1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/core.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 9 */ 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/completion.h> 14 #include <linux/device.h> 15 #include <linux/delay.h> 16 #include <linux/pagemap.h> 17 #include <linux/err.h> 18 #include <linux/leds.h> 19 #include <linux/scatterlist.h> 20 #include <linux/log2.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/pm_wakeup.h> 23 #include <linux/suspend.h> 24 #include <linux/fault-inject.h> 25 #include <linux/random.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 29 #include <linux/mmc/card.h> 30 #include <linux/mmc/host.h> 31 #include <linux/mmc/mmc.h> 32 #include <linux/mmc/sd.h> 33 #include <linux/mmc/slot-gpio.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/mmc.h> 37 38 #include "core.h" 39 #include "card.h" 40 #include "crypto.h" 41 #include "bus.h" 42 #include "host.h" 43 #include "sdio_bus.h" 44 #include "pwrseq.h" 45 46 #include "mmc_ops.h" 47 #include "sd_ops.h" 48 #include "sdio_ops.h" 49 50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 52 #define SD_DISCARD_TIMEOUT_MS (250) 53 54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 55 56 /* 57 * Enabling software CRCs on the data blocks can be a significant (30%) 58 * performance cost, and for other reasons may not always be desired. 59 * So we allow it to be disabled. 60 */ 61 bool use_spi_crc = 1; 62 module_param(use_spi_crc, bool, 0); 63 64 static int mmc_schedule_delayed_work(struct delayed_work *work, 65 unsigned long delay) 66 { 67 /* 68 * We use the system_freezable_wq, because of two reasons. 69 * First, it allows several works (not the same work item) to be 70 * executed simultaneously. Second, the queue becomes frozen when 71 * userspace becomes frozen during system PM. 72 */ 73 return queue_delayed_work(system_freezable_wq, work, delay); 74 } 75 76 #ifdef CONFIG_FAIL_MMC_REQUEST 77 78 /* 79 * Internal function. Inject random data errors. 80 * If mmc_data is NULL no errors are injected. 81 */ 82 static void mmc_should_fail_request(struct mmc_host *host, 83 struct mmc_request *mrq) 84 { 85 struct mmc_command *cmd = mrq->cmd; 86 struct mmc_data *data = mrq->data; 87 static const int data_errors[] = { 88 -ETIMEDOUT, 89 -EILSEQ, 90 -EIO, 91 }; 92 93 if (!data) 94 return; 95 96 if ((cmd && cmd->error) || data->error || 97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 98 return; 99 100 data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))]; 101 data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9; 102 } 103 104 #else /* CONFIG_FAIL_MMC_REQUEST */ 105 106 static inline void mmc_should_fail_request(struct mmc_host *host, 107 struct mmc_request *mrq) 108 { 109 } 110 111 #endif /* CONFIG_FAIL_MMC_REQUEST */ 112 113 static inline void mmc_complete_cmd(struct mmc_request *mrq) 114 { 115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 116 complete_all(&mrq->cmd_completion); 117 } 118 119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 120 { 121 if (!mrq->cap_cmd_during_tfr) 122 return; 123 124 mmc_complete_cmd(mrq); 125 126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 127 mmc_hostname(host), mrq->cmd->opcode); 128 } 129 EXPORT_SYMBOL(mmc_command_done); 130 131 /** 132 * mmc_request_done - finish processing an MMC request 133 * @host: MMC host which completed request 134 * @mrq: MMC request which request 135 * 136 * MMC drivers should call this function when they have completed 137 * their processing of a request. 138 */ 139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 140 { 141 struct mmc_command *cmd = mrq->cmd; 142 int err = cmd->error; 143 144 /* Flag re-tuning needed on CRC errors */ 145 if (!mmc_op_tuning(cmd->opcode) && 146 !host->retune_crc_disable && 147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 148 (mrq->data && mrq->data->error == -EILSEQ) || 149 (mrq->stop && mrq->stop->error == -EILSEQ))) 150 mmc_retune_needed(host); 151 152 if (err && cmd->retries && mmc_host_is_spi(host)) { 153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 154 cmd->retries = 0; 155 } 156 157 if (host->ongoing_mrq == mrq) 158 host->ongoing_mrq = NULL; 159 160 mmc_complete_cmd(mrq); 161 162 trace_mmc_request_done(host, mrq); 163 164 /* 165 * We list various conditions for the command to be considered 166 * properly done: 167 * 168 * - There was no error, OK fine then 169 * - We are not doing some kind of retry 170 * - The card was removed (...so just complete everything no matter 171 * if there are errors or retries) 172 */ 173 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 174 mmc_should_fail_request(host, mrq); 175 176 if (!host->ongoing_mrq) 177 led_trigger_event(host->led, LED_OFF); 178 179 if (mrq->sbc) { 180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 181 mmc_hostname(host), mrq->sbc->opcode, 182 mrq->sbc->error, 183 mrq->sbc->resp[0], mrq->sbc->resp[1], 184 mrq->sbc->resp[2], mrq->sbc->resp[3]); 185 } 186 187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 188 mmc_hostname(host), cmd->opcode, err, 189 cmd->resp[0], cmd->resp[1], 190 cmd->resp[2], cmd->resp[3]); 191 192 if (mrq->data) { 193 pr_debug("%s: %d bytes transferred: %d\n", 194 mmc_hostname(host), 195 mrq->data->bytes_xfered, mrq->data->error); 196 } 197 198 if (mrq->stop) { 199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 200 mmc_hostname(host), mrq->stop->opcode, 201 mrq->stop->error, 202 mrq->stop->resp[0], mrq->stop->resp[1], 203 mrq->stop->resp[2], mrq->stop->resp[3]); 204 } 205 } 206 /* 207 * Request starter must handle retries - see 208 * mmc_wait_for_req_done(). 209 */ 210 if (mrq->done) 211 mrq->done(mrq); 212 } 213 214 EXPORT_SYMBOL(mmc_request_done); 215 216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 217 { 218 int err; 219 220 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 221 err = mmc_retune(host); 222 if (err) { 223 mrq->cmd->error = err; 224 mmc_request_done(host, mrq); 225 return; 226 } 227 228 /* 229 * For sdio rw commands we must wait for card busy otherwise some 230 * sdio devices won't work properly. 231 * And bypass I/O abort, reset and bus suspend operations. 232 */ 233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 234 host->ops->card_busy) { 235 int tries = 500; /* Wait aprox 500ms at maximum */ 236 237 while (host->ops->card_busy(host) && --tries) 238 mmc_delay(1); 239 240 if (tries == 0) { 241 mrq->cmd->error = -EBUSY; 242 mmc_request_done(host, mrq); 243 return; 244 } 245 } 246 247 if (mrq->cap_cmd_during_tfr) { 248 host->ongoing_mrq = mrq; 249 /* 250 * Retry path could come through here without having waiting on 251 * cmd_completion, so ensure it is reinitialised. 252 */ 253 reinit_completion(&mrq->cmd_completion); 254 } 255 256 trace_mmc_request_start(host, mrq); 257 258 if (host->cqe_on) 259 host->cqe_ops->cqe_off(host); 260 261 host->ops->request(host, mrq); 262 } 263 264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, 265 bool cqe) 266 { 267 if (mrq->sbc) { 268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 269 mmc_hostname(host), mrq->sbc->opcode, 270 mrq->sbc->arg, mrq->sbc->flags); 271 } 272 273 if (mrq->cmd) { 274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", 275 mmc_hostname(host), cqe ? "CQE direct " : "", 276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); 277 } else if (cqe) { 278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", 279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); 280 } 281 282 if (mrq->data) { 283 pr_debug("%s: blksz %d blocks %d flags %08x " 284 "tsac %d ms nsac %d\n", 285 mmc_hostname(host), mrq->data->blksz, 286 mrq->data->blocks, mrq->data->flags, 287 mrq->data->timeout_ns / 1000000, 288 mrq->data->timeout_clks); 289 } 290 291 if (mrq->stop) { 292 pr_debug("%s: CMD%u arg %08x flags %08x\n", 293 mmc_hostname(host), mrq->stop->opcode, 294 mrq->stop->arg, mrq->stop->flags); 295 } 296 } 297 298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 299 { 300 unsigned int i, sz = 0; 301 struct scatterlist *sg; 302 303 if (mrq->cmd) { 304 mrq->cmd->error = 0; 305 mrq->cmd->mrq = mrq; 306 mrq->cmd->data = mrq->data; 307 } 308 if (mrq->sbc) { 309 mrq->sbc->error = 0; 310 mrq->sbc->mrq = mrq; 311 } 312 if (mrq->data) { 313 if (mrq->data->blksz > host->max_blk_size || 314 mrq->data->blocks > host->max_blk_count || 315 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 316 return -EINVAL; 317 318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 319 sz += sg->length; 320 if (sz != mrq->data->blocks * mrq->data->blksz) 321 return -EINVAL; 322 323 mrq->data->error = 0; 324 mrq->data->mrq = mrq; 325 if (mrq->stop) { 326 mrq->data->stop = mrq->stop; 327 mrq->stop->error = 0; 328 mrq->stop->mrq = mrq; 329 } 330 } 331 332 return 0; 333 } 334 335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 336 { 337 int err; 338 339 if (mrq->cmd && mrq->cmd->has_ext_addr) 340 mmc_send_ext_addr(host, mrq->cmd->ext_addr); 341 342 init_completion(&mrq->cmd_completion); 343 344 mmc_retune_hold(host); 345 346 if (mmc_card_removed(host->card)) 347 return -ENOMEDIUM; 348 349 mmc_mrq_pr_debug(host, mrq, false); 350 351 WARN_ON(!host->claimed); 352 353 err = mmc_mrq_prep(host, mrq); 354 if (err) 355 return err; 356 357 if (host->uhs2_sd_tran) 358 mmc_uhs2_prepare_cmd(host, mrq); 359 360 led_trigger_event(host->led, LED_FULL); 361 __mmc_start_request(host, mrq); 362 363 return 0; 364 } 365 EXPORT_SYMBOL(mmc_start_request); 366 367 static void mmc_wait_done(struct mmc_request *mrq) 368 { 369 complete(&mrq->completion); 370 } 371 372 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 373 { 374 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 375 376 /* 377 * If there is an ongoing transfer, wait for the command line to become 378 * available. 379 */ 380 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 381 wait_for_completion(&ongoing_mrq->cmd_completion); 382 } 383 384 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 385 { 386 int err; 387 388 mmc_wait_ongoing_tfr_cmd(host); 389 390 init_completion(&mrq->completion); 391 mrq->done = mmc_wait_done; 392 393 err = mmc_start_request(host, mrq); 394 if (err) { 395 mrq->cmd->error = err; 396 mmc_complete_cmd(mrq); 397 complete(&mrq->completion); 398 } 399 400 return err; 401 } 402 403 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 404 { 405 struct mmc_command *cmd; 406 407 while (1) { 408 wait_for_completion(&mrq->completion); 409 410 cmd = mrq->cmd; 411 412 if (!cmd->error || !cmd->retries || 413 mmc_card_removed(host->card)) 414 break; 415 416 mmc_retune_recheck(host); 417 418 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 419 mmc_hostname(host), cmd->opcode, cmd->error); 420 cmd->retries--; 421 cmd->error = 0; 422 __mmc_start_request(host, mrq); 423 } 424 425 mmc_retune_release(host); 426 } 427 EXPORT_SYMBOL(mmc_wait_for_req_done); 428 429 /* 430 * mmc_cqe_start_req - Start a CQE request. 431 * @host: MMC host to start the request 432 * @mrq: request to start 433 * 434 * Start the request, re-tuning if needed and it is possible. Returns an error 435 * code if the request fails to start or -EBUSY if CQE is busy. 436 */ 437 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 438 { 439 int err; 440 441 /* 442 * CQE cannot process re-tuning commands. Caller must hold retuning 443 * while CQE is in use. Re-tuning can happen here only when CQE has no 444 * active requests i.e. this is the first. Note, re-tuning will call 445 * ->cqe_off(). 446 */ 447 err = mmc_retune(host); 448 if (err) 449 goto out_err; 450 451 mrq->host = host; 452 453 mmc_mrq_pr_debug(host, mrq, true); 454 455 err = mmc_mrq_prep(host, mrq); 456 if (err) 457 goto out_err; 458 459 if (host->uhs2_sd_tran) 460 mmc_uhs2_prepare_cmd(host, mrq); 461 462 err = host->cqe_ops->cqe_request(host, mrq); 463 if (err) 464 goto out_err; 465 466 trace_mmc_request_start(host, mrq); 467 468 return 0; 469 470 out_err: 471 if (mrq->cmd) { 472 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", 473 mmc_hostname(host), mrq->cmd->opcode, err); 474 } else { 475 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", 476 mmc_hostname(host), mrq->tag, err); 477 } 478 return err; 479 } 480 EXPORT_SYMBOL(mmc_cqe_start_req); 481 482 /** 483 * mmc_cqe_request_done - CQE has finished processing an MMC request 484 * @host: MMC host which completed request 485 * @mrq: MMC request which completed 486 * 487 * CQE drivers should call this function when they have completed 488 * their processing of a request. 489 */ 490 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) 491 { 492 mmc_should_fail_request(host, mrq); 493 494 /* Flag re-tuning needed on CRC errors */ 495 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || 496 (mrq->data && mrq->data->error == -EILSEQ)) 497 mmc_retune_needed(host); 498 499 trace_mmc_request_done(host, mrq); 500 501 if (mrq->cmd) { 502 pr_debug("%s: CQE req done (direct CMD%u): %d\n", 503 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); 504 } else { 505 pr_debug("%s: CQE transfer done tag %d\n", 506 mmc_hostname(host), mrq->tag); 507 } 508 509 if (mrq->data) { 510 pr_debug("%s: %d bytes transferred: %d\n", 511 mmc_hostname(host), 512 mrq->data->bytes_xfered, mrq->data->error); 513 } 514 515 mrq->done(mrq); 516 } 517 EXPORT_SYMBOL(mmc_cqe_request_done); 518 519 /** 520 * mmc_cqe_post_req - CQE post process of a completed MMC request 521 * @host: MMC host 522 * @mrq: MMC request to be processed 523 */ 524 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) 525 { 526 if (host->cqe_ops->cqe_post_req) 527 host->cqe_ops->cqe_post_req(host, mrq); 528 } 529 EXPORT_SYMBOL(mmc_cqe_post_req); 530 531 /* Arbitrary 1 second timeout */ 532 #define MMC_CQE_RECOVERY_TIMEOUT 1000 533 534 /* 535 * mmc_cqe_recovery - Recover from CQE errors. 536 * @host: MMC host to recover 537 * 538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue 539 * in eMMC, and discarding the queue in CQE. CQE must call 540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC 541 * fails to discard its queue. 542 */ 543 int mmc_cqe_recovery(struct mmc_host *host) 544 { 545 struct mmc_command cmd; 546 int err; 547 548 mmc_retune_hold_now(host); 549 550 /* 551 * Recovery is expected seldom, if at all, but it reduces performance, 552 * so make sure it is not completely silent. 553 */ 554 pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); 555 556 host->cqe_ops->cqe_recovery_start(host); 557 558 memset(&cmd, 0, sizeof(cmd)); 559 cmd.opcode = MMC_STOP_TRANSMISSION; 560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 563 mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 564 565 mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO); 566 567 memset(&cmd, 0, sizeof(cmd)); 568 cmd.opcode = MMC_CMDQ_TASK_MGMT; 569 cmd.arg = 1; /* Discard entire queue */ 570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 573 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 574 575 host->cqe_ops->cqe_recovery_finish(host); 576 577 if (err) 578 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); 579 580 mmc_retune_release(host); 581 582 return err; 583 } 584 EXPORT_SYMBOL(mmc_cqe_recovery); 585 586 /** 587 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 588 * @host: MMC host 589 * @mrq: MMC request 590 * 591 * mmc_is_req_done() is used with requests that have 592 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 593 * starting a request and before waiting for it to complete. That is, 594 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 595 * and before mmc_wait_for_req_done(). If it is called at other times the 596 * result is not meaningful. 597 */ 598 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 599 { 600 return completion_done(&mrq->completion); 601 } 602 EXPORT_SYMBOL(mmc_is_req_done); 603 604 /** 605 * mmc_wait_for_req - start a request and wait for completion 606 * @host: MMC host to start command 607 * @mrq: MMC request to start 608 * 609 * Start a new MMC custom command request for a host, and wait 610 * for the command to complete. In the case of 'cap_cmd_during_tfr' 611 * requests, the transfer is ongoing and the caller can issue further 612 * commands that do not use the data lines, and then wait by calling 613 * mmc_wait_for_req_done(). 614 * Does not attempt to parse the response. 615 */ 616 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 617 { 618 __mmc_start_req(host, mrq); 619 620 if (!mrq->cap_cmd_during_tfr) 621 mmc_wait_for_req_done(host, mrq); 622 } 623 EXPORT_SYMBOL(mmc_wait_for_req); 624 625 /** 626 * mmc_wait_for_cmd - start a command and wait for completion 627 * @host: MMC host to start command 628 * @cmd: MMC command to start 629 * @retries: maximum number of retries 630 * 631 * Start a new MMC command for a host, and wait for the command 632 * to complete. Return any error that occurred while the command 633 * was executing. Do not attempt to parse the response. 