xref: /linux/drivers/mmc/core/core.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 
44 #include "mmc_ops.h"
45 #include "sd_ops.h"
46 #include "sdio_ops.h"
47 
48 /* If the device is not responding */
49 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
50 
51 /*
52  * Background operations can take a long time, depending on the housekeeping
53  * operations the card has to perform.
54  */
55 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
56 
57 static struct workqueue_struct *workqueue;
58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59 
60 /*
61  * Enabling software CRCs on the data blocks can be a significant (30%)
62  * performance cost, and for other reasons may not always be desired.
63  * So we allow it it to be disabled.
64  */
65 bool use_spi_crc = 1;
66 module_param(use_spi_crc, bool, 0);
67 
68 /*
69  * Internal function. Schedule delayed work in the MMC work queue.
70  */
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	return queue_delayed_work(workqueue, work, delay);
75 }
76 
77 /*
78  * Internal function. Flush all scheduled work from the MMC work queue.
79  */
80 static void mmc_flush_scheduled_work(void)
81 {
82 	flush_workqueue(workqueue);
83 }
84 
85 #ifdef CONFIG_FAIL_MMC_REQUEST
86 
87 /*
88  * Internal function. Inject random data errors.
89  * If mmc_data is NULL no errors are injected.
90  */
91 static void mmc_should_fail_request(struct mmc_host *host,
92 				    struct mmc_request *mrq)
93 {
94 	struct mmc_command *cmd = mrq->cmd;
95 	struct mmc_data *data = mrq->data;
96 	static const int data_errors[] = {
97 		-ETIMEDOUT,
98 		-EILSEQ,
99 		-EIO,
100 	};
101 
102 	if (!data)
103 		return;
104 
105 	if (cmd->error || data->error ||
106 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 		return;
108 
109 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111 }
112 
113 #else /* CONFIG_FAIL_MMC_REQUEST */
114 
115 static inline void mmc_should_fail_request(struct mmc_host *host,
116 					   struct mmc_request *mrq)
117 {
118 }
119 
120 #endif /* CONFIG_FAIL_MMC_REQUEST */
121 
122 /**
123  *	mmc_request_done - finish processing an MMC request
124  *	@host: MMC host which completed request
125  *	@mrq: MMC request which request
126  *
127  *	MMC drivers should call this function when they have completed
128  *	their processing of a request.
129  */
130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131 {
132 	struct mmc_command *cmd = mrq->cmd;
133 	int err = cmd->error;
134 
135 	if (err && cmd->retries && mmc_host_is_spi(host)) {
136 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 			cmd->retries = 0;
138 	}
139 
140 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 		/*
142 		 * Request starter must handle retries - see
143 		 * mmc_wait_for_req_done().
144 		 */
145 		if (mrq->done)
146 			mrq->done(mrq);
147 	} else {
148 		mmc_should_fail_request(host, mrq);
149 
150 		led_trigger_event(host->led, LED_OFF);
151 
152 		if (mrq->sbc) {
153 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
154 				mmc_hostname(host), mrq->sbc->opcode,
155 				mrq->sbc->error,
156 				mrq->sbc->resp[0], mrq->sbc->resp[1],
157 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
158 		}
159 
160 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
161 			mmc_hostname(host), cmd->opcode, err,
162 			cmd->resp[0], cmd->resp[1],
163 			cmd->resp[2], cmd->resp[3]);
164 
165 		if (mrq->data) {
166 			pr_debug("%s:     %d bytes transferred: %d\n",
167 				mmc_hostname(host),
168 				mrq->data->bytes_xfered, mrq->data->error);
169 		}
170 
171 		if (mrq->stop) {
172 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
173 				mmc_hostname(host), mrq->stop->opcode,
174 				mrq->stop->error,
175 				mrq->stop->resp[0], mrq->stop->resp[1],
176 				mrq->stop->resp[2], mrq->stop->resp[3]);
177 		}
178 
179 		if (mrq->done)
180 			mrq->done(mrq);
181 
182 		mmc_host_clk_release(host);
183 	}
184 }
185 
186 EXPORT_SYMBOL(mmc_request_done);
187 
188 static void
189 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
190 {
191 #ifdef CONFIG_MMC_DEBUG
192 	unsigned int i, sz;
193 	struct scatterlist *sg;
194 #endif
195 
196 	if (mrq->sbc) {
197 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
198 			 mmc_hostname(host), mrq->sbc->opcode,
199 			 mrq->sbc->arg, mrq->sbc->flags);
200 	}
201 
202 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
203 		 mmc_hostname(host), mrq->cmd->opcode,
204 		 mrq->cmd->arg, mrq->cmd->flags);
205 
206 	if (mrq->data) {
207 		pr_debug("%s:     blksz %d blocks %d flags %08x "
208 			"tsac %d ms nsac %d\n",
209 			mmc_hostname(host), mrq->data->blksz,
210 			mrq->data->blocks, mrq->data->flags,
211 			mrq->data->timeout_ns / 1000000,
212 			mrq->data->timeout_clks);
213 	}
214 
215 	if (mrq->stop) {
216 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
217 			 mmc_hostname(host), mrq->stop->opcode,
218 			 mrq->stop->arg, mrq->stop->flags);
219 	}
220 
221 	WARN_ON(!host->claimed);
222 
223 	mrq->cmd->error = 0;
224 	mrq->cmd->mrq = mrq;
225 	if (mrq->sbc) {
226 		mrq->sbc->error = 0;
227 		mrq->sbc->mrq = mrq;
228 	}
229 	if (mrq->data) {
230 		BUG_ON(mrq->data->blksz > host->max_blk_size);
231 		BUG_ON(mrq->data->blocks > host->max_blk_count);
232 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
233 			host->max_req_size);
234 
235 #ifdef CONFIG_MMC_DEBUG
236 		sz = 0;
237 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
238 			sz += sg->length;
239 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
240 #endif
241 
242 		mrq->cmd->data = mrq->data;
243 		mrq->data->error = 0;
244 		mrq->data->mrq = mrq;
245 		if (mrq->stop) {
246 			mrq->data->stop = mrq->stop;
247 			mrq->stop->error = 0;
248 			mrq->stop->mrq = mrq;
249 		}
250 	}
251 	mmc_host_clk_hold(host);
252 	led_trigger_event(host->led, LED_FULL);
253 	host->ops->request(host, mrq);
254 }
255 
256 /**
257  *	mmc_start_bkops - start BKOPS for supported cards
258  *	@card: MMC card to start BKOPS
259  *	@form_exception: A flag to indicate if this function was
260  *			 called due to an exception raised by the card
261  *
262  *	Start background operations whenever requested.
263  *	When the urgent BKOPS bit is set in a R1 command response
264  *	then background operations should be started immediately.
265 */
266 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
267 {
268 	int err;
269 	int timeout;
270 	bool use_busy_signal;
271 
272 	BUG_ON(!card);
273 
274 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
275 		return;
276 
277 	err = mmc_read_bkops_status(card);
278 	if (err) {
279 		pr_err("%s: Failed to read bkops status: %d\n",
280 		       mmc_hostname(card->host), err);
281 		return;
282 	}
283 
284 	if (!card->ext_csd.raw_bkops_status)
285 		return;
286 
287 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
288 	    from_exception)
289 		return;
290 
291 	mmc_claim_host(card->host);
292 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
293 		timeout = MMC_BKOPS_MAX_TIMEOUT;
294 		use_busy_signal = true;
295 	} else {
296 		timeout = 0;
297 		use_busy_signal = false;
298 	}
299 
300 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
301 			EXT_CSD_BKOPS_START, 1, timeout,
302 			use_busy_signal, true, false);
303 	if (err) {
304 		pr_warn("%s: Error %d starting bkops\n",
305 			mmc_hostname(card->host), err);
306 		goto out;
307 	}
308 
309 	/*
310 	 * For urgent bkops status (LEVEL_2 and more)
311 	 * bkops executed synchronously, otherwise
312 	 * the operation is in progress
313 	 */
314 	if (!use_busy_signal)
315 		mmc_card_set_doing_bkops(card);
316 out:
317 	mmc_release_host(card->host);
318 }
319 EXPORT_SYMBOL(mmc_start_bkops);
320 
321 /*
322  * mmc_wait_data_done() - done callback for data request
323  * @mrq: done data request
324  *
325  * Wakes up mmc context, passed as a callback to host controller driver
326  */
327 static void mmc_wait_data_done(struct mmc_request *mrq)
328 {
329 	mrq->host->context_info.is_done_rcv = true;
330 	wake_up_interruptible(&mrq->host->context_info.wait);
331 }
332 
333 static void mmc_wait_done(struct mmc_request *mrq)
334 {
335 	complete(&mrq->completion);
336 }
337 
338 /*
339  *__mmc_start_data_req() - starts data request
340  * @host: MMC host to start the request
341  * @mrq: data request to start
342  *
343  * Sets the done callback to be called when request is completed by the card.
344  * Starts data mmc request execution
345  */
346 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
347 {
348 	mrq->done = mmc_wait_data_done;
349 	mrq->host = host;
350 	if (mmc_card_removed(host->card)) {
351 		mrq->cmd->error = -ENOMEDIUM;
352 		mmc_wait_data_done(mrq);
353 		return -ENOMEDIUM;
354 	}
355 	mmc_start_request(host, mrq);
356 
357 	return 0;
358 }
359 
360 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
361 {
362 	init_completion(&mrq->completion);
363 	mrq->done = mmc_wait_done;
364 	if (mmc_card_removed(host->card)) {
365 		mrq->cmd->error = -ENOMEDIUM;
366 		complete(&mrq->completion);
367 		return -ENOMEDIUM;
368 	}
369 	mmc_start_request(host, mrq);
370 	return 0;
371 }
372 
373 /*
374  * mmc_wait_for_data_req_done() - wait for request completed
375  * @host: MMC host to prepare the command.
376  * @mrq: MMC request to wait for
377  *
378  * Blocks MMC context till host controller will ack end of data request
379  * execution or new request notification arrives from the block layer.
380  * Handles command retries.
381  *
382  * Returns enum mmc_blk_status after checking errors.
