bit)
862 		return max_bit;
863 	return bit;
864 }
865 
866 /**
867  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
868  * @vdd_min:	minimum voltage value (mV)
869  * @vdd_max:	maximum voltage value (mV)
870  *
871  * This function returns the OCR mask bits according to the provided @vdd_min
872  * and @vdd_max values. If conversion is not possible the function returns 0.
873  *
874  * Notes wrt boundary cases:
875  * This function sets the OCR bits for all boundary voltages, for example
876  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
877  * MMC_VDD_34_35 mask.
878  */
879 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
880 {
881 	u32 mask = 0;
882 
883 	if (vdd_max < vdd_min)
884 		return 0;
885 
886 	/* Prefer high bits for the boundary vdd_max values. */
887 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
888 	if (vdd_max < 0)
889 		return 0;
890 
891 	/* Prefer low bits for the boundary vdd_min values. */
892 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
893 	if (vdd_min < 0)
894 		return 0;
895 
896 	/* Fill the mask, from max bit to min bit. */
897 	while (vdd_max >= vdd_min)
898 		mask |= 1 << vdd_max--;
899 
900 	return mask;
901 }
902 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
903 
904 #ifdef CONFIG_REGULATOR
905 
906 /**
907  * mmc_regulator_get_ocrmask - return mask of supported voltages
908  * @supply: regulator to use
909  *
910  * This returns either a negative errno, or a mask of voltages that
911  * can be provided to MMC/SD/SDIO devices using the specified voltage
912  * regulator.  This would normally be called before registering the
913  * MMC host adapter.
914  */
915 int mmc_regulator_get_ocrmask(struct regulator *supply)
916 {
917 	int			result = 0;
918 	int			count;
919 	int			i;
920 
921 	count = regulator_count_voltages(supply);
922 	if (count < 0)
923 		return count;
924 
925 	for (i = 0; i < count; i++) {
926 		int		vdd_uV;
927 		int		vdd_mV;
928 
929 		vdd_uV = regulator_list_voltage(supply, i);
930 		if (vdd_uV <= 0)
931 			continue;
932 
933 		vdd_mV = vdd_uV / 1000;
934 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
935 	}
936 
937 	return result;
938 }
939 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
940 
941 /**
942  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
943  * @mmc: the host to regulate
944  * @supply: regulator to use
945  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
946  *
947  * Returns zero on success, else negative errno.
948  *
949  * MMC host drivers may use this to enable or disable a regulator using
950  * a particular supply voltage.  This would normally be called from the
951  * set_ios() method.
952  */
953 int mmc_regulator_set_ocr(struct mmc_host *mmc,
954 			struct regulator *supply,
955 			unsigned short vdd_bit)
956 {
957 	int			result = 0;
958 	int			min_uV, max_uV;
959 
960 	if (vdd_bit) {
961 		int		tmp;
962 		int		voltage;
963 
964 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
965 		 * bits this regulator doesn't quite support ... don't
966 		 * be too picky, most cards and regulators are OK with
967 		 * a 0.1V range goof (it's a small error percentage).
968 		 */
969 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
970 		if (tmp == 0) {
971 			min_uV = 1650 * 1000;
972 			max_uV = 1950 * 1000;
973 		} else {
974 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
975 			max_uV = min_uV + 100 * 1000;
976 		}
977 
978 		/* avoid needless changes to this voltage; the regulator
979 		 * might not allow this operation
980 		 */
981 		voltage = regulator_get_voltage(supply);
982 
983 		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
984 			min_uV = max_uV = voltage;
985 
986 		if (voltage < 0)
987 			result = voltage;
988 		else if (voltage < min_uV || voltage > max_uV)
989 			result = regulator_set_voltage(supply, min_uV, max_uV);
990 		else
991 			result = 0;
992 
993 		if (result == 0 && !mmc->regulator_enabled) {
994 			result = regulator_enable(supply);
995 			if (!result)
996 				mmc->regulator_enabled = true;
997 		}
998 	} else if (mmc->regulator_enabled) {
999 		result = regulator_disable(supply);
1000 		if (result == 0)
1001 			mmc->regulator_enabled = false;
1002 	}
1003 
1004 	if (result)
1005 		dev_err(mmc_dev(mmc),
1006 			"could not set regulator OCR (%d)\n", result);
1007 	return result;
1008 }
1009 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1010 
1011 #endif /* CONFIG_REGULATOR */
1012 
1013 /*
1014  * Mask off any voltages we don't support and select
1015  * the lowest voltage
1016  */
1017 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1018 {
1019 	int bit;
1020 
1021 	ocr &= host->ocr_avail;
1022 
1023 	bit = ffs(ocr);
1024 	if (bit) {
1025 		bit -= 1;
1026 
1027 		ocr &= 3 << bit;
1028 
1029 		mmc_host_clk_hold(host);
1030 		host->ios.vdd = bit;
1031 		mmc_set_ios(host);
1032 		mmc_host_clk_release(host);
1033 	} else {
1034 		pr_warning("%s: host doesn't support card's voltages\n",
1035 				mmc_hostname(host));
1036 		ocr = 0;
1037 	}
1038 
1039 	return ocr;
1040 }
1041 
1042 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1043 {
1044 	struct mmc_command cmd = {0};
1045 	int err = 0;
1046 
1047 	BUG_ON(!host);
1048 
1049 	/*
1050 	 * Send CMD11 only if the request is to switch the card to
1051 	 * 1.8V signalling.
1052 	 */
1053 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1054 		cmd.opcode = SD_SWITCH_VOLTAGE;
1055 		cmd.arg = 0;
1056 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1057 
1058 		err = mmc_wait_for_cmd(host, &cmd, 0);
1059 		if (err)
1060 			return err;
1061 
1062 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1063 			return -EIO;
1064 	}
1065 
1066 	host->ios.signal_voltage = signal_voltage;
1067 
1068 	if (host->ops->start_signal_voltage_switch) {
1069 		mmc_host_clk_hold(host);
1070 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1071 		mmc_host_clk_release(host);
1072 	}
1073 
1074 	return err;
1075 }
1076 
1077 /*
1078  * Select timing parameters for host.
