1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #include "core.h" 40 #include "bus.h" 41 #include "host.h" 42 #include "sdio_bus.h" 43 44 #include "mmc_ops.h" 45 #include "sd_ops.h" 46 #include "sdio_ops.h" 47 48 /* If the device is not responding */ 49 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 50 51 /* 52 * Background operations can take a long time, depending on the housekeeping 53 * operations the card has to perform. 54 */ 55 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 56 57 static struct workqueue_struct *workqueue; 58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 59 60 /* 61 * Enabling software CRCs on the data blocks can be a significant (30%) 62 * performance cost, and for other reasons may not always be desired. 63 * So we allow it it to be disabled. 64 */ 65 bool use_spi_crc = 1; 66 module_param(use_spi_crc, bool, 0); 67 68 /* 69 * Internal function. Schedule delayed work in the MMC work queue. 70 */ 71 static int mmc_schedule_delayed_work(struct delayed_work *work, 72 unsigned long delay) 73 { 74 return queue_delayed_work(workqueue, work, delay); 75 } 76 77 /* 78 * Internal function. Flush all scheduled work from the MMC work queue. 79 */ 80 static void mmc_flush_scheduled_work(void) 81 { 82 flush_workqueue(workqueue); 83 } 84 85 #ifdef CONFIG_FAIL_MMC_REQUEST 86 87 /* 88 * Internal function. Inject random data errors. 89 * If mmc_data is NULL no errors are injected. 90 */ 91 static void mmc_should_fail_request(struct mmc_host *host, 92 struct mmc_request *mrq) 93 { 94 struct mmc_command *cmd = mrq->cmd; 95 struct mmc_data *data = mrq->data; 96 static const int data_errors[] = { 97 -ETIMEDOUT, 98 -EILSEQ, 99 -EIO, 100 }; 101 102 if (!data) 103 return; 104 105 if (cmd->error || data->error || 106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 107 return; 108 109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 111 } 112 113 #else /* CONFIG_FAIL_MMC_REQUEST */ 114 115 static inline void mmc_should_fail_request(struct mmc_host *host, 116 struct mmc_request *mrq) 117 { 118 } 119 120 #endif /* CONFIG_FAIL_MMC_REQUEST */ 121 122 /** 123 * mmc_request_done - finish processing an MMC request 124 * @host: MMC host which completed request 125 * @mrq: MMC request which request 126 * 127 * MMC drivers should call this function when they have completed 128 * their processing of a request. 129 */ 130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 131 { 132 struct mmc_command *cmd = mrq->cmd; 133 int err = cmd->error; 134 135 if (err && cmd->retries && mmc_host_is_spi(host)) { 136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 137 cmd->retries = 0; 138 } 139 140 if (err && cmd->retries && !mmc_card_removed(host->card)) { 141 /* 142 * Request starter must handle retries - see 143 * mmc_wait_for_req_done(). 144 */ 145 if (mrq->done) 146 mrq->done(mrq); 147 } else { 148 mmc_should_fail_request(host, mrq); 149 150 led_trigger_event(host->led, LED_OFF); 151 152 if (mrq->sbc) { 153 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 154 mmc_hostname(host), mrq->sbc->opcode, 155 mrq->sbc->error, 156 mrq->sbc->resp[0], mrq->sbc->resp[1], 157 mrq->sbc->resp[2], mrq->sbc->resp[3]); 158 } 159 160 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 161 mmc_hostname(host), cmd->opcode, err, 162 cmd->resp[0], cmd->resp[1], 163 cmd->resp[2], cmd->resp[3]); 164 165 if (mrq->data) { 166 pr_debug("%s: %d bytes transferred: %d\n", 167 mmc_hostname(host), 168 mrq->data->bytes_xfered, mrq->data->error); 169 } 170 171 if (mrq->stop) { 172 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 173 mmc_hostname(host), mrq->stop->opcode, 174 mrq->stop->error, 175 mrq->stop->resp[0], mrq->stop->resp[1], 176 mrq->stop->resp[2], mrq->stop->resp[3]); 177 } 178 179 if (mrq->done) 180 mrq->done(mrq); 181 182 mmc_host_clk_release(host); 183 } 184 } 185 186 EXPORT_SYMBOL(mmc_request_done); 187 188 static void 189 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 190 { 191 #ifdef CONFIG_MMC_DEBUG 192 unsigned int i, sz; 193 struct scatterlist *sg; 194 #endif 195 196 if (mrq->sbc) { 197 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 198 mmc_hostname(host), mrq->sbc->opcode, 199 mrq->sbc->arg, mrq->sbc->flags); 200 } 201 202 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 203 mmc_hostname(host), mrq->cmd->opcode, 204 mrq->cmd->arg, mrq->cmd->flags); 205 206 if (mrq->data) { 207 pr_debug("%s: blksz %d blocks %d flags %08x " 208 "tsac %d ms nsac %d\n", 209 mmc_hostname(host), mrq->data->blksz, 210 mrq->data->blocks, mrq->data->flags, 211 mrq->data->timeout_ns / 1000000, 212 mrq->data->timeout_clks); 213 } 214 215 if (mrq->stop) { 216 pr_debug("%s: CMD%u arg %08x flags %08x\n", 217 mmc_hostname(host), mrq->stop->opcode, 218 mrq->stop->arg, mrq->stop->flags); 219 } 220 221 WARN_ON(!host->claimed); 222 223 mrq->cmd->error = 0; 224 mrq->cmd->mrq = mrq; 225 if (mrq->sbc) { 226 mrq->sbc->error = 0; 227 mrq->sbc->mrq = mrq; 228 } 229 if (mrq->data) { 230 BUG_ON(mrq->data->blksz > host->max_blk_size); 231 BUG_ON(mrq->data->blocks > host->max_blk_count); 232 BUG_ON(mrq->data->blocks * mrq->data->blksz > 233 host->max_req_size); 234 235 #ifdef CONFIG_MMC_DEBUG 236 sz = 0; 237 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 238 sz += sg->length; 239 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 240 #endif 241 242 mrq->cmd->data = mrq->data; 243 mrq->data->error = 0; 244 mrq->data->mrq = mrq; 245 if (mrq->stop) { 246 mrq->data->stop = mrq->stop; 247 mrq->stop->error = 0; 248 mrq->stop->mrq = mrq; 249 } 250 } 251 mmc_host_clk_hold(host); 252 led_trigger_event(host->led, LED_FULL); 253 host->ops->request(host, mrq); 254 } 255 256 /** 257 * mmc_start_bkops - start BKOPS for supported cards 258 * @card: MMC card to start BKOPS 259 * @form_exception: A flag to indicate if this function was 260 * called due to an exception raised by the card 261 * 262 * Start background operations whenever requested. 