383  */
384 static int mmc_wait_for_data_req_done(struct mmc_host *host,
385 				      struct mmc_request *mrq,
386 				      struct mmc_async_req *next_req)
387 {
388 	struct mmc_command *cmd;
389 	struct mmc_context_info *context_info = &host->context_info;
390 	int err;
391 	unsigned long flags;
392 
393 	while (1) {
394 		wait_event_interruptible(context_info->wait,
395 				(context_info->is_done_rcv ||
396 				 context_info->is_new_req));
397 		spin_lock_irqsave(&context_info->lock, flags);
398 		context_info->is_waiting_last_req = false;
399 		spin_unlock_irqrestore(&context_info->lock, flags);
400 		if (context_info->is_done_rcv) {
401 			context_info->is_done_rcv = false;
402 			context_info->is_new_req = false;
403 			cmd = mrq->cmd;
404 
405 			if (!cmd->error || !cmd->retries ||
406 			    mmc_card_removed(host->card)) {
407 				err = host->areq->err_check(host->card,
408 							    host->areq);
409 				break; /* return err */
410 			} else {
411 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
412 					mmc_hostname(host),
413 					cmd->opcode, cmd->error);
414 				cmd->retries--;
415 				cmd->error = 0;
416 				host->ops->request(host, mrq);
417 				continue; /* wait for done/new event again */
418 			}
419 		} else if (context_info->is_new_req) {
420 			context_info->is_new_req = false;
421 			if (!next_req) {
422 				err = MMC_BLK_NEW_REQUEST;
423 				break; /* return err */
424 			}
425 		}
426 	}
427 	return err;
428 }
429 
430 static void mmc_wait_for_req_done(struct mmc_host *host,
431 				  struct mmc_request *mrq)
432 {
433 	struct mmc_command *cmd;
434 
435 	while (1) {
436 		wait_for_completion(&mrq->completion);
437 
438 		cmd = mrq->cmd;
439 
440 		/*
441 		 * If host has timed out waiting for the sanitize
442 		 * to complete, card might be still in programming state
443 		 * so let's try to bring the card out of programming
444 		 * state.
445 		 */
446 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
447 			if (!mmc_interrupt_hpi(host->card)) {
448 				pr_warn("%s: %s: Interrupted sanitize\n",
449 					mmc_hostname(host), __func__);
450 				cmd->error = 0;
451 				break;
452 			} else {
453 				pr_err("%s: %s: Failed to interrupt sanitize\n",
454 				       mmc_hostname(host), __func__);
455 			}
456 		}
457 		if (!cmd->error || !cmd->retries ||
458 		    mmc_card_removed(host->card))
459 			break;
460 
461 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
462 			 mmc_hostname(host), cmd->opcode, cmd->error);
463 		cmd->retries--;
464 		cmd->error = 0;
465 		host->ops->request(host, mrq);
466 	}
467 }
468 
469 /**
470  *	mmc_pre_req - Prepare for a new request
471  *	@host: MMC host to prepare command
472  *	@mrq: MMC request to prepare for
473  *	@is_first_req: true if there is no previous started request
474  *                     that may run in parellel to this call, otherwise false
475  *
476  *	mmc_pre_req() is called in prior to mmc_start_req() to let
477  *	host prepare for the new request. Preparation of a request may be
478  *	performed while another request is running on the host.
479  */
480 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
481 		 bool is_first_req)
482 {
483 	if (host->ops->pre_req) {
484 		mmc_host_clk_hold(host);
485 		host->ops->pre_req(host, mrq, is_first_req);
486 		mmc_host_clk_release(host);
487 	}
488 }
489 
490 /**
491  *	mmc_post_req - Post process a completed request
492  *	@host: MMC host to post process command
493  *	@mrq: MMC request to post process for
494  *	@err: Error, if non zero, clean up any resources made in pre_req
495  *
496  *	Let the host post process a completed request. Post processing of
497  *	a request may be performed while another reuqest is running.
498  */
499 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
500 			 int err)
501 {
502 	if (host->ops->post_req) {
503 		mmc_host_clk_hold(host);
504 		host->ops->post_req(host, mrq, err);
505 		mmc_host_clk_release(host);
506 	}
507 }
508 
509 /**
510  *	mmc_start_req - start a non-blocking request
511  *	@host: MMC host to start command
512  *	@areq: async request to start
513  *	@error: out parameter returns 0 for success, otherwise non zero
514  *
515  *	Start a new MMC custom command request for a host.
516  *	If there is on ongoing async request wait for completion
517  *	of that request and start the new one and return.
518  *	Does not wait for the new request to complete.
519  *
520  *      Returns the completed request, NULL in case of none completed.
521  *	Wait for the an ongoing request (previoulsy started) to complete and
522  *	return the completed request. If there is no ongoing request, NULL
523  *	is returned without waiting. NULL is not an error condition.
524  */
525 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
526 				    struct mmc_async_req *areq, int *error)
527 {
528 	int err = 0;
529 	int start_err = 0;
530 	struct mmc_async_req *data = host->areq;
531 
532 	/* Prepare a new request */
533 	if (areq)
534 		mmc_pre_req(host, areq->mrq, !host->areq);
535 
536 	if (host->areq) {
537 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
538 		if (err == MMC_BLK_NEW_REQUEST) {
539 			if (error)
540 				*error = err;
541 			/*
542 			 * The previous request was not completed,
543 			 * nothing to return
544 			 */
545 			return NULL;
546 		}
547 		/*
548 		 * Check BKOPS urgency for each R1 response
549 		 */
550 		if (host->card && mmc_card_mmc(host->card) &&
551 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
552 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
553 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
554 
555 			/* Cancel the prepared request */
556 			if (areq)
557 				mmc_post_req(host, areq->mrq, -EINVAL);
558 
559 			mmc_start_bkops(host->card, true);
560 
561 			/* prepare the request again */
562 			if (areq)
563 				mmc_pre_req(host, areq->mrq, !host->areq);
564 		}
565 	}
566 
567 	if (!err && areq)
568 		start_err = __mmc_start_data_req(host, areq->mrq);
569 
570 	if (host->areq)
571 		mmc_post_req(host, host->areq->mrq, 0);
572 
573 	 /* Cancel a prepared request if it was not started. */
574 	if ((err || start_err) && areq)
575 		mmc_post_req(host, areq->mrq, -EINVAL);
576 
577 	if (err)
578 		host->areq = NULL;
579 	else
580 		host->areq = areq;
581 
582 	if (error)
583 		*error = err;
584 	return data;
585 }
586 EXPORT_SYMBOL(mmc_start_req);
587 
588 /**
589  *	mmc_wait_for_req - start a request and wait for completion
590  *	@host: MMC host to start command
591  *	@mrq: MMC request to start
592  *
593  *	Start a new MMC custom command request for a host, and wait
594  *	for the command to complete. Does not attempt to parse the
595  *	response.
596  */
597 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
598 {
599 	__mmc_start_req(host, mrq);
600 	mmc_wait_for_req_done(host, mrq);
601 }
602 EXPORT_SYMBOL(mmc_wait_for_req);
603 
604 /**
605  *	mmc_interrupt_hpi - Issue for High priority Interrupt
606  *	@card: the MMC card associated with the HPI transfer
607  *
608  *	Issued High Priority Interrupt, and check for card status
609  *	until out-of prg-state.
610  */
611 int mmc_interrupt_hpi(struct mmc_card *card)
612 {
613 	int err;
614 	u32 status;
615 	unsigned long prg_wait;
616 
617 	BUG_ON(!card);
618 
619 	if (!card->ext_csd.hpi_en) {
620 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
621 		return 1;
622 	}
623 
624 	mmc_claim_host(card->host);
625 	err = mmc_send_status(card, &status);
626 	if (err) {
627 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
628 		goto out;
629 	}
630 
631 	switch (R1_CURRENT_STATE(status)) {
632 	case R1_STATE_IDLE:
633 	case R1_STATE_READY:
634 	case R1_STATE_STBY:
635 	case R1_STATE_TRAN:
636 		/*
637 		 * In idle and transfer states, HPI is not needed and the caller
638 		 * can issue the next intended command immediately
639 		 */
640 		goto out;
641 	case R1_STATE_PRG:
642 		break;
643 	default:
644 		/* In all other states, it's illegal to issue HPI */
645 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
646 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
647 		err = -EINVAL;
648 		goto out;
649 	}
650 
651 	err = mmc_send_hpi_cmd(card, &status);
652 	if (err)
653 		goto out;
654 
655 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
656 	do {
657 		err = mmc_send_status(card, &status);
658 
659 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
660 			break;
661 		if (time_after(jiffies, prg_wait))
662 			err = -ETIMEDOUT;
663 	} while (!err);
664 
665 out:
666 	mmc_release_host(card->host);
667 	return err;
668 }
669 EXPORT_SYMBOL(mmc_interrupt_hpi);
670 
671 /**
672  *	mmc_wait_for_cmd - start a command and wait for completion
673  *	@host: MMC host to start command
674  *	@cmd: MMC command to start
675  *	@retries: maximum number of retries
676  *
677  *	Start a new MMC command for a host, and wait for the command
678  *	to complete.  Return any error that occurred while the command
679  *	was executing.  Do not attempt to parse the response.
680  */
681 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
682 {
683 	struct mmc_request mrq = {NULL};
684 
685 	WARN_ON(!host->claimed);
686 
687 	memset(cmd->resp, 0, sizeof(cmd->resp));
688 	cmd->retries = retries;
689 
690 	mrq.cmd = cmd;
691 	cmd->data = NULL;
692 
693 	mmc_wait_for_req(host, &mrq);
694 
695 	return cmd->error;
696 }
697 
698 EXPORT_SYMBOL(mmc_wait_for_cmd);
699 
700 /**
701  *	mmc_stop_bkops - stop ongoing BKOPS
702  *	@card: MMC card to check BKOPS
703  *
704  *	Send HPI command to stop ongoing background operations to
705  *	allow rapid servicing of foreground operations, e.g. read/
706  *	writes. Wait until the card comes out of the programming state
707  *	to avoid errors in servicing read/write requests.
708  */
709 int mmc_stop_bkops(struct mmc_card *card)
710 {
711 	int err = 0;
712 
713 	BUG_ON(!card);
714 	err = mmc_interrupt_hpi(card);
715 
716 	/*
717 	 * If err is EINVAL, we can't issue an HPI.
718 	 * It should complete the BKOPS.