634 */ 635 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 636 { 637 struct mmc_request mrq = {}; 638 639 WARN_ON(!host->claimed); 640 641 memset(cmd->resp, 0, sizeof(cmd->resp)); 642 cmd->retries = retries; 643 644 mrq.cmd = cmd; 645 cmd->data = NULL; 646 647 mmc_wait_for_req(host, &mrq); 648 649 return cmd->error; 650 } 651 652 EXPORT_SYMBOL(mmc_wait_for_cmd); 653 654 /** 655 * mmc_set_data_timeout - set the timeout for a data command 656 * @data: data phase for command 657 * @card: the MMC card associated with the data transfer 658 * 659 * Computes the data timeout parameters according to the 660 * correct algorithm given the card type. 661 */ 662 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 663 { 664 unsigned int mult; 665 666 /* 667 * SDIO cards only define an upper 1 s limit on access. 668 */ 669 if (mmc_card_sdio(card)) { 670 data->timeout_ns = 1000000000; 671 data->timeout_clks = 0; 672 return; 673 } 674 675 /* 676 * SD cards use a 100 multiplier rather than 10 677 */ 678 mult = mmc_card_sd(card) ? 100 : 10; 679 680 /* 681 * Scale up the multiplier (and therefore the timeout) by 682 * the r2w factor for writes. 683 */ 684 if (data->flags & MMC_DATA_WRITE) 685 mult <<= card->csd.r2w_factor; 686 687 data->timeout_ns = card->csd.taac_ns * mult; 688 data->timeout_clks = card->csd.taac_clks * mult; 689 690 /* 691 * SD cards also have an upper limit on the timeout. 692 */ 693 if (mmc_card_sd(card)) { 694 unsigned int timeout_us, limit_us; 695 696 timeout_us = data->timeout_ns / 1000; 697 if (card->host->ios.clock) 698 timeout_us += data->timeout_clks * 1000 / 699 (card->host->ios.clock / 1000); 700 701 if (data->flags & MMC_DATA_WRITE) 702 /* 703 * The MMC spec "It is strongly recommended 704 * for hosts to implement more than 500ms 705 * timeout value even if the card indicates 706 * the 250ms maximum busy length." Even the 707 * previous value of 300ms is known to be 708 * insufficient for some cards. 709 */ 710 limit_us = 3000000; 711 else 712 limit_us = 100000; 713 714 /* 715 * SDHC cards always use these fixed values. 716 */ 717 if (timeout_us > limit_us) { 718 data->timeout_ns = limit_us * 1000; 719 data->timeout_clks = 0; 720 } 721 722 /* assign limit value if invalid */ 723 if (timeout_us == 0) 724 data->timeout_ns = limit_us * 1000; 725 } 726 727 /* 728 * Some cards require longer data read timeout than indicated in CSD. 729 * Address this by setting the read timeout to a "reasonably high" 730 * value. For the cards tested, 600ms has proven enough. If necessary, 731 * this value can be increased if other problematic cards require this. 732 */ 733 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 734 data->timeout_ns = 600000000; 735 data->timeout_clks = 0; 736 } 737 738 /* 739 * Some cards need very high timeouts if driven in SPI mode. 740 * The worst observed timeout was 900ms after writing a 741 * continuous stream of data until the internal logic 742 * overflowed. 743 */ 744 if (mmc_host_is_spi(card->host)) { 745 if (data->flags & MMC_DATA_WRITE) { 746 if (data->timeout_ns < 1000000000) 747 data->timeout_ns = 1000000000; /* 1s */ 748 } else { 749 if (data->timeout_ns < 100000000) 750 data->timeout_ns = 100000000; /* 100ms */ 751 } 752 } 753 } 754 EXPORT_SYMBOL(mmc_set_data_timeout); 755 756 /* 757 * Allow claiming an already claimed host if the context is the same or there is 758 * no context but the task is the same. 759 */ 760 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, 761 struct task_struct *task) 762 { 763 return host->claimer == ctx || 764 (!ctx && task && host->claimer->task == task); 765 } 766 767 static inline void mmc_ctx_set_claimer(struct mmc_host *host, 768 struct mmc_ctx *ctx, 769 struct task_struct *task) 770 { 771 if (!host->claimer) { 772 if (ctx) 773 host->claimer = ctx; 774 else 775 host->claimer = &host->default_ctx; 776 } 777 if (task) 778 host->claimer->task = task; 779 } 780 781 /** 782 * __mmc_claim_host - exclusively claim a host 783 * @host: mmc host to claim 784 * @ctx: context that claims the host or NULL in which case the default 785 * context will be used 786 * @abort: whether or not the operation should be aborted 787 * 788 * Claim a host for a set of operations. If @abort is non null and 789 * dereference a non-zero value then this will return prematurely with 790 * that non-zero value without acquiring the lock. Returns zero 791 * with the lock held otherwise. 792 */ 793 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, 794 atomic_t *abort) 795 { 796 struct task_struct *task = ctx ? NULL : current; 797 DECLARE_WAITQUEUE(wait, current); 798 unsigned long flags; 799 int stop; 800 bool pm = false; 801 802 might_sleep(); 803 804 add_wait_queue(&host->wq, &wait); 805 spin_lock_irqsave(&host->lock, flags); 806 while (1) { 807 set_current_state(TASK_UNINTERRUPTIBLE); 808 stop = abort ? atomic_read(abort) : 0; 809 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) 810 break; 811 spin_unlock_irqrestore(&host->lock, flags); 812 schedule(); 813 spin_lock_irqsave(&host->lock, flags); 814 } 815 set_current_state(TASK_RUNNING); 816 if (!stop) { 817 host->claimed = 1; 818 mmc_ctx_set_claimer(host, ctx, task); 819 host->claim_cnt += 1; 820 if (host->claim_cnt == 1) 821 pm = true; 822 } else 823 wake_up(&host->wq); 824 spin_unlock_irqrestore(&host->lock, flags); 825 remove_wait_queue(&host->wq, &wait); 826 827 if (pm) 828 pm_runtime_get_sync(mmc_dev(host)); 829 830 return stop; 831 } 832 EXPORT_SYMBOL(__mmc_claim_host); 833 834 /** 835 * mmc_release_host - release a host 836 * @host: mmc host to release 837 * 838 * Release a MMC host, allowing others to claim the host 839 * for their operations. 840 */ 841 void mmc_release_host(struct mmc_host *host) 842 { 843 unsigned long flags; 844 845 WARN_ON(!host->claimed); 846 847 spin_lock_irqsave(&host->lock, flags); 848 if (--host->claim_cnt) { 849 /* Release for nested claim */ 850 spin_unlock_irqrestore(&host->lock, flags); 851 } else { 852 host->claimed = 0; 853 host->claimer->task = NULL; 854 host->claimer = NULL; 855 spin_unlock_irqrestore(&host->lock, flags); 856 wake_up(&host->wq); 857 pm_runtime_mark_last_busy(mmc_dev(host)); 858 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) 859 pm_runtime_put_sync_suspend(mmc_dev(host)); 860 else 861 pm_runtime_put_autosuspend(mmc_dev(host)); 862 } 863 } 864 EXPORT_SYMBOL(mmc_release_host); 865 866 /* 867 * This is a helper function, which fetches a runtime pm reference for the 868 * card device and also claims the host. 869 */ 870 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) 871 { 872 pm_runtime_get_sync(&card->dev); 873 __mmc_claim_host(card->host, ctx, NULL); 874 } 875 EXPORT_SYMBOL(mmc_get_card); 876 877 /* 878 * This is a helper function, which releases the host and drops the runtime 879 * pm reference for the card device. 880 */ 881 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) 882 { 883 struct mmc_host *host = card->host; 884 885 WARN_ON(ctx && host->claimer != ctx); 886 887 mmc_release_host(host); 888 pm_runtime_mark_last_busy(&card->dev); 889 pm_runtime_put_autosuspend(&card->dev); 890 } 891 EXPORT_SYMBOL(mmc_put_card); 892 893 /* 894 * Internal function that does the actual ios call to the host driver, 895 * optionally printing some debug output. 896 */ 897 static inline void mmc_set_ios(struct mmc_host *host) 898 { 899 struct mmc_ios *ios = &host->ios; 900 901 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 902 "width %u timing %u\n", 903 mmc_hostname(host), ios->clock, ios->bus_mode, 904 ios->power_mode, ios->chip_select, ios->vdd, 905 1 << ios->bus_width, ios->timing); 906 907 host->ops->set_ios(host, ios); 908 } 909 910 /* 911 * Control chip select pin on a host. 912 */ 913 void mmc_set_chip_select(struct mmc_host *host, int mode) 914 { 915 host->ios.chip_select = mode; 916 mmc_set_ios(host); 917 } 918 919 /* 920 * Sets the host clock to the highest possible frequency that 921 * is below "hz". 