1079  */
1080 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1081 {
1082 	mmc_host_clk_hold(host);
1083 	host->ios.timing = timing;
1084 	mmc_set_ios(host);
1085 	mmc_host_clk_release(host);
1086 }
1087 
1088 /*
1089  * Select appropriate driver type for host.
1090  */
1091 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1092 {
1093 	mmc_host_clk_hold(host);
1094 	host->ios.drv_type = drv_type;
1095 	mmc_set_ios(host);
1096 	mmc_host_clk_release(host);
1097 }
1098 
1099 static void mmc_poweroff_notify(struct mmc_host *host)
1100 {
1101 	struct mmc_card *card;
1102 	unsigned int timeout;
1103 	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1104 	int err = 0;
1105 
1106 	card = host->card;
1107 	mmc_claim_host(host);
1108 
1109 	/*
1110 	 * Send power notify command only if card
1111 	 * is mmc and notify state is powered ON
1112 	 */
1113 	if (card && mmc_card_mmc(card) &&
1114 	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1115 
1116 		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1117 			notify_type = EXT_CSD_POWER_OFF_SHORT;
1118 			timeout = card->ext_csd.generic_cmd6_time;
1119 			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1120 		} else {
1121 			notify_type = EXT_CSD_POWER_OFF_LONG;
1122 			timeout = card->ext_csd.power_off_longtime;
1123 			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1124 		}
1125 
1126 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1127 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1128 				 notify_type, timeout);
1129 
1130 		if (err && err != -EBADMSG)
1131 			pr_err("Device failed to respond within %d poweroff "
1132 			       "time. Forcefully powering down the device\n",
1133 			       timeout);
1134 
1135 		/* Set the card state to no notification after the poweroff */
1136 		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1137 	}
1138 	mmc_release_host(host);
1139 }
1140 
1141 /*
1142  * Apply power to the MMC stack.  This is a two-stage process.
1143  * First, we enable power to the card without the clock running.
1144  * We then wait a bit for the power to stabilise.  Finally,
1145  * enable the bus drivers and clock to the card.
1146  *
1147  * We must _NOT_ enable the clock prior to power stablising.
1148  *
1149  * If a host does all the power sequencing itself, ignore the
1150  * initial MMC_POWER_UP stage.
1151  */
1152 static void mmc_power_up(struct mmc_host *host)
1153 {
1154 	int bit;
1155 
1156 	mmc_host_clk_hold(host);
1157 
1158 	/* If ocr is set, we use it */
1159 	if (host->ocr)
1160 		bit = ffs(host->ocr) - 1;
1161 	else
1162 		bit = fls(host->ocr_avail) - 1;
1163 
1164 	host->ios.vdd = bit;
1165 	if (mmc_host_is_spi(host))
1166 		host->ios.chip_select = MMC_CS_HIGH;
1167 	else
1168 		host->ios.chip_select = MMC_CS_DONTCARE;
1169 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1170 	host->ios.power_mode = MMC_POWER_UP;
1171 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1172 	host->ios.timing = MMC_TIMING_LEGACY;
1173 	mmc_set_ios(host);
1174 
1175 	/*
1176 	 * This delay should be sufficient to allow the power supply
1177 	 * to reach the minimum voltage.
1178 	 */
1179 	mmc_delay(10);
1180 
1181 	host->ios.clock = host->f_init;
1182 
1183 	host->ios.power_mode = MMC_POWER_ON;
1184 	mmc_set_ios(host);
1185 
1186 	/*
1187 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1188 	 * time required to reach a stable voltage.
1189 	 */
1190 	mmc_delay(10);
1191 
1192 	mmc_host_clk_release(host);
1193 }
1194 
1195 void mmc_power_off(struct mmc_host *host)
1196 {
1197 	int err = 0;
1198 	mmc_host_clk_hold(host);
1199 
1200 	host->ios.clock = 0;
1201 	host->ios.vdd = 0;
1202 
1203 	/*
1204 	 * For eMMC 4.5 device send AWAKE command before
1205 	 * POWER_OFF_NOTIFY command, because in sleep state
1206 	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1207 	 */
1208 	if (host->card && mmc_card_is_sleep(host->card) &&
1209 	    host->bus_ops->resume) {
1210 		err = host->bus_ops->resume(host);
1211 
1212 		if (!err)
1213 			mmc_poweroff_notify(host);
1214 		else
1215 			pr_warning("%s: error %d during resume "
1216 				   "(continue with poweroff sequence)\n",
1217 				   mmc_hostname(host), err);
1218 	}
1219 
1220 	/*
1221 	 * Reset ocr mask to be the highest possible voltage supported for
1222 	 * this mmc host. This value will be used at next power up.
1223 	 */
1224 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1225 
1226 	if (!mmc_host_is_spi(host)) {
1227 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1228 		host->ios.chip_select = MMC_CS_DONTCARE;
1229 	}
1230 	host->ios.power_mode = MMC_POWER_OFF;
1231 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1232 	host->ios.timing = MMC_TIMING_LEGACY;
1233 	mmc_set_ios(host);
1234 
1235 	/*
1236 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1237 	 * XO-1.5, require a short delay after poweroff before the card
1238 	 * can be successfully turned on again.
1239 	 */
1240 	mmc_delay(1);
1241 
1242 	mmc_host_clk_release(host);
1243 }
1244 
1245 /*
1246  * Cleanup when the last reference to the bus operator is dropped.
1247  */
1248 static void __mmc_release_bus(struct mmc_host *host)
1249 {
1250 	BUG_ON(!host);
1251 	BUG_ON(host->bus_refs);
1252 	BUG_ON(!host->bus_dead);
1253 
1254 	host->bus_ops = NULL;
1255 }
1256 
1257 /*
1258  * Increase reference count of bus operator
1259  */
1260 static inline void mmc_bus_get(struct mmc_host *host)
1261 {
1262 	unsigned long flags;
1263 
1264 	spin_lock_irqsave(&host->lock, flags);
1265 	host->bus_refs++;
1266 	spin_unlock_irqrestore(&host->lock, flags);
1267 }
1268 
1269 /*
1270  * Decrease reference count of bus operator and free it if
1271  * it is the last reference.