719 	 */
720 	if (!err || (err == -EINVAL)) {
721 		mmc_card_clr_doing_bkops(card);
722 		err = 0;
723 	}
724 
725 	return err;
726 }
727 EXPORT_SYMBOL(mmc_stop_bkops);
728 
729 int mmc_read_bkops_status(struct mmc_card *card)
730 {
731 	int err;
732 	u8 *ext_csd;
733 
734 	mmc_claim_host(card->host);
735 	err = mmc_get_ext_csd(card, &ext_csd);
736 	mmc_release_host(card->host);
737 	if (err)
738 		return err;
739 
740 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
741 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
742 	kfree(ext_csd);
743 	return 0;
744 }
745 EXPORT_SYMBOL(mmc_read_bkops_status);
746 
747 /**
748  *	mmc_set_data_timeout - set the timeout for a data command
749  *	@data: data phase for command
750  *	@card: the MMC card associated with the data transfer
751  *
752  *	Computes the data timeout parameters according to the
753  *	correct algorithm given the card type.
754  */
755 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
756 {
757 	unsigned int mult;
758 
759 	/*
760 	 * SDIO cards only define an upper 1 s limit on access.
761 	 */
762 	if (mmc_card_sdio(card)) {
763 		data->timeout_ns = 1000000000;
764 		data->timeout_clks = 0;
765 		return;
766 	}
767 
768 	/*
769 	 * SD cards use a 100 multiplier rather than 10
770 	 */
771 	mult = mmc_card_sd(card) ? 100 : 10;
772 
773 	/*
774 	 * Scale up the multiplier (and therefore the timeout) by
775 	 * the r2w factor for writes.
776 	 */
777 	if (data->flags & MMC_DATA_WRITE)
778 		mult <<= card->csd.r2w_factor;
779 
780 	data->timeout_ns = card->csd.tacc_ns * mult;
781 	data->timeout_clks = card->csd.tacc_clks * mult;
782 
783 	/*
784 	 * SD cards also have an upper limit on the timeout.
785 	 */
786 	if (mmc_card_sd(card)) {
787 		unsigned int timeout_us, limit_us;
788 
789 		timeout_us = data->timeout_ns / 1000;
790 		if (mmc_host_clk_rate(card->host))
791 			timeout_us += data->timeout_clks * 1000 /
792 				(mmc_host_clk_rate(card->host) / 1000);
793 
794 		if (data->flags & MMC_DATA_WRITE)
795 			/*
796 			 * The MMC spec "It is strongly recommended
797 			 * for hosts to implement more than 500ms
798 			 * timeout value even if the card indicates
799 			 * the 250ms maximum busy length."  Even the
800 			 * previous value of 300ms is known to be
801 			 * insufficient for some cards.
802 			 */
803 			limit_us = 3000000;
804 		else
805 			limit_us = 100000;
806 
807 		/*
808 		 * SDHC cards always use these fixed values.
809 		 */
810 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
811 			data->timeout_ns = limit_us * 1000;
812 			data->timeout_clks = 0;
813 		}
814 
815 		/* assign limit value if invalid */
816 		if (timeout_us == 0)
817 			data->timeout_ns = limit_us * 1000;
818 	}
819 
820 	/*
821 	 * Some cards require longer data read timeout than indicated in CSD.
822 	 * Address this by setting the read timeout to a "reasonably high"
823 	 * value. For the cards tested, 300ms has proven enough. If necessary,
824 	 * this value can be increased if other problematic cards require this.
825 	 */
826 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
827 		data->timeout_ns = 300000000;
828 		data->timeout_clks = 0;
829 	}
830 
831 	/*
832 	 * Some cards need very high timeouts if driven in SPI mode.
833 	 * The worst observed timeout was 900ms after writing a
834 	 * continuous stream of data until the internal logic
835 	 * overflowed.
836 	 */
837 	if (mmc_host_is_spi(card->host)) {
838 		if (data->flags & MMC_DATA_WRITE) {
839 			if (data->timeout_ns < 1000000000)
840 				data->timeout_ns = 1000000000;	/* 1s */
841 		} else {
842 			if (data->timeout_ns < 100000000)
843 				data->timeout_ns =  100000000;	/* 100ms */
844 		}
845 	}
846 }
847 EXPORT_SYMBOL(mmc_set_data_timeout);
848 
849 /**
850  *	mmc_align_data_size - pads a transfer size to a more optimal value
851  *	@card: the MMC card associated with the data transfer
852  *	@sz: original transfer size
853  *
854  *	Pads the original data size with a number of extra bytes in
855  *	order to avoid controller bugs and/or performance hits
856  *	(e.g. some controllers revert to PIO for certain sizes).
857  *
858  *	Returns the improved size, which might be unmodified.
859  *
860  *	Note that this function is only relevant when issuing a
861  *	single scatter gather entry.
862  */
863 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
864 {
865 	/*
866 	 * FIXME: We don't have a system for the controller to tell
867 	 * the core about its problems yet, so for now we just 32-bit
868 	 * align the size.
869 	 */
870 	sz = ((sz + 3) / 4) * 4;
871 
872 	return sz;
873 }
874 EXPORT_SYMBOL(mmc_align_data_size);
875 
876 /**
877  *	__mmc_claim_host - exclusively claim a host
878  *	@host: mmc host to claim
879  *	@abort: whether or not the operation should be aborted
880  *
881  *	Claim a host for a set of operations.  If @abort is non null and
882  *	dereference a non-zero value then this will return prematurely with
883  *	that non-zero value without acquiring the lock.  Returns zero
884  *	with the lock held otherwise.
885  */
886 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
887 {
888 	DECLARE_WAITQUEUE(wait, current);
889 	unsigned long flags;
890 	int stop;
891 
892 	might_sleep();
893 
894 	add_wait_queue(&host->wq, &wait);
895 	spin_lock_irqsave(&host->lock, flags);
896 	while (1) {
897 		set_current_state(TASK_UNINTERRUPTIBLE);
898 		stop = abort ? atomic_read(abort) : 0;
899 		if (stop || !host->claimed || host->claimer == current)
900 			break;
901 		spin_unlock_irqrestore(&host->lock, flags);
902 		schedule();
903 		spin_lock_irqsave(&host->lock, flags);
904 	}
905 	set_current_state(TASK_RUNNING);
906 	if (!stop) {
907 		host->claimed = 1;
908 		host->claimer = current;
909 		host->claim_cnt += 1;
910 	} else
911 		wake_up(&host->wq);
912 	spin_unlock_irqrestore(&host->lock, flags);
913 	remove_wait_queue(&host->wq, &wait);
914 	if (host->ops->enable && !stop && host->claim_cnt == 1)
915 		host->ops->enable(host);
916 	return stop;
917 }
918 
919 EXPORT_SYMBOL(__mmc_claim_host);
920 
921 /**
922  *	mmc_release_host - release a host
923  *	@host: mmc host to release
924  *
925  *	Release a MMC host, allowing others to claim the host
926  *	for their operations.
927  */
928 void mmc_release_host(struct mmc_host *host)
929 {
930 	unsigned long flags;
931 
932 	WARN_ON(!host->claimed);
933 
934 	if (host->ops->disable && host->claim_cnt == 1)
935 		host->ops->disable(host);
936 
937 	spin_lock_irqsave(&host->lock, flags);
938 	if (--host->claim_cnt) {
939 		/* Release for nested claim */
940 		spin_unlock_irqrestore(&host->lock, flags);
941 	} else {
942 		host->claimed = 0;
943 		host->claimer = NULL;
944 		spin_unlock_irqrestore(&host->lock, flags);
945 		wake_up(&host->wq);
946 	}
947 }
948 EXPORT_SYMBOL(mmc_release_host);
949 
950 /*
951  * This is a helper function, which fetches a runtime pm reference for the
952  * card device and also claims the host.
953  */
954 void mmc_get_card(struct mmc_card *card)
955 {
956 	pm_runtime_get_sync(&card->dev);
957 	mmc_claim_host(card->host);
958 }
959 EXPORT_SYMBOL(mmc_get_card);
960 
961 /*
962  * This is a helper function, which releases the host and drops the runtime
963  * pm reference for the card device.
964  */
965 void mmc_put_card(struct mmc_card *card)
966 {
967 	mmc_release_host(card->host);
968 	pm_runtime_mark_last_busy(&card->dev);
969 	pm_runtime_put_autosuspend(&card->dev);
970 }
971 EXPORT_SYMBOL(mmc_put_card);
972 
973 /*
974  * Internal function that does the actual ios call to the host driver,
975  * optionally printing some debug output.
976  */
977 static inline void mmc_set_ios(struct mmc_host *host)
978 {
979 	struct mmc_ios *ios = &host->ios;
980 
981 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
982 		"width %u timing %u\n",
983 		 mmc_hostname(host), ios->clock, ios->bus_mode,
984 		 ios->power_mode, ios->chip_select, ios->vdd,
985 		 ios->bus_width, ios->timing);
986 
987 	if (ios->clock > 0)
988 		mmc_set_ungated(host);
989 	host->ops->set_ios(host, ios);
990 }
991 
992 /*
993  * Control chip select pin on a host.
994  */
995 void mmc_set_chip_select(struct mmc_host *host, int mode)
996 {
997 	mmc_host_clk_hold(host);
998 	host->ios.chip_select = mode;
999 	mmc_set_ios(host);
1000 	mmc_host_clk_release(host);
1001 }
1002 
1003 /*
1004  * Sets the host clock to the highest possible frequency that
1005  * is below "hz".
1006  */
1007 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1008 {
1009 	WARN_ON(hz && hz < host->f_min);
1010 
1011 	if (hz > host->f_max)
1012 		hz = host->f_max;
1013 
1014 	host->ios.clock = hz;
1015 	mmc_set_ios(host);
1016 }
1017 
1018 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1019 {
1020 	mmc_host_clk_hold(host);
1021 	__mmc_set_clock(host, hz);
1022 	mmc_host_clk_release(host);
1023 }
1024 
1025 #ifdef CONFIG_MMC_CLKGATE
1026 /*
1027  * This gates the clock by setting it to 0 Hz.
1028  */
1029 void mmc_gate_clock(struct mmc_host *host)
1030 {
1031 	unsigned long flags;
1032 
1033 	spin_lock_irqsave(&host->clk_lock, flags);
1034 	host->clk_old = host->ios.clock;
1035 	host->ios.clock = 0;
1036 	host->clk_gated = true;
1037 	spin_unlock_irqrestore(&host->clk_lock, flags);
1038 	mmc_set_ios(host);
1039 }
1040 
1041 /*
1042  * This restores the clock from gating by using the cached
1043  * clock value.
