1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/core.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 9 */ 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/completion.h> 14 #include <linux/device.h> 15 #include <linux/delay.h> 16 #include <linux/pagemap.h> 17 #include <linux/err.h> 18 #include <linux/leds.h> 19 #include <linux/scatterlist.h> 20 #include <linux/log2.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/pm_wakeup.h> 23 #include <linux/suspend.h> 24 #include <linux/fault-inject.h> 25 #include <linux/random.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 29 #include <linux/mmc/card.h> 30 #include <linux/mmc/host.h> 31 #include <linux/mmc/mmc.h> 32 #include <linux/mmc/sd.h> 33 #include <linux/mmc/slot-gpio.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/mmc.h> 37 38 #include "core.h" 39 #include "card.h" 40 #include "crypto.h" 41 #include "bus.h" 42 #include "host.h" 43 #include "sdio_bus.h" 44 #include "pwrseq.h" 45 46 #include "mmc_ops.h" 47 #include "sd_ops.h" 48 #include "sdio_ops.h" 49 50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 52 #define SD_DISCARD_TIMEOUT_MS (250) 53 54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 55 56 /* 57 * Enabling software CRCs on the data blocks can be a significant (30%) 58 * performance cost, and for other reasons may not always be desired. 59 * So we allow it it to be disabled. 60 */ 61 bool use_spi_crc = 1; 62 module_param(use_spi_crc, bool, 0); 63 64 static int mmc_schedule_delayed_work(struct delayed_work *work, 65 unsigned long delay) 66 { 67 /* 68 * We use the system_freezable_wq, because of two reasons. 69 * First, it allows several works (not the same work item) to be 70 * executed simultaneously. Second, the queue becomes frozen when 71 * userspace becomes frozen during system PM. 72 */ 73 return queue_delayed_work(system_freezable_wq, work, delay); 74 } 75 76 #ifdef CONFIG_FAIL_MMC_REQUEST 77 78 /* 79 * Internal function. Inject random data errors. 80 * If mmc_data is NULL no errors are injected. 81 */ 82 static void mmc_should_fail_request(struct mmc_host *host, 83 struct mmc_request *mrq) 84 { 85 struct mmc_command *cmd = mrq->cmd; 86 struct mmc_data *data = mrq->data; 87 static const int data_errors[] = { 88 -ETIMEDOUT, 89 -EILSEQ, 90 -EIO, 91 }; 92 93 if (!data) 94 return; 95 96 if ((cmd && cmd->error) || data->error || 97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 98 return; 99 100 data->error = data_errors[prandom_u32_max(ARRAY_SIZE(data_errors))]; 101 data->bytes_xfered = prandom_u32_max(data->bytes_xfered >> 9) << 9; 102 } 103 104 #else /* CONFIG_FAIL_MMC_REQUEST */ 105 106 static inline void mmc_should_fail_request(struct mmc_host *host, 107 struct mmc_request *mrq) 108 { 109 } 110 111 #endif /* CONFIG_FAIL_MMC_REQUEST */ 112 113 static inline void mmc_complete_cmd(struct mmc_request *mrq) 114 { 115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 116 complete_all(&mrq->cmd_completion); 117 } 118 119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 120 { 121 if (!mrq->cap_cmd_during_tfr) 122 return; 123 124 mmc_complete_cmd(mrq); 125 126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 127 mmc_hostname(host), mrq->cmd->opcode); 128 } 129 EXPORT_SYMBOL(mmc_command_done); 130 131 /** 132 * mmc_request_done - finish processing an MMC request 133 * @host: MMC host which completed request 134 * @mrq: MMC request which request 135 * 136 * MMC drivers should call this function when they have completed 137 * their processing of a request. 138 */ 139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 140 { 141 struct mmc_command *cmd = mrq->cmd; 142 int err = cmd->error; 143 144 /* Flag re-tuning needed on CRC errors */ 145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK && 146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 && 147 !host->retune_crc_disable && 148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 149 (mrq->data && mrq->data->error == -EILSEQ) || 150 (mrq->stop && mrq->stop->error == -EILSEQ))) 151 mmc_retune_needed(host); 152 153 if (err && cmd->retries && mmc_host_is_spi(host)) { 154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 155 cmd->retries = 0; 156 } 157 158 if (host->ongoing_mrq == mrq) 159 host->ongoing_mrq = NULL; 160 161 mmc_complete_cmd(mrq); 162 163 trace_mmc_request_done(host, mrq); 164 165 /* 166 * We list various conditions for the command to be considered 167 * properly done: 168 * 169 * - There was no error, OK fine then 170 * - We are not doing some kind of retry 171 * - The card was removed (...so just complete everything no matter 172 * if there are errors or retries) 173 */ 174 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 175 mmc_should_fail_request(host, mrq); 176 177 if (!host->ongoing_mrq) 178 led_trigger_event(host->led, LED_OFF); 179 180 if (mrq->sbc) { 181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 182 mmc_hostname(host), mrq->sbc->opcode, 183 mrq->sbc->error, 184 mrq->sbc->resp[0], mrq->sbc->resp[1], 185 mrq->sbc->resp[2], mrq->sbc->resp[3]); 186 } 187 188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 189 mmc_hostname(host), cmd->opcode, err, 190 cmd->resp[0], cmd->resp[1], 191 cmd->resp[2], cmd->resp[3]); 192 193 if (mrq->data) { 194 pr_debug("%s: %d bytes transferred: %d\n", 195 mmc_hostname(host), 196 mrq->data->bytes_xfered, mrq->data->error); 197 } 198 199 if (mrq->stop) { 200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 201 mmc_hostname(host), mrq->stop->opcode, 202 mrq->stop->error, 203 mrq->stop->resp[0], mrq->stop->resp[1], 204 mrq->stop->resp[2], mrq->stop->resp[3]); 205 } 206 } 207 /* 208 * Request starter must handle retries - see 209 * mmc_wait_for_req_done(). 210 */ 211 if (mrq->done) 212 mrq->done(mrq); 213 } 214 215 EXPORT_SYMBOL(mmc_request_done); 216 217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 218 { 219 int err; 220 221 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 222 err = mmc_retune(host); 223 if (err) { 224 mrq->cmd->error = err; 225 mmc_request_done(host, mrq); 226 return; 227 } 228 229 /* 230 * For sdio rw commands we must wait for card busy otherwise some 231 * sdio devices won't work properly. 232 * And bypass I/O abort, reset and bus suspend operations. 233 */ 234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 235 host->ops->card_busy) { 236 int tries = 500; /* Wait aprox 500ms at maximum */ 237 238 while (host->ops->card_busy(host) && --tries) 239 mmc_delay(1); 240 241 if (tries == 0) { 242 mrq->cmd->error = -EBUSY; 243 mmc_request_done(host, mrq); 244 return; 245 } 246 } 247 248 if (mrq->cap_cmd_during_tfr) { 249 host->ongoing_mrq = mrq; 250 /* 251 * Retry path could come through here without having waiting on 252 * cmd_completion, so ensure it is reinitialised. 253 */ 254 reinit_completion(&mrq->cmd_completion); 255 } 256 257 trace_mmc_request_start(host, mrq); 258 259 if (host->cqe_on) 260 host->cqe_ops->cqe_off(host); 261 262 host->ops->request(host, mrq); 263 } 264 265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, 266 bool cqe) 267 { 268 if (mrq->sbc) { 269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 270 mmc_hostname(host), mrq->sbc->opcode, 271 mrq->sbc->arg, mrq->sbc->flags); 272 } 273 274 if (mrq->cmd) { 275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", 276 mmc_hostname(host), cqe ? "CQE direct " : "", 277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); 278 } else if (cqe) { 279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", 280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); 281 } 282 283 if (mrq->data) { 284 pr_debug("%s: blksz %d blocks %d flags %08x " 285 "tsac %d ms nsac %d\n", 286 mmc_hostname(host), mrq->data->blksz, 287 mrq->data->blocks, mrq->data->flags, 288 mrq->data->timeout_ns / 1000000, 289 mrq->data->timeout_clks); 290 } 291 292 if (mrq->stop) { 293 pr_debug("%s: CMD%u arg %08x flags %08x\n", 294 mmc_hostname(host), mrq->stop->opcode, 295 mrq->stop->arg, mrq->stop->flags); 296 } 297 } 298 299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 300 { 301 unsigned int i, sz = 0; 302 struct scatterlist *sg; 303 304 if (mrq->cmd) { 305 mrq->cmd->error = 0; 306 mrq->cmd->mrq = mrq; 307 