1272  */
1273 static inline void mmc_bus_put(struct mmc_host *host)
1274 {
1275 	unsigned long flags;
1276 
1277 	spin_lock_irqsave(&host->lock, flags);
1278 	host->bus_refs--;
1279 	if ((host->bus_refs == 0) && host->bus_ops)
1280 		__mmc_release_bus(host);
1281 	spin_unlock_irqrestore(&host->lock, flags);
1282 }
1283 
1284 /*
1285  * Assign a mmc bus handler to a host. Only one bus handler may control a
1286  * host at any given time.
1287  */
1288 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1289 {
1290 	unsigned long flags;
1291 
1292 	BUG_ON(!host);
1293 	BUG_ON(!ops);
1294 
1295 	WARN_ON(!host->claimed);
1296 
1297 	spin_lock_irqsave(&host->lock, flags);
1298 
1299 	BUG_ON(host->bus_ops);
1300 	BUG_ON(host->bus_refs);
1301 
1302 	host->bus_ops = ops;
1303 	host->bus_refs = 1;
1304 	host->bus_dead = 0;
1305 
1306 	spin_unlock_irqrestore(&host->lock, flags);
1307 }
1308 
1309 /*
1310  * Remove the current bus handler from a host.
1311  */
1312 void mmc_detach_bus(struct mmc_host *host)
1313 {
1314 	unsigned long flags;
1315 
1316 	BUG_ON(!host);
1317 
1318 	WARN_ON(!host->claimed);
1319 	WARN_ON(!host->bus_ops);
1320 
1321 	spin_lock_irqsave(&host->lock, flags);
1322 
1323 	host->bus_dead = 1;
1324 
1325 	spin_unlock_irqrestore(&host->lock, flags);
1326 
1327 	mmc_bus_put(host);
1328 }
1329 
1330 /**
1331  *	mmc_detect_change - process change of state on a MMC socket
1332  *	@host: host which changed state.
1333  *	@delay: optional delay to wait before detection (jiffies)
1334  *
1335  *	MMC drivers should call this when they detect a card has been
1336  *	inserted or removed. The MMC layer will confirm that any
1337  *	present card is still functional, and initialize any newly
1338  *	inserted.
1339  */
1340 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1341 {
1342 #ifdef CONFIG_MMC_DEBUG
1343 	unsigned long flags;
1344 	spin_lock_irqsave(&host->lock, flags);
1345 	WARN_ON(host->removed);
1346 	spin_unlock_irqrestore(&host->lock, flags);
1347 #endif
1348 	host->detect_change = 1;
1349 	mmc_schedule_delayed_work(&host->detect, delay);
1350 }
1351 
1352 EXPORT_SYMBOL(mmc_detect_change);
1353 
1354 void mmc_init_erase(struct mmc_card *card)
1355 {
1356 	unsigned int sz;
1357 
1358 	if (is_power_of_2(card->erase_size))
1359 		card->erase_shift = ffs(card->erase_size) - 1;
1360 	else
1361 		card->erase_shift = 0;
1362 
1363 	/*
1364 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1365 	 * card.  That is not desirable because it can take a long time
1366 	 * (minutes) potentially delaying more important I/O, and also the
1367 	 * timeout calculations become increasingly hugely over-estimated.
1368 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1369 	 * to that size and alignment.
1370 	 *
1371 	 * For SD cards that define Allocation Unit size, limit erases to one
1372 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1373 	 * Erase Size, whether it is switched on or not, limit to that size.
1374 	 * Otherwise just have a stab at a good value.  For modern cards it
1375 	 * will end up being 4MiB.  Note that if the value is too small, it
1376 	 * can end up taking longer to erase.
1377 	 */
1378 	if (mmc_card_sd(card) && card->ssr.au) {
1379 		card->pref_erase = card->ssr.au;
1380 		card->erase_shift = ffs(card->ssr.au) - 1;
1381 	} else if (card->ext_csd.hc_erase_size) {
1382 		card->pref_erase = card->ext_csd.hc_erase_size;
1383 	} else {
1384 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1385 		if (sz < 128)
1386 			card->pref_erase = 512 * 1024 / 512;
1387 		else if (sz < 512)
1388 			card->pref_erase = 1024 * 1024 / 512;
1389 		else if (sz < 1024)
1390 			card->pref_erase = 2 * 1024 * 1024 / 512;
1391 		else
1392 			card->pref_erase = 4 * 1024 * 1024 / 512;
1393 		if (card->pref_erase < card->erase_size)
1394 			card->pref_erase = card->erase_size;
1395 		else {
1396 			sz = card->pref_erase % card->erase_size;
1397 			if (sz)
1398 				card->pref_erase += card->erase_size - sz;
1399 		}
1400 	}
1401 }
1402 
1403 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1404 				          unsigned int arg, unsigned int qty)
1405 {
1406 	unsigned int erase_timeout;
1407 
1408 	if (card->ext_csd.erase_group_def & 1) {
1409 		/* High Capacity Erase Group Size uses HC timeouts */
1410 		if (arg == MMC_TRIM_ARG)
1411 			erase_timeout = card->ext_csd.trim_timeout;
1412 		else
1413 			erase_timeout = card->ext_csd.hc_erase_timeout;
1414 	} else {
1415 		/* CSD Erase Group Size uses write timeout */
1416 		unsigned int mult = (10 << card->csd.r2w_factor);
1417 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1418 		unsigned int timeout_us;
1419 
1420 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1421 		if (card->csd.tacc_ns < 1000000)
1422 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1423 		else
1424 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1425 
1426 		/*
1427 		 * ios.clock is only a target.  The real clock rate might be
1428 		 * less but not that much less, so fudge it by multiplying by 2.
1429 		 */
1430 		timeout_clks <<= 1;
1431 		timeout_us += (timeout_clks * 1000) /
1432 			      (mmc_host_clk_rate(card->host) / 1000);
1433 
1434 		erase_timeout = timeout_us / 1000;
1435 
1436 		/*
1437 		 * Theoretically, the calculation could underflow so round up
1438 		 * to 1ms in that case.