1044  */
1045 void mmc_ungate_clock(struct mmc_host *host)
1046 {
1047 	/*
1048 	 * We should previously have gated the clock, so the clock shall
1049 	 * be 0 here! The clock may however be 0 during initialization,
1050 	 * when some request operations are performed before setting
1051 	 * the frequency. When ungate is requested in that situation
1052 	 * we just ignore the call.
1053 	 */
1054 	if (host->clk_old) {
1055 		BUG_ON(host->ios.clock);
1056 		/* This call will also set host->clk_gated to false */
1057 		__mmc_set_clock(host, host->clk_old);
1058 	}
1059 }
1060 
1061 void mmc_set_ungated(struct mmc_host *host)
1062 {
1063 	unsigned long flags;
1064 
1065 	/*
1066 	 * We've been given a new frequency while the clock is gated,
1067 	 * so make sure we regard this as ungating it.
1068 	 */
1069 	spin_lock_irqsave(&host->clk_lock, flags);
1070 	host->clk_gated = false;
1071 	spin_unlock_irqrestore(&host->clk_lock, flags);
1072 }
1073 
1074 #else
1075 void mmc_set_ungated(struct mmc_host *host)
1076 {
1077 }
1078 #endif
1079 
1080 /*
1081  * Change the bus mode (open drain/push-pull) of a host.
1082  */
1083 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1084 {
1085 	mmc_host_clk_hold(host);
1086 	host->ios.bus_mode = mode;
1087 	mmc_set_ios(host);
1088 	mmc_host_clk_release(host);
1089 }
1090 
1091 /*
1092  * Change data bus width of a host.
1093  */
1094 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1095 {
1096 	mmc_host_clk_hold(host);
1097 	host->ios.bus_width = width;
1098 	mmc_set_ios(host);
1099 	mmc_host_clk_release(host);
1100 }
1101 
1102 /*
1103  * Set initial state after a power cycle or a hw_reset.
1104  */
1105 void mmc_set_initial_state(struct mmc_host *host)
1106 {
1107 	if (mmc_host_is_spi(host))
1108 		host->ios.chip_select = MMC_CS_HIGH;
1109 	else
1110 		host->ios.chip_select = MMC_CS_DONTCARE;
1111 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1112 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1113 	host->ios.timing = MMC_TIMING_LEGACY;
1114 
1115 	mmc_set_ios(host);
1116 }
1117 
1118 /**
1119  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1120  * @vdd:	voltage (mV)
1121  * @low_bits:	prefer low bits in boundary cases
1122  *
1123  * This function returns the OCR bit number according to the provided @vdd
1124  * value. If conversion is not possible a negative errno value returned.
1125  *
1126  * Depending on the @low_bits flag the function prefers low or high OCR bits
1127  * on boundary voltages. For example,
1128  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1129  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1130  *
1131  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1132  */
1133 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1134 {
1135 	const int max_bit = ilog2(MMC_VDD_35_36);
1136 	int bit;
1137 
1138 	if (vdd < 1650 || vdd > 3600)
1139 		return -EINVAL;
1140 
1141 	if (vdd >= 1650 && vdd <= 1950)
1142 		return ilog2(MMC_VDD_165_195);
1143 
1144 	if (low_bits)
1145 		vdd -= 1;
1146 
1147 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1148 	bit = (vdd - 2000) / 100 + 8;
1149 	if (bit > max_bit)
1150 		return max_bit;
1151 	return bit;
1152 }
1153 
1154 /**
1155  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1156  * @vdd_min:	minimum voltage value (mV)
1157  * @vdd_max:	maximum voltage value (mV)
1158  *
1159  * This function returns the OCR mask bits according to the provided @vdd_min
1160  * and @vdd_max values. If conversion is not possible the function returns 0.
1161  *
1162  * Notes wrt boundary cases:
1163  * This function sets the OCR bits for all boundary voltages, for example
1164  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1165  * MMC_VDD_34_35 mask.
1166  */
1167 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1168 {
1169 	u32 mask = 0;
1170 
1171 	if (vdd_max < vdd_min)
1172 		return 0;
1173 
1174 	/* Prefer high bits for the boundary vdd_max values. */
1175 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1176 	if (vdd_max < 0)
1177 		return 0;
1178 
1179 	/* Prefer low bits for the boundary vdd_min values. */
1180 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1181 	if (vdd_min < 0)
1182 		return 0;
1183 
1184 	/* Fill the mask, from max bit to min bit. */
1185 	while (vdd_max >= vdd_min)
1186 		mask |= 1 << vdd_max--;
1187 
1188 	return mask;
1189 }
1190 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1191 
1192 #ifdef CONFIG_OF
1193 
1194 /**
1195  * mmc_of_parse_voltage - return mask of supported voltages
1196  * @np: The device node need to be parsed.
1197  * @mask: mask of voltages available for MMC/SD/SDIO
1198  *
1199  * 1. Return zero on success.
1200  * 2. Return negative errno: voltage-range is invalid.
1201  */
1202 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1203 {
1204 	const u32 *voltage_ranges;
1205 	int num_ranges, i;
1206 
1207 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1208 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1209 	if (!voltage_ranges || !num_ranges) {
1210 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1211 		return -EINVAL;
1212 	}
1213 
1214 	for (i = 0; i < num_ranges; i++) {
1215 		const int j = i * 2;
1216 		u32 ocr_mask;
1217 
1218 		ocr_mask = mmc_vddrange_to_ocrmask(
1219 				be32_to_cpu(voltage_ranges[j]),
1220 				be32_to_cpu(voltage_ranges[j + 1]));
1221 		if (!ocr_mask) {
1222 			pr_err("%s: voltage-range #%d is invalid\n",
1223 				np->full_name, i);
1224 			return -EINVAL;
1225 		}
1226 		*mask |= ocr_mask;
1227 	}
1228 
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL(mmc_of_parse_voltage);
1232 
1233 #endif /* CONFIG_OF */
1234 
1235 #ifdef CONFIG_REGULATOR
1236 
1237 /**
1238  * mmc_regulator_get_ocrmask - return mask of supported voltages
1239  * @supply: regulator to use
1240  *
1241  * This returns either a negative errno, or a mask of voltages that
1242  * can be provided to MMC/SD/SDIO devices using the specified voltage
1243  * regulator.  This would normally be called before registering the
1244  * MMC host adapter.
1245  */
1246 int mmc_regulator_get_ocrmask(struct regulator *supply)
1247 {
1248 	int			result = 0;
1249 	int			count;
1250 	int			i;
1251 	int			vdd_uV;
1252 	int			vdd_mV;
1253 
1254 	count = regulator_count_voltages(supply);
1255 	if (count < 0)
1256 		return count;
1257 
1258 	for (i = 0; i < count; i++) {
1259 		vdd_uV = regulator_list_voltage(supply, i);
1260 		if (vdd_uV <= 0)
1261 			continue;
1262 
1263 		vdd_mV = vdd_uV / 1000;
1264 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1265 	}
1266 
1267 	if (!result) {
1268 		vdd_uV = regulator_get_voltage(supply);
1269 		if (vdd_uV <= 0)
1270 			return vdd_uV;
1271 
1272 		vdd_mV = vdd_uV / 1000;
1273 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1274 	}
1275 
1276 	return result;
1277 }
1278 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1279 
1280 /**
1281  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1282  * @mmc: the host to regulate
1283  * @supply: regulator to use
1284  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1285  *
1286  * Returns zero on success, else negative errno.
1287  *
1288  * MMC host drivers may use this to enable or disable a regulator using
1289  * a particular supply voltage.  This would normally be called from the
1290  * set_ios() method.
1291  */
1292 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1293 			struct regulator *supply,
1294 			unsigned short vdd_bit)
1295 {
1296 	int			result = 0;
1297 	int			min_uV, max_uV;
1298 
1299 	if (vdd_bit) {
1300 		int		tmp;
1301 
1302 		/*
1303 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1304 		 * bits this regulator doesn't quite support ... don't
1305 		 * be too picky, most cards and regulators are OK with
1306 		 * a 0.1V range goof (it's a small error percentage).
1307 		 */
1308 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1309 		if (tmp == 0) {
1310 			min_uV = 1650 * 1000;
1311 			max_uV = 1950 * 1000;
1312 		} else {
1313 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1314 			max_uV = min_uV + 100 * 1000;
1315 		}
1316 
1317 		result = regulator_set_voltage(supply, min_uV, max_uV);
1318 		if (result == 0 && !mmc->regulator_enabled) {
1319 			result = regulator_enable(supply);
1320 			if (!result)
1321 				mmc->regulator_enabled = true;
1322 		}
1323 	} else if (mmc->regulator_enabled) {
1324 		result = regulator_disable(supply);
1325 		if (result == 0)
1326 			mmc->regulator_enabled = false;
1327 	}
1328 
1329 	if (result)
1330 		dev_err(mmc_dev(mmc),
1331 			"could not set regulator OCR (%d)\n", result);
1332 	return result;
1333 }
1334 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1335 
1336 #endif /* CONFIG_REGULATOR */
1337 
1338 int mmc_regulator_get_supply(struct mmc_host *mmc)
1339 {
1340 	struct device *dev = mmc_dev(mmc);
1341 	int ret;
1342 
1343 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1344 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1345 
1346 	if (IS_ERR(mmc->supply.vmmc)) {
1347 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1348 			return -EPROBE_DEFER;
1349 		dev_info(dev, "No vmmc regulator found\n");
1350 	} else {
1351 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1352 		if (ret > 0)
1353 			mmc->ocr_avail = ret;
1354 		else
1355 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1356 	}
1357 
1358 	if (IS_ERR(mmc->supply.vqmmc)) {
1359 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1360 			return -EPROBE_DEFER;
1361 		dev_info(dev, "No vqmmc regulator found\n");
1362 	}
1363 
1364 	return 0;
1365 }
1366 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1367 
1368 /*
1369  * Mask off any voltages we don't support and select
1370  * the lowest voltage
1371  */
1372 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1373 {
1374 	int bit;
1375 
1376 	/*
1377 	 * Sanity check the voltages that the card claims to
1378 	 * support.