mrq->cmd->data = mrq->data; 308 } 309 if (mrq->sbc) { 310 mrq->sbc->error = 0; 311 mrq->sbc->mrq = mrq; 312 } 313 if (mrq->data) { 314 if (mrq->data->blksz > host->max_blk_size || 315 mrq->data->blocks > host->max_blk_count || 316 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 317 return -EINVAL; 318 319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 320 sz += sg->length; 321 if (sz != mrq->data->blocks * mrq->data->blksz) 322 return -EINVAL; 323 324 mrq->data->error = 0; 325 mrq->data->mrq = mrq; 326 if (mrq->stop) { 327 mrq->data->stop = mrq->stop; 328 mrq->stop->error = 0; 329 mrq->stop->mrq = mrq; 330 } 331 } 332 333 return 0; 334 } 335 336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 337 { 338 int err; 339 340 init_completion(&mrq->cmd_completion); 341 342 mmc_retune_hold(host); 343 344 if (mmc_card_removed(host->card)) 345 return -ENOMEDIUM; 346 347 mmc_mrq_pr_debug(host, mrq, false); 348 349 WARN_ON(!host->claimed); 350 351 err = mmc_mrq_prep(host, mrq); 352 if (err) 353 return err; 354 355 led_trigger_event(host->led, LED_FULL); 356 __mmc_start_request(host, mrq); 357 358 return 0; 359 } 360 EXPORT_SYMBOL(mmc_start_request); 361 362 static void mmc_wait_done(struct mmc_request *mrq) 363 { 364 complete(&mrq->completion); 365 } 366 367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 368 { 369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 370 371 /* 372 * If there is an ongoing transfer, wait for the command line to become 373 * available. 374 */ 375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 376 wait_for_completion(&ongoing_mrq->cmd_completion); 377 } 378 379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 380 { 381 int err; 382 383 mmc_wait_ongoing_tfr_cmd(host); 384 385 init_completion(&mrq->completion); 386 mrq->done = mmc_wait_done; 387 388 err = mmc_start_request(host, mrq); 389 if (err) { 390 mrq->cmd->error = err; 391 mmc_complete_cmd(mrq); 392 complete(&mrq->completion); 393 } 394 395 return err; 396 } 397 398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 399 { 400 struct mmc_command *cmd; 401 402 while (1) { 403 wait_for_completion(&mrq->completion); 404 405 cmd = mrq->cmd; 406 407 if (!cmd->error || !cmd->retries || 408 mmc_card_removed(host->card)) 409 break; 410 411 mmc_retune_recheck(host); 412 413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 414 mmc_hostname(host), cmd->opcode, cmd->error); 415 cmd->retries--; 416 cmd->error = 0; 417 __mmc_start_request(host, mrq); 418 } 419 420 mmc_retune_release(host); 421 } 422 EXPORT_SYMBOL(mmc_wait_for_req_done); 423 424 /* 425 * mmc_cqe_start_req - Start a CQE request. 426 * @host: MMC host to start the request 427 * @mrq: request to start 428 * 429 * Start the request, re-tuning if needed and it is possible. Returns an error 430 * code if the request fails to start or -EBUSY if CQE is busy. 431 */ 432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 433 { 434 int err; 435 436 /* 437 * CQE cannot process re-tuning commands. Caller must hold retuning 438 * while CQE is in use. Re-tuning can happen here only when CQE has no 439 * active requests i.e. this is the first. Note, re-tuning will call 440 * ->cqe_off(). 441 */ 442 err = mmc_retune(host); 443 if (err) 444 goto out_err; 445 446 mrq->host = host; 447 448 mmc_mrq_pr_debug(host, mrq, true); 449 450 err = mmc_mrq_prep(host, mrq); 451 if (err) 452 goto out_err; 453 454 err = host->cqe_ops->cqe_request(host, mrq); 455 if (err) 456 goto out_err; 457 458 trace_mmc_request_start(host, mrq); 459 460 return 0; 461 462 out_err: 463 if (mrq->cmd) { 464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", 465 mmc_hostname(host), mrq->cmd->opcode, err); 466 } else { 467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", 468 mmc_hostname(host), mrq->tag, err); 469 } 470 return err; 471 } 472 EXPORT_SYMBOL(mmc_cqe_start_req); 473 474 /** 475 * mmc_cqe_request_done - CQE has finished processing an MMC request 476 * @host: MMC host which completed request 477 * @mrq: MMC request which completed 478 * 479 * CQE drivers should call this function when they have completed 480 * their processing of a request. 481 */ 482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) 483 { 484 mmc_should_fail_request(host, mrq); 485 486 /* Flag re-tuning needed on CRC errors */ 487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || 488 (mrq->data && mrq->data->error == -EILSEQ)) 489 mmc_retune_needed(host); 490 491 trace_mmc_request_done(host, mrq); 492 493 if (mrq->cmd) { 494 pr_debug("%s: CQE req done (direct CMD%u): %d\n", 495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); 496 } else { 497 pr_debug("%s: CQE transfer done tag %d\n", 498 mmc_hostname(host), mrq->tag); 499 } 500 501 if (mrq->data) { 502 pr_debug("%s: %d bytes transferred: %d\n", 503 mmc_hostname(host), 504 mrq->data->bytes_xfered, mrq->data->error); 505 } 506 507 mrq->done(mrq); 508 } 509 EXPORT_SYMBOL(mmc_cqe_request_done); 510 511 /** 512 * mmc_cqe_post_req - CQE post process of a completed MMC request 513 * @host: MMC host 514 * @mrq: MMC request to be processed 515 */ 516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) 517 { 518 if (host->cqe_ops->cqe_post_req) 519 host->cqe_ops->cqe_post_req(host, mrq); 520 } 521 EXPORT_SYMBOL(mmc_cqe_post_req); 522 523 /* Arbitrary 1 second timeout */ 524 #define MMC_CQE_RECOVERY_TIMEOUT 1000 525 526 /* 527 * mmc_cqe_recovery - Recover from CQE errors. 528 * @host: MMC host to recover 529 * 530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in 531 * in eMMC, and discarding the queue in CQE. CQE must call 532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC 533 * fails to discard its queue. 534 */ 535 int mmc_cqe_recovery(struct mmc_host *host) 536 { 537 struct mmc_command cmd; 538 int err; 539 540 mmc_retune_hold_now(host); 541 542 /* 543 * Recovery is expected seldom, if at all, but it reduces performance, 544 * so make sure it is not completely silent. 545 */ 546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); 547 548 host->cqe_ops->cqe_recovery_start(host); 549 550 memset(&cmd, 0, sizeof(cmd)); 551 cmd.opcode = MMC_STOP_TRANSMISSION; 552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 555 mmc_wait_for_cmd(host, &cmd, 0); 556 557 memset(&cmd, 0, sizeof(cmd)); 558 cmd.opcode = MMC_CMDQ_TASK_MGMT; 559 cmd.arg = 1; /* Discard entire queue */ 560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 563 err = mmc_wait_for_cmd(host, &cmd, 0); 564 565 host->cqe_ops->cqe_recovery_finish(host); 566 567 mmc_retune_release(host); 568 569 return err; 570 } 571 EXPORT_SYMBOL(mmc_cqe_recovery); 572 573 /** 574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 575 * @host: MMC host 576 * @mrq: MMC request 577 * 578 * mmc_is_req_done() is used with requests that have 579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 580 * starting a request and before waiting for it to complete. That is, 581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 582 * and before mmc_wait_for_req_done(). If it is called at other times the 583 * result is not meaningful. 584 */ 585 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 586 { 587 return completion_done(&mrq->completion); 588 } 589 EXPORT_SYMBOL(mmc_is_req_done); 590 591 /** 592 * mmc_wait_for_req - start a request and wait for completion 593 * @host: MMC host to start command 594 * @mrq: MMC request to start 595 * 596 * Start a new MMC custom command request for a host, and wait 597 * for the command to complete. In the case of 'cap_cmd_during_tfr' 598 * requests, the transfer is ongoing and the caller can issue further 599 * commands that do not use the data lines, and then wait by calling 600 * mmc_wait_for_req_done(). 601 * Does not attempt to parse the response. 602 */ 603 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 604 { 605 __mmc_start_req(host, mrq); 606 607 if (!mrq->cap_cmd_during_tfr) 608 mmc_wait_for_req_done(host, mrq); 609 } 610 EXPORT_SYMBOL(mmc_wait_for_req); 611 612 /** 613 * mmc_wait_for_cmd - start a command and wait for completion 614 * @host: MMC host to start command 615 * @cmd: MMC command to start 616 * @retries: maximum number of retries 617 * 618 * Start a new MMC command for a host, and wait for the command 619 * to complete. Return any error that occurred while the command 620 * was executing. Do not attempt to parse the response. 