1439 		 */
1440 		if (!erase_timeout)
1441 			erase_timeout = 1;
1442 	}
1443 
1444 	/* Multiplier for secure operations */
1445 	if (arg & MMC_SECURE_ARGS) {
1446 		if (arg == MMC_SECURE_ERASE_ARG)
1447 			erase_timeout *= card->ext_csd.sec_erase_mult;
1448 		else
1449 			erase_timeout *= card->ext_csd.sec_trim_mult;
1450 	}
1451 
1452 	erase_timeout *= qty;
1453 
1454 	/*
1455 	 * Ensure at least a 1 second timeout for SPI as per
1456 	 * 'mmc_set_data_timeout()'
1457 	 */
1458 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1459 		erase_timeout = 1000;
1460 
1461 	return erase_timeout;
1462 }
1463 
1464 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1465 					 unsigned int arg,
1466 					 unsigned int qty)
1467 {
1468 	unsigned int erase_timeout;
1469 
1470 	if (card->ssr.erase_timeout) {
1471 		/* Erase timeout specified in SD Status Register (SSR) */
1472 		erase_timeout = card->ssr.erase_timeout * qty +
1473 				card->ssr.erase_offset;
1474 	} else {
1475 		/*
1476 		 * Erase timeout not specified in SD Status Register (SSR) so
1477 		 * use 250ms per write block.
1478 		 */
1479 		erase_timeout = 250 * qty;
1480 	}
1481 
1482 	/* Must not be less than 1 second */
1483 	if (erase_timeout < 1000)
1484 		erase_timeout = 1000;
1485 
1486 	return erase_timeout;
1487 }
1488 
1489 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1490 				      unsigned int arg,
1491 				      unsigned int qty)
1492 {
1493 	if (mmc_card_sd(card))
1494 		return mmc_sd_erase_timeout(card, arg, qty);
1495 	else
1496 		return mmc_mmc_erase_timeout(card, arg, qty);
1497 }
1498 
1499 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1500 			unsigned int to, unsigned int arg)
1501 {
1502 	struct mmc_command cmd = {0};
1503 	unsigned int qty = 0;
1504 	int err;
1505 
1506 	/*
1507 	 * qty is used to calculate the erase timeout which depends on how many
1508 	 * erase groups (or allocation units in SD terminology) are affected.
1509 	 * We count erasing part of an erase group as one erase group.
1510 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1511 	 * erase group size is almost certainly also power of 2, but it does not
1512 	 * seem to insist on that in the JEDEC standard, so we fall back to
1513 	 * division in that case.  SD may not specify an allocation unit size,
1514 	 * in which case the timeout is based on the number of write blocks.
1515 	 *
1516 	 * Note that the timeout for secure trim 2 will only be correct if the
1517 	 * number of erase groups specified is the same as the total of all
1518 	 * preceding secure trim 1 commands.  Since the power may have been
1519 	 * lost since the secure trim 1 commands occurred, it is generally
1520 	 * impossible to calculate the secure trim 2 timeout correctly.
1521 	 */
1522 	if (card->erase_shift)
1523 		qty += ((to >> card->erase_shift) -
1524 			(from >> card->erase_shift)) + 1;
1525 	else if (mmc_card_sd(card))
1526 		qty += to - from + 1;
1527 	else
1528 		qty += ((to / card->erase_size) -
1529 			(from / card->erase_size)) + 1;
1530 
1531 	if (!mmc_card_blockaddr(card)) {
1532 		from <<= 9;
1533 		to <<= 9;
1534 	}
1535 
1536 	if (mmc_card_sd(card))
1537 		cmd.opcode = SD_ERASE_WR_BLK_START;
1538 	else
1539 		cmd.opcode = MMC_ERASE_GROUP_START;
1540 	cmd.arg = from;
1541 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1542 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1543 	if (err) {
1544 		pr_err("mmc_erase: group start error %d, "
1545 		       "status %#x\n", err, cmd.resp[0]);
1546 		err = -EIO;
1547 		goto out;
1548 	}
1549 
1550 	memset(&cmd, 0, sizeof(struct mmc_command));
1551 	if (mmc_card_sd(card))
1552 		cmd.opcode = SD_ERASE_WR_BLK_END;
1553 	else
1554 		cmd.opcode = MMC_ERASE_GROUP_END;
1555 	cmd.arg = to;
1556 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1557 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1558 	if (err) {
1559 		pr_err("mmc_erase: group end error %d, status %#x\n",
1560 		       err, cmd.resp[0]);
1561 		err = -EIO;
1562 		goto out;
1563 	}
1564 
1565 	memset(&cmd, 0, sizeof(struct mmc_command));
1566 	cmd.opcode = MMC_ERASE;
1567 	cmd.arg = arg;
1568 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1569 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1570 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1571 	if (err) {
1572 		pr_err("mmc_erase: erase error %d, status %#x\n",
1573 		       err, cmd.resp[0]);
1574 		err = -EIO;
1575 		goto out;
1576 	}
1577 
1578 	if (mmc_host_is_spi(card->host))
1579 		goto out;
1580 
1581 	do {
1582 		memset(&cmd, 0, sizeof(struct mmc_command));
1583 		cmd.opcode = MMC_SEND_STATUS;
1584 		cmd.arg = card->rca << 16;
1585 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1586 		/* Do not retry else we can't see errors */
1587 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1588 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1589 			pr_err("error %d requesting status %#x\n",
1590 				err, cmd.resp[0]);
1591 			err = -EIO;
1592 			goto out;
1593 		}
1594 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1595 		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1596 out:
1597 	return err;
1598 }
1599 
1600 /**
1601  * mmc_erase - erase sectors.
1602  * @card: card to erase
1603  * @from: first sector to erase
1604  * @nr: number of sectors to erase
1605  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1606  *
1607  * Caller must claim host before calling this function.