922 */ 923 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 924 { 925 WARN_ON(hz && hz < host->f_min); 926 927 if (hz > host->f_max) 928 hz = host->f_max; 929 930 host->ios.clock = hz; 931 mmc_set_ios(host); 932 } 933 934 int mmc_execute_tuning(struct mmc_card *card) 935 { 936 struct mmc_host *host = card->host; 937 u32 opcode; 938 int err; 939 940 if (!host->ops->execute_tuning) 941 return 0; 942 943 if (host->cqe_on) 944 host->cqe_ops->cqe_off(host); 945 946 if (mmc_card_mmc(card)) 947 opcode = MMC_SEND_TUNING_BLOCK_HS200; 948 else 949 opcode = MMC_SEND_TUNING_BLOCK; 950 951 err = host->ops->execute_tuning(host, opcode); 952 if (!err) { 953 mmc_retune_clear(host); 954 mmc_retune_enable(host); 955 return 0; 956 } 957 958 /* Only print error when we don't check for card removal */ 959 if (!host->detect_change) { 960 pr_err("%s: tuning execution failed: %d\n", 961 mmc_hostname(host), err); 962 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING); 963 } 964 965 return err; 966 } 967 968 /* 969 * Change the bus mode (open drain/push-pull) of a host. 970 */ 971 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 972 { 973 host->ios.bus_mode = mode; 974 mmc_set_ios(host); 975 } 976 977 /* 978 * Change data bus width of a host. 979 */ 980 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 981 { 982 host->ios.bus_width = width; 983 mmc_set_ios(host); 984 } 985 986 /* 987 * Set initial state after a power cycle or a hw_reset. 988 */ 989 void mmc_set_initial_state(struct mmc_host *host) 990 { 991 if (host->cqe_on) 992 host->cqe_ops->cqe_off(host); 993 994 mmc_retune_disable(host); 995 996 if (mmc_host_is_spi(host)) 997 host->ios.chip_select = MMC_CS_HIGH; 998 else 999 host->ios.chip_select = MMC_CS_DONTCARE; 1000 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1001 host->ios.bus_width = MMC_BUS_WIDTH_1; 1002 host->ios.timing = MMC_TIMING_LEGACY; 1003 host->ios.drv_type = 0; 1004 host->ios.enhanced_strobe = false; 1005 1006 /* 1007 * Make sure we are in non-enhanced strobe mode before we 1008 * actually enable it in ext_csd. 1009 */ 1010 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1011 host->ops->hs400_enhanced_strobe) 1012 host->ops->hs400_enhanced_strobe(host, &host->ios); 1013 1014 mmc_set_ios(host); 1015 1016 mmc_crypto_set_initial_state(host); 1017 } 1018 1019 /** 1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1021 * @vdd: voltage (mV) 1022 * @low_bits: prefer low bits in boundary cases 1023 * 1024 * This function returns the OCR bit number according to the provided @vdd 1025 * value. If conversion is not possible a negative errno value returned. 1026 * 1027 * Depending on the @low_bits flag the function prefers low or high OCR bits 1028 * on boundary voltages. For example, 1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1031 * 1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1033 */ 1034 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1035 { 1036 const int max_bit = ilog2(MMC_VDD_35_36); 1037 int bit; 1038 1039 if (vdd < 1650 || vdd > 3600) 1040 return -EINVAL; 1041 1042 if (vdd >= 1650 && vdd <= 1950) 1043 return ilog2(MMC_VDD_165_195); 1044 1045 if (low_bits) 1046 vdd -= 1; 1047 1048 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1049 bit = (vdd - 2000) / 100 + 8; 1050 if (bit > max_bit) 1051 return max_bit; 1052 return bit; 1053 } 1054 1055 /** 1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1057 * @vdd_min: minimum voltage value (mV) 1058 * @vdd_max: maximum voltage value (mV) 1059 * 1060 * This function returns the OCR mask bits according to the provided @vdd_min 1061 * and @vdd_max values. If conversion is not possible the function returns 0. 1062 * 1063 * Notes wrt boundary cases: 1064 * This function sets the OCR bits for all boundary voltages, for example 1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1066 * MMC_VDD_34_35 mask. 1067 */ 1068 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1069 { 1070 u32 mask = 0; 1071 1072 if (vdd_max < vdd_min) 1073 return 0; 1074 1075 /* Prefer high bits for the boundary vdd_max values. */ 1076 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1077 if (vdd_max < 0) 1078 return 0; 1079 1080 /* Prefer low bits for the boundary vdd_min values. */ 1081 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1082 if (vdd_min < 0) 1083 return 0; 1084 1085 /* Fill the mask, from max bit to min bit. */ 1086 while (vdd_max >= vdd_min) 1087 mask |= 1 << vdd_max--; 1088 1089 return mask; 1090 } 1091 1092 static int mmc_of_get_func_num(struct device_node *node) 1093 { 1094 u32 reg; 1095 int ret; 1096 1097 ret = of_property_read_u32(node, "reg", ®); 1098 if (ret < 0) 1099 return ret; 1100 1101 return reg; 1102 } 1103 1104 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1105 unsigned func_num) 1106 { 1107 struct device_node *node; 1108 1109 if (!host->parent || !host->parent->of_node) 1110 return NULL; 1111 1112 for_each_child_of_node(host->parent->of_node, node) { 1113 if (mmc_of_get_func_num(node) == func_num) 1114 return node; 1115 } 1116 1117 return NULL; 1118 } 1119 1120 /* 1121 * Mask off any voltages we don't support and select 1122 * the lowest voltage 1123 */ 1124 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1125 { 1126 int bit; 1127 1128 /* 1129 * Sanity check the voltages that the card claims to 1130 * support. 1131 */ 1132 if (ocr & 0x7F) { 1133 dev_warn(mmc_dev(host), 1134 "card claims to support voltages below defined range\n"); 1135 ocr &= ~0x7F; 1136 } 1137 1138 ocr &= host->ocr_avail; 1139 if (!ocr) { 1140 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1141 return 0; 1142 } 1143 1144 if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1145 bit = ffs(ocr) - 1; 1146 ocr &= 3 << bit; 1147 mmc_power_cycle(host, ocr); 1148 } else { 1149 bit = fls(ocr) - 1; 1150 /* 1151 * The bit variable represents the highest voltage bit set in 1152 * the OCR register. 1153 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V), 1154 * we must shift the mask '3' with (bit - 1). 1155 */ 1156 ocr &= 3 << (bit - 1); 1157 if (bit != host->ios.vdd) 1158 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1159 } 1160 1161 return ocr; 1162 } 1163 1164 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1165 { 1166 int err = 0; 1167 int old_signal_voltage = host->ios.signal_voltage; 1168 1169 host->ios.signal_voltage = signal_voltage; 1170 if (host->ops->start_signal_voltage_switch) 1171 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1172 1173 if (err) 1174 host->ios.signal_voltage = old_signal_voltage; 1175 1176 return err; 1177 1178 } 1179 1180 void mmc_set_initial_signal_voltage(struct mmc_host *host) 1181 { 1182 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1183 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1184 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1185 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1186 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1187 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1188 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1189 } 1190 1191 int mmc_host_set_uhs_voltage(struct mmc_host *host) 1192 { 1193 u32 clock; 1194 1195 /* 1196 * During a signal voltage level switch, the clock must be gated 1197 * for 5 ms according to the SD spec 1198 */ 1199 clock = host->ios.clock; 1200 host->ios.clock = 0; 1201 mmc_set_ios(host); 1202 1203 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1204 return -EAGAIN; 1205 1206 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1207 mmc_delay(10); 1208 host->ios.clock = clock; 1209 mmc_set_ios(host); 1210 1211 return 0; 1212 } 1213 1214 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1215 { 1216 struct mmc_command cmd = {}; 1217 int err = 0; 1218 1219 /* 1220 * If we cannot switch voltages, return failure so the caller 1221 * can continue without UHS mode 1222 */ 1223 if (!host->ops->start_signal_voltage_switch) 1224 return -EPERM; 1225 if (!host->ops->card_busy) 1226 pr_warn("%s: cannot verify signal voltage switch\n", 1227 mmc_hostname(host)); 1228 1229 cmd.opcode = SD_SWITCH_VOLTAGE; 1230 cmd.arg = 0; 1231 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1232 1233 err = mmc_wait_for_cmd(host, &cmd, 0); 1234 if (err) 1235 goto power_cycle; 1236 1237 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1238 return -EIO; 1239 1240 /* 1241 * The card should drive cmd and dat[0:3] low immediately 1242 * after the response of cmd11, but wait 1 ms to be sure 1243 */ 1244 mmc_delay(1); 1245 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1246 err = -EAGAIN; 1247 goto power_cycle; 1248 } 1249 1250 if (mmc_host_set_uhs_voltage(host)) { 1251 /* 1252 * Voltages may not have been switched, but