621 */ 622 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 623 { 624 struct mmc_request mrq = {}; 625 626 WARN_ON(!host->claimed); 627 628 memset(cmd->resp, 0, sizeof(cmd->resp)); 629 cmd->retries = retries; 630 631 mrq.cmd = cmd; 632 cmd->data = NULL; 633 634 mmc_wait_for_req(host, &mrq); 635 636 return cmd->error; 637 } 638 639 EXPORT_SYMBOL(mmc_wait_for_cmd); 640 641 /** 642 * mmc_set_data_timeout - set the timeout for a data command 643 * @data: data phase for command 644 * @card: the MMC card associated with the data transfer 645 * 646 * Computes the data timeout parameters according to the 647 * correct algorithm given the card type. 648 */ 649 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 650 { 651 unsigned int mult; 652 653 /* 654 * SDIO cards only define an upper 1 s limit on access. 655 */ 656 if (mmc_card_sdio(card)) { 657 data->timeout_ns = 1000000000; 658 data->timeout_clks = 0; 659 return; 660 } 661 662 /* 663 * SD cards use a 100 multiplier rather than 10 664 */ 665 mult = mmc_card_sd(card) ? 100 : 10; 666 667 /* 668 * Scale up the multiplier (and therefore the timeout) by 669 * the r2w factor for writes. 670 */ 671 if (data->flags & MMC_DATA_WRITE) 672 mult <<= card->csd.r2w_factor; 673 674 data->timeout_ns = card->csd.taac_ns * mult; 675 data->timeout_clks = card->csd.taac_clks * mult; 676 677 /* 678 * SD cards also have an upper limit on the timeout. 679 */ 680 if (mmc_card_sd(card)) { 681 unsigned int timeout_us, limit_us; 682 683 timeout_us = data->timeout_ns / 1000; 684 if (card->host->ios.clock) 685 timeout_us += data->timeout_clks * 1000 / 686 (card->host->ios.clock / 1000); 687 688 if (data->flags & MMC_DATA_WRITE) 689 /* 690 * The MMC spec "It is strongly recommended 691 * for hosts to implement more than 500ms 692 * timeout value even if the card indicates 693 * the 250ms maximum busy length." Even the 694 * previous value of 300ms is known to be 695 * insufficient for some cards. 696 */ 697 limit_us = 3000000; 698 else 699 limit_us = 100000; 700 701 /* 702 * SDHC cards always use these fixed values. 703 */ 704 if (timeout_us > limit_us) { 705 data->timeout_ns = limit_us * 1000; 706 data->timeout_clks = 0; 707 } 708 709 /* assign limit value if invalid */ 710 if (timeout_us == 0) 711 data->timeout_ns = limit_us * 1000; 712 } 713 714 /* 715 * Some cards require longer data read timeout than indicated in CSD. 716 * Address this by setting the read timeout to a "reasonably high" 717 * value. For the cards tested, 600ms has proven enough. If necessary, 718 * this value can be increased if other problematic cards require this. 719 */ 720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 721 data->timeout_ns = 600000000; 722 data->timeout_clks = 0; 723 } 724 725 /* 726 * Some cards need very high timeouts if driven in SPI mode. 727 * The worst observed timeout was 900ms after writing a 728 * continuous stream of data until the internal logic 729 * overflowed. 730 */ 731 if (mmc_host_is_spi(card->host)) { 732 if (data->flags & MMC_DATA_WRITE) { 733 if (data->timeout_ns < 1000000000) 734 data->timeout_ns = 1000000000; /* 1s */ 735 } else { 736 if (data->timeout_ns < 100000000) 737 data->timeout_ns = 100000000; /* 100ms */ 738 } 739 } 740 } 741 EXPORT_SYMBOL(mmc_set_data_timeout); 742 743 /* 744 * Allow claiming an already claimed host if the context is the same or there is 745 * no context but the task is the same. 746 */ 747 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, 748 struct task_struct *task) 749 { 750 return host->claimer == ctx || 751 (!ctx && task && host->claimer->task == task); 752 } 753 754 static inline void mmc_ctx_set_claimer(struct mmc_host *host, 755 struct mmc_ctx *ctx, 756 struct task_struct *task) 757 { 758 if (!host->claimer) { 759 if (ctx) 760 host->claimer = ctx; 761 else 762 host->claimer = &host->default_ctx; 763 } 764 if (task) 765 host->claimer->task = task; 766 } 767 768 /** 769 * __mmc_claim_host - exclusively claim a host 770 * @host: mmc host to claim 771 * @ctx: context that claims the host or NULL in which case the default 772 * context will be used 773 * @abort: whether or not the operation should be aborted 774 * 775 * Claim a host for a set of operations. If @abort is non null and 776 * dereference a non-zero value then this will return prematurely with 777 * that non-zero value without acquiring the lock. Returns zero 778 * with the lock held otherwise. 779 */ 780 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, 781 atomic_t *abort) 782 { 783 struct task_struct *task = ctx ? NULL : current; 784 DECLARE_WAITQUEUE(wait, current); 785 unsigned long flags; 786 int stop; 787 bool pm = false; 788 789 might_sleep(); 790 791 add_wait_queue(&host->wq, &wait); 792 spin_lock_irqsave(&host->lock, flags); 793 while (1) { 794 set_current_state(TASK_UNINTERRUPTIBLE); 795 stop = abort ? atomic_read(abort) : 0; 796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) 797 break; 798 spin_unlock_irqrestore(&host->lock, flags); 799 schedule(); 800 spin_lock_irqsave(&host->lock, flags); 801 } 802 set_current_state(TASK_RUNNING); 803 if (!stop) { 804 host->claimed = 1; 805 mmc_ctx_set_claimer(host, ctx, task); 806 host->claim_cnt += 1; 807 if (host->claim_cnt == 1) 808 pm = true; 809 } else 810 wake_up(&host->wq); 811 spin_unlock_irqrestore(&host->lock, flags); 812 remove_wait_queue(&host->wq, &wait); 813 814 if (pm) 815 pm_runtime_get_sync(mmc_dev(host)); 816 817 return stop; 818 } 819 EXPORT_SYMBOL(__mmc_claim_host); 820 821 /** 822 * mmc_release_host - release a host 823 * @host: mmc host to release 824 * 825 * Release a MMC host, allowing others to claim the host 826 * for their operations. 827 */ 828 void mmc_release_host(struct mmc_host *host) 829 { 830 unsigned long flags; 831 832 WARN_ON(!host->claimed); 833 834 spin_lock_irqsave(&host->lock, flags); 835 if (--host->claim_cnt) { 836 /* Release for nested claim */ 837 spin_unlock_irqrestore(&host->lock, flags); 838 } else { 839 host->claimed = 0; 840 host->claimer->task = NULL; 841 host->claimer = NULL; 842 spin_unlock_irqrestore(&host->lock, flags); 843 wake_up(&host->wq); 844 pm_runtime_mark_last_busy(mmc_dev(host)); 845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) 846 pm_runtime_put_sync_suspend(mmc_dev(host)); 847 else 848 pm_runtime_put_autosuspend(mmc_dev(host)); 849 } 850 } 851 EXPORT_SYMBOL(mmc_release_host); 852 853 /* 854 * This is a helper function, which fetches a runtime pm reference for the 855 * card device and also claims the host. 856 */ 857 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) 858 { 859 pm_runtime_get_sync(&card->dev); 860 __mmc_claim_host(card->host, ctx, NULL); 861 } 862 EXPORT_SYMBOL(mmc_get_card); 863 864 /* 865 * This is a helper function, which releases the host and drops the runtime 866 * pm reference for the card device. 867 */ 868 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) 869 { 870 struct mmc_host *host = card->host; 871 872 WARN_ON(ctx && host->claimer != ctx); 873 874 mmc_release_host(host); 875 pm_runtime_mark_last_busy(&card->dev); 876 pm_runtime_put_autosuspend(&card->dev); 877 } 878 EXPORT_SYMBOL(mmc_put_card); 879 880 /* 881 * Internal function that does the actual ios call to the host driver, 882 * optionally printing some debug output. 883 */ 884 static inline void mmc_set_ios(struct mmc_host *host) 885 { 886 struct mmc_ios *ios = &host->ios; 887 888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 889 "width %u timing %u\n", 890 mmc_hostname(host), ios->clock, ios->bus_mode, 891 ios->power_mode, ios->chip_select, ios->vdd, 892 1 << ios->bus_width, ios->timing); 893 894 host->ops->set_ios(host, ios); 895 } 896 897 /* 898 * Control chip select pin on a host. 899 */ 900 void mmc_set_chip_select(struct mmc_host *host, int mode) 901 { 902 host->ios.chip_select = mode; 903 mmc_set_ios(host); 904 } 905 906 /* 907 * Sets the host clock to the highest possible frequency that 908 * is below "hz". 