1608  */
1609 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1610 	      unsigned int arg)
1611 {
1612 	unsigned int rem, to = from + nr;
1613 
1614 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1615 	    !(card->csd.cmdclass & CCC_ERASE))
1616 		return -EOPNOTSUPP;
1617 
1618 	if (!card->erase_size)
1619 		return -EOPNOTSUPP;
1620 
1621 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1622 		return -EOPNOTSUPP;
1623 
1624 	if ((arg & MMC_SECURE_ARGS) &&
1625 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1626 		return -EOPNOTSUPP;
1627 
1628 	if ((arg & MMC_TRIM_ARGS) &&
1629 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1630 		return -EOPNOTSUPP;
1631 
1632 	if (arg == MMC_SECURE_ERASE_ARG) {
1633 		if (from % card->erase_size || nr % card->erase_size)
1634 			return -EINVAL;
1635 	}
1636 
1637 	if (arg == MMC_ERASE_ARG) {
1638 		rem = from % card->erase_size;
1639 		if (rem) {
1640 			rem = card->erase_size - rem;
1641 			from += rem;
1642 			if (nr > rem)
1643 				nr -= rem;
1644 			else
1645 				return 0;
1646 		}
1647 		rem = nr % card->erase_size;
1648 		if (rem)
1649 			nr -= rem;
1650 	}
1651 
1652 	if (nr == 0)
1653 		return 0;
1654 
1655 	to = from + nr;
1656 
1657 	if (to <= from)
1658 		return -EINVAL;
1659 
1660 	/* 'from' and 'to' are inclusive */
1661 	to -= 1;
1662 
1663 	return mmc_do_erase(card, from, to, arg);
1664 }
1665 EXPORT_SYMBOL(mmc_erase);
1666 
1667 int mmc_can_erase(struct mmc_card *card)
1668 {
1669 	if ((card->host->caps & MMC_CAP_ERASE) &&
1670 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1671 		return 1;
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL(mmc_can_erase);
1675 
1676 int mmc_can_trim(struct mmc_card *card)
1677 {
1678 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1679 		return 1;
1680 	if (mmc_can_discard(card))
1681 		return 1;
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL(mmc_can_trim);
1685 
1686 int mmc_can_discard(struct mmc_card *card)
1687 {
1688 	/*
1689 	 * As there's no way to detect the discard support bit at v4.5
1690 	 * use the s/w feature support filed.
1691 	 */
1692 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1693 		return 1;
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL(mmc_can_discard);
1697 
1698 int mmc_can_sanitize(struct mmc_card *card)
1699 {
1700 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1701 		return 1;
1702 	return 0;
1703 }
1704 EXPORT_SYMBOL(mmc_can_sanitize);
1705 
1706 int mmc_can_secure_erase_trim(struct mmc_card *card)
1707 {
1708 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1709 		return 1;
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1713 
1714 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1715 			    unsigned int nr)
1716 {
1717 	if (!card->erase_size)
1718 		return 0;
1719 	if (from % card->erase_size || nr % card->erase_size)
1720 		return 0;
1721 	return 1;
1722 }
1723 EXPORT_SYMBOL(mmc_erase_group_aligned);
1724 
1725 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1726 					    unsigned int arg)
1727 {
1728 	struct mmc_host *host = card->host;
1729 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1730 	unsigned int last_timeout = 0;
1731 
1732 	if (card->erase_shift)
1733 		max_qty = UINT_MAX >> card->erase_shift;
1734 	else if (mmc_card_sd(card))
1735 		max_qty = UINT_MAX;
1736 	else
1737 		max_qty = UINT_MAX / card->erase_size;
1738 
1739 	/* Find the largest qty with an OK timeout */
1740 	do {
1741 		y = 0;
1742 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1743 			timeout = mmc_erase_timeout(card, arg, qty + x);
1744 			if (timeout > host->max_discard_to)
1745 				break;
1746 			if (timeout < last_timeout)
1747 				break;
1748 			last_timeout = timeout;
1749 			y = x;
1750 		}
1751 		qty += y;
1752 	} while (y);
1753 
1754 	if (!qty)
1755 		return 0;
1756 
1757 	if (qty == 1)
1758 		return 1;
1759 
1760 	/* Convert qty to sectors */
1761 	if (card->erase_shift)
1762 		max_discard = --qty << card->erase_shift;
1763 	else if (mmc_card_sd(card))
1764 		max_discard = qty;
1765 	else
1766 		max_discard = --qty * card->erase_size;
1767 
1768 	return max_discard;
1769 }
1770 
1771 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1772 {
1773 	struct mmc_host *host = card->host;
1774 	unsigned int max_discard, max_trim;
1775 
1776 	if (!host->max_discard_to)
1777 		return UINT_MAX;
1778 
1779 	/*
1780 	 * Without erase_group_def set, MMC erase timeout depends on clock
1781 	 * frequence which can change.  In that case, the best choice is
1782 	 * just the preferred erase size.