we've already 1253 * sent CMD11, so a power cycle is required anyway 1254 */ 1255 err = -EAGAIN; 1256 goto power_cycle; 1257 } 1258 1259 /* Wait for at least 1 ms according to spec */ 1260 mmc_delay(1); 1261 1262 /* 1263 * Failure to switch is indicated by the card holding 1264 * dat[0:3] low 1265 */ 1266 if (host->ops->card_busy && host->ops->card_busy(host)) 1267 err = -EAGAIN; 1268 1269 power_cycle: 1270 if (err) { 1271 pr_debug("%s: Signal voltage switch failed, " 1272 "power cycling card\n", mmc_hostname(host)); 1273 mmc_power_cycle(host, ocr); 1274 } 1275 1276 return err; 1277 } 1278 1279 /* 1280 * Select timing parameters for host. 1281 */ 1282 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1283 { 1284 host->ios.timing = timing; 1285 mmc_set_ios(host); 1286 } 1287 1288 /* 1289 * Select appropriate driver type for host. 1290 */ 1291 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1292 { 1293 host->ios.drv_type = drv_type; 1294 mmc_set_ios(host); 1295 } 1296 1297 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1298 int card_drv_type, int *drv_type) 1299 { 1300 struct mmc_host *host = card->host; 1301 int host_drv_type = SD_DRIVER_TYPE_B; 1302 1303 *drv_type = 0; 1304 1305 if (!host->ops->select_drive_strength) 1306 return 0; 1307 1308 /* Use SD definition of driver strength for hosts */ 1309 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1310 host_drv_type |= SD_DRIVER_TYPE_A; 1311 1312 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1313 host_drv_type |= SD_DRIVER_TYPE_C; 1314 1315 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1316 host_drv_type |= SD_DRIVER_TYPE_D; 1317 1318 /* 1319 * The drive strength that the hardware can support 1320 * depends on the board design. Pass the appropriate 1321 * information and let the hardware specific code 1322 * return what is possible given the options 1323 */ 1324 return host->ops->select_drive_strength(card, max_dtr, 1325 host_drv_type, 1326 card_drv_type, 1327 drv_type); 1328 } 1329 1330 /* 1331 * Apply power to the MMC stack. This is a two-stage process. 1332 * First, we enable power to the card without the clock running. 1333 * We then wait a bit for the power to stabilise. Finally, 1334 * enable the bus drivers and clock to the card. 1335 * 1336 * We must _NOT_ enable the clock prior to power stablising. 1337 * 1338 * If a host does all the power sequencing itself, ignore the 1339 * initial MMC_POWER_UP stage. 1340 */ 1341 void mmc_power_up(struct mmc_host *host, u32 ocr) 1342 { 1343 if (host->ios.power_mode == MMC_POWER_ON) 1344 return; 1345 1346 mmc_pwrseq_pre_power_on(host); 1347 1348 host->ios.vdd = fls(ocr) - 1; 1349 host->ios.power_mode = MMC_POWER_UP; 1350 /* Set initial state and call mmc_set_ios */ 1351 mmc_set_initial_state(host); 1352 1353 mmc_set_initial_signal_voltage(host); 1354 1355 /* 1356 * This delay should be sufficient to allow the power supply 1357 * to reach the minimum voltage. 1358 */ 1359 mmc_delay(host->ios.power_delay_ms); 1360 1361 mmc_pwrseq_post_power_on(host); 1362 1363 host->ios.clock = host->f_init; 1364 1365 host->ios.power_mode = MMC_POWER_ON; 1366 mmc_set_ios(host); 1367 1368 /* 1369 * This delay must be at least 74 clock sizes, or 1 ms, or the 1370 * time required to reach a stable voltage. 1371 */ 1372 mmc_delay(host->ios.power_delay_ms); 1373 } 1374 1375 void mmc_power_off(struct mmc_host *host) 1376 { 1377 if (host->ios.power_mode == MMC_POWER_OFF) 1378 return; 1379 1380 mmc_pwrseq_power_off(host); 1381 1382 host->ios.clock = 0; 1383 host->ios.vdd = 0; 1384 1385 host->ios.power_mode = MMC_POWER_OFF; 1386 /* Set initial state and call mmc_set_ios */ 1387 mmc_set_initial_state(host); 1388 1389 /* 1390 * Some configurations, such as the 802.11 SDIO card in the OLPC 1391 * XO-1.5, require a short delay after poweroff before the card 1392 * can be successfully turned on again. 1393 */ 1394 mmc_delay(1); 1395 } 1396 1397 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1398 { 1399 mmc_power_off(host); 1400 /* Wait at least 1 ms according to SD spec */ 1401 mmc_delay(1); 1402 mmc_power_up(host, ocr); 1403 } 1404 1405 /* 1406 * Assign a mmc bus handler to a host. Only one bus handler may control a 1407 * host at any given time. 1408 */ 1409 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1410 { 1411 host->bus_ops = ops; 1412 } 1413 1414 /* 1415 * Remove the current bus handler from a host. 1416 */ 1417 void mmc_detach_bus(struct mmc_host *host) 1418 { 1419 host->bus_ops = NULL; 1420 } 1421 1422 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) 1423 { 1424 /* 1425 * Prevent system sleep for 5s to allow user space to consume the 1426 * corresponding uevent. This is especially useful, when CD irq is used 1427 * as a system wakeup, but doesn't hurt in other cases. 1428 */ 1429 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) 1430 __pm_wakeup_event(host->ws, 5000); 1431 1432 host->detect_change = 1; 1433 mmc_schedule_delayed_work(&host->detect, delay); 1434 } 1435 1436 /** 1437 * mmc_detect_change - process change of state on a MMC socket 1438 * @host: host which changed state. 1439 * @delay: optional delay to wait before detection (jiffies) 1440 * 1441 * MMC drivers should call this when they detect a card has been 1442 * inserted or removed. The MMC layer will confirm that any 1443 * present card is still functional, and initialize any newly 1444 * inserted. 1445 */ 1446 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1447 { 1448 _mmc_detect_change(host, delay, true); 1449 } 1450 EXPORT_SYMBOL(mmc_detect_change); 1451 1452 void mmc_init_erase(struct mmc_card *card) 1453 { 1454 unsigned int sz; 1455 1456 if (is_power_of_2(card->erase_size)) 1457 card->erase_shift = ffs(card->erase_size) - 1; 1458 else 1459 card->erase_shift = 0; 1460 1461 /* 1462 * It is possible to erase an arbitrarily large area of an SD or MMC 1463 * card. That is not desirable because it can take a long time 1464 * (minutes) potentially delaying more important I/O, and also the 1465 * timeout calculations become increasingly hugely over-estimated. 1466 * Consequently, 'pref_erase' is defined as a guide to limit erases 1467 * to that size and alignment. 1468 * 1469 * For SD cards that define Allocation Unit size, limit erases to one 1470 * Allocation Unit at a time. 1471 * For MMC, have a stab at ai good value and for modern cards it will 1472 * end up being 4MiB. Note that if the value is too small, it can end 1473 * up taking longer to erase. Also note, erase_size is already set to 1474 * High Capacity Erase Size if available when this function is called. 1475 */ 1476 if (mmc_card_sd(card) && card->ssr.au) { 1477 card->pref_erase = card->ssr.au; 1478 card->erase_shift = ffs(card->ssr.au) - 1; 1479 } else if (card->erase_size) { 1480 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1481 if (sz < 128) 1482 card->pref_erase = 512 * 1024 / 512; 1483 else if (sz < 512) 1484 card->pref_erase = 1024 * 1024 / 512; 1485 else if (sz < 1024) 1486 card->pref_erase = 2 * 1024 * 1024 / 512; 1487 else 1488 card->pref_erase = 4 * 1024 * 1024 / 512; 1489 if (card->pref_erase < card->erase_size) 1490 card->pref_erase = card->erase_size; 1491 else { 1492 sz = card->pref_erase % card->erase_size; 1493 if (sz) 1494 card->pref_erase += card->erase_size - sz; 1495 } 1496 } else 1497 card->pref_erase = 0; 1498 } 1499 1500 static bool is_trim_arg(unsigned int arg) 1501 { 1502 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG; 1503 } 1504 1505 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1506 unsigned int arg, unsigned int qty) 1507 { 1508 unsigned int erase_timeout; 1509 1510 if (arg == MMC_DISCARD_ARG || 1511 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1512 erase_timeout = card->ext_csd.trim_timeout; 1513 } else if (card->ext_csd.erase_group_def & 1) { 1514 /* High Capacity Erase Group Size uses HC timeouts */ 1515 if (arg == MMC_TRIM_ARG) 1516 erase_timeout = card->ext_csd.trim_timeout; 1517 else 1518 erase_timeout = card->ext_csd.hc_erase_timeout; 1519 } else { 1520 /* CSD Erase Group Size uses write timeout */ 1521 unsigned int mult = (10 << card->csd.r2w_factor); 1522 unsigned int timeout_clks = card->csd.taac_clks * mult; 1523 unsigned int timeout_us; 1524 1525 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ 1526 if (card->csd.taac_ns < 1000000) 1527 timeout_us = (card->csd.taac_ns * mult) / 1000; 1528 else 1529 timeout_us = (card->csd.taac_ns / 1000) * mult; 1530 1531 /* 1532 * ios.clock is only a target. The real clock rate might be 1533 * less but not that much less, so fudge it by multiplying by 2. 