263 * When the urgent BKOPS bit is set in a R1 command response 264 * then background operations should be started immediately. 265 */ 266 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 267 { 268 int err; 269 int timeout; 270 bool use_busy_signal; 271 272 BUG_ON(!card); 273 274 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card)) 275 return; 276 277 err = mmc_read_bkops_status(card); 278 if (err) { 279 pr_err("%s: Failed to read bkops status: %d\n", 280 mmc_hostname(card->host), err); 281 return; 282 } 283 284 if (!card->ext_csd.raw_bkops_status) 285 return; 286 287 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 288 from_exception) 289 return; 290 291 mmc_claim_host(card->host); 292 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 293 timeout = MMC_BKOPS_MAX_TIMEOUT; 294 use_busy_signal = true; 295 } else { 296 timeout = 0; 297 use_busy_signal = false; 298 } 299 300 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 301 EXT_CSD_BKOPS_START, 1, timeout, 302 use_busy_signal, true, false); 303 if (err) { 304 pr_warn("%s: Error %d starting bkops\n", 305 mmc_hostname(card->host), err); 306 goto out; 307 } 308 309 /* 310 * For urgent bkops status (LEVEL_2 and more) 311 * bkops executed synchronously, otherwise 312 * the operation is in progress 313 */ 314 if (!use_busy_signal) 315 mmc_card_set_doing_bkops(card); 316 out: 317 mmc_release_host(card->host); 318 } 319 EXPORT_SYMBOL(mmc_start_bkops); 320 321 /* 322 * mmc_wait_data_done() - done callback for data request 323 * @mrq: done data request 324 * 325 * Wakes up mmc context, passed as a callback to host controller driver 326 */ 327 static void mmc_wait_data_done(struct mmc_request *mrq) 328 { 329 mrq->host->context_info.is_done_rcv = true; 330 wake_up_interruptible(&mrq->host->context_info.wait); 331 } 332 333 static void mmc_wait_done(struct mmc_request *mrq) 334 { 335 complete(&mrq->completion); 336 } 337 338 /* 339 *__mmc_start_data_req() - starts data request 340 * @host: MMC host to start the request 341 * @mrq: data request to start 342 * 343 * Sets the done callback to be called when request is completed by the card. 344 * Starts data mmc request execution 345 */ 346 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 347 { 348 mrq->done = mmc_wait_data_done; 349 mrq->host = host; 350 if (mmc_card_removed(host->card)) { 351 mrq->cmd->error = -ENOMEDIUM; 352 mmc_wait_data_done(mrq); 353 return -ENOMEDIUM; 354 } 355 mmc_start_request(host, mrq); 356 357 return 0; 358 } 359 360 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 361 { 362 init_completion(&mrq->completion); 363 mrq->done = mmc_wait_done; 364 if (mmc_card_removed(host->card)) { 365 mrq->cmd->error = -ENOMEDIUM; 366 complete(&mrq->completion); 367 return -ENOMEDIUM; 368 } 369 mmc_start_request(host, mrq); 370 return 0; 371 } 372 373 /* 374 * mmc_wait_for_data_req_done() - wait for request completed 375 * @host: MMC host to prepare the command. 376 * @mrq: MMC request to wait for 377 * 378 * Blocks MMC context till host controller will ack end of data request 379 * execution or new request notification arrives from the block layer. 380 * Handles command retries. 381 * 382 * Returns enum mmc_blk_status after checking errors. 383 */ 384 static int mmc_wait_for_data_req_done(struct mmc_host *host, 385 struct mmc_request *mrq, 386 struct mmc_async_req *next_req) 387 { 388 struct mmc_command *cmd; 389 struct mmc_context_info *context_info = &host->context_info; 390 int err; 391 unsigned long flags; 392 393 while (1) { 394 wait_event_interruptible(context_info->wait, 395 (context_info->is_done_rcv || 396 context_info->is_new_req)); 397 spin_lock_irqsave(&context_info->lock, flags); 398 context_info->is_waiting_last_req = false; 399 spin_unlock_irqrestore(&context_info->lock, flags); 400 if (context_info->is_done_rcv) { 401 context_info->is_done_rcv = false; 402 context_info->is_new_req = false; 403 cmd = mrq->cmd; 404 405 if (!cmd->error || !cmd->retries || 406 mmc_card_removed(host->card)) { 407 err = host->areq->err_check(host->card, 408 host->areq); 409 break; /* return err */ 410 } else { 411 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 412 mmc_hostname(host), 413 cmd->opcode, cmd->error); 414 cmd->retries--; 415 cmd->error = 0; 416 host->ops->request(host, mrq); 417 continue; /* wait for done/new event again */ 418 } 419 } else if (context_info->is_new_req) { 420 context_info->is_new_req = false; 421 if (!next_req) { 422 err = MMC_BLK_NEW_REQUEST; 423 break; /* return err */ 424 } 425 } 426 } 427 return err; 428 } 429 430 static void mmc_wait_for_req_done(struct mmc_host *host, 431 struct mmc_request *mrq) 432 { 433 struct mmc_command *cmd; 434 435 while (1) { 436 wait_for_completion(&mrq->completion); 437 438 cmd = mrq->cmd; 439 440 /* 441 * If host has timed out waiting for the sanitize 442 * to complete, card might be still in programming state 443 * so let's try to bring the card out of programming 444 * state. 