1783 	 */
1784 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1785 		return card->pref_erase;
1786 
1787 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1788 	if (mmc_can_trim(card)) {
1789 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1790 		if (max_trim < max_discard)
1791 			max_discard = max_trim;
1792 	} else if (max_discard < card->erase_size) {
1793 		max_discard = 0;
1794 	}
1795 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1796 		 mmc_hostname(host), max_discard, host->max_discard_to);
1797 	return max_discard;
1798 }
1799 EXPORT_SYMBOL(mmc_calc_max_discard);
1800 
1801 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1802 {
1803 	struct mmc_command cmd = {0};
1804 
1805 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1806 		return 0;
1807 
1808 	cmd.opcode = MMC_SET_BLOCKLEN;
1809 	cmd.arg = blocklen;
1810 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1811 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1812 }
1813 EXPORT_SYMBOL(mmc_set_blocklen);
1814 
1815 static void mmc_hw_reset_for_init(struct mmc_host *host)
1816 {
1817 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1818 		return;
1819 	mmc_host_clk_hold(host);
1820 	host->ops->hw_reset(host);
1821 	mmc_host_clk_release(host);
1822 }
1823 
1824 int mmc_can_reset(struct mmc_card *card)
1825 {
1826 	u8 rst_n_function;
1827 
1828 	if (!mmc_card_mmc(card))
1829 		return 0;
1830 	rst_n_function = card->ext_csd.rst_n_function;
1831 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1832 		return 0;
1833 	return 1;
1834 }
1835 EXPORT_SYMBOL(mmc_can_reset);
1836 
1837 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1838 {
1839 	struct mmc_card *card = host->card;
1840 
1841 	if (!host->bus_ops->power_restore)
1842 		return -EOPNOTSUPP;
1843 
1844 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1845 		return -EOPNOTSUPP;
1846 
1847 	if (!card)
1848 		return -EINVAL;
1849 
1850 	if (!mmc_can_reset(card))
1851 		return -EOPNOTSUPP;
1852 
1853 	mmc_host_clk_hold(host);
1854 	mmc_set_clock(host, host->f_init);
1855 
1856 	host->ops->hw_reset(host);
1857 
1858 	/* If the reset has happened, then a status command will fail */
1859 	if (check) {
1860 		struct mmc_command cmd = {0};
1861 		int err;
1862 
1863 		cmd.opcode = MMC_SEND_STATUS;
1864 		if (!mmc_host_is_spi(card->host))
1865 			cmd.arg = card->rca << 16;
1866 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1867 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1868 		if (!err) {
1869 			mmc_host_clk_release(host);
1870 			return -ENOSYS;
1871 		}
1872 	}
1873 
1874 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1875 	if (mmc_host_is_spi(host)) {
1876 		host->ios.chip_select = MMC_CS_HIGH;
1877 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1878 	} else {
1879 		host->ios.chip_select = MMC_CS_DONTCARE;
1880 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1881 	}
1882 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1883 	host->ios.timing = MMC_TIMING_LEGACY;
1884 	mmc_set_ios(host);
1885 
1886 	mmc_host_clk_release(host);
1887 
1888 	return host->bus_ops->power_restore(host);
1889 }
1890 
1891 int mmc_hw_reset(struct mmc_host *host)
1892 {
1893 	return mmc_do_hw_reset(host, 0);
1894 }
1895 EXPORT_SYMBOL(mmc_hw_reset);
1896 
1897 int mmc_hw_reset_check(struct mmc_host *host)
1898 {
1899 	return mmc_do_hw_reset(host, 1);
1900 }
1901 EXPORT_SYMBOL(mmc_hw_reset_check);
1902 
1903 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1904 {
1905 	host->f_init = freq;
1906 
1907 #ifdef CONFIG_MMC_DEBUG
1908 	pr_info("%s: %s: trying to init card at %u Hz\n",
1909 		mmc_hostname(host), __func__, host->f_init);
1910 #endif
1911 	mmc_power_up(host);
1912 
1913 	/*
1914 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1915 	 * do a hardware reset if possible.
1916 	 */
1917 	mmc_hw_reset_for_init(host);
1918 
1919 	/* Initialization should be done at 3.3 V I/O voltage. */
1920 	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1921 
1922 	/*
1923 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1924 	 * if the card is being re-initialized, just send it.  CMD52
1925 	 * should be ignored by SD/eMMC cards.
1926 	 */
1927 	sdio_reset(host);
1928 	mmc_go_idle(host);
1929 
1930 	mmc_send_if_cond(host, host->ocr_avail);
1931 
1932 	/* Order's important: probe SDIO, then SD, then MMC */
1933 	if (!mmc_attach_sdio(host))
1934 		return 0;
1935 	if (!mmc_attach_sd(host))
1936 		return 0;
1937 	if (!mmc_attach_mmc(host))
1938 		return 0;
1939 
1940 	mmc_power_off(host);
1941 	return -EIO;
1942 }
1943 
1944 int _mmc_detect_card_removed(struct mmc_host *host)
1945 {
1946 	int ret;
1947 
1948 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1949 		return 0;
1950 
1951 	if (!host->card || mmc_card_removed(host->card))
1952 		return 1;
1953 
1954 	ret = host->bus_ops->alive(host);
1955 	if (ret) {
1956 		mmc_card_set_removed(host->card);
1957 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 int mmc_detect_card_removed(struct mmc_host *host)
1964 {
1965 	struct mmc_card *card = host->card;
1966 	int ret;
1967 
1968 	WARN_ON(!host->claimed);
1969 
1970 	if (!card)
1971 		return 1;
1972 
1973 	ret = mmc_card_removed(card);
1974 	/*
1975 	 * The card will be considered unchanged unless we have been asked to
1976 	 * detect a change or host requires polling to provide card detection.
1977 	 */
1978 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1979 	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1980 		return ret;
1981 
1982 	host->detect_change = 0;
1983 	if (!ret) {
1984 		ret = _mmc_detect_card_removed(host);
1985 		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
1986 			/*
1987 			 * Schedule a detect work as soon as possible to let a
1988 			 * rescan handle the card removal.
1989 			 */
1990 			cancel_delayed_work(&host->detect);
1991 			mmc_detect_change(host, 0);
1992 		}
1993 	}
1994 
1995 	return ret;
1996 }
1997 EXPORT_SYMBOL(mmc_detect_card_removed);
1998 
1999 void mmc_rescan(struct work_struct *work)
2000 {
2001 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2002 	struct mmc_host *host =
2003 		container_of(work, struct mmc_host, detect.work);
2004 	int i;
2005 
2006 	if (host->rescan_disable)
2007 		return;
2008 
2009 	mmc_bus_get(host);
2010 
2011 	/*
2012 	 * if there is a _removable_ card registered, check whether it is
2013 	 * still present
2014 	 */
2015 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2016 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2017 		host->bus_ops->detect(host);
2018 
2019 	host->detect_change = 0;
2020 
2021 	/*
2022 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2023 	 * the card is no longer present.
2024 	 */
2025 	mmc_bus_put(host);
2026 	mmc_bus_get(host);
2027 
2028 	/* if there still is a card present, stop here */
2029 	if (host->bus_ops != NULL) {
2030 		mmc_bus_put(host);
2031 		goto out;
2032 	}
2033 
2034 	/*
2035 	 * Only we can add a new handler, so it's safe to
2036 	 * release the lock here.