1379 	 */
1380 	if (ocr & 0x7F) {
1381 		dev_warn(mmc_dev(host),
1382 		"card claims to support voltages below defined range\n");
1383 		ocr &= ~0x7F;
1384 	}
1385 
1386 	ocr &= host->ocr_avail;
1387 	if (!ocr) {
1388 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1389 		return 0;
1390 	}
1391 
1392 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1393 		bit = ffs(ocr) - 1;
1394 		ocr &= 3 << bit;
1395 		mmc_power_cycle(host, ocr);
1396 	} else {
1397 		bit = fls(ocr) - 1;
1398 		ocr &= 3 << bit;
1399 		if (bit != host->ios.vdd)
1400 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1401 	}
1402 
1403 	return ocr;
1404 }
1405 
1406 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1407 {
1408 	int err = 0;
1409 	int old_signal_voltage = host->ios.signal_voltage;
1410 
1411 	host->ios.signal_voltage = signal_voltage;
1412 	if (host->ops->start_signal_voltage_switch) {
1413 		mmc_host_clk_hold(host);
1414 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1415 		mmc_host_clk_release(host);
1416 	}
1417 
1418 	if (err)
1419 		host->ios.signal_voltage = old_signal_voltage;
1420 
1421 	return err;
1422 
1423 }
1424 
1425 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1426 {
1427 	struct mmc_command cmd = {0};
1428 	int err = 0;
1429 	u32 clock;
1430 
1431 	BUG_ON(!host);
1432 
1433 	/*
1434 	 * Send CMD11 only if the request is to switch the card to
1435 	 * 1.8V signalling.
1436 	 */
1437 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1438 		return __mmc_set_signal_voltage(host, signal_voltage);
1439 
1440 	/*
1441 	 * If we cannot switch voltages, return failure so the caller
1442 	 * can continue without UHS mode
1443 	 */
1444 	if (!host->ops->start_signal_voltage_switch)
1445 		return -EPERM;
1446 	if (!host->ops->card_busy)
1447 		pr_warn("%s: cannot verify signal voltage switch\n",
1448 			mmc_hostname(host));
1449 
1450 	mmc_host_clk_hold(host);
1451 
1452 	cmd.opcode = SD_SWITCH_VOLTAGE;
1453 	cmd.arg = 0;
1454 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1455 
1456 	err = mmc_wait_for_cmd(host, &cmd, 0);
1457 	if (err)
1458 		goto err_command;
1459 
1460 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1461 		err = -EIO;
1462 		goto err_command;
1463 	}
1464 	/*
1465 	 * The card should drive cmd and dat[0:3] low immediately
1466 	 * after the response of cmd11, but wait 1 ms to be sure
1467 	 */
1468 	mmc_delay(1);
1469 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1470 		err = -EAGAIN;
1471 		goto power_cycle;
1472 	}
1473 	/*
1474 	 * During a signal voltage level switch, the clock must be gated
1475 	 * for 5 ms according to the SD spec
1476 	 */
1477 	clock = host->ios.clock;
1478 	host->ios.clock = 0;
1479 	mmc_set_ios(host);
1480 
1481 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1482 		/*
1483 		 * Voltages may not have been switched, but we've already
1484 		 * sent CMD11, so a power cycle is required anyway
1485 		 */
1486 		err = -EAGAIN;
1487 		goto power_cycle;
1488 	}
1489 
1490 	/* Keep clock gated for at least 5 ms */
1491 	mmc_delay(5);
1492 	host->ios.clock = clock;
1493 	mmc_set_ios(host);
1494 
1495 	/* Wait for at least 1 ms according to spec */
1496 	mmc_delay(1);
1497 
1498 	/*
1499 	 * Failure to switch is indicated by the card holding
1500 	 * dat[0:3] low
1501 	 */
1502 	if (host->ops->card_busy && host->ops->card_busy(host))
1503 		err = -EAGAIN;
1504 
1505 power_cycle:
1506 	if (err) {
1507 		pr_debug("%s: Signal voltage switch failed, "
1508 			"power cycling card\n", mmc_hostname(host));
1509 		mmc_power_cycle(host, ocr);
1510 	}
1511 
1512 err_command:
1513 	mmc_host_clk_release(host);
1514 
1515 	return err;
1516 }
1517 
1518 /*
1519  * Select timing parameters for host.
1520  */
1521 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1522 {
1523 	mmc_host_clk_hold(host);
1524 	host->ios.timing = timing;
1525 	mmc_set_ios(host);
1526 	mmc_host_clk_release(host);
1527 }
1528 
1529 /*
1530  * Select appropriate driver type for host.
1531  */
1532 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1533 {
1534 	mmc_host_clk_hold(host);
1535 	host->ios.drv_type = drv_type;
1536 	mmc_set_ios(host);
1537 	mmc_host_clk_release(host);
1538 }
1539 
1540 /*
1541  * Apply power to the MMC stack.  This is a two-stage process.
1542  * First, we enable power to the card without the clock running.
1543  * We then wait a bit for the power to stabilise.  Finally,
1544  * enable the bus drivers and clock to the card.
1545  *
1546  * We must _NOT_ enable the clock prior to power stablising.
1547  *
1548  * If a host does all the power sequencing itself, ignore the
1549  * initial MMC_POWER_UP stage.
1550  */
1551 void mmc_power_up(struct mmc_host *host, u32 ocr)
1552 {
1553 	if (host->ios.power_mode == MMC_POWER_ON)
1554 		return;
1555 
1556 	mmc_host_clk_hold(host);
1557 
1558 	host->ios.vdd = fls(ocr) - 1;
1559 	host->ios.power_mode = MMC_POWER_UP;
1560 	/* Set initial state and call mmc_set_ios */
1561 	mmc_set_initial_state(host);
1562 
1563 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1564 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1565 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1566 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1567 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1568 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1569 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1570 
1571 	/*
1572 	 * This delay should be sufficient to allow the power supply
1573 	 * to reach the minimum voltage.
1574 	 */
1575 	mmc_delay(10);
1576 
1577 	host->ios.clock = host->f_init;
1578 
1579 	host->ios.power_mode = MMC_POWER_ON;
1580 	mmc_set_ios(host);
1581 
1582 	/*
1583 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1584 	 * time required to reach a stable voltage.
1585 	 */
1586 	mmc_delay(10);
1587 
1588 	mmc_host_clk_release(host);
1589 }
1590 
1591 void mmc_power_off(struct mmc_host *host)
1592 {
1593 	if (host->ios.power_mode == MMC_POWER_OFF)
1594 		return;
1595 
1596 	mmc_host_clk_hold(host);
1597 
1598 	host->ios.clock = 0;
1599 	host->ios.vdd = 0;
1600 
1601 	host->ios.power_mode = MMC_POWER_OFF;
1602 	/* Set initial state and call mmc_set_ios */
1603 	mmc_set_initial_state(host);
1604 
1605 	/*
1606 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1607 	 * XO-1.5, require a short delay after poweroff before the card
1608 	 * can be successfully turned on again.
1609 	 */
1610 	mmc_delay(1);
1611 
1612 	mmc_host_clk_release(host);
1613 }
1614 
1615 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1616 {
1617 	mmc_power_off(host);
1618 	/* Wait at least 1 ms according to SD spec */
1619 	mmc_delay(1);
1620 	mmc_power_up(host, ocr);
1621 }
1622 
1623 /*
1624  * Cleanup when the last reference to the bus operator is dropped.
1625  */
1626 static void __mmc_release_bus(struct mmc_host *host)
1627 {
1628 	BUG_ON(!host);
1629 	BUG_ON(host->bus_refs);
1630 	BUG_ON(!host->bus_dead);
1631 
1632 	host->bus_ops = NULL;
1633 }
1634 
1635 /*
1636  * Increase reference count of bus operator
1637  */
1638 static inline void mmc_bus_get(struct mmc_host *host)
1639 {
1640 	unsigned long flags;
1641 
1642 	spin_lock_irqsave(&host->lock, flags);
1643 	host->bus_refs++;
1644 	spin_unlock_irqrestore(&host->lock, flags);
1645 }
1646 
1647 /*
1648  * Decrease reference count of bus operator and free it if
1649  * it is the last reference.
1650  */
1651 static inline void mmc_bus_put(struct mmc_host *host)
1652 {
1653 	unsigned long flags;
1654 
1655 	spin_lock_irqsave(&host->lock, flags);
1656 	host->bus_refs--;
1657 	if ((host->bus_refs == 0) && host->bus_ops)
1658 		__mmc_release_bus(host);
1659 	spin_unlock_irqrestore(&host->lock, flags);
1660 }
1661 
1662 /*
1663  * Assign a mmc bus handler to a host. Only one bus handler may control a
1664  * host at any given time.
1665  */
1666 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1667 {
1668 	unsigned long flags;
1669 
1670 	BUG_ON(!host);
1671 	BUG_ON(!ops);
1672 
1673 	WARN_ON(!host->claimed);
1674 
1675 	spin_lock_irqsave(&host->lock, flags);
1676 
1677 	BUG_ON(host->bus_ops);
1678 	BUG_ON(host->bus_refs);
1679 
1680 	host->bus_ops = ops;
1681 	host->bus_refs = 1;
1682 	host->bus_dead = 0;
1683 
1684 	spin_unlock_irqrestore(&host->lock, flags);
1685 }
1686 
1687 /*
1688  * Remove the current bus handler from a host.
1689  */
1690 void mmc_detach_bus(struct mmc_host *host)
1691 {
1692 	unsigned long flags;
1693 
1694 	BUG_ON(!host);
1695 
1696 	WARN_ON(!host->claimed);
1697 	WARN_ON(!host->bus_ops);
1698 
1699 	spin_lock_irqsave(&host->lock, flags);
1700 
1701 	host->bus_dead = 1;
1702 
1703 	spin_unlock_irqrestore(&host->lock, flags);
1704 
1705 	mmc_bus_put(host);
1706 }
1707 
1708 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1709 				bool cd_irq)
1710 {
1711 #ifdef CONFIG_MMC_DEBUG
1712 	unsigned long flags;
1713 	spin_lock_irqsave(&host->lock, flags);
1714 	WARN_ON(host->removed);
1715 	spin_unlock_irqrestore(&host->lock, flags);
1716 #endif
1717 
1718 	/*
1719 	 * If the device is configured as wakeup, we prevent a new sleep for
1720 	 * 5 s to give provision for user space to consume the event.
1721 	 */
1722 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1723 		device_can_wakeup(mmc_dev(host)))
1724 		pm_wakeup_event(mmc_dev(host), 5000);
1725 
1726 	host->detect_change = 1;
1727 	mmc_schedule_delayed_work(&host->detect, delay);
1728 }
1729 
1730 /**
1731  *	mmc_detect_change - process change of state on a MMC socket
1732  *	@host: host which changed state.