445 */ 446 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 447 if (!mmc_interrupt_hpi(host->card)) { 448 pr_warn("%s: %s: Interrupted sanitize\n", 449 mmc_hostname(host), __func__); 450 cmd->error = 0; 451 break; 452 } else { 453 pr_err("%s: %s: Failed to interrupt sanitize\n", 454 mmc_hostname(host), __func__); 455 } 456 } 457 if (!cmd->error || !cmd->retries || 458 mmc_card_removed(host->card)) 459 break; 460 461 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 462 mmc_hostname(host), cmd->opcode, cmd->error); 463 cmd->retries--; 464 cmd->error = 0; 465 host->ops->request(host, mrq); 466 } 467 } 468 469 /** 470 * mmc_pre_req - Prepare for a new request 471 * @host: MMC host to prepare command 472 * @mrq: MMC request to prepare for 473 * @is_first_req: true if there is no previous started request 474 * that may run in parellel to this call, otherwise false 475 * 476 * mmc_pre_req() is called in prior to mmc_start_req() to let 477 * host prepare for the new request. Preparation of a request may be 478 * performed while another request is running on the host. 479 */ 480 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 481 bool is_first_req) 482 { 483 if (host->ops->pre_req) { 484 mmc_host_clk_hold(host); 485 host->ops->pre_req(host, mrq, is_first_req); 486 mmc_host_clk_release(host); 487 } 488 } 489 490 /** 491 * mmc_post_req - Post process a completed request 492 * @host: MMC host to post process command 493 * @mrq: MMC request to post process for 494 * @err: Error, if non zero, clean up any resources made in pre_req 495 * 496 * Let the host post process a completed request. Post processing of 497 * a request may be performed while another reuqest is running. 498 */ 499 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 500 int err) 501 { 502 if (host->ops->post_req) { 503 mmc_host_clk_hold(host); 504 host->ops->post_req(host, mrq, err); 505 mmc_host_clk_release(host); 506 } 507 } 508 509 /** 510 * mmc_start_req - start a non-blocking request 511 * @host: MMC host to start command 512 * @areq: async request to start 513 * @error: out parameter returns 0 for success, otherwise non zero 514 * 515 * Start a new MMC custom command request for a host. 516 * If there is on ongoing async request wait for completion 517 * of that request and start the new one and return. 518 * Does not wait for the new request to complete. 519 * 520 * Returns the completed request, NULL in case of none completed. 521 * Wait for the an ongoing request (previoulsy started) to complete and 522 * return the completed request. If there is no ongoing request, NULL 523 * is returned without waiting. NULL is not an error condition. 524 */ 525 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 526 struct mmc_async_req *areq, int *error) 527 { 528 int err = 0; 529 int start_err = 0; 530 struct mmc_async_req *data = host->areq; 531 532 /* Prepare a new request */ 533 if (areq) 534 mmc_pre_req(host, areq->mrq, !host->areq); 535 536 if (host->areq) { 537 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 538 if (err == MMC_BLK_NEW_REQUEST) { 539 if (error) 540 *error = err; 541 /* 542 * The previous request was not completed, 543 * nothing to return 544 */ 545 return NULL; 546 } 547 /* 548 * Check BKOPS urgency for each R1 response 549 */ 550 if (host->card && mmc_card_mmc(host->card) && 551 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 552 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 553 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 554 555 /* Cancel the prepared request */ 556 if (areq) 557 mmc_post_req(host, areq->mrq, -EINVAL); 558 559 mmc_start_bkops(host->card, true); 560 561 /* prepare the request again */ 562 if (areq) 563 mmc_pre_req(host, areq->mrq, !host->areq); 564 } 565 } 566 567 if (!err && areq) 568 start_err = __mmc_start_data_req(host, areq->mrq); 569 570 if (host->areq) 571 mmc_post_req(host, host->areq->mrq, 0); 572 573 /* Cancel a prepared request if it was not started. */ 574 if ((err || start_err) && areq) 575 mmc_post_req(host, areq->mrq, -EINVAL); 576 577 if (err) 578 host->areq = NULL; 579 else 580 host->areq = areq; 581 582 if (error) 583 *error = err; 584 return data; 585 } 586 EXPORT_SYMBOL(mmc_start_req); 587 588 /** 589 * mmc_wait_for_req - start a request and wait for completion 590 * @host: MMC host to start command 591 * @mrq: MMC request to start 592 * 593 * Start a new MMC custom command request for a host, and wait 594 * for the command to complete. Does not attempt to parse the 595 * response. 596 */ 597 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 598 { 599 __mmc_start_req(host, mrq); 600 mmc_wait_for_req_done(host, mrq); 601 } 602 EXPORT_SYMBOL(mmc_wait_for_req); 603 604 /** 605 * mmc_interrupt_hpi - Issue for High priority Interrupt 606 * @card: the MMC card associated with the HPI transfer 607 * 608 * Issued High Priority Interrupt, and check for card status 609 * until out-of prg-state. 610 */ 611 int mmc_interrupt_hpi(struct mmc_card *card) 612 { 613 int err; 614 u32 status; 615 unsigned long prg_wait; 616 617 BUG_ON(!card); 618 619 if (!card->ext_csd.hpi_en) { 620 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 621 return 1; 622 } 623 624 mmc_claim_host(card->host); 625 err = mmc_send_status(card, &status); 626 if (err) { 627 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 628 goto out; 629 } 630 631 switch (R1_CURRENT_STATE(status)) { 632 case R1_STATE_IDLE: 633 case R1_STATE_READY: 634 case R1_STATE_STBY: 635 case R1_STATE_TRAN: 636 /* 637 * In idle and transfer states, HPI is not needed and the caller 638 * can issue the next intended command immediately 639 */ 640 goto out; 641 case R1_STATE_PRG: 642 break; 643 default: 644 /* In all other states, it's illegal to issue HPI */ 645 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 646 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 647 err = -EINVAL; 648 goto out; 649 } 650 651 err = mmc_send_hpi_cmd(card, &status); 652 if (err) 653 goto out; 654 655 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 656 do { 657 err = mmc_send_status(card, &status); 658 659 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 660 break; 661 if (time_after(jiffies, prg_wait)) 662 err = -ETIMEDOUT; 663 } while (!err); 664 665 out: 666 mmc_release_host(card->host); 667 return err; 668 } 669 EXPORT_SYMBOL(mmc_interrupt_hpi); 670 671 /** 672 * mmc_wait_for_cmd - start a command and wait for completion 673 * @host: MMC host to start command 674 * @cmd: MMC command to start 675 * @retries: maximum number of retries 676 * 677 * Start a new MMC command for a host, and wait for the command 678 * to complete. Return any error that occurred while the command 679 * was executing. Do not attempt to parse the response. 