1534 */ 1535 timeout_clks <<= 1; 1536 timeout_us += (timeout_clks * 1000) / 1537 (card->host->ios.clock / 1000); 1538 1539 erase_timeout = timeout_us / 1000; 1540 1541 /* 1542 * Theoretically, the calculation could underflow so round up 1543 * to 1ms in that case. 1544 */ 1545 if (!erase_timeout) 1546 erase_timeout = 1; 1547 } 1548 1549 /* Multiplier for secure operations */ 1550 if (arg & MMC_SECURE_ARGS) { 1551 if (arg == MMC_SECURE_ERASE_ARG) 1552 erase_timeout *= card->ext_csd.sec_erase_mult; 1553 else 1554 erase_timeout *= card->ext_csd.sec_trim_mult; 1555 } 1556 1557 erase_timeout *= qty; 1558 1559 /* 1560 * Ensure at least a 1 second timeout for SPI as per 1561 * 'mmc_set_data_timeout()' 1562 */ 1563 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1564 erase_timeout = 1000; 1565 1566 return erase_timeout; 1567 } 1568 1569 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1570 unsigned int arg, 1571 unsigned int qty) 1572 { 1573 unsigned int erase_timeout; 1574 1575 /* for DISCARD none of the below calculation applies. 1576 * the busy timeout is 250msec per discard command. 1577 */ 1578 if (arg == SD_DISCARD_ARG) 1579 return SD_DISCARD_TIMEOUT_MS; 1580 1581 if (card->ssr.erase_timeout) { 1582 /* Erase timeout specified in SD Status Register (SSR) */ 1583 erase_timeout = card->ssr.erase_timeout * qty + 1584 card->ssr.erase_offset; 1585 } else { 1586 /* 1587 * Erase timeout not specified in SD Status Register (SSR) so 1588 * use 250ms per write block. 1589 */ 1590 erase_timeout = 250 * qty; 1591 } 1592 1593 /* Must not be less than 1 second */ 1594 if (erase_timeout < 1000) 1595 erase_timeout = 1000; 1596 1597 return erase_timeout; 1598 } 1599 1600 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1601 unsigned int arg, 1602 unsigned int qty) 1603 { 1604 if (mmc_card_sd(card)) 1605 return mmc_sd_erase_timeout(card, arg, qty); 1606 else 1607 return mmc_mmc_erase_timeout(card, arg, qty); 1608 } 1609 1610 static int mmc_do_erase(struct mmc_card *card, sector_t from, 1611 sector_t to, unsigned int arg) 1612 { 1613 struct mmc_command cmd = {}; 1614 unsigned int qty = 0, busy_timeout = 0; 1615 bool use_r1b_resp; 1616 int err; 1617 1618 mmc_retune_hold(card->host); 1619 1620 /* 1621 * qty is used to calculate the erase timeout which depends on how many 1622 * erase groups (or allocation units in SD terminology) are affected. 1623 * We count erasing part of an erase group as one erase group. 1624 * For SD, the allocation units are always a power of 2. For MMC, the 1625 * erase group size is almost certainly also power of 2, but it does not 1626 * seem to insist on that in the JEDEC standard, so we fall back to 1627 * division in that case. SD may not specify an allocation unit size, 1628 * in which case the timeout is based on the number of write blocks. 1629 * 1630 * Note that the timeout for secure trim 2 will only be correct if the 1631 * number of erase groups specified is the same as the total of all 1632 * preceding secure trim 1 commands. Since the power may have been 1633 * lost since the secure trim 1 commands occurred, it is generally 1634 * impossible to calculate the secure trim 2 timeout correctly. 1635 */ 1636 if (card->erase_shift) 1637 qty += ((to >> card->erase_shift) - 1638 (from >> card->erase_shift)) + 1; 1639 else if (mmc_card_sd(card)) 1640 qty += to - from + 1; 1641 else 1642 qty += (mmc_sector_div(to, card->erase_size) - 1643 mmc_sector_div(from, card->erase_size)) + 1; 1644 1645 if (!mmc_card_blockaddr(card)) { 1646 from <<= 9; 1647 to <<= 9; 1648 } 1649 1650 if (mmc_card_sd(card)) 1651 cmd.opcode = SD_ERASE_WR_BLK_START; 1652 else 1653 cmd.opcode = MMC_ERASE_GROUP_START; 1654 cmd.arg = from; 1655 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1656 1657 if (mmc_card_ult_capacity(card)) { 1658 cmd.ext_addr = from >> 32; 1659 cmd.has_ext_addr = true; 1660 } 1661 1662 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1663 if (err) { 1664 pr_err("mmc_erase: group start error %d, " 1665 "status %#x\n", err, cmd.resp[0]); 1666 err = -EIO; 1667 goto out; 1668 } 1669 1670 memset(&cmd, 0, sizeof(struct mmc_command)); 1671 if (mmc_card_sd(card)) 1672 cmd.opcode = SD_ERASE_WR_BLK_END; 1673 else 1674 cmd.opcode = MMC_ERASE_GROUP_END; 1675 cmd.arg = to; 1676 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1677 1678 if (mmc_card_ult_capacity(card)) { 1679 cmd.ext_addr = to >> 32; 1680 cmd.has_ext_addr = true; 1681 } 1682 1683 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1684 if (err) { 1685 pr_err("mmc_erase: group end error %d, status %#x\n", 1686 err, cmd.resp[0]); 1687 err = -EIO; 1688 goto out; 1689 } 1690 1691 memset(&cmd, 0, sizeof(struct mmc_command)); 1692 cmd.opcode = MMC_ERASE; 1693 cmd.arg = arg; 1694 busy_timeout = mmc_erase_timeout(card, arg, qty); 1695 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout); 1696 1697 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1698 if (err) { 1699 pr_err("mmc_erase: erase error %d, status %#x\n", 1700 err, cmd.resp[0]); 1701 err = -EIO; 1702 goto out; 1703 } 1704 1705 if (mmc_host_is_spi(card->host)) 1706 goto out; 1707 1708 /* 1709 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 1710 * shall be avoided. 1711 */ 1712 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 1713 goto out; 1714 1715 /* Let's poll to find out when the erase operation completes. */ 1716 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE); 1717 1718 out: 1719 mmc_retune_release(card->host); 1720 return err; 1721 } 1722 1723 static unsigned int mmc_align_erase_size(struct mmc_card *card, 1724 sector_t *from, 1725 sector_t *to, 1726 unsigned int nr) 1727 { 1728 sector_t from_new = *from; 1729 unsigned int nr_new = nr, rem; 1730 1731 /* 1732 * When the 'card->erase_size' is power of 2, we can use round_up/down() 1733 * to align the erase size efficiently. 1734 */ 1735 if (is_power_of_2(card->erase_size)) { 1736 sector_t temp = from_new; 1737 1738 from_new = round_up(temp, card->erase_size); 1739 rem = from_new - temp; 1740 1741 if (nr_new > rem) 1742 nr_new -= rem; 1743 else 1744 return 0; 1745 1746 nr_new = round_down(nr_new, card->erase_size); 1747 } else { 1748 rem = mmc_sector_mod(from_new, card->erase_size); 1749 if (rem) { 1750 rem = card->erase_size - rem; 1751 from_new += rem; 1752 if (nr_new > rem) 1753 nr_new -= rem; 1754 else 1755 return 0; 1756 } 1757 1758 rem = nr_new % card->erase_size; 1759 if (rem) 1760 nr_new -= rem; 1761 } 1762 1763 if (nr_new == 0) 1764 return 0; 1765 1766 *to = from_new + nr_new; 1767 *from = from_new; 1768 1769 return nr_new; 1770 } 1771 1772 /** 1773 * mmc_erase - erase sectors. 1774 * @card: card to erase 1775 * @from: first sector to erase 1776 * @nr: number of sectors to erase 1777 * @arg: erase command argument 1778 * 1779 * Caller must claim host before calling this function. 1780 */ 1781 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr, 1782 unsigned int arg) 1783 { 1784 unsigned int rem; 1785 sector_t to = from + nr; 1786 1787 int err; 1788 1789 if (!(card->csd.cmdclass & CCC_ERASE)) 1790 return -EOPNOTSUPP; 1791 1792 if (!card->erase_size) 1793 return -EOPNOTSUPP; 1794 1795 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) 1796 return -EOPNOTSUPP; 1797 1798 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && 1799 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1800 return -EOPNOTSUPP; 1801 1802 if (mmc_card_mmc(card) && is_trim_arg(arg) && 1803 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1804 return -EOPNOTSUPP; 1805 1806 if (arg == MMC_SECURE_ERASE_ARG) { 1807 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size) 1808 return -EINVAL; 1809 } 1810 1811 if (arg == MMC_ERASE_ARG) 1812 nr = mmc_align_erase_size(card, &from, &to, nr); 1813 1814 if (nr == 0) 1815 return 0; 1816 1817 if (to <= from) 1818 return -EINVAL; 1819 1820 /* 'from' and 'to' are inclusive */ 1821 to -= 1; 1822 1823 /* 1824 * Special case where only one erase-group fits in the timeout budget: 1825 * If the region crosses an erase-group boundary on this particular 1826 * case, we will be trimming more than one erase-group which, does not 1827 * fit in the timeout budget of the controller, so we need to split it 1828 * and call mmc_do_erase() twice if necessary. This special case is 1829 * identified by the card->eg_boundary flag. 1830 */ 1831 rem = card->erase_size - mmc_sector_mod(from, card->erase_size); 1832 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) { 1833 err = mmc_do_erase(card, from, from + rem - 1, arg); 1834 from += rem; 1835 if ((err) || (to <= from)) 1836 return err; 1837 } 1838 1839 return mmc_do_erase(card, from, to, arg); 1840 } 1841 EXPORT_SYMBOL(mmc_erase); 1842 1843 int mmc_can_erase(struct mmc_card *card) 1844 { 1845 if (card->csd.cmdclass & CCC_ERASE && card->erase_size) 1846 return 1; 1847 return 0; 1848 } 1849 EXPORT_SYMBOL(mmc_can_erase); 1850 1851 int mmc_can_trim(struct mmc_card *card) 1852 { 1853 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 1854 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 1855 return 1; 1856 return 0; 1857 } 1858 EXPORT_SYMBOL(mmc_can_trim); 1859 1860 int mmc_can_discard(struct mmc_card *card) 1861 { 1862 /* 1863 * As there's no way to detect the discard support bit at v4.5 1864 * use the s/w feature support filed. 