1733  *	@delay: optional delay to wait before detection (jiffies)
1734  *
1735  *	MMC drivers should call this when they detect a card has been
1736  *	inserted or removed. The MMC layer will confirm that any
1737  *	present card is still functional, and initialize any newly
1738  *	inserted.
1739  */
1740 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1741 {
1742 	_mmc_detect_change(host, delay, true);
1743 }
1744 EXPORT_SYMBOL(mmc_detect_change);
1745 
1746 void mmc_init_erase(struct mmc_card *card)
1747 {
1748 	unsigned int sz;
1749 
1750 	if (is_power_of_2(card->erase_size))
1751 		card->erase_shift = ffs(card->erase_size) - 1;
1752 	else
1753 		card->erase_shift = 0;
1754 
1755 	/*
1756 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1757 	 * card.  That is not desirable because it can take a long time
1758 	 * (minutes) potentially delaying more important I/O, and also the
1759 	 * timeout calculations become increasingly hugely over-estimated.
1760 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1761 	 * to that size and alignment.
1762 	 *
1763 	 * For SD cards that define Allocation Unit size, limit erases to one
1764 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1765 	 * Erase Size, whether it is switched on or not, limit to that size.
1766 	 * Otherwise just have a stab at a good value.  For modern cards it
1767 	 * will end up being 4MiB.  Note that if the value is too small, it
1768 	 * can end up taking longer to erase.
1769 	 */
1770 	if (mmc_card_sd(card) && card->ssr.au) {
1771 		card->pref_erase = card->ssr.au;
1772 		card->erase_shift = ffs(card->ssr.au) - 1;
1773 	} else if (card->ext_csd.hc_erase_size) {
1774 		card->pref_erase = card->ext_csd.hc_erase_size;
1775 	} else if (card->erase_size) {
1776 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1777 		if (sz < 128)
1778 			card->pref_erase = 512 * 1024 / 512;
1779 		else if (sz < 512)
1780 			card->pref_erase = 1024 * 1024 / 512;
1781 		else if (sz < 1024)
1782 			card->pref_erase = 2 * 1024 * 1024 / 512;
1783 		else
1784 			card->pref_erase = 4 * 1024 * 1024 / 512;
1785 		if (card->pref_erase < card->erase_size)
1786 			card->pref_erase = card->erase_size;
1787 		else {
1788 			sz = card->pref_erase % card->erase_size;
1789 			if (sz)
1790 				card->pref_erase += card->erase_size - sz;
1791 		}
1792 	} else
1793 		card->pref_erase = 0;
1794 }
1795 
1796 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1797 				          unsigned int arg, unsigned int qty)
1798 {
1799 	unsigned int erase_timeout;
1800 
1801 	if (arg == MMC_DISCARD_ARG ||
1802 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1803 		erase_timeout = card->ext_csd.trim_timeout;
1804 	} else if (card->ext_csd.erase_group_def & 1) {
1805 		/* High Capacity Erase Group Size uses HC timeouts */
1806 		if (arg == MMC_TRIM_ARG)
1807 			erase_timeout = card->ext_csd.trim_timeout;
1808 		else
1809 			erase_timeout = card->ext_csd.hc_erase_timeout;
1810 	} else {
1811 		/* CSD Erase Group Size uses write timeout */
1812 		unsigned int mult = (10 << card->csd.r2w_factor);
1813 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1814 		unsigned int timeout_us;
1815 
1816 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1817 		if (card->csd.tacc_ns < 1000000)
1818 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1819 		else
1820 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1821 
1822 		/*
1823 		 * ios.clock is only a target.  The real clock rate might be
1824 		 * less but not that much less, so fudge it by multiplying by 2.
1825 		 */
1826 		timeout_clks <<= 1;
1827 		timeout_us += (timeout_clks * 1000) /
1828 			      (mmc_host_clk_rate(card->host) / 1000);
1829 
1830 		erase_timeout = timeout_us / 1000;
1831 
1832 		/*
1833 		 * Theoretically, the calculation could underflow so round up
1834 		 * to 1ms in that case.
1835 		 */
1836 		if (!erase_timeout)
1837 			erase_timeout = 1;
1838 	}
1839 
1840 	/* Multiplier for secure operations */
1841 	if (arg & MMC_SECURE_ARGS) {
1842 		if (arg == MMC_SECURE_ERASE_ARG)
1843 			erase_timeout *= card->ext_csd.sec_erase_mult;
1844 		else
1845 			erase_timeout *= card->ext_csd.sec_trim_mult;
1846 	}
1847 
1848 	erase_timeout *= qty;
1849 
1850 	/*
1851 	 * Ensure at least a 1 second timeout for SPI as per
1852 	 * 'mmc_set_data_timeout()'
1853 	 */
1854 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1855 		erase_timeout = 1000;
1856 
1857 	return erase_timeout;
1858 }
1859 
1860 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1861 					 unsigned int arg,
1862 					 unsigned int qty)
1863 {
1864 	unsigned int erase_timeout;
1865 
1866 	if (card->ssr.erase_timeout) {
1867 		/* Erase timeout specified in SD Status Register (SSR) */
1868 		erase_timeout = card->ssr.erase_timeout * qty +
1869 				card->ssr.erase_offset;
1870 	} else {
1871 		/*
1872 		 * Erase timeout not specified in SD Status Register (SSR) so
1873 		 * use 250ms per write block.
1874 		 */
1875 		erase_timeout = 250 * qty;
1876 	}
1877 
1878 	/* Must not be less than 1 second */
1879 	if (erase_timeout < 1000)
1880 		erase_timeout = 1000;
1881 
1882 	return erase_timeout;
1883 }
1884 
1885 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1886 				      unsigned int arg,
1887 				      unsigned int qty)
1888 {
1889 	if (mmc_card_sd(card))
1890 		return mmc_sd_erase_timeout(card, arg, qty);
1891 	else
1892 		return mmc_mmc_erase_timeout(card, arg, qty);
1893 }
1894 
1895 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1896 			unsigned int to, unsigned int arg)
1897 {
1898 	struct mmc_command cmd = {0};
1899 	unsigned int qty = 0;
1900 	unsigned long timeout;
1901 	int err;
1902 
1903 	/*
1904 	 * qty is used to calculate the erase timeout which depends on how many
1905 	 * erase groups (or allocation units in SD terminology) are affected.
1906 	 * We count erasing part of an erase group as one erase group.
1907 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1908 	 * erase group size is almost certainly also power of 2, but it does not
1909 	 * seem to insist on that in the JEDEC standard, so we fall back to
1910 	 * division in that case.  SD may not specify an allocation unit size,
1911 	 * in which case the timeout is based on the number of write blocks.
1912 	 *
1913 	 * Note that the timeout for secure trim 2 will only be correct if the
1914 	 * number of erase groups specified is the same as the total of all
1915 	 * preceding secure trim 1 commands.  Since the power may have been
1916 	 * lost since the secure trim 1 commands occurred, it is generally
1917 	 * impossible to calculate the secure trim 2 timeout correctly.
1918 	 */
1919 	if (card->erase_shift)
1920 		qty += ((to >> card->erase_shift) -
1921 			(from >> card->erase_shift)) + 1;
1922 	else if (mmc_card_sd(card))
1923 		qty += to - from + 1;
1924 	else
1925 		qty += ((to / card->erase_size) -
1926 			(from / card->erase_size)) + 1;
1927 
1928 	if (!mmc_card_blockaddr(card)) {
1929 		from <<= 9;
1930 		to <<= 9;
1931 	}
1932 
1933 	if (mmc_card_sd(card))
1934 		cmd.opcode = SD_ERASE_WR_BLK_START;
1935 	else
1936 		cmd.opcode = MMC_ERASE_GROUP_START;
1937 	cmd.arg = from;
1938 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1939 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940 	if (err) {
1941 		pr_err("mmc_erase: group start error %d, "
1942 		       "status %#x\n", err, cmd.resp[0]);
1943 		err = -EIO;
1944 		goto out;
1945 	}
1946 
1947 	memset(&cmd, 0, sizeof(struct mmc_command));
1948 	if (mmc_card_sd(card))
1949 		cmd.opcode = SD_ERASE_WR_BLK_END;
1950 	else
1951 		cmd.opcode = MMC_ERASE_GROUP_END;
1952 	cmd.arg = to;
1953 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1954 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1955 	if (err) {
1956 		pr_err("mmc_erase: group end error %d, status %#x\n",
1957 		       err, cmd.resp[0]);
1958 		err = -EIO;
1959 		goto out;
1960 	}
1961 
1962 	memset(&cmd, 0, sizeof(struct mmc_command));
1963 	cmd.opcode = MMC_ERASE;
1964 	cmd.arg = arg;
1965 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1966 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1967 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1968 	if (err) {
1969 		pr_err("mmc_erase: erase error %d, status %#x\n",
1970 		       err, cmd.resp[0]);
1971 		err = -EIO;
1972 		goto out;
1973 	}
1974 
1975 	if (mmc_host_is_spi(card->host))
1976 		goto out;
1977 
1978 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1979 	do {
1980 		memset(&cmd, 0, sizeof(struct mmc_command));
1981 		cmd.opcode = MMC_SEND_STATUS;
1982 		cmd.arg = card->rca << 16;
1983 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1984 		/* Do not retry else we can't see errors */
1985 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1986 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1987 			pr_err("error %d requesting status %#x\n",
1988 				err, cmd.resp[0]);
1989 			err = -EIO;
1990 			goto out;
1991 		}
1992 
1993 		/* Timeout if the device never becomes ready for data and
1994 		 * never leaves the program state.
1995 		 */
1996 		if (time_after(jiffies, timeout)) {
1997 			pr_err("%s: Card stuck in programming state! %s\n",
1998 				mmc_hostname(card->host), __func__);
1999 			err =  -EIO;
2000 			goto out;
2001 		}
2002 
2003 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2004 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2005 out:
2006 	return err;
2007 }
2008 
2009 /**
2010  * mmc_erase - erase sectors.
2011  * @card: card to erase
2012  * @from: first sector to erase
2013  * @nr: number of sectors to erase
2014  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2015  *
2016  * Caller must claim host before calling this function.