680 */ 681 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 682 { 683 struct mmc_request mrq = {NULL}; 684 685 WARN_ON(!host->claimed); 686 687 memset(cmd->resp, 0, sizeof(cmd->resp)); 688 cmd->retries = retries; 689 690 mrq.cmd = cmd; 691 cmd->data = NULL; 692 693 mmc_wait_for_req(host, &mrq); 694 695 return cmd->error; 696 } 697 698 EXPORT_SYMBOL(mmc_wait_for_cmd); 699 700 /** 701 * mmc_stop_bkops - stop ongoing BKOPS 702 * @card: MMC card to check BKOPS 703 * 704 * Send HPI command to stop ongoing background operations to 705 * allow rapid servicing of foreground operations, e.g. read/ 706 * writes. Wait until the card comes out of the programming state 707 * to avoid errors in servicing read/write requests. 708 */ 709 int mmc_stop_bkops(struct mmc_card *card) 710 { 711 int err = 0; 712 713 BUG_ON(!card); 714 err = mmc_interrupt_hpi(card); 715 716 /* 717 * If err is EINVAL, we can't issue an HPI. 718 * It should complete the BKOPS. 719 */ 720 if (!err || (err == -EINVAL)) { 721 mmc_card_clr_doing_bkops(card); 722 err = 0; 723 } 724 725 return err; 726 } 727 EXPORT_SYMBOL(mmc_stop_bkops); 728 729 int mmc_read_bkops_status(struct mmc_card *card) 730 { 731 int err; 732 u8 *ext_csd; 733 734 mmc_claim_host(card->host); 735 err = mmc_get_ext_csd(card, &ext_csd); 736 mmc_release_host(card->host); 737 if (err) 738 return err; 739 740 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 741 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 742 kfree(ext_csd); 743 return 0; 744 } 745 EXPORT_SYMBOL(mmc_read_bkops_status); 746 747 /** 748 * mmc_set_data_timeout - set the timeout for a data command 749 * @data: data phase for command 750 * @card: the MMC card associated with the data transfer 751 * 752 * Computes the data timeout parameters according to the 753 * correct algorithm given the card type. 754 */ 755 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 756 { 757 unsigned int mult; 758 759 /* 760 * SDIO cards only define an upper 1 s limit on access. 761 */ 762 if (mmc_card_sdio(card)) { 763 data->timeout_ns = 1000000000; 764 data->timeout_clks = 0; 765 return; 766 } 767 768 /* 769 * SD cards use a 100 multiplier rather than 10 770 */ 771 mult = mmc_card_sd(card) ? 100 : 10; 772 773 /* 774 * Scale up the multiplier (and therefore the timeout) by 775 * the r2w factor for writes. 776 */ 777 if (data->flags & MMC_DATA_WRITE) 778 mult <<= card->csd.r2w_factor; 779 780 data->timeout_ns = card->csd.tacc_ns * mult; 781 data->timeout_clks = card->csd.tacc_clks * mult; 782 783 /* 784 * SD cards also have an upper limit on the timeout. 785 */ 786 if (mmc_card_sd(card)) { 787 unsigned int timeout_us, limit_us; 788 789 timeout_us = data->timeout_ns / 1000; 790 if (mmc_host_clk_rate(card->host)) 791 timeout_us += data->timeout_clks * 1000 / 792 (mmc_host_clk_rate(card->host) / 1000); 793 794 if (data->flags & MMC_DATA_WRITE) 795 /* 796 * The MMC spec "It is strongly recommended 797 * for hosts to implement more than 500ms 798 * timeout value even if the card indicates 799 * the 250ms maximum busy length." Even the 800 * previous value of 300ms is known to be 801 * insufficient for some cards. 802 */ 803 limit_us = 3000000; 804 else 805 limit_us = 100000; 806 807 /* 808 * SDHC cards always use these fixed values. 809 */ 810 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 811 data->timeout_ns = limit_us * 1000; 812 data->timeout_clks = 0; 813 } 814 815 /* assign limit value if invalid */ 816 if (timeout_us == 0) 817 data->timeout_ns = limit_us * 1000; 818 } 819 820 /* 821 * Some cards require longer data read timeout than indicated in CSD. 822 * Address this by setting the read timeout to a "reasonably high" 823 * value. For the cards tested, 300ms has proven enough. If necessary, 824 * this value can be increased if other problematic cards require this. 825 */ 826 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 827 data->timeout_ns = 300000000; 828 data->timeout_clks = 0; 829 } 830 831 /* 832 * Some cards need very high timeouts if driven in SPI mode. 833 * The worst observed timeout was 900ms after writing a 834 * continuous stream of data until the internal logic 835 * overflowed. 836 */ 837 if (mmc_host_is_spi(card->host)) { 838 if (data->flags & MMC_DATA_WRITE) { 839 if (data->timeout_ns < 1000000000) 840 data->timeout_ns = 1000000000; /* 1s */ 841 } else { 842 if (data->timeout_ns < 100000000) 843 data->timeout_ns = 100000000; /* 100ms */ 844 } 845 } 846 } 847 EXPORT_SYMBOL(mmc_set_data_timeout); 848 849 /** 850 * mmc_align_data_size - pads a transfer size to a more optimal value 851 * @card: the MMC card associated with the data transfer 852 * @sz: original transfer size 853 * 854 * Pads the original data size with a number of extra bytes in 855 * order to avoid controller bugs and/or performance hits 856 * (e.g. some controllers revert to PIO for certain sizes). 857 * 858 * Returns the improved size, which might be unmodified. 859 * 860 * Note that this function is only relevant when issuing a 861 * single scatter gather entry. 862 */ 863 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 864 { 865 /* 866 * FIXME: We don't have a system for the controller to tell 867 * the core about its problems yet, so for now we just 32-bit 868 * align the size. 869 */ 870 sz = ((sz + 3) / 4) * 4; 871 872 return sz; 873 } 874 EXPORT_SYMBOL(mmc_align_data_size); 875 876 /** 877 * __mmc_claim_host - exclusively claim a host 878 * @host: mmc host to claim 879 * @abort: whether or not the operation should be aborted 880 * 881 * Claim a host for a set of operations. If @abort is non null and 882 * dereference a non-zero value then this will return prematurely with 883 * that non-zero value without acquiring the lock. Returns zero 884 * with the lock held otherwise. 