1865 */ 1866 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1867 return 1; 1868 return 0; 1869 } 1870 EXPORT_SYMBOL(mmc_can_discard); 1871 1872 int mmc_can_sanitize(struct mmc_card *card) 1873 { 1874 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 1875 return 0; 1876 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1877 return 1; 1878 return 0; 1879 } 1880 1881 int mmc_can_secure_erase_trim(struct mmc_card *card) 1882 { 1883 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 1884 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 1885 return 1; 1886 return 0; 1887 } 1888 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1889 1890 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from, 1891 unsigned int nr) 1892 { 1893 if (!card->erase_size) 1894 return 0; 1895 if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size) 1896 return 0; 1897 return 1; 1898 } 1899 EXPORT_SYMBOL(mmc_erase_group_aligned); 1900 1901 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1902 unsigned int arg) 1903 { 1904 struct mmc_host *host = card->host; 1905 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 1906 unsigned int last_timeout = 0; 1907 unsigned int max_busy_timeout = host->max_busy_timeout ? 1908 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 1909 1910 if (card->erase_shift) { 1911 max_qty = UINT_MAX >> card->erase_shift; 1912 min_qty = card->pref_erase >> card->erase_shift; 1913 } else if (mmc_card_sd(card)) { 1914 max_qty = UINT_MAX; 1915 min_qty = card->pref_erase; 1916 } else { 1917 max_qty = UINT_MAX / card->erase_size; 1918 min_qty = card->pref_erase / card->erase_size; 1919 } 1920 1921 /* 1922 * We should not only use 'host->max_busy_timeout' as the limitation 1923 * when deciding the max discard sectors. We should set a balance value 1924 * to improve the erase speed, and it can not get too long timeout at 1925 * the same time. 1926 * 1927 * Here we set 'card->pref_erase' as the minimal discard sectors no 1928 * matter what size of 'host->max_busy_timeout', but if the 1929 * 'host->max_busy_timeout' is large enough for more discard sectors, 1930 * then we can continue to increase the max discard sectors until we 1931 * get a balance value. In cases when the 'host->max_busy_timeout' 1932 * isn't specified, use the default max erase timeout. 1933 */ 1934 do { 1935 y = 0; 1936 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1937 timeout = mmc_erase_timeout(card, arg, qty + x); 1938 1939 if (qty + x > min_qty && timeout > max_busy_timeout) 1940 break; 1941 1942 if (timeout < last_timeout) 1943 break; 1944 last_timeout = timeout; 1945 y = x; 1946 } 1947 qty += y; 1948 } while (y); 1949 1950 if (!qty) 1951 return 0; 1952 1953 /* 1954 * When specifying a sector range to trim, chances are we might cross 1955 * an erase-group boundary even if the amount of sectors is less than 1956 * one erase-group. 1957 * If we can only fit one erase-group in the controller timeout budget, 1958 * we have to care that erase-group boundaries are not crossed by a 1959 * single trim operation. We flag that special case with "eg_boundary". 1960 * In all other cases we can just decrement qty and pretend that we 1961 * always touch (qty + 1) erase-groups as a simple optimization. 1962 */ 1963 if (qty == 1) 1964 card->eg_boundary = 1; 1965 else 1966 qty--; 1967 1968 /* Convert qty to sectors */ 1969 if (card->erase_shift) 1970 max_discard = qty << card->erase_shift; 1971 else if (mmc_card_sd(card)) 1972 max_discard = qty + 1; 1973 else 1974 max_discard = qty * card->erase_size; 1975 1976 return max_discard; 1977 } 1978 1979 unsigned int mmc_calc_max_discard(struct mmc_card *card) 1980 { 1981 struct mmc_host *host = card->host; 1982 unsigned int max_discard, max_trim; 1983 1984 /* 1985 * Without erase_group_def set, MMC erase timeout depends on clock 1986 * frequence which can change. In that case, the best choice is 1987 * just the preferred erase size. 1988 */ 1989 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1990 return card->pref_erase; 1991 1992 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1993 if (mmc_can_trim(card)) { 1994 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1995 if (max_trim < max_discard || max_discard == 0) 1996 max_discard = max_trim; 1997 } else if (max_discard < card->erase_size) { 1998 max_discard = 0; 1999 } 2000 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2001 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2002 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2003 return max_discard; 2004 } 2005 EXPORT_SYMBOL(mmc_calc_max_discard); 2006 2007 bool mmc_card_is_blockaddr(struct mmc_card *card) 2008 { 2009 return card ? mmc_card_blockaddr(card) : false; 2010 } 2011 EXPORT_SYMBOL(mmc_card_is_blockaddr); 2012 2013 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2014 { 2015 struct mmc_command cmd = {}; 2016 2017 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2018 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2019 return 0; 2020 2021 cmd.opcode = MMC_SET_BLOCKLEN; 2022 cmd.arg = blocklen; 2023 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2024 return mmc_wait_for_cmd(card->host, &cmd, 5); 2025 } 2026 EXPORT_SYMBOL(mmc_set_blocklen); 2027 2028 static void mmc_hw_reset_for_init(struct mmc_host *host) 2029 { 2030 mmc_pwrseq_reset(host); 2031 2032 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset) 2033 return; 2034 host->ops->card_hw_reset(host); 2035 } 2036 2037 /** 2038 * mmc_hw_reset - reset the card in hardware 2039 * @card: card to be reset 2040 * 2041 * Hard reset the card. This function is only for upper layers, like the 2042 * block layer or card drivers. You cannot use it in host drivers (struct 2043 * mmc_card might be gone then). 2044 * 2045 * Return: 0 on success, -errno on failure 2046 */ 2047 int mmc_hw_reset(struct mmc_card *card) 2048 { 2049 struct mmc_host *host = card->host; 2050 int ret; 2051 2052 ret = host->bus_ops->hw_reset(host); 2053 if (ret < 0) 2054 pr_warn("%s: tried to HW reset card, got error %d\n", 2055 mmc_hostname(host), ret); 2056 2057 return ret; 2058 } 2059 EXPORT_SYMBOL(mmc_hw_reset); 2060 2061 int mmc_sw_reset(struct mmc_card *card) 2062 { 2063 struct mmc_host *host = card->host; 2064 int ret; 2065 2066 if (!host->bus_ops->sw_reset) 2067 return -EOPNOTSUPP; 2068 2069 ret = host->bus_ops->sw_reset(host); 2070 if (ret) 2071 pr_warn("%s: tried to SW reset card, got error %d\n", 2072 mmc_hostname(host), ret); 2073 2074 return ret; 2075 } 2076 EXPORT_SYMBOL(mmc_sw_reset); 2077 2078 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2079 { 2080 host->f_init = freq; 2081 2082 pr_debug("%s: %s: trying to init card at %u Hz\n", 2083 mmc_hostname(host), __func__, host->f_init); 2084 2085 mmc_power_up(host, host->ocr_avail); 2086 2087 /* 2088 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2089 * do a hardware reset if possible. 2090 */ 2091 mmc_hw_reset_for_init(host); 2092 2093 /* 2094 * sdio_reset sends CMD52 to reset card. Since we do not know 2095 * if the card is being re-initialized, just send it. CMD52 2096 * should be ignored by SD/eMMC cards. 2097 * Skip it if we already know that we do not support SDIO commands 2098 */ 2099 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2100 sdio_reset(host); 2101 2102 mmc_go_idle(host); 2103 2104 if (!