909 */ 910 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 911 { 912 WARN_ON(hz && hz < host->f_min); 913 914 if (hz > host->f_max) 915 hz = host->f_max; 916 917 host->ios.clock = hz; 918 mmc_set_ios(host); 919 } 920 921 int mmc_execute_tuning(struct mmc_card *card) 922 { 923 struct mmc_host *host = card->host; 924 u32 opcode; 925 int err; 926 927 if (!host->ops->execute_tuning) 928 return 0; 929 930 if (host->cqe_on) 931 host->cqe_ops->cqe_off(host); 932 933 if (mmc_card_mmc(card)) 934 opcode = MMC_SEND_TUNING_BLOCK_HS200; 935 else 936 opcode = MMC_SEND_TUNING_BLOCK; 937 938 err = host->ops->execute_tuning(host, opcode); 939 if (!err) { 940 mmc_retune_clear(host); 941 mmc_retune_enable(host); 942 return 0; 943 } 944 945 /* Only print error when we don't check for card removal */ 946 if (!host->detect_change) { 947 pr_err("%s: tuning execution failed: %d\n", 948 mmc_hostname(host), err); 949 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING); 950 } 951 952 return err; 953 } 954 955 /* 956 * Change the bus mode (open drain/push-pull) of a host. 957 */ 958 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 959 { 960 host->ios.bus_mode = mode; 961 mmc_set_ios(host); 962 } 963 964 /* 965 * Change data bus width of a host. 966 */ 967 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 968 { 969 host->ios.bus_width = width; 970 mmc_set_ios(host); 971 } 972 973 /* 974 * Set initial state after a power cycle or a hw_reset. 975 */ 976 void mmc_set_initial_state(struct mmc_host *host) 977 { 978 if (host->cqe_on) 979 host->cqe_ops->cqe_off(host); 980 981 mmc_retune_disable(host); 982 983 if (mmc_host_is_spi(host)) 984 host->ios.chip_select = MMC_CS_HIGH; 985 else 986 host->ios.chip_select = MMC_CS_DONTCARE; 987 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 988 host->ios.bus_width = MMC_BUS_WIDTH_1; 989 host->ios.timing = MMC_TIMING_LEGACY; 990 host->ios.drv_type = 0; 991 host->ios.enhanced_strobe = false; 992 993 /* 994 * Make sure we are in non-enhanced strobe mode before we 995 * actually enable it in ext_csd. 996 */ 997 if ((host->caps2 & MMC_CAP2_HS400_ES) && 998 host->ops->hs400_enhanced_strobe) 999 host->ops->hs400_enhanced_strobe(host, &host->ios); 1000 1001 mmc_set_ios(host); 1002 1003 mmc_crypto_set_initial_state(host); 1004 } 1005 1006 /** 1007 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1008 * @vdd: voltage (mV) 1009 * @low_bits: prefer low bits in boundary cases 1010 * 1011 * This function returns the OCR bit number according to the provided @vdd 1012 * value. If conversion is not possible a negative errno value returned. 1013 * 1014 * Depending on the @low_bits flag the function prefers low or high OCR bits 1015 * on boundary voltages. For example, 1016 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1017 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1018 * 1019 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1020 */ 1021 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1022 { 1023 const int max_bit = ilog2(MMC_VDD_35_36); 1024 int bit; 1025 1026 if (vdd < 1650 || vdd > 3600) 1027 return -EINVAL; 1028 1029 if (vdd >= 1650 && vdd <= 1950) 1030 return ilog2(MMC_VDD_165_195); 1031 1032 if (low_bits) 1033 vdd -= 1; 1034 1035 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1036 bit = (vdd - 2000) / 100 + 8; 1037 if (bit > max_bit) 1038 return max_bit; 1039 return bit; 1040 } 1041 1042 /** 1043 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1044 * @vdd_min: minimum voltage value (mV) 1045 * @vdd_max: maximum voltage value (mV) 1046 * 1047 * This function returns the OCR mask bits according to the provided @vdd_min 1048 * and @vdd_max values. If conversion is not possible the function returns 0. 1049 * 1050 * Notes wrt boundary cases: 1051 * This function sets the OCR bits for all boundary voltages, for example 1052 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1053 * MMC_VDD_34_35 mask. 1054 */ 1055 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1056 { 1057 u32 mask = 0; 1058 1059 if (vdd_max < vdd_min) 1060 return 0; 1061 1062 /* Prefer high bits for the boundary vdd_max values. */ 1063 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1064 if (vdd_max < 0) 1065 return 0; 1066 1067 /* Prefer low bits for the boundary vdd_min values. */ 1068 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1069 if (vdd_min < 0) 1070 return 0; 1071 1072 /* Fill the mask, from max bit to min bit. */ 1073 while (vdd_max >= vdd_min) 1074 mask |= 1 << vdd_max--; 1075 1076 return mask; 1077 } 1078 1079 static int mmc_of_get_func_num(struct device_node *node) 1080 { 1081 u32 reg; 1082 int ret; 1083 1084 ret = of_property_read_u32(node, "reg", ®); 1085 if (ret < 0) 1086 return ret; 1087 1088 return reg; 1089 } 1090 1091 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1092 unsigned func_num) 1093 { 1094 struct device_node *node; 1095 1096 if (!host->parent || !host->parent->of_node) 1097 return NULL; 1098 1099 for_each_child_of_node(host->parent->of_node, node) { 1100 if (mmc_of_get_func_num(node) == func_num) 1101 return node; 1102 } 1103 1104 return NULL; 1105 } 1106 1107 /* 1108 * Mask off any voltages we don't support and select 1109 * the lowest voltage 1110 */ 1111 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1112 { 1113 int bit; 1114 1115 /* 1116 * Sanity check the voltages that the card claims to 1117 * support. 1118 */ 1119 if (ocr & 0x7F) { 1120 dev_warn(mmc_dev(host), 1121 "card claims to support voltages below defined range\n"); 1122 ocr &= ~0x7F; 1123 } 1124 1125 ocr &= host->ocr_avail; 1126 if (!ocr) { 1127 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1128 return 0; 1129 } 1130 1131 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1132 bit = ffs(ocr) - 1; 1133 ocr &= 3 << bit; 1134 mmc_power_cycle(host, ocr); 1135 } else { 1136 bit = fls(ocr) - 1; 1137 /* 1138 * The bit variable represents the highest voltage bit set in 1139 * the OCR register. 1140 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V), 1141 * we must shift the mask '3' with (bit - 1). 1142 */ 1143 ocr &= 3 << (bit - 1); 1144 if (bit != host->ios.vdd) 1145 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1146 } 1147 1148 return ocr; 1149 } 1150 1151 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1152 { 1153 int err = 0; 1154 int old_signal_voltage = host->ios.signal_voltage; 1155 1156 host->ios.signal_voltage = signal_voltage; 1157 if (host->ops->start_signal_voltage_switch) 1158 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1159 1160 if (err) 1161 host->ios.signal_voltage = old_signal_voltage; 1162 1163 return err; 1164 1165 } 1166 1167 void mmc_set_initial_signal_voltage(struct mmc_host *host) 1168 { 1169 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1170 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1171 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1172 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1173 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1174 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1175 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1176 } 1177 1178 int mmc_host_set_uhs_voltage(struct mmc_host *host) 1179 { 1180 u32 clock; 1181 1182 /* 1183 * During a signal voltage level switch, the clock must be gated 1184 * for 5 ms according to the SD spec 1185 */ 1186 clock = host->ios.clock; 1187 host->ios.clock = 0; 1188 mmc_set_ios(host); 1189 1190 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1191 return -EAGAIN; 1192 1193 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1194 mmc_delay(10); 1195 host->ios.clock = clock; 1196 mmc_set_ios(host); 1197 1198 return 0; 1199 } 1200 1201 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1202 { 1203 struct mmc_command cmd = {}; 1204 int err = 0; 1205 1206 /* 1207 * If we cannot switch voltages, return failure so the caller 1208 * can continue without UHS mode 1209 */ 1210 if (!host->ops->start_signal_voltage_switch) 1211 return -EPERM; 1212 if (!host->ops->card_busy) 1213 pr_warn("%s: cannot verify signal voltage switch\n", 1214 mmc_hostname(host)); 1215 1216 cmd.opcode = SD_SWITCH_VOLTAGE; 1217 cmd.arg = 0; 1218 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1219 1220 err = mmc_wait_for_cmd(host, &cmd, 0); 