885 */ 886 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 887 { 888 DECLARE_WAITQUEUE(wait, current); 889 unsigned long flags; 890 int stop; 891 892 might_sleep(); 893 894 add_wait_queue(&host->wq, &wait); 895 spin_lock_irqsave(&host->lock, flags); 896 while (1) { 897 set_current_state(TASK_UNINTERRUPTIBLE); 898 stop = abort ? atomic_read(abort) : 0; 899 if (stop || !host->claimed || host->claimer == current) 900 break; 901 spin_unlock_irqrestore(&host->lock, flags); 902 schedule(); 903 spin_lock_irqsave(&host->lock, flags); 904 } 905 set_current_state(TASK_RUNNING); 906 if (!stop) { 907 host->claimed = 1; 908 host->claimer = current; 909 host->claim_cnt += 1; 910 } else 911 wake_up(&host->wq); 912 spin_unlock_irqrestore(&host->lock, flags); 913 remove_wait_queue(&host->wq, &wait); 914 if (host->ops->enable && !stop && host->claim_cnt == 1) 915 host->ops->enable(host); 916 return stop; 917 } 918 919 EXPORT_SYMBOL(__mmc_claim_host); 920 921 /** 922 * mmc_release_host - release a host 923 * @host: mmc host to release 924 * 925 * Release a MMC host, allowing others to claim the host 926 * for their operations. 927 */ 928 void mmc_release_host(struct mmc_host *host) 929 { 930 unsigned long flags; 931 932 WARN_ON(!host->claimed); 933 934 if (host->ops->disable && host->claim_cnt == 1) 935 host->ops->disable(host); 936 937 spin_lock_irqsave(&host->lock, flags); 938 if (--host->claim_cnt) { 939 /* Release for nested claim */ 940 spin_unlock_irqrestore(&host->lock, flags); 941 } else { 942 host->claimed = 0; 943 host->claimer = NULL; 944 spin_unlock_irqrestore(&host->lock, flags); 945 wake_up(&host->wq); 946 } 947 } 948 EXPORT_SYMBOL(mmc_release_host); 949 950 /* 951 * This is a helper function, which fetches a runtime pm reference for the 952 * card device and also claims the host. 953 */ 954 void mmc_get_card(struct mmc_card *card) 955 { 956 pm_runtime_get_sync(&card->dev); 957 mmc_claim_host(card->host); 958 } 959 EXPORT_SYMBOL(mmc_get_card); 960 961 /* 962 * This is a helper function, which releases the host and drops the runtime 963 * pm reference for the card device. 964 */ 965 void mmc_put_card(struct mmc_card *card) 966 { 967 mmc_release_host(card->host); 968 pm_runtime_mark_last_busy(&card->dev); 969 pm_runtime_put_autosuspend(&card->dev); 970 } 971 EXPORT_SYMBOL(mmc_put_card); 972 973 /* 974 * Internal function that does the actual ios call to the host driver, 975 * optionally printing some debug output. 976 */ 977 static inline void mmc_set_ios(struct mmc_host *host) 978 { 979 struct mmc_ios *ios = &host->ios; 980 981 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 982 "width %u timing %u\n", 983 mmc_hostname(host), ios->clock, ios->bus_mode, 984 ios->power_mode, ios->chip_select, ios->vdd, 985 ios->bus_width, ios->timing); 986 987 if (ios->clock > 0) 988 mmc_set_ungated(host); 989 host->ops->set_ios(host, ios); 990 } 991 992 /* 993 * Control chip select pin on a host. 994 */ 995 void mmc_set_chip_select(struct mmc_host *host, int mode) 996 { 997 mmc_host_clk_hold(host); 998 host->ios.chip_select = mode; 999 mmc_set_ios(host); 1000 mmc_host_clk_release(host); 1001 } 1002 1003 /* 1004 * Sets the host clock to the highest possible frequency that 1005 * is below "hz". 1006 */ 1007 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 1008 { 1009 WARN_ON(hz && hz < host->f_min); 1010 1011 if (hz > host->f_max) 1012 hz = host->f_max; 1013 1014 host->ios.clock = hz; 1015 mmc_set_ios(host); 1016 } 1017 1018 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1019 { 1020 mmc_host_clk_hold(host); 1021 __mmc_set_clock(host, hz); 1022 mmc_host_clk_release(host); 1023 } 1024 1025 #ifdef CONFIG_MMC_CLKGATE 1026 /* 1027 * This gates the clock by setting it to 0 Hz. 1028 */ 1029 void mmc_gate_clock(struct mmc_host *host) 1030 { 1031 unsigned long flags; 1032 1033 spin_lock_irqsave(&host->clk_lock, flags); 1034 host->clk_old = host->ios.clock; 1035 host->ios.clock = 0; 1036 host->clk_gated = true; 1037 spin_unlock_irqrestore(&host->clk_lock, flags); 1038 mmc_set_ios(host); 1039 } 1040 1041 /* 1042 * This restores the clock from gating by using the cached 1043 * clock value. 1044 */ 1045 void mmc_ungate_clock(struct mmc_host *host) 1046 { 1047 /* 1048 * We should previously have gated the clock, so the clock shall 1049 * be 0 here! The clock may however be 0 during initialization, 1050 * when some request operations are performed before setting 1051 * the frequency. When ungate is requested in that situation 1052 * we just ignore the call. 1053 */ 1054 if (host->clk_old) { 1055 BUG_ON(host->ios.clock); 1056 /* This call will also set host->clk_gated to false */ 1057 __mmc_set_clock(host, host->clk_old); 1058 } 1059 } 1060 1061 void mmc_set_ungated(struct mmc_host *host) 1062 { 1063 unsigned long flags; 1064 1065 /* 1066 * We've been given a new frequency while the clock is gated, 1067 * so make sure we regard this as ungating it. 1068 */ 1069 spin_lock_irqsave(&host->clk_lock, flags); 1070 host->clk_gated = false; 1071 spin_unlock_irqrestore(&host->clk_lock, flags); 1072 } 1073 1074 #else 1075 void mmc_set_ungated(struct mmc_host *host) 1076 { 1077 } 1078 #endif 1079 1080 /* 1081 * Change the bus mode (open drain/push-pull) of a host. 1082 */ 1083 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1084 { 1085 mmc_host_clk_hold(host); 1086 host->ios.bus_mode = mode; 1087 mmc_set_ios(host); 1088 mmc_host_clk_release(host); 1089 } 1090 1091 /* 1092 * Change data bus width of a host. 1093 */ 1094 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1095 { 1096 mmc_host_clk_hold(host); 1097 host->ios.bus_width = width; 1098 mmc_set_ios(host); 1099 mmc_host_clk_release(host); 1100 } 1101 1102 /* 1103 * Set initial state after a power cycle or a hw_reset. 