(host->caps2 & MMC_CAP2_NO_SD)) { 2105 if (mmc_send_if_cond_pcie(host, host->ocr_avail)) 2106 goto out; 2107 if (mmc_card_sd_express(host)) 2108 return 0; 2109 } 2110 2111 /* Order's important: probe SDIO, then SD, then MMC */ 2112 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2113 if (!mmc_attach_sdio(host)) 2114 return 0; 2115 2116 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2117 if (!mmc_attach_sd(host)) 2118 return 0; 2119 2120 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2121 if (!mmc_attach_mmc(host)) 2122 return 0; 2123 2124 out: 2125 mmc_power_off(host); 2126 return -EIO; 2127 } 2128 2129 int _mmc_detect_card_removed(struct mmc_host *host) 2130 { 2131 int ret; 2132 2133 if (!host->card || mmc_card_removed(host->card)) 2134 return 1; 2135 2136 ret = host->bus_ops->alive(host); 2137 2138 /* 2139 * Card detect status and alive check may be out of sync if card is 2140 * removed slowly, when card detect switch changes while card/slot 2141 * pads are still contacted in hardware (refer to "SD Card Mechanical 2142 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2143 * detect work 200ms later for this case. 2144 */ 2145 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2146 mmc_detect_change(host, msecs_to_jiffies(200)); 2147 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2148 } 2149 2150 if (ret) { 2151 mmc_card_set_removed(host->card); 2152 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2153 } 2154 2155 return ret; 2156 } 2157 2158 int mmc_detect_card_removed(struct mmc_host *host) 2159 { 2160 struct mmc_card *card = host->card; 2161 int ret; 2162 2163 WARN_ON(!host->claimed); 2164 2165 if (!card) 2166 return 1; 2167 2168 if (!mmc_card_is_removable(host)) 2169 return 0; 2170 2171 ret = mmc_card_removed(card); 2172 /* 2173 * The card will be considered unchanged unless we have been asked to 2174 * detect a change or host requires polling to provide card detection. 2175 */ 2176 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2177 return ret; 2178 2179 host->detect_change = 0; 2180 if (!ret) { 2181 ret = _mmc_detect_card_removed(host); 2182 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2183 /* 2184 * Schedule a detect work as soon as possible to let a 2185 * rescan handle the card removal. 2186 */ 2187 cancel_delayed_work(&host->detect); 2188 _mmc_detect_change(host, 0, false); 2189 } 2190 } 2191 2192 return ret; 2193 } 2194 EXPORT_SYMBOL(mmc_detect_card_removed); 2195 2196 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector) 2197 { 2198 unsigned int boot_sectors_num; 2199 2200 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA))) 2201 return -EOPNOTSUPP; 2202 2203 /* filter out unrelated cards */ 2204 if (card->ext_csd.rev < 3 || 2205 !mmc_card_mmc(card) || 2206 !mmc_card_is_blockaddr(card) || 2207 mmc_card_is_removable(card->host)) 2208 return -ENOENT; 2209 2210 /* 2211 * eMMC storage has two special boot partitions in addition to the 2212 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main 2213 * accesses, this means that the partition table addresses are shifted 2214 * by the size of boot partitions. In accordance with the eMMC 2215 * specification, the boot partition size is calculated as follows: 2216 * 2217 * boot partition size = 128K byte x BOOT_SIZE_MULT 2218 * 2219 * Calculate number of sectors occupied by the both boot partitions. 2220 */ 2221 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K / 2222 SZ_512 * MMC_NUM_BOOT_PARTITION; 2223 2224 /* Defined by NVIDIA and used by Android devices. */ 2225 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1; 2226 2227 return 0; 2228 } 2229 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector); 2230 2231 void mmc_rescan(struct work_struct *work) 2232 { 2233 struct mmc_host *host = 2234 container_of(work, struct mmc_host, detect.work); 2235 int i; 2236 2237 if (host->rescan_disable) 2238 return; 2239 2240 /* If there is a non-removable card registered, only scan once */ 2241 if (!mmc_card_is_removable(host) && host->rescan_entered) 2242 return; 2243 host->rescan_entered = 1; 2244 2245 if (host->trigger_card_event && host->ops->card_event) { 2246 mmc_claim_host(host); 2247 host->ops->card_event(host); 2248 mmc_release_host(host); 2249 host->trigger_card_event = false; 2250 } 2251 2252 /* Verify a registered card to be functional, else remove it. */ 2253 if (host->bus_ops) 2254 host->bus_ops->detect(host); 2255 2256 host->detect_change = 0; 2257 2258 /* if there still is a card present, stop here */ 2259 if (host->bus_ops != NULL) 2260 goto out; 2261 2262 mmc_claim_host(host); 2263 if (mmc_card_is_removable(host) && host->ops->get_cd && 2264 host->ops->get_cd(host) == 0) { 2265 mmc_power_off(host); 2266 mmc_release_host(host); 2267 goto out; 2268 } 2269 2270 /* If an SD express card is present, then leave it as is. */ 2271 if (mmc_card_sd_express(host)) { 2272 mmc_release_host(host); 2273 goto out; 2274 } 2275 2276 /* 2277 * Ideally we should favor initialization of legacy SD cards and defer 2278 * UHS-II enumeration. However, it seems like cards doesn't reliably 2279 * announce their support for UHS-II in the response to the ACMD41, 2280 * while initializing the legacy SD interface. Therefore, let's start 2281 * with UHS-II for now. 2282 */ 2283 if (!mmc_attach_sd_uhs2(host)) { 2284 mmc_release_host(host); 2285 goto out; 2286 } 2287 2288 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2289 unsigned int freq = freqs[i]; 2290 if (freq > host->f_max) { 2291 if (i + 1 < ARRAY_SIZE(freqs)) 2292 continue; 2293 freq = host->f_max; 2294 } 2295 if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) 2296 break; 2297 if (freqs[i] <= host->f_min) 2298 break; 2299 } 2300 2301 /* A non-removable card should have been detected by now. */ 2302 if (!mmc_card_is_removable(host) && !host->bus_ops) 2303 pr_info("%s: Failed to initialize a non-removable card", 2304 mmc_hostname(host)); 2305 2306 /* 2307 * Ignore the command timeout errors observed during 2308 * the card init as those are excepted. 2309 */ 2310 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0; 2311 mmc_release_host(host); 2312 2313 out: 2314 if (host->caps & MMC_CAP_NEEDS_POLL) 2315 mmc_schedule_delayed_work(&host->detect, HZ); 2316 } 2317 2318 void mmc_start_host(struct mmc_host *host) 2319 { 2320 bool power_up = !(host->caps2 & 2321 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2)); 2322 2323 host->f_init = max(min(freqs[0], host->f_max), host->f_min); 2324 host->rescan_disable = 0; 2325 2326 if (power_up) { 2327 mmc_claim_host(host); 2328 mmc_power_up(host, host->ocr_avail); 2329 mmc_release_host(host); 2330 } 2331 2332 mmc_gpiod_request_cd_irq(host); 2333 _mmc_detect_change(host, 0, false); 2334 } 2335 2336 void __mmc_stop_host(struct mmc_host *host) 2337 { 2338 if (host->rescan_disable) 2339 return; 2340 2341 if (host->slot.cd_irq >= 0) { 2342 mmc_gpio_set_cd_wake(host, false); 2343 disable_irq(host->slot.cd_irq); 2344 } 2345 2346 host->rescan_disable = 1; 2347 cancel_delayed_work_sync(&host->detect); 2348 } 2349 2350 void mmc_stop_host(struct mmc_host *host) 2351 { 2352 __mmc_stop_host(host); 2353 2354 /* clear pm flags now and let card drivers set them as needed */ 2355 host->pm_flags = 0; 2356 2357 if (host->bus_ops) { 2358 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2359 host->bus_ops->remove(host); 2360 mmc_claim_host(host); 2361 mmc_detach_bus(host); 2362 mmc_power_off(host); 2363 mmc_release_host(host); 2364 return; 2365 } 2366 2367 mmc_claim_host(host); 2368 mmc_power_off(host); 2369 mmc_release_host(host); 2370 } 2371 2372 static int __init mmc_init(void) 2373 { 2374 int ret; 2375 2376 ret = mmc_register_bus(); 2377 if (ret) 2378 return ret; 2379 2380 ret = mmc_register_host_class(); 2381 if (ret) 2382 goto unregister_bus; 2383 2384 ret = sdio_register_bus(); 2385 if (ret) 2386 goto unregister_host_class; 2387 2388 return 0; 2389 2390 unregister_host_class: 2391 mmc_unregister_host_class(); 2392 unregister_bus: 2393 mmc_unregister_bus(); 2394 return ret; 2395 } 2396 2397 static void __exit mmc_exit(void) 2398 { 2399 sdio_unregister_bus(); 2400 mmc_unregister_host_class(); 2401 mmc_unregister_bus(); 2402 } 2403 2404 subsys_initcall(mmc_init); 2405 module_exit(mmc_exit); 2406 2407 MODULE_DESCRIPTION("MMC core driver"); 2408 MODULE_LICENSE("GPL"); 2409