1221 if (err) 1222 goto power_cycle; 1223 1224 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1225 return -EIO; 1226 1227 /* 1228 * The card should drive cmd and dat[0:3] low immediately 1229 * after the response of cmd11, but wait 1 ms to be sure 1230 */ 1231 mmc_delay(1); 1232 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1233 err = -EAGAIN; 1234 goto power_cycle; 1235 } 1236 1237 if (mmc_host_set_uhs_voltage(host)) { 1238 /* 1239 * Voltages may not have been switched, but we've already 1240 * sent CMD11, so a power cycle is required anyway 1241 */ 1242 err = -EAGAIN; 1243 goto power_cycle; 1244 } 1245 1246 /* Wait for at least 1 ms according to spec */ 1247 mmc_delay(1); 1248 1249 /* 1250 * Failure to switch is indicated by the card holding 1251 * dat[0:3] low 1252 */ 1253 if (host->ops->card_busy && host->ops->card_busy(host)) 1254 err = -EAGAIN; 1255 1256 power_cycle: 1257 if (err) { 1258 pr_debug("%s: Signal voltage switch failed, " 1259 "power cycling card\n", mmc_hostname(host)); 1260 mmc_power_cycle(host, ocr); 1261 } 1262 1263 return err; 1264 } 1265 1266 /* 1267 * Select timing parameters for host. 1268 */ 1269 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1270 { 1271 host->ios.timing = timing; 1272 mmc_set_ios(host); 1273 } 1274 1275 /* 1276 * Select appropriate driver type for host. 1277 */ 1278 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1279 { 1280 host->ios.drv_type = drv_type; 1281 mmc_set_ios(host); 1282 } 1283 1284 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1285 int card_drv_type, int *drv_type) 1286 { 1287 struct mmc_host *host = card->host; 1288 int host_drv_type = SD_DRIVER_TYPE_B; 1289 1290 *drv_type = 0; 1291 1292 if (!host->ops->select_drive_strength) 1293 return 0; 1294 1295 /* Use SD definition of driver strength for hosts */ 1296 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1297 host_drv_type |= SD_DRIVER_TYPE_A; 1298 1299 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1300 host_drv_type |= SD_DRIVER_TYPE_C; 1301 1302 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1303 host_drv_type |= SD_DRIVER_TYPE_D; 1304 1305 /* 1306 * The drive strength that the hardware can support 1307 * depends on the board design. Pass the appropriate 1308 * information and let the hardware specific code 1309 * return what is possible given the options 1310 */ 1311 return host->ops->select_drive_strength(card, max_dtr, 1312 host_drv_type, 1313 card_drv_type, 1314 drv_type); 1315 } 1316 1317 /* 1318 * Apply power to the MMC stack. This is a two-stage process. 1319 * First, we enable power to the card without the clock running. 1320 * We then wait a bit for the power to stabilise. Finally, 1321 * enable the bus drivers and clock to the card. 1322 * 1323 * We must _NOT_ enable the clock prior to power stablising. 1324 * 1325 * If a host does all the power sequencing itself, ignore the 1326 * initial MMC_POWER_UP stage. 1327 */ 1328 void mmc_power_up(struct mmc_host *host, u32 ocr) 1329 { 1330 if (host->ios.power_mode == MMC_POWER_ON) 1331 return; 1332 1333 mmc_pwrseq_pre_power_on(host); 1334 1335 host->ios.vdd = fls(ocr) - 1; 1336 host->ios.power_mode = MMC_POWER_UP; 1337 /* Set initial state and call mmc_set_ios */ 1338 mmc_set_initial_state(host); 1339 1340 mmc_set_initial_signal_voltage(host); 1341 1342 /* 1343 * This delay should be sufficient to allow the power supply 1344 * to reach the minimum voltage. 1345 */ 1346 mmc_delay(host->ios.power_delay_ms); 1347 1348 mmc_pwrseq_post_power_on(host); 1349 1350 host->ios.clock = host->f_init; 1351 1352 host->ios.power_mode = MMC_POWER_ON; 1353 mmc_set_ios(host); 1354 1355 /* 1356 * This delay must be at least 74 clock sizes, or 1 ms, or the 1357 * time required to reach a stable voltage. 1358 */ 1359 mmc_delay(host->ios.power_delay_ms); 1360 } 1361 1362 void mmc_power_off(struct mmc_host *host) 1363 { 1364 if (host->ios.power_mode == MMC_POWER_OFF) 1365 return; 1366 1367 mmc_pwrseq_power_off(host); 1368 1369 host->ios.clock = 0; 1370 host->ios.vdd = 0; 1371 1372 host->ios.power_mode = MMC_POWER_OFF; 1373 /* Set initial state and call mmc_set_ios */ 1374 mmc_set_initial_state(host); 1375 1376 /* 1377 * Some configurations, such as the 802.11 SDIO card in the OLPC 1378 * XO-1.5, require a short delay after poweroff before the card 1379 * can be successfully turned on again. 1380 */ 1381 mmc_delay(1); 1382 } 1383 1384 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1385 { 1386 mmc_power_off(host); 1387 /* Wait at least 1 ms according to SD spec */ 1388 mmc_delay(1); 1389 mmc_power_up(host, ocr); 1390 } 1391 1392 /* 1393 * Assign a mmc bus handler to a host. Only one bus handler may control a 1394 * host at any given time. 1395 */ 1396 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1397 { 1398 host->bus_ops = ops; 1399 } 1400 1401 /* 1402 * Remove the current bus handler from a host. 1403 */ 1404 void mmc_detach_bus(struct mmc_host *host) 1405 { 1406 host->bus_ops = NULL; 1407 } 1408 1409 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) 1410 { 1411 /* 1412 * Prevent system sleep for 5s to allow user space to consume the 1413 * corresponding uevent. This is especially useful, when CD irq is used 1414 * as a system wakeup, but doesn't hurt in other cases. 1415 */ 1416 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) 1417 __pm_wakeup_event(host->ws, 5000); 1418 1419 host->detect_change = 1; 1420 mmc_schedule_delayed_work(&host->detect, delay); 1421 } 1422 1423 /** 1424 * mmc_detect_change - process change of state on a MMC socket 1425 * @host: host which changed state. 1426 * @delay: optional delay to wait before detection (jiffies) 1427 * 1428 * MMC drivers should call this when they detect a card has been 1429 * inserted or removed. The MMC layer will confirm that any 1430 * present card is still functional, and initialize any newly 1431 * inserted. 1432 */ 1433 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1434 { 1435 _mmc_detect_change(host, delay, true); 1436 } 1437 EXPORT_SYMBOL(mmc_detect_change); 1438 1439 void mmc_init_erase(struct mmc_card *card) 1440 { 1441 unsigned int sz; 1442 1443 if (is_power_of_2(card->erase_size)) 1444 card->erase_shift = ffs(card->erase_size) - 1; 1445 else 1446 card->erase_shift = 0; 1447 1448 /* 1449 * It is possible to erase an arbitrarily large area of an SD or MMC 1450 * card. That is not desirable because it can take a long time 1451 * (minutes) potentially delaying more important I/O, and also the 1452 * timeout calculations become increasingly hugely over-estimated. 1453 * Consequently, 'pref_erase' is defined as a guide to limit erases 1454 * to that size and alignment. 1455 * 1456 * For SD cards that define Allocation Unit size, limit erases to one 1457 * Allocation Unit at a time. 1458 * For MMC, have a stab at ai good value and for modern cards it will 1459 * end up being 4MiB. Note that if the value is too small, it can end 1460 * up taking longer to erase. Also note, erase_size is already set to 1461 * High Capacity Erase Size if available when this function is called. 1462 */ 1463 if (mmc_card_sd(card) && card->ssr.au) { 1464 card->pref_erase = card->ssr.au; 1465 card->erase_shift = ffs(card->ssr.au) - 1; 1466 } else if (card->erase_size) { 1467 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1468 if (sz < 128) 1469 card->pref_erase = 512 * 1024 / 512; 1470 else if (sz < 512) 1471 card->pref_erase = 1024 * 1024 / 512; 1472 else if (sz < 1024) 1473 card->pref_erase = 2 * 1024 * 1024 / 512; 1474 else 1475 card->pref_erase = 4 * 1024 * 1024 / 512; 1476 if (card->pref_erase < card->erase_size) 1477 card->pref_erase = card->erase_size; 1478 else { 1479 sz = card->pref_erase % card->erase_size; 1480 if (sz) 1481 card->pref_erase += card->erase_size - sz; 1482 } 1483 } else 1484 card->pref_erase = 0; 1485 } 1486 1487 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1488 unsigned int arg, unsigned int qty) 1489 { 1490 unsigned int erase_timeout; 1491 1492 if (arg == MMC_DISCARD_ARG || 1493 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1494 erase_timeout = card->ext_csd.trim_timeout; 1495 } else if (card->ext_csd.erase_group_def & 1) { 1496 /* High Capacity Erase Group Size uses HC timeouts */ 1497 if (arg == MMC_TRIM_ARG) 1498 erase_timeout = card->ext_csd.trim_timeout; 1499 else 1500 erase_timeout = card->ext_csd.hc_erase_timeout; 1501 } else { 1502 /* CSD Erase Group Size uses write timeout */ 1503 unsigned int mult = (10 << card->csd.r2w_factor); 1504 unsigned int timeout_clks = card->csd.taac_clks * mult; 1505 unsigned int timeout_us; 1506 1507 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ 1508 if (card->csd.taac_ns < 1000000) 1509 timeout_us = (card->csd.taac_ns * mult) / 1000; 1510 else 1511 timeout_us = (card->csd.taac_ns / 1000) * mult; 1512 1513 /* 1514 * ios.clock is only a target. The real clock rate might be 1515 * less but not that much less, so fudge it by multiplying by 2. 