2037 	 */
2038 	mmc_bus_put(host);
2039 
2040 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2041 		goto out;
2042 
2043 	mmc_claim_host(host);
2044 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2045 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2046 			break;
2047 		if (freqs[i] <= host->f_min)
2048 			break;
2049 	}
2050 	mmc_release_host(host);
2051 
2052  out:
2053 	if (host->caps & MMC_CAP_NEEDS_POLL)
2054 		mmc_schedule_delayed_work(&host->detect, HZ);
2055 }
2056 
2057 void mmc_start_host(struct mmc_host *host)
2058 {
2059 	mmc_power_off(host);
2060 	mmc_detect_change(host, 0);
2061 }
2062 
2063 void mmc_stop_host(struct mmc_host *host)
2064 {
2065 #ifdef CONFIG_MMC_DEBUG
2066 	unsigned long flags;
2067 	spin_lock_irqsave(&host->lock, flags);
2068 	host->removed = 1;
2069 	spin_unlock_irqrestore(&host->lock, flags);
2070 #endif
2071 
2072 	cancel_delayed_work_sync(&host->detect);
2073 	mmc_flush_scheduled_work();
2074 
2075 	/* clear pm flags now and let card drivers set them as needed */
2076 	host->pm_flags = 0;
2077 
2078 	mmc_bus_get(host);
2079 	if (host->bus_ops && !host->bus_dead) {
2080 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2081 		if (host->bus_ops->remove)
2082 			host->bus_ops->remove(host);
2083 
2084 		mmc_claim_host(host);
2085 		mmc_detach_bus(host);
2086 		mmc_power_off(host);
2087 		mmc_release_host(host);
2088 		mmc_bus_put(host);
2089 		return;
2090 	}
2091 	mmc_bus_put(host);
2092 
2093 	BUG_ON(host->card);
2094 
2095 	mmc_power_off(host);
2096 }
2097 
2098 int mmc_power_save_host(struct mmc_host *host)
2099 {
2100 	int ret = 0;
2101 
2102 #ifdef CONFIG_MMC_DEBUG
2103 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2104 #endif
2105 
2106 	mmc_bus_get(host);
2107 
2108 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2109 		mmc_bus_put(host);
2110 		return -EINVAL;
2111 	}
2112 
2113 	if (host->bus_ops->power_save)
2114 		ret = host->bus_ops->power_save(host);
2115 
2116 	mmc_bus_put(host);
2117 
2118 	mmc_power_off(host);
2119 
2120 	return ret;
2121 }
2122 EXPORT_SYMBOL(mmc_power_save_host);
2123 
2124 int mmc_power_restore_host(struct mmc_host *host)
2125 {
2126 	int ret;
2127 
2128 #ifdef CONFIG_MMC_DEBUG
2129 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2130 #endif
2131 
2132 	mmc_bus_get(host);
2133 
2134 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2135 		mmc_bus_put(host);
2136 		return -EINVAL;
2137 	}
2138 
2139 	mmc_power_up(host);
2140 	ret = host->bus_ops->power_restore(host);
2141 
2142 	mmc_bus_put(host);
2143 
2144 	return ret;
2145 }
2146 EXPORT_SYMBOL(mmc_power_restore_host);
2147 
2148 int mmc_card_awake(struct mmc_host *host)
2149 {
2150 	int err = -ENOSYS;
2151 
2152 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2153 		return 0;
2154 
2155 	mmc_bus_get(host);
2156 
2157 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2158 		err = host->bus_ops->awake(host);
2159 
2160 	mmc_bus_put(host);
2161 
2162 	return err;
2163 }
2164 EXPORT_SYMBOL(mmc_card_awake);
2165 
2166 int mmc_card_sleep(struct mmc_host *host)
2167 {
2168 	int err = -ENOSYS;
2169 
2170 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2171 		return 0;
2172 
2173 	mmc_bus_get(host);
2174 
2175 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2176 		err = host->bus_ops->sleep(host);
2177 
2178 	mmc_bus_put(host);
2179 
2180 	return err;
2181 }
2182 EXPORT_SYMBOL(mmc_card_sleep);
2183 
2184 int mmc_card_can_sleep(struct mmc_host *host)
2185 {
2186 	struct mmc_card *card = host->card;
2187 
2188 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2189 		return 1;
2190 	return 0;
2191 }
2192 EXPORT_SYMBOL(mmc_card_can_sleep);
2193 
2194 /*
2195  * Flush the cache to the non-volatile storage.
2196  */
2197 int mmc_flush_cache(struct mmc_card *card)
2198 {
2199 	struct mmc_host *host = card->host;
2200 	int err = 0;
2201 
2202 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2203 		return err;
2204 
2205 	if (mmc_card_mmc(card) &&
2206 			(card->ext_csd.cache_size > 0) &&
2207 			(card->ext_csd.cache_ctrl & 1)) {
2208 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2209 				EXT_CSD_FLUSH_CACHE, 1, 0);
2210 		if (err)
2211 			pr_err("%s: cache flush error %d\n",
2212 					mmc_hostname(card->host), err);
2213 	}
2214 
2215 	return err;
2216 }
2217 EXPORT_SYMBOL(mmc_flush_cache);
2218 
2219 /*
2220  * Turn the cache ON/OFF.
2221  * Turning the cache OFF shall trigger flushing of the data
2222  * to the non-volatile storage.
2223  */
2224 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2225 {
2226 	struct mmc_card *card = host->card;
2227 	unsigned int timeout;
2228 	int err = 0;
2229 
2230 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2231 			mmc_card_is_removable(host))
2232 		return err;
2233 
2234 	if (card && mmc_card_mmc(card) &&
2235 			(card->ext_csd.cache_size > 0)) {
2236 		enable = !!enable;
2237 
2238 		if (card->ext_csd.cache_ctrl ^ enable) {
2239 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2240 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2241 					EXT_CSD_CACHE_CTRL, enable, timeout);
2242 			if (err)
2243 				pr_err("%s: cache %s error %d\n",
2244 						mmc_hostname(card->host),
2245 						enable ? "on" : "off",
2246 						err);
2247 			else
2248 				card->ext_csd.cache_ctrl = enable;
2249 		}
2250 	}
2251 
2252 	return err;
2253 }
2254 EXPORT_SYMBOL(mmc_cache_ctrl);
2255 
2256 #ifdef CONFIG_PM
2257 
2258 /**
2259  *	mmc_suspend_host - suspend a host
2260  *	@host: mmc host
2261  */
2262 int mmc_suspend_host(struct mmc_host *host)
2263 {
2264 	int err = 0;
2265 
2266 	cancel_delayed_work(&host->detect);
2267 	mmc_flush_scheduled_work();
2268 	if (mmc_try_claim_host(host)) {
2269 		err = mmc_cache_ctrl(host, 0);
2270 		mmc_release_host(host);
2271 	} else {
2272 		err = -EBUSY;
2273 	}
2274 
2275 	if (err)
2276 		goto out;
2277 
2278 	mmc_bus_get(host);
2279 	if (host->bus_ops && !host->bus_dead) {
2280 
2281 		/*
2282 		 * A long response time is not acceptable for device drivers
2283 		 * when doing suspend. Prevent mmc_claim_host in the suspend
2284 		 * sequence, to potentially wait "forever" by trying to
2285 		 * pre-claim the host.