2017  */
2018 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2019 	      unsigned int arg)
2020 {
2021 	unsigned int rem, to = from + nr;
2022 
2023 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2024 	    !(card->csd.cmdclass & CCC_ERASE))
2025 		return -EOPNOTSUPP;
2026 
2027 	if (!card->erase_size)
2028 		return -EOPNOTSUPP;
2029 
2030 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2031 		return -EOPNOTSUPP;
2032 
2033 	if ((arg & MMC_SECURE_ARGS) &&
2034 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2035 		return -EOPNOTSUPP;
2036 
2037 	if ((arg & MMC_TRIM_ARGS) &&
2038 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2039 		return -EOPNOTSUPP;
2040 
2041 	if (arg == MMC_SECURE_ERASE_ARG) {
2042 		if (from % card->erase_size || nr % card->erase_size)
2043 			return -EINVAL;
2044 	}
2045 
2046 	if (arg == MMC_ERASE_ARG) {
2047 		rem = from % card->erase_size;
2048 		if (rem) {
2049 			rem = card->erase_size - rem;
2050 			from += rem;
2051 			if (nr > rem)
2052 				nr -= rem;
2053 			else
2054 				return 0;
2055 		}
2056 		rem = nr % card->erase_size;
2057 		if (rem)
2058 			nr -= rem;
2059 	}
2060 
2061 	if (nr == 0)
2062 		return 0;
2063 
2064 	to = from + nr;
2065 
2066 	if (to <= from)
2067 		return -EINVAL;
2068 
2069 	/* 'from' and 'to' are inclusive */
2070 	to -= 1;
2071 
2072 	return mmc_do_erase(card, from, to, arg);
2073 }
2074 EXPORT_SYMBOL(mmc_erase);
2075 
2076 int mmc_can_erase(struct mmc_card *card)
2077 {
2078 	if ((card->host->caps & MMC_CAP_ERASE) &&
2079 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2080 		return 1;
2081 	return 0;
2082 }
2083 EXPORT_SYMBOL(mmc_can_erase);
2084 
2085 int mmc_can_trim(struct mmc_card *card)
2086 {
2087 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2088 		return 1;
2089 	return 0;
2090 }
2091 EXPORT_SYMBOL(mmc_can_trim);
2092 
2093 int mmc_can_discard(struct mmc_card *card)
2094 {
2095 	/*
2096 	 * As there's no way to detect the discard support bit at v4.5
2097 	 * use the s/w feature support filed.
2098 	 */
2099 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2100 		return 1;
2101 	return 0;
2102 }
2103 EXPORT_SYMBOL(mmc_can_discard);
2104 
2105 int mmc_can_sanitize(struct mmc_card *card)
2106 {
2107 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2108 		return 0;
2109 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2110 		return 1;
2111 	return 0;
2112 }
2113 EXPORT_SYMBOL(mmc_can_sanitize);
2114 
2115 int mmc_can_secure_erase_trim(struct mmc_card *card)
2116 {
2117 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2118 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2119 		return 1;
2120 	return 0;
2121 }
2122 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2123 
2124 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2125 			    unsigned int nr)
2126 {
2127 	if (!card->erase_size)
2128 		return 0;
2129 	if (from % card->erase_size || nr % card->erase_size)
2130 		return 0;
2131 	return 1;
2132 }
2133 EXPORT_SYMBOL(mmc_erase_group_aligned);
2134 
2135 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2136 					    unsigned int arg)
2137 {
2138 	struct mmc_host *host = card->host;
2139 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2140 	unsigned int last_timeout = 0;
2141 
2142 	if (card->erase_shift)
2143 		max_qty = UINT_MAX >> card->erase_shift;
2144 	else if (mmc_card_sd(card))
2145 		max_qty = UINT_MAX;
2146 	else
2147 		max_qty = UINT_MAX / card->erase_size;
2148 
2149 	/* Find the largest qty with an OK timeout */
2150 	do {
2151 		y = 0;
2152 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2153 			timeout = mmc_erase_timeout(card, arg, qty + x);
2154 			if (timeout > host->max_busy_timeout)
2155 				break;
2156 			if (timeout < last_timeout)
2157 				break;
2158 			last_timeout = timeout;
2159 			y = x;
2160 		}
2161 		qty += y;
2162 	} while (y);
2163 
2164 	if (!qty)
2165 		return 0;
2166 
2167 	if (qty == 1)
2168 		return 1;
2169 
2170 	/* Convert qty to sectors */
2171 	if (card->erase_shift)
2172 		max_discard = --qty << card->erase_shift;
2173 	else if (mmc_card_sd(card))
2174 		max_discard = qty;
2175 	else
2176 		max_discard = --qty * card->erase_size;
2177 
2178 	return max_discard;
2179 }
2180 
2181 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2182 {
2183 	struct mmc_host *host = card->host;
2184 	unsigned int max_discard, max_trim;
2185 
2186 	if (!host->max_busy_timeout)
2187 		return UINT_MAX;
2188 
2189 	/*
2190 	 * Without erase_group_def set, MMC erase timeout depends on clock
2191 	 * frequence which can change.  In that case, the best choice is
2192 	 * just the preferred erase size.
2193 	 */
2194 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2195 		return card->pref_erase;
2196 
2197 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2198 	if (mmc_can_trim(card)) {
2199 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2200 		if (max_trim < max_discard)
2201 			max_discard = max_trim;
2202 	} else if (max_discard < card->erase_size) {
2203 		max_discard = 0;
2204 	}
2205 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2206 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2207 	return max_discard;
2208 }
2209 EXPORT_SYMBOL(mmc_calc_max_discard);
2210 
2211 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2212 {
2213 	struct mmc_command cmd = {0};
2214 
2215 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2216 		return 0;
2217 
2218 	cmd.opcode = MMC_SET_BLOCKLEN;
2219 	cmd.arg = blocklen;
2220 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2221 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2222 }
2223 EXPORT_SYMBOL(mmc_set_blocklen);
2224 
2225 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2226 			bool is_rel_write)
2227 {
2228 	struct mmc_command cmd = {0};
2229 
2230 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2231 	cmd.arg = blockcount & 0x0000FFFF;
2232 	if (is_rel_write)
2233 		cmd.arg |= 1 << 31;
2234 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2235 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2236 }
2237 EXPORT_SYMBOL(mmc_set_blockcount);
2238 
2239 static void mmc_hw_reset_for_init(struct mmc_host *host)
2240 {
2241 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2242 		return;
2243 	mmc_host_clk_hold(host);
2244 	host->ops->hw_reset(host);
2245 	mmc_host_clk_release(host);
2246 }
2247 
2248 int mmc_can_reset(struct mmc_card *card)
2249 {
2250 	u8 rst_n_function;
2251 
2252 	if (!mmc_card_mmc(card))
2253 		return 0;
2254 	rst_n_function = card->ext_csd.rst_n_function;
2255 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2256 		return 0;
2257 	return 1;
2258 }
2259 EXPORT_SYMBOL(mmc_can_reset);
2260 
2261 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2262 {
2263 	struct mmc_card *card = host->card;
2264 
2265 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2266 		return -EOPNOTSUPP;
2267 
2268 	if (!card)
2269 		return -EINVAL;
2270 
2271 	if (!mmc_can_reset(card))
2272 		return -EOPNOTSUPP;
2273 
2274 	mmc_host_clk_hold(host);
2275 	mmc_set_clock(host, host->f_init);
2276 
2277 	host->ops->hw_reset(host);
2278 
2279 	/* If the reset has happened, then a status command will fail */
2280 	if (check) {
2281 		u32 status;
2282 
2283 		if (!mmc_send_status(card, &status)) {
2284 			mmc_host_clk_release(host);
2285 			return -ENOSYS;
2286 		}
2287 	}
2288 
2289 	/* Set initial state and call mmc_set_ios */
2290 	mmc_set_initial_state(host);
2291 
2292 	mmc_host_clk_release(host);
2293 
2294 	return host->bus_ops->power_restore(host);
2295 }
2296 
2297 int mmc_hw_reset(struct mmc_host *host)
2298 {
2299 	return mmc_do_hw_reset(host, 0);
2300 }
2301 EXPORT_SYMBOL(mmc_hw_reset);
2302 
2303 int mmc_hw_reset_check(struct mmc_host *host)
2304 {
2305 	return mmc_do_hw_reset(host, 1);
2306 }
2307 EXPORT_SYMBOL(mmc_hw_reset_check);
2308 
2309 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2310 {
2311 	host->f_init = freq;
2312 
2313 #ifdef CONFIG_MMC_DEBUG
2314 	pr_info("%s: %s: trying to init card at %u Hz\n",
2315 		mmc_hostname(host), __func__, host->f_init);
2316 #endif
2317 	mmc_power_up(host, host->ocr_avail);
2318 
2319 	/*
2320 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2321 	 * do a hardware reset if possible.
2322 	 */
2323 	mmc_hw_reset_for_init(host);
2324 
2325 	/*
2326 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2327 	 * if the card is being re-initialized, just send it.  CMD52
2328 	 * should be ignored by SD/eMMC cards.
2329 	 */
2330 	sdio_reset(host);
2331 	mmc_go_idle(host);
2332 
2333 	mmc_send_if_cond(host, host->ocr_avail);
2334 
2335 	/* Order's important: probe SDIO, then SD, then MMC */
2336 	if (!mmc_attach_sdio(host))
2337 		return 0;
2338 	if (!mmc_attach_sd(host))
2339 		return 0;
2340 	if (!mmc_attach_mmc(host))
2341 		return 0;
2342 
2343 	mmc_power_off(host);
2344 	return -EIO;
2345 }
2346 
2347 int _mmc_detect_card_removed(struct mmc_host *host)
2348 {
2349 	int ret;
2350 
2351 	if (host->caps & MMC_CAP_NONREMOVABLE)
2352 		return 0;
2353 
2354 	if (!host->card || mmc_card_removed(host->card))
2355 		return 1;
2356 
2357 	ret = host->bus_ops->alive(host);
2358 
2359 	/*
2360 	 * Card detect status and alive check may be out of sync if card is
2361 	 * removed slowly, when card detect switch changes while card/slot
2362 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2363 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2364 	 * detect work 200ms later for this case.
2365 	 */
2366 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2367 		mmc_detect_change(host, msecs_to_jiffies(200));
2368 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2369 	}
2370 
2371 	if (ret) {
2372 		mmc_card_set_removed(host->card);
2373 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2374 	}
2375 
2376 	return ret;
2377 }
2378 
2379 int mmc_detect_card_removed(struct mmc_host *host)
2380 {
2381 	struct mmc_card *card = host->card;
2382 	int ret;
2383 
2384 	WARN_ON(!host->claimed);
2385 
2386 	if (!card)
2387 		return 1;
2388 
2389 	ret = mmc_card_removed(card);
2390 	/*
2391 	 * The card will be considered unchanged unless we have been asked to
2392 	 * detect a change or host requires polling to provide card detection.