1516 */ 1517 timeout_clks <<= 1; 1518 timeout_us += (timeout_clks * 1000) / 1519 (card->host->ios.clock / 1000); 1520 1521 erase_timeout = timeout_us / 1000; 1522 1523 /* 1524 * Theoretically, the calculation could underflow so round up 1525 * to 1ms in that case. 1526 */ 1527 if (!erase_timeout) 1528 erase_timeout = 1; 1529 } 1530 1531 /* Multiplier for secure operations */ 1532 if (arg & MMC_SECURE_ARGS) { 1533 if (arg == MMC_SECURE_ERASE_ARG) 1534 erase_timeout *= card->ext_csd.sec_erase_mult; 1535 else 1536 erase_timeout *= card->ext_csd.sec_trim_mult; 1537 } 1538 1539 erase_timeout *= qty; 1540 1541 /* 1542 * Ensure at least a 1 second timeout for SPI as per 1543 * 'mmc_set_data_timeout()' 1544 */ 1545 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1546 erase_timeout = 1000; 1547 1548 return erase_timeout; 1549 } 1550 1551 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1552 unsigned int arg, 1553 unsigned int qty) 1554 { 1555 unsigned int erase_timeout; 1556 1557 /* for DISCARD none of the below calculation applies. 1558 * the busy timeout is 250msec per discard command. 1559 */ 1560 if (arg == SD_DISCARD_ARG) 1561 return SD_DISCARD_TIMEOUT_MS; 1562 1563 if (card->ssr.erase_timeout) { 1564 /* Erase timeout specified in SD Status Register (SSR) */ 1565 erase_timeout = card->ssr.erase_timeout * qty + 1566 card->ssr.erase_offset; 1567 } else { 1568 /* 1569 * Erase timeout not specified in SD Status Register (SSR) so 1570 * use 250ms per write block. 1571 */ 1572 erase_timeout = 250 * qty; 1573 } 1574 1575 /* Must not be less than 1 second */ 1576 if (erase_timeout < 1000) 1577 erase_timeout = 1000; 1578 1579 return erase_timeout; 1580 } 1581 1582 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1583 unsigned int arg, 1584 unsigned int qty) 1585 { 1586 if (mmc_card_sd(card)) 1587 return mmc_sd_erase_timeout(card, arg, qty); 1588 else 1589 return mmc_mmc_erase_timeout(card, arg, qty); 1590 } 1591 1592 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1593 unsigned int to, unsigned int arg) 1594 { 1595 struct mmc_command cmd = {}; 1596 unsigned int qty = 0, busy_timeout = 0; 1597 bool use_r1b_resp; 1598 int err; 1599 1600 mmc_retune_hold(card->host); 1601 1602 /* 1603 * qty is used to calculate the erase timeout which depends on how many 1604 * erase groups (or allocation units in SD terminology) are affected. 1605 * We count erasing part of an erase group as one erase group. 1606 * For SD, the allocation units are always a power of 2. For MMC, the 1607 * erase group size is almost certainly also power of 2, but it does not 1608 * seem to insist on that in the JEDEC standard, so we fall back to 1609 * division in that case. SD may not specify an allocation unit size, 1610 * in which case the timeout is based on the number of write blocks. 1611 * 1612 * Note that the timeout for secure trim 2 will only be correct if the 1613 * number of erase groups specified is the same as the total of all 1614 * preceding secure trim 1 commands. Since the power may have been 1615 * lost since the secure trim 1 commands occurred, it is generally 1616 * impossible to calculate the secure trim 2 timeout correctly. 1617 */ 1618 if (card->erase_shift) 1619 qty += ((to >> card->erase_shift) - 1620 (from >> card->erase_shift)) + 1; 1621 else if (mmc_card_sd(card)) 1622 qty += to - from + 1; 1623 else 1624 qty += ((to / card->erase_size) - 1625 (from / card->erase_size)) + 1; 1626 1627 if (!mmc_card_blockaddr(card)) { 1628 from <<= 9; 1629 to <<= 9; 1630 } 1631 1632 if (mmc_card_sd(card)) 1633 cmd.opcode = SD_ERASE_WR_BLK_START; 1634 else 1635 cmd.opcode = MMC_ERASE_GROUP_START; 1636 cmd.arg = from; 1637 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1638 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1639 if (err) { 1640 pr_err("mmc_erase: group start error %d, " 1641 "status %#x\n", err, cmd.resp[0]); 1642 err = -EIO; 1643 goto out; 1644 } 1645 1646 memset(&cmd, 0, sizeof(struct mmc_command)); 1647 if (mmc_card_sd(card)) 1648 cmd.opcode = SD_ERASE_WR_BLK_END; 1649 else 1650 cmd.opcode = MMC_ERASE_GROUP_END; 1651 cmd.arg = to; 1652 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1653 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1654 if (err) { 1655 pr_err("mmc_erase: group end error %d, status %#x\n", 1656 err, cmd.resp[0]); 1657 err = -EIO; 1658 goto out; 1659 } 1660 1661 memset(&cmd, 0, sizeof(struct mmc_command)); 1662 cmd.opcode = MMC_ERASE; 1663 cmd.arg = arg; 1664 busy_timeout = mmc_erase_timeout(card, arg, qty); 1665 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout); 1666 1667 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1668 if (err) { 1669 pr_err("mmc_erase: erase error %d, status %#x\n", 1670 err, cmd.resp[0]); 1671 err = -EIO; 1672 goto out; 1673 } 1674 1675 if (mmc_host_is_spi(card->host)) 1676 goto out; 1677 1678 /* 1679 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 1680 * shall be avoided. 1681 */ 1682 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 1683 goto out; 1684 1685 /* Let's poll to find out when the erase operation completes. */ 1686 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE); 1687 1688 out: 1689 mmc_retune_release(card->host); 1690 return err; 1691 } 1692 1693 static unsigned int mmc_align_erase_size(struct mmc_card *card, 1694 unsigned int *from, 1695 unsigned int *to, 1696 unsigned int nr) 1697 { 1698 unsigned int from_new = *from, nr_new = nr, rem; 1699 1700 /* 1701 * When the 'card->erase_size' is power of 2, we can use round_up/down() 1702 * to align the erase size efficiently. 1703 */ 1704 if (is_power_of_2(card->erase_size)) { 1705 unsigned int temp = from_new; 1706 1707 from_new = round_up(temp, card->erase_size); 1708 rem = from_new - temp; 1709 1710 if (nr_new > rem) 1711 nr_new -= rem; 1712 else 1713 return 0; 1714 1715 nr_new = round_down(nr_new, card->erase_size); 1716 } else { 1717 rem = from_new % card->erase_size; 1718 if (rem) { 1719 rem = card->erase_size - rem; 1720 from_new += rem; 1721 if (nr_new > rem) 1722 nr_new -= rem; 1723 else 1724 return 0; 1725 } 1726 1727 rem = nr_new % card->erase_size; 1728 if (rem) 1729 nr_new -= rem; 1730 } 1731 1732 if (nr_new == 0) 1733 return 0; 1734 1735 *to = from_new + nr_new; 1736 *from = from_new; 1737 1738 return nr_new; 1739 } 1740 1741 /** 1742 * mmc_erase - erase sectors. 1743 * @card: card to erase 1744 * @from: first sector to erase 1745 * @nr: number of sectors to erase 1746 * @arg: erase command argument 1747 * 1748 * Caller must claim host before calling this function. 1749 */ 1750 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1751 unsigned int arg) 1752 { 1753 unsigned int rem, to = from + nr; 1754 int err; 1755 1756 if (!