1104 */ 1105 void mmc_set_initial_state(struct mmc_host *host) 1106 { 1107 if (mmc_host_is_spi(host)) 1108 host->ios.chip_select = MMC_CS_HIGH; 1109 else 1110 host->ios.chip_select = MMC_CS_DONTCARE; 1111 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1112 host->ios.bus_width = MMC_BUS_WIDTH_1; 1113 host->ios.timing = MMC_TIMING_LEGACY; 1114 1115 mmc_set_ios(host); 1116 } 1117 1118 /** 1119 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1120 * @vdd: voltage (mV) 1121 * @low_bits: prefer low bits in boundary cases 1122 * 1123 * This function returns the OCR bit number according to the provided @vdd 1124 * value. If conversion is not possible a negative errno value returned. 1125 * 1126 * Depending on the @low_bits flag the function prefers low or high OCR bits 1127 * on boundary voltages. For example, 1128 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1129 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1130 * 1131 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1132 */ 1133 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1134 { 1135 const int max_bit = ilog2(MMC_VDD_35_36); 1136 int bit; 1137 1138 if (vdd < 1650 || vdd > 3600) 1139 return -EINVAL; 1140 1141 if (vdd >= 1650 && vdd <= 1950) 1142 return ilog2(MMC_VDD_165_195); 1143 1144 if (low_bits) 1145 vdd -= 1; 1146 1147 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1148 bit = (vdd - 2000) / 100 + 8; 1149 if (bit > max_bit) 1150 return max_bit; 1151 return bit; 1152 } 1153 1154 /** 1155 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1156 * @vdd_min: minimum voltage value (mV) 1157 * @vdd_max: maximum voltage value (mV) 1158 * 1159 * This function returns the OCR mask bits according to the provided @vdd_min 1160 * and @vdd_max values. If conversion is not possible the function returns 0. 1161 * 1162 * Notes wrt boundary cases: 1163 * This function sets the OCR bits for all boundary voltages, for example 1164 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1165 * MMC_VDD_34_35 mask. 1166 */ 1167 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1168 { 1169 u32 mask = 0; 1170 1171 if (vdd_max < vdd_min) 1172 return 0; 1173 1174 /* Prefer high bits for the boundary vdd_max values. */ 1175 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1176 if (vdd_max < 0) 1177 return 0; 1178 1179 /* Prefer low bits for the boundary vdd_min values. */ 1180 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1181 if (vdd_min < 0) 1182 return 0; 1183 1184 /* Fill the mask, from max bit to min bit. */ 1185 while (vdd_max >= vdd_min) 1186 mask |= 1 << vdd_max--; 1187 1188 return mask; 1189 } 1190 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1191 1192 #ifdef CONFIG_OF 1193 1194 /** 1195 * mmc_of_parse_voltage - return mask of supported voltages 1196 * @np: The device node need to be parsed. 1197 * @mask: mask of voltages available for MMC/SD/SDIO 1198 * 1199 * 1. Return zero on success. 1200 * 2. Return negative errno: voltage-range is invalid. 1201 */ 1202 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1203 { 1204 const u32 *voltage_ranges; 1205 int num_ranges, i; 1206 1207 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1208 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1209 if (!voltage_ranges || !num_ranges) { 1210 pr_info("%s: voltage-ranges unspecified\n", np->full_name); 1211 return -EINVAL; 1212 } 1213 1214 for (i = 0; i < num_ranges; i++) { 1215 const int j = i * 2; 1216 u32 ocr_mask; 1217 1218 ocr_mask = mmc_vddrange_to_ocrmask( 1219 be32_to_cpu(voltage_ranges[j]), 1220 be32_to_cpu(voltage_ranges[j + 1])); 1221 if (!ocr_mask) { 1222 pr_err("%s: voltage-range #%d is invalid\n", 1223 np->full_name, i); 1224 return -EINVAL; 1225 } 1226 *mask |= ocr_mask; 1227 } 1228 1229 return 0; 1230 } 1231 EXPORT_SYMBOL(mmc_of_parse_voltage); 1232 1233 #endif /* CONFIG_OF */ 1234 1235 #ifdef CONFIG_REGULATOR 1236 1237 /** 1238 * mmc_regulator_get_ocrmask - return mask of supported voltages 1239 * @supply: regulator to use 1240 * 1241 * This returns either a negative errno, or a mask of voltages that 1242 * can be provided to MMC/SD/SDIO devices using the specified voltage 1243 * regulator. This would normally be called before registering the 1244 * MMC host adapter. 1245 */ 1246 int mmc_regulator_get_ocrmask(struct regulator *supply) 1247 { 1248 int result = 0; 1249 int count; 1250 int i; 1251 int vdd_uV; 1252 int vdd_mV; 1253 1254 count = regulator_count_voltages(supply); 1255 if (count < 0) 1256 return count; 1257 1258 for (i = 0; i < count; i++) { 1259 vdd_uV = regulator_list_voltage(supply, i); 1260 if (vdd_uV <= 0) 1261 continue; 1262 1263 vdd_mV = vdd_uV / 1000; 1264 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1265 } 1266 1267 if (!result) { 1268 vdd_uV = regulator_get_voltage(supply); 1269 if (vdd_uV <= 0) 1270 return vdd_uV; 1271 1272 vdd_mV = vdd_uV / 1000; 1273 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1274 } 1275 1276 return result; 1277 } 1278 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1279 1280 /** 1281 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1282 * @mmc: the host to regulate 1283 * @supply: regulator to use 1284 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1285 * 1286 * Returns zero on success, else negative errno. 1287 * 1288 * MMC host drivers may use this to enable or disable a regulator using 1289 * a particular supply voltage. This would normally be called from the 1290 * set_ios() method. 1291 */ 1292 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1293 struct regulator *supply, 1294 unsigned short vdd_bit) 1295 { 1296 int result = 0; 1297 int min_uV, max_uV; 1298 1299 if (vdd_bit) { 1300 int tmp; 1301 1302 /* 1303 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1304 * bits this regulator doesn't quite support ... don't 1305 * be too picky, most cards and regulators are OK with 1306 * a 0.1V range goof (it's a small error percentage). 