2393 	 */
2394 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2395 		return ret;
2396 
2397 	host->detect_change = 0;
2398 	if (!ret) {
2399 		ret = _mmc_detect_card_removed(host);
2400 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2401 			/*
2402 			 * Schedule a detect work as soon as possible to let a
2403 			 * rescan handle the card removal.
2404 			 */
2405 			cancel_delayed_work(&host->detect);
2406 			_mmc_detect_change(host, 0, false);
2407 		}
2408 	}
2409 
2410 	return ret;
2411 }
2412 EXPORT_SYMBOL(mmc_detect_card_removed);
2413 
2414 void mmc_rescan(struct work_struct *work)
2415 {
2416 	struct mmc_host *host =
2417 		container_of(work, struct mmc_host, detect.work);
2418 	int i;
2419 
2420 	if (host->trigger_card_event && host->ops->card_event) {
2421 		host->ops->card_event(host);
2422 		host->trigger_card_event = false;
2423 	}
2424 
2425 	if (host->rescan_disable)
2426 		return;
2427 
2428 	/* If there is a non-removable card registered, only scan once */
2429 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2430 		return;
2431 	host->rescan_entered = 1;
2432 
2433 	mmc_bus_get(host);
2434 
2435 	/*
2436 	 * if there is a _removable_ card registered, check whether it is
2437 	 * still present
2438 	 */
2439 	if (host->bus_ops && !host->bus_dead
2440 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2441 		host->bus_ops->detect(host);
2442 
2443 	host->detect_change = 0;
2444 
2445 	/*
2446 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2447 	 * the card is no longer present.
2448 	 */
2449 	mmc_bus_put(host);
2450 	mmc_bus_get(host);
2451 
2452 	/* if there still is a card present, stop here */
2453 	if (host->bus_ops != NULL) {
2454 		mmc_bus_put(host);
2455 		goto out;
2456 	}
2457 
2458 	/*
2459 	 * Only we can add a new handler, so it's safe to
2460 	 * release the lock here.
2461 	 */
2462 	mmc_bus_put(host);
2463 
2464 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2465 			host->ops->get_cd(host) == 0) {
2466 		mmc_claim_host(host);
2467 		mmc_power_off(host);
2468 		mmc_release_host(host);
2469 		goto out;
2470 	}
2471 
2472 	mmc_claim_host(host);
2473 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2474 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2475 			break;
2476 		if (freqs[i] <= host->f_min)
2477 			break;
2478 	}
2479 	mmc_release_host(host);
2480 
2481  out:
2482 	if (host->caps & MMC_CAP_NEEDS_POLL)
2483 		mmc_schedule_delayed_work(&host->detect, HZ);
2484 }
2485 
2486 void mmc_start_host(struct mmc_host *host)
2487 {
2488 	host->f_init = max(freqs[0], host->f_min);
2489 	host->rescan_disable = 0;
2490 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2491 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2492 		mmc_power_off(host);
2493 	else
2494 		mmc_power_up(host, host->ocr_avail);
2495 	mmc_gpiod_request_cd_irq(host);
2496 	_mmc_detect_change(host, 0, false);
2497 }
2498 
2499 void mmc_stop_host(struct mmc_host *host)
2500 {
2501 #ifdef CONFIG_MMC_DEBUG
2502 	unsigned long flags;
2503 	spin_lock_irqsave(&host->lock, flags);
2504 	host->removed = 1;
2505 	spin_unlock_irqrestore(&host->lock, flags);
2506 #endif
2507 	if (host->slot.cd_irq >= 0)
2508 		disable_irq(host->slot.cd_irq);
2509 
2510 	host->rescan_disable = 1;
2511 	cancel_delayed_work_sync(&host->detect);
2512 	mmc_flush_scheduled_work();
2513 
2514 	/* clear pm flags now and let card drivers set them as needed */
2515 	host->pm_flags = 0;
2516 
2517 	mmc_bus_get(host);
2518 	if (host->bus_ops && !host->bus_dead) {
2519 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2520 		host->bus_ops->remove(host);
2521 		mmc_claim_host(host);
2522 		mmc_detach_bus(host);
2523 		mmc_power_off(host);
2524 		mmc_release_host(host);
2525 		mmc_bus_put(host);
2526 		return;
2527 	}
2528 	mmc_bus_put(host);
2529 
2530 	BUG_ON(host->card);
2531 
2532 	mmc_power_off(host);
2533 }
2534 
2535 int mmc_power_save_host(struct mmc_host *host)
2536 {
2537 	int ret = 0;
2538 
2539 #ifdef CONFIG_MMC_DEBUG
2540 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2541 #endif
2542 
2543 	mmc_bus_get(host);
2544 
2545 	if (!host->bus_ops || host->bus_dead) {
2546 		mmc_bus_put(host);
2547 		return -EINVAL;
2548 	}
2549 
2550 	if (host->bus_ops->power_save)
2551 		ret = host->bus_ops->power_save(host);
2552 
2553 	mmc_bus_put(host);
2554 
2555 	mmc_power_off(host);
2556 
2557 	return ret;
2558 }
2559 EXPORT_SYMBOL(mmc_power_save_host);
2560 
2561 int mmc_power_restore_host(struct mmc_host *host)
2562 {
2563 	int ret;
2564 
2565 #ifdef CONFIG_MMC_DEBUG
2566 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2567 #endif
2568 
2569 	mmc_bus_get(host);
2570 
2571 	if (!host->bus_ops || host->bus_dead) {
2572 		mmc_bus_put(host);
2573 		return -EINVAL;
2574 	}
2575 
2576 	mmc_power_up(host, host->card->ocr);
2577 	ret = host->bus_ops->power_restore(host);
2578 
2579 	mmc_bus_put(host);
2580 
2581 	return ret;
2582 }
2583 EXPORT_SYMBOL(mmc_power_restore_host);
2584 
2585 /*
2586  * Flush the cache to the non-volatile storage.
2587  */
2588 int mmc_flush_cache(struct mmc_card *card)
2589 {
2590 	int err = 0;
2591 
2592 	if (mmc_card_mmc(card) &&
2593 			(card->ext_csd.cache_size > 0) &&
2594 			(card->ext_csd.cache_ctrl & 1)) {
2595 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2596 				EXT_CSD_FLUSH_CACHE, 1, 0);
2597 		if (err)
2598 			pr_err("%s: cache flush error %d\n",
2599 					mmc_hostname(card->host), err);
2600 	}
2601 
2602 	return err;
2603 }
2604 EXPORT_SYMBOL(mmc_flush_cache);
2605 
2606 #ifdef CONFIG_PM
2607 
2608 /* Do the card removal on suspend if card is assumed removeable
2609  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2610    to sync the card.
2611 */
2612 int mmc_pm_notify(struct notifier_block *notify_block,
2613 					unsigned long mode, void *unused)
2614 {
2615 	struct mmc_host *host = container_of(
2616 		notify_block, struct mmc_host, pm_notify);
2617 	unsigned long flags;
2618 	int err = 0;
2619 
2620 	switch (mode) {
2621 	case PM_HIBERNATION_PREPARE:
2622 	case PM_SUSPEND_PREPARE:
2623 		spin_lock_irqsave(&host->lock, flags);
2624 		host->rescan_disable = 1;
2625 		spin_unlock_irqrestore(&host->lock, flags);
2626 		cancel_delayed_work_sync(&host->detect);
2627 
2628 		if (!host->bus_ops)
2629 			break;
2630 
2631 		/* Validate prerequisites for suspend */
2632 		if (host->bus_ops->pre_suspend)
2633 			err = host->bus_ops->pre_suspend(host);
2634 		if (!err)
2635 			break;
2636 
2637 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2638 		host->bus_ops->remove(host);
2639 		mmc_claim_host(host);
2640 		mmc_detach_bus(host);
2641 		mmc_power_off(host);
2642 		mmc_release_host(host);
2643 		host->pm_flags = 0;
2644 		break;
2645 
2646 	case PM_POST_SUSPEND:
2647 	case PM_POST_HIBERNATION:
2648 	case PM_POST_RESTORE:
2649 
2650 		spin_lock_irqsave(&host->lock, flags);
2651 		host->rescan_disable = 0;
2652 		spin_unlock_irqrestore(&host->lock, flags);
2653 		_mmc_detect_change(host, 0, false);
2654 
2655 	}
2656 
2657 	return 0;
2658 }
2659 #endif
2660 
2661 /**
2662  * mmc_init_context_info() - init synchronization context
2663  * @host: mmc host
2664  *
2665  * Init struct context_info needed to implement asynchronous
2666  * request mechanism, used by mmc core, host driver and mmc requests
2667  * supplier.
2668  */
2669 void mmc_init_context_info(struct mmc_host *host)
2670 {
2671 	spin_lock_init(&host->context_info.lock);
2672 	host->context_info.is_new_req = false;
2673 	host->context_info.is_done_rcv = false;
2674 	host->context_info.is_waiting_last_req = false;
2675 	init_waitqueue_head(&host->context_info.wait);
2676 }
2677 
2678 static int __init mmc_init(void)
2679 {
2680 	int ret;
2681 
2682 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2683 	if (!workqueue)
2684 		return -ENOMEM;
2685 
2686 	ret = mmc_register_bus();
2687 	if (ret)
2688 		goto destroy_workqueue;
2689 
2690 	ret = mmc_register_host_class();
2691 	if (ret)
2692 		goto unregister_bus;
2693 
2694 	ret = sdio_register_bus();
2695 	if (ret)
2696 		goto unregister_host_class;
2697 
2698 	return 0;
2699 
2700 unregister_host_class:
2701 	mmc_unregister_host_class();
2702 unregister_bus:
2703 	mmc_unregister_bus();
2704 destroy_workqueue:
2705 	destroy_workqueue(workqueue);
2706 
2707 	return ret;
2708 }
2709 
2710 static void __exit mmc_exit(void)
2711 {
2712 	sdio_unregister_bus();
2713 	mmc_unregister_host_class();
2714 	mmc_unregister_bus();
2715 	destroy_workqueue(workqueue);
2716 }
2717 
2718 subsys_initcall(mmc_init);
2719 module_exit(mmc_exit);
2720 
2721 MODULE_LICENSE("GPL");
2722