2286 		 */
2287 		if (mmc_try_claim_host(host)) {
2288 			if (host->bus_ops->suspend) {
2289 				err = host->bus_ops->suspend(host);
2290 			}
2291 			mmc_release_host(host);
2292 
2293 			if (err == -ENOSYS || !host->bus_ops->resume) {
2294 				/*
2295 				 * We simply "remove" the card in this case.
2296 				 * It will be redetected on resume.  (Calling
2297 				 * bus_ops->remove() with a claimed host can
2298 				 * deadlock.)
2299 				 */
2300 				if (host->bus_ops->remove)
2301 					host->bus_ops->remove(host);
2302 				mmc_claim_host(host);
2303 				mmc_detach_bus(host);
2304 				mmc_power_off(host);
2305 				mmc_release_host(host);
2306 				host->pm_flags = 0;
2307 				err = 0;
2308 			}
2309 		} else {
2310 			err = -EBUSY;
2311 		}
2312 	}
2313 	mmc_bus_put(host);
2314 
2315 	if (!err && !mmc_card_keep_power(host))
2316 		mmc_power_off(host);
2317 
2318 out:
2319 	return err;
2320 }
2321 
2322 EXPORT_SYMBOL(mmc_suspend_host);
2323 
2324 /**
2325  *	mmc_resume_host - resume a previously suspended host
2326  *	@host: mmc host
2327  */
2328 int mmc_resume_host(struct mmc_host *host)
2329 {
2330 	int err = 0;
2331 
2332 	mmc_bus_get(host);
2333 	if (host->bus_ops && !host->bus_dead) {
2334 		if (!mmc_card_keep_power(host)) {
2335 			mmc_power_up(host);
2336 			mmc_select_voltage(host, host->ocr);
2337 			/*
2338 			 * Tell runtime PM core we just powered up the card,
2339 			 * since it still believes the card is powered off.
2340 			 * Note that currently runtime PM is only enabled
2341 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2342 			 */
2343 			if (mmc_card_sdio(host->card) &&
2344 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2345 				pm_runtime_disable(&host->card->dev);
2346 				pm_runtime_set_active(&host->card->dev);
2347 				pm_runtime_enable(&host->card->dev);
2348 			}
2349 		}
2350 		BUG_ON(!host->bus_ops->resume);
2351 		err = host->bus_ops->resume(host);
2352 		if (err) {
2353 			pr_warning("%s: error %d during resume "
2354 					    "(card was removed?)\n",
2355 					    mmc_hostname(host), err);
2356 			err = 0;
2357 		}
2358 	}
2359 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2360 	mmc_bus_put(host);
2361 
2362 	return err;
2363 }
2364 EXPORT_SYMBOL(mmc_resume_host);
2365 
2366 /* Do the card removal on suspend if card is assumed removeable
2367  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2368    to sync the card.
2369 */
2370 int mmc_pm_notify(struct notifier_block *notify_block,
2371 					unsigned long mode, void *unused)
2372 {
2373 	struct mmc_host *host = container_of(
2374 		notify_block, struct mmc_host, pm_notify);
2375 	unsigned long flags;
2376 
2377 
2378 	switch (mode) {
2379 	case PM_HIBERNATION_PREPARE:
2380 	case PM_SUSPEND_PREPARE:
2381 
2382 		spin_lock_irqsave(&host->lock, flags);
2383 		host->rescan_disable = 1;
2384 		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2385 		spin_unlock_irqrestore(&host->lock, flags);
2386 		cancel_delayed_work_sync(&host->detect);
2387 
2388 		if (!host->bus_ops || host->bus_ops->suspend)
2389 			break;
2390 
2391 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2392 		if (host->bus_ops->remove)
2393 			host->bus_ops->remove(host);
2394 
2395 		mmc_claim_host(host);
2396 		mmc_detach_bus(host);
2397 		mmc_power_off(host);
2398 		mmc_release_host(host);
2399 		host->pm_flags = 0;
2400 		break;
2401 
2402 	case PM_POST_SUSPEND:
2403 	case PM_POST_HIBERNATION:
2404 	case PM_POST_RESTORE:
2405 
2406 		spin_lock_irqsave(&host->lock, flags);
2407 		host->rescan_disable = 0;
2408 		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2409 		spin_unlock_irqrestore(&host->lock, flags);
2410 		mmc_detect_change(host, 0);
2411 
2412 	}
2413 
2414 	return 0;
2415 }
2416 #endif
2417 
2418 static int __init mmc_init(void)
2419 {
2420 	int ret;
2421 
2422 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2423 	if (!workqueue)
2424 		return -ENOMEM;
2425 
2426 	ret = mmc_register_bus();
2427 	if (ret)
2428 		goto destroy_workqueue;
2429 
2430 	ret = mmc_register_host_class();
2431 	if (ret)
2432 		goto unregister_bus;
2433 
2434 	ret = sdio_register_bus();
2435 	if (ret)
2436 		goto unregister_host_class;
2437 
2438 	return 0;
2439 
2440 unregister_host_class:
2441 	mmc_unregister_host_class();
2442 unregister_bus:
2443 	mmc_unregister_bus();
2444 destroy_workqueue:
2445 	destroy_workqueue(workqueue);
2446 
2447 	return ret;
2448 }
2449 
2450 static void __exit mmc_exit(void)
2451 {
2452 	sdio_unregister_bus();
2453 	mmc_unregister_host_class();
2454 	mmc_unregister_bus();
2455 	destroy_workqueue(workqueue);
2456 }
2457 
2458 subsys_initcall(mmc_init);
2459 module_exit(mmc_exit);
2460 
2461 MODULE_LICENSE("GPL");
2462