1307 */ 1308 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1309 if (tmp == 0) { 1310 min_uV = 1650 * 1000; 1311 max_uV = 1950 * 1000; 1312 } else { 1313 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1314 max_uV = min_uV + 100 * 1000; 1315 } 1316 1317 result = regulator_set_voltage(supply, min_uV, max_uV); 1318 if (result == 0 && !mmc->regulator_enabled) { 1319 result = regulator_enable(supply); 1320 if (!result) 1321 mmc->regulator_enabled = true; 1322 } 1323 } else if (mmc->regulator_enabled) { 1324 result = regulator_disable(supply); 1325 if (result == 0) 1326 mmc->regulator_enabled = false; 1327 } 1328 1329 if (result) 1330 dev_err(mmc_dev(mmc), 1331 "could not set regulator OCR (%d)\n", result); 1332 return result; 1333 } 1334 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1335 1336 #endif /* CONFIG_REGULATOR */ 1337 1338 int mmc_regulator_get_supply(struct mmc_host *mmc) 1339 { 1340 struct device *dev = mmc_dev(mmc); 1341 int ret; 1342 1343 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1344 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1345 1346 if (IS_ERR(mmc->supply.vmmc)) { 1347 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1348 return -EPROBE_DEFER; 1349 dev_info(dev, "No vmmc regulator found\n"); 1350 } else { 1351 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1352 if (ret > 0) 1353 mmc->ocr_avail = ret; 1354 else 1355 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1356 } 1357 1358 if (IS_ERR(mmc->supply.vqmmc)) { 1359 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1360 return -EPROBE_DEFER; 1361 dev_info(dev, "No vqmmc regulator found\n"); 1362 } 1363 1364 return 0; 1365 } 1366 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1367 1368 /* 1369 * Mask off any voltages we don't support and select 1370 * the lowest voltage 1371 */ 1372 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1373 { 1374 int bit; 1375 1376 /* 1377 * Sanity check the voltages that the card claims to 1378 * support. 1379 */ 1380 if (ocr & 0x7F) { 1381 dev_warn(mmc_dev(host), 1382 "card claims to support voltages below defined range\n"); 1383 ocr &= ~0x7F; 1384 } 1385 1386 ocr &= host->ocr_avail; 1387 if (!ocr) { 1388 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1389 return 0; 1390 } 1391 1392 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1393 bit = ffs(ocr) - 1; 1394 ocr &= 3 << bit; 1395 mmc_power_cycle(host, ocr); 1396 } else { 1397 bit = fls(ocr) - 1; 1398 ocr &= 3 << bit; 1399 if (bit != host->ios.vdd) 1400 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1401 } 1402 1403 return ocr; 1404 } 1405 1406 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1407 { 1408 int err = 0; 1409 int old_signal_voltage = host->ios.signal_voltage; 1410 1411 host->ios.signal_voltage = signal_voltage; 1412 if (host->ops->start_signal_voltage_switch) { 1413 mmc_host_clk_hold(host); 1414 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1415 mmc_host_clk_release(host); 1416 } 1417 1418 if (err) 1419 host->ios.signal_voltage = old_signal_voltage; 1420 1421 return err; 1422 1423 } 1424 1425 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1426 { 1427 struct mmc_command cmd = {0}; 1428 int err = 0; 1429 u32 clock; 1430 1431 BUG_ON(!host); 1432 1433 /* 1434 * Send CMD11 only if the request is to switch the card to 1435 * 1.8V signalling. 1436 */ 1437 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1438 return __mmc_set_signal_voltage(host, signal_voltage); 1439 1440 /* 1441 * If we cannot switch voltages, return failure so the caller 1442 * can continue without UHS mode 1443 */ 1444 if (!host->ops->start_signal_voltage_switch) 1445 return -EPERM; 1446 if (!host->ops->card_busy) 1447 pr_warn("%s: cannot verify signal voltage switch\n", 1448 mmc_hostname(host)); 1449 1450 mmc_host_clk_hold(host); 1451 1452 cmd.opcode = SD_SWITCH_VOLTAGE; 1453 cmd.arg = 0; 1454 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1455 1456 err = mmc_wait_for_cmd(host, &cmd, 0); 1457 if (err) 1458 goto err_command; 1459 1460 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) { 1461 err = -EIO; 1462 goto err_command; 1463 } 1464 /* 1465 * The card should drive cmd and dat[0:3] low immediately 1466 * after the response of cmd11, but wait 1 ms to be sure 1467 */ 1468 mmc_delay(1); 1469 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1470 err = -EAGAIN; 1471 goto power_cycle; 1472 } 1473 /* 1474 * During a signal voltage level switch, the clock must be gated 1475 * for 5 ms according to the SD spec 1476 */ 1477 clock = host->ios.clock; 1478 host->ios.clock = 0; 1479 mmc_set_ios(host); 1480 1481 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1482 /* 1483 * Voltages may not have been switched, but we've already 1484 * sent CMD11, so a power cycle is required anyway 1485 */ 1486 err = -EAGAIN; 1487 goto power_cycle; 1488 } 1489 1490 /* Keep clock gated for at least 5 ms */ 1491 mmc_delay(5); 1492 host->ios.clock = clock; 1493 mmc_set_ios(host); 1494 1495 /* Wait for at least 1 ms according to spec */ 1496 mmc_delay(1); 1497 1498 /* 1499 * Failure to switch is indicated by the card holding 1500 * dat[0:3] low 1501 */ 1502 if (host->ops->card_busy && host->ops->card_busy(host)) 1503 err = -EAGAIN; 1504 1505 power_cycle: 1506 if (err) { 1507 pr_debug("%s: Signal voltage switch failed, " 1508 "power cycling card\n", mmc_hostname(host)); 1509 mmc_power_cycle(host, ocr); 1510 } 1511 1512 err_command: 1513 mmc_host_clk_release(host); 1514 1515 return err; 1516 } 1517 1518 /* 1519 * Select timing parameters for host. 1520 */ 1521 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1522 { 1523 mmc_host_clk_hold(host); 1524 host->ios.timing = timing; 1525 mmc_set_ios(host); 1526 mmc_host_clk_release(host); 1527 } 1528 1529 /* 1530 * Select appropriate driver type for host. 1531 */ 1532 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1533 { 1534 mmc_host_clk_hold(host); 1535 host->ios.drv_type = drv_type; 1536 mmc_set_ios(host); 1537 mmc_host_clk_release(host); 1538 } 1539 1540 /* 1541 * Apply power to the MMC stack. This is a two-stage process. 