(card->csd.cmdclass & CCC_ERASE)) 1757 return -EOPNOTSUPP; 1758 1759 if (!card->erase_size) 1760 return -EOPNOTSUPP; 1761 1762 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) 1763 return -EOPNOTSUPP; 1764 1765 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && 1766 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1767 return -EOPNOTSUPP; 1768 1769 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) && 1770 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1771 return -EOPNOTSUPP; 1772 1773 if (arg == MMC_SECURE_ERASE_ARG) { 1774 if (from % card->erase_size || nr % card->erase_size) 1775 return -EINVAL; 1776 } 1777 1778 if (arg == MMC_ERASE_ARG) 1779 nr = mmc_align_erase_size(card, &from, &to, nr); 1780 1781 if (nr == 0) 1782 return 0; 1783 1784 if (to <= from) 1785 return -EINVAL; 1786 1787 /* 'from' and 'to' are inclusive */ 1788 to -= 1; 1789 1790 /* 1791 * Special case where only one erase-group fits in the timeout budget: 1792 * If the region crosses an erase-group boundary on this particular 1793 * case, we will be trimming more than one erase-group which, does not 1794 * fit in the timeout budget of the controller, so we need to split it 1795 * and call mmc_do_erase() twice if necessary. This special case is 1796 * identified by the card->eg_boundary flag. 1797 */ 1798 rem = card->erase_size - (from % card->erase_size); 1799 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 1800 err = mmc_do_erase(card, from, from + rem - 1, arg); 1801 from += rem; 1802 if ((err) || (to <= from)) 1803 return err; 1804 } 1805 1806 return mmc_do_erase(card, from, to, arg); 1807 } 1808 EXPORT_SYMBOL(mmc_erase); 1809 1810 int mmc_can_erase(struct mmc_card *card) 1811 { 1812 if (card->csd.cmdclass & CCC_ERASE && card->erase_size) 1813 return 1; 1814 return 0; 1815 } 1816 EXPORT_SYMBOL(mmc_can_erase); 1817 1818 int mmc_can_trim(struct mmc_card *card) 1819 { 1820 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 1821 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 1822 return 1; 1823 return 0; 1824 } 1825 EXPORT_SYMBOL(mmc_can_trim); 1826 1827 int mmc_can_discard(struct mmc_card *card) 1828 { 1829 /* 1830 * As there's no way to detect the discard support bit at v4.5 1831 * use the s/w feature support filed. 1832 */ 1833 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1834 return 1; 1835 return 0; 1836 } 1837 EXPORT_SYMBOL(mmc_can_discard); 1838 1839 int mmc_can_sanitize(struct mmc_card *card) 1840 { 1841 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 1842 return 0; 1843 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1844 return 1; 1845 return 0; 1846 } 1847 1848 int mmc_can_secure_erase_trim(struct mmc_card *card) 1849 { 1850 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 1851 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 1852 return 1; 1853 return 0; 1854 } 1855 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1856 1857 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1858 unsigned int nr) 1859 { 1860 if (!card->erase_size) 1861 return 0; 1862 if (from % card->erase_size || nr % card->erase_size) 1863 return 0; 1864 return 1; 1865 } 1866 EXPORT_SYMBOL(mmc_erase_group_aligned); 1867 1868 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1869 unsigned int arg) 1870 { 1871 struct mmc_host *host = card->host; 1872 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 1873 unsigned int last_timeout = 0; 1874 unsigned int max_busy_timeout = host->max_busy_timeout ? 1875 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 1876 1877 if (card->erase_shift) { 1878 max_qty = UINT_MAX >> card->erase_shift; 1879 min_qty = card->pref_erase >> card->erase_shift; 1880 } else if (mmc_card_sd(card)) { 1881 max_qty = UINT_MAX; 1882 min_qty = card->pref_erase; 1883 } else { 1884 max_qty = UINT_MAX / card->erase_size; 1885 min_qty = card->pref_erase / card->erase_size; 1886 } 1887 1888 /* 1889 * We should not only use 'host->max_busy_timeout' as the limitation 1890 * when deciding the max discard sectors. We should set a balance value 1891 * to improve the erase speed, and it can not get too long timeout at 1892 * the same time. 1893 * 1894 * Here we set 'card->pref_erase' as the minimal discard sectors no 1895 * matter what size of 'host->max_busy_timeout', but if the 1896 * 'host->max_busy_timeout' is large enough for more discard sectors, 1897 * then we can continue to increase the max discard sectors until we 1898 * get a balance value. In cases when the 'host->max_busy_timeout' 1899 * isn't specified, use the default max erase timeout. 1900 */ 1901 do { 1902 y = 0; 1903 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1904 timeout = mmc_erase_timeout(card, arg, qty + x); 1905 1906 if (qty + x > min_qty && timeout > max_busy_timeout) 1907 break; 1908 1909 if (timeout < last_timeout) 1910 break; 1911 last_timeout = timeout; 1912 y = x; 1913 } 1914 qty += y; 1915 } while (y); 1916 1917 if (!qty) 1918 return 0; 1919 1920 /* 1921 * When specifying a sector range to trim, chances are we might cross 1922 * an erase-group boundary even if the amount of sectors is less than 1923 * one erase-group. 1924 * If we can only fit one erase-group in the controller timeout budget, 1925 * we have to care that erase-group boundaries are not crossed by a 1926 * single trim operation. We flag that special case with "eg_boundary". 1927 * In all other cases we can just decrement qty and pretend that we 1928 * always touch (qty + 1) erase-groups as a simple optimization. 1929 */ 1930 if (qty == 1) 1931 card->eg_boundary = 1; 1932 else 1933 qty--; 1934 1935 /* Convert qty to sectors */ 1936 if (card->erase_shift) 1937 max_discard = qty << card->erase_shift; 1938 else if (mmc_card_sd(card)) 1939 max_discard = qty + 1; 1940 else 1941 max_discard = qty * card->erase_size; 1942 1943 return max_discard; 1944 } 1945 1946 unsigned int mmc_calc_max_discard(struct mmc_card *card) 1947 { 1948 struct mmc_host *host = card->host; 1949 unsigned int max_discard, max_trim; 1950 1951 /* 1952 * Without erase_group_def set, MMC erase timeout depends on clock 1953 * frequence which can change. In that case, the best choice is 1954 * just the preferred erase size. 1955 */ 1956 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1957 return card->pref_erase; 1958 1959 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1960 if (mmc_can_trim(card)) { 1961 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1962 if (max_trim < max_discard || max_discard == 0) 1963 max_discard = max_trim; 1964 } else if (max_discard < card->erase_size) { 1965 max_discard = 0; 1966 } 1967 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1968 mmc_hostname(host), max_discard, host->max_busy_timeout ? 1969 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 1970 return max_discard; 1971 } 1972 EXPORT_SYMBOL(mmc_calc_max_discard); 1973 1974 bool mmc_card_is_blockaddr(struct mmc_card *card) 1975 { 1976 return card ? mmc_card_blockaddr(card) : false; 1977 } 1978 EXPORT_SYMBOL(mmc_card_is_blockaddr); 1979 1980 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1981 { 1982 struct mmc_command cmd = {}; 1983 1984 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 1985 mmc_card_hs400(card) || mmc_card_hs400es(card)) 1986 return 0; 1987 1988 cmd.opcode = MMC_SET_BLOCKLEN; 1989 cmd.arg = blocklen; 1990 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1991 return mmc_wait_for_cmd(card->host, &cmd, 5); 1992 } 1993 EXPORT_SYMBOL(mmc_set_blocklen); 1994 1995 static void mmc_hw_reset_for_init(struct mmc_host *host) 1996 { 1997 mmc_pwrseq_reset(host); 1998 1999 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset) 2000 return; 2001 host->ops->card_hw_reset(host); 2002 } 2003 2004 /** 2005 * mmc_hw_reset - reset the card in hardware 2006 * @card: card to be reset 2007 * 2008 * Hard reset the card. This function is only for upper layers, like the 2009 * block layer or card drivers. You cannot use it in host drivers (struct 2010 * mmc_card might be gone then). 2011 * 2012 * Return: 0 on success, -errno on failure 2013 */ 2014 int mmc_hw_reset(struct mmc_card *card) 2015 { 2016 struct mmc_host *host = card->host; 2017 int ret; 2018 2019 ret = host->bus_ops->hw_reset(host); 2020 if (ret < 0) 2021 pr_warn("%s: tried to HW reset card, got error %d\n", 2022 mmc_hostname(host), ret); 2023 2024 return ret; 2025 } 2026 EXPORT_SYMBOL(mmc_hw_reset); 2027 2028 int mmc_sw_reset(struct mmc_card *card) 2029 { 2030 struct mmc_host *host = card->host; 2031 int ret; 2032 2033 if (!host->bus_ops->sw_reset) 2034 return -EOPNOTSUPP; 2035 2036 ret = host->bus_ops->sw_reset(host); 2037 if (ret) 2038 pr_warn("%s: tried to SW reset card, got error %d\n", 2039 mmc_hostname(host), ret); 2040 2041 return ret; 2042 } 2043 EXPORT_SYMBOL(mmc_sw_reset); 2044 2045 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2046 { 2047 host->f_init = freq; 2048 2049 pr_debug("%s: %s: trying to init card at %u Hz\n", 2050 mmc_hostname(host), __func__, host->f_init); 2051 2052 mmc_power_up(host, host->ocr_avail); 2053 2054 /* 2055 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2056 * do a hardware reset if possible. 