1542 * First, we enable power to the card without the clock running. 1543 * We then wait a bit for the power to stabilise. Finally, 1544 * enable the bus drivers and clock to the card. 1545 * 1546 * We must _NOT_ enable the clock prior to power stablising. 1547 * 1548 * If a host does all the power sequencing itself, ignore the 1549 * initial MMC_POWER_UP stage. 1550 */ 1551 void mmc_power_up(struct mmc_host *host, u32 ocr) 1552 { 1553 if (host->ios.power_mode == MMC_POWER_ON) 1554 return; 1555 1556 mmc_host_clk_hold(host); 1557 1558 host->ios.vdd = fls(ocr) - 1; 1559 host->ios.power_mode = MMC_POWER_UP; 1560 /* Set initial state and call mmc_set_ios */ 1561 mmc_set_initial_state(host); 1562 1563 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1564 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1565 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1566 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1567 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1568 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1569 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1570 1571 /* 1572 * This delay should be sufficient to allow the power supply 1573 * to reach the minimum voltage. 1574 */ 1575 mmc_delay(10); 1576 1577 host->ios.clock = host->f_init; 1578 1579 host->ios.power_mode = MMC_POWER_ON; 1580 mmc_set_ios(host); 1581 1582 /* 1583 * This delay must be at least 74 clock sizes, or 1 ms, or the 1584 * time required to reach a stable voltage. 1585 */ 1586 mmc_delay(10); 1587 1588 mmc_host_clk_release(host); 1589 } 1590 1591 void mmc_power_off(struct mmc_host *host) 1592 { 1593 if (host->ios.power_mode == MMC_POWER_OFF) 1594 return; 1595 1596 mmc_host_clk_hold(host); 1597 1598 host->ios.clock = 0; 1599 host->ios.vdd = 0; 1600 1601 host->ios.power_mode = MMC_POWER_OFF; 1602 /* Set initial state and call mmc_set_ios */ 1603 mmc_set_initial_state(host); 1604 1605 /* 1606 * Some configurations, such as the 802.11 SDIO card in the OLPC 1607 * XO-1.5, require a short delay after poweroff before the card 1608 * can be successfully turned on again. 1609 */ 1610 mmc_delay(1); 1611 1612 mmc_host_clk_release(host); 1613 } 1614 1615 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1616 { 1617 mmc_power_off(host); 1618 /* Wait at least 1 ms according to SD spec */ 1619 mmc_delay(1); 1620 mmc_power_up(host, ocr); 1621 } 1622 1623 /* 1624 * Cleanup when the last reference to the bus operator is dropped. 1625 */ 1626 static void __mmc_release_bus(struct mmc_host *host) 1627 { 1628 BUG_ON(!host); 1629 BUG_ON(host->bus_refs); 1630 BUG_ON(!host->bus_dead); 1631 1632 host->bus_ops = NULL; 1633 } 1634 1635 /* 1636 * Increase reference count of bus operator 1637 */ 1638 static inline void mmc_bus_get(struct mmc_host *host) 1639 { 1640 unsigned long flags; 1641 1642 spin_lock_irqsave(&host->lock, flags); 1643 host->bus_refs++; 1644 spin_unlock_irqrestore(&host->lock, flags); 1645 } 1646 1647 /* 1648 * Decrease reference count of bus operator and free it if 1649 * it is the last reference. 1650 */ 1651 static inline void mmc_bus_put(struct mmc_host *host) 1652 { 1653 unsigned long flags; 1654 1655 spin_lock_irqsave(&host->lock, flags); 1656 host->bus_refs--; 1657 if ((host->bus_refs == 0) && host->bus_ops) 1658 __mmc_release_bus(host); 1659 spin_unlock_irqrestore(&host->lock, flags); 1660 } 1661 1662 /* 1663 * Assign a mmc bus handler to a host. Only one bus handler may control a 1664 * host at any given time. 1665 */ 1666 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1667 { 1668 unsigned long flags; 1669 1670 BUG_ON(!host); 1671 BUG_ON(!ops); 1672 1673 WARN_ON(!host->claimed); 1674 1675 spin_lock_irqsave(&host->lock, flags); 1676 1677 BUG_ON(host->bus_ops); 1678 BUG_ON(host->bus_refs); 1679 1680 host->bus_ops = ops; 1681 host->bus_refs = 1; 1682 host->bus_dead = 0; 1683 1684 spin_unlock_irqrestore(&host->lock, flags); 1685 } 1686 1687 /* 1688 * Remove the current bus handler from a host. 1689 */ 1690 void mmc_detach_bus(struct mmc_host *host) 1691 { 1692 unsigned long flags; 1693 1694 BUG_ON(!host); 1695 1696 WARN_ON(!host->claimed); 1697 WARN_ON(!host->bus_ops); 1698 1699 spin_lock_irqsave(&host->lock, flags); 1700 1701 host->bus_dead = 1; 1702 1703 spin_unlock_irqrestore(&host->lock, flags); 1704 1705 mmc_bus_put(host); 1706 } 1707 1708 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1709 bool cd_irq) 1710 { 1711 #ifdef CONFIG_MMC_DEBUG 1712 unsigned long flags; 1713 spin_lock_irqsave(&host->lock, flags); 1714 WARN_ON(host->removed); 1715 spin_unlock_irqrestore(&host->lock, flags); 1716 #endif 1717 1718 /* 1719 * If the device is configured as wakeup, we prevent a new sleep for 1720 * 5 s to give provision for user space to consume the event. 1721 */ 1722 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1723 device_can_wakeup(mmc_dev(host))) 1724 pm_wakeup_event(mmc_dev(host), 5000); 1725 1726 host->detect_change = 1; 1727 mmc_schedule_delayed_work(&host->detect, delay); 1728 } 1729 1730 /** 1731 * mmc_detect_change - process change of state on a MMC socket 1732 * @host: host which changed state. 1733 * @delay: optional delay to wait before detection (jiffies) 1734 * 1735 * MMC drivers should call this when they detect a card has been 1736 * inserted or removed. The MMC layer will confirm that any 1737 * present card is still functional, and