2057 */ 2058 mmc_hw_reset_for_init(host); 2059 2060 /* 2061 * sdio_reset sends CMD52 to reset card. Since we do not know 2062 * if the card is being re-initialized, just send it. CMD52 2063 * should be ignored by SD/eMMC cards. 2064 * Skip it if we already know that we do not support SDIO commands 2065 */ 2066 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2067 sdio_reset(host); 2068 2069 mmc_go_idle(host); 2070 2071 if (!(host->caps2 & MMC_CAP2_NO_SD)) { 2072 if (mmc_send_if_cond_pcie(host, host->ocr_avail)) 2073 goto out; 2074 if (mmc_card_sd_express(host)) 2075 return 0; 2076 } 2077 2078 /* Order's important: probe SDIO, then SD, then MMC */ 2079 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2080 if (!mmc_attach_sdio(host)) 2081 return 0; 2082 2083 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2084 if (!mmc_attach_sd(host)) 2085 return 0; 2086 2087 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2088 if (!mmc_attach_mmc(host)) 2089 return 0; 2090 2091 out: 2092 mmc_power_off(host); 2093 return -EIO; 2094 } 2095 2096 int _mmc_detect_card_removed(struct mmc_host *host) 2097 { 2098 int ret; 2099 2100 if (!host->card || mmc_card_removed(host->card)) 2101 return 1; 2102 2103 ret = host->bus_ops->alive(host); 2104 2105 /* 2106 * Card detect status and alive check may be out of sync if card is 2107 * removed slowly, when card detect switch changes while card/slot 2108 * pads are still contacted in hardware (refer to "SD Card Mechanical 2109 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2110 * detect work 200ms later for this case. 2111 */ 2112 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2113 mmc_detect_change(host, msecs_to_jiffies(200)); 2114 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2115 } 2116 2117 if (ret) { 2118 mmc_card_set_removed(host->card); 2119 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2120 } 2121 2122 return ret; 2123 } 2124 2125 int mmc_detect_card_removed(struct mmc_host *host) 2126 { 2127 struct mmc_card *card = host->card; 2128 int ret; 2129 2130 WARN_ON(!host->claimed); 2131 2132 if (!card) 2133 return 1; 2134 2135 if (!mmc_card_is_removable(host)) 2136 return 0; 2137 2138 ret = mmc_card_removed(card); 2139 /* 2140 * The card will be considered unchanged unless we have been asked to 2141 * detect a change or host requires polling to provide card detection. 2142 */ 2143 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2144 return ret; 2145 2146 host->detect_change = 0; 2147 if (!ret) { 2148 ret = _mmc_detect_card_removed(host); 2149 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2150 /* 2151 * Schedule a detect work as soon as possible to let a 2152 * rescan handle the card removal. 2153 */ 2154 cancel_delayed_work(&host->detect); 2155 _mmc_detect_change(host, 0, false); 2156 } 2157 } 2158 2159 return ret; 2160 } 2161 EXPORT_SYMBOL(mmc_detect_card_removed); 2162 2163 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector) 2164 { 2165 unsigned int boot_sectors_num; 2166 2167 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA))) 2168 return -EOPNOTSUPP; 2169 2170 /* filter out unrelated cards */ 2171 if (card->ext_csd.rev < 3 || 2172 !mmc_card_mmc(card) || 2173 !mmc_card_is_blockaddr(card) || 2174 mmc_card_is_removable(card->host)) 2175 return -ENOENT; 2176 2177 /* 2178 * eMMC storage has two special boot partitions in addition to the 2179 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main 2180 * accesses, this means that the partition table addresses are shifted 2181 * by the size of boot partitions. In accordance with the eMMC 2182 * specification, the boot partition size is calculated as follows: 2183 * 2184 * boot partition size = 128K byte x BOOT_SIZE_MULT 2185 * 2186 * Calculate number of sectors occupied by the both boot partitions. 2187 */ 2188 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K / 2189 SZ_512 * MMC_NUM_BOOT_PARTITION; 2190 2191 /* Defined by NVIDIA and used by Android devices. */ 2192 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1; 2193 2194 return 0; 2195 } 2196 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector); 2197 2198 void mmc_rescan(struct work_struct *work) 2199 { 2200 struct mmc_host *host = 2201 container_of(work, struct mmc_host, detect.work); 2202 int i; 2203 2204 if (host->rescan_disable) 2205 return; 2206 2207 /* If there is a non-removable card registered, only scan once */ 2208 if (!mmc_card_is_removable(host) && host->rescan_entered) 2209 return; 2210 host->rescan_entered = 1; 2211 2212 if (host->trigger_card_event && host->ops->card_event) { 2213 mmc_claim_host(host); 2214 host->ops->card_event(host); 2215 mmc_release_host(host); 2216 host->trigger_card_event = false; 2217 } 2218 2219 /* Verify a registered card to be functional, else remove it. */ 2220 if (host->bus_ops) 2221 host->bus_ops->detect(host); 2222 2223 host->detect_change = 0; 2224 2225 /* if there still is a card present, stop here */ 2226 if (host->bus_ops != NULL) 2227 goto out; 2228 2229 mmc_claim_host(host); 2230 if (mmc_card_is_removable(host) && host->ops->get_cd && 2231 host->ops->get_cd(host) == 0) { 2232 mmc_power_off(host); 2233 mmc_release_host(host); 2234 goto out; 2235 } 2236 2237 /* If an SD express card is present, then leave it as is. */ 2238 if (mmc_card_sd_express(host)) { 2239 mmc_release_host(host); 2240 goto out; 2241 } 2242 2243 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2244 unsigned int freq = freqs[i]; 2245 if (freq > host->f_max) { 2246 if (i + 1 < ARRAY_SIZE(freqs)) 2247 continue; 2248 freq = host->f_max; 2249 } 2250 if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) 2251 break; 2252 if (freqs[i] <= host->f_min) 2253 break; 2254 } 2255 2256 /* 2257 * Ignore the command timeout errors observed during 2258 * the card init as those are excepted. 2259 */ 2260 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0; 2261 mmc_release_host(host); 2262 2263 out: 2264 if (host->caps & MMC_CAP_NEEDS_POLL) 2265 mmc_schedule_delayed_work(&host->detect, HZ); 2266 } 2267 2268 void mmc_start_host(struct mmc_host *host) 2269 { 2270 host->f_init = max(min(freqs[0], host->f_max), host->f_min); 2271 host->rescan_disable = 0; 2272 2273 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2274 mmc_claim_host(host); 2275 mmc_power_up(host, host->ocr_avail); 2276 mmc_release_host(host); 2277 } 2278 2279 mmc_gpiod_request_cd_irq(host); 2280 _mmc_detect_change(host, 0, false); 2281 } 2282 2283 void __mmc_stop_host(struct mmc_host *host) 2284 { 2285 if (host->slot.cd_irq >= 0) { 2286 mmc_gpio_set_cd_wake(host, false); 2287 disable_irq(host->slot.cd_irq); 2288 } 2289 2290 host->rescan_disable = 1; 2291 cancel_delayed_work_sync(&host->detect); 2292 } 2293 2294 void mmc_stop_host(struct mmc_host *host) 2295 { 2296 __mmc_stop_host(host); 2297 2298 /* clear pm flags now and let card drivers set them as needed */ 2299 host->pm_flags = 0; 2300 2301 if (host->bus_ops) { 2302 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2303 host->bus_ops->remove(host); 2304 mmc_claim_host(host); 2305 mmc_detach_bus(host); 2306 mmc_power_off(host); 2307 mmc_release_host(host); 2308 return; 2309 } 2310 2311 mmc_claim_host(host); 2312 mmc_power_off(host); 2313 mmc_release_host(host); 2314 } 2315 2316 static int __init mmc_init(void) 2317 { 2318 int ret; 2319 2320 ret = mmc_register_bus(); 2321 if (ret) 2322 return ret; 2323 2324 ret = mmc_register_host_class(); 2325 if (ret) 2326 goto unregister_bus; 2327 2328 ret = sdio_register_bus(); 2329 if (ret) 2330 goto unregister_host_class; 2331 2332 return 0; 2333 2334 unregister_host_class: 2335 mmc_unregister_host_class(); 2336 unregister_bus: 2337 mmc_unregister_bus(); 2338 return ret; 2339 } 2340 2341 static void __exit mmc_exit(void) 2342 { 2343 sdio_unregister_bus(); 2344 mmc_unregister_host_class(); 2345 mmc_unregister_bus(); 2346 } 2347 2348 subsys_initcall(mmc_init); 2349 module_exit(mmc_exit); 2350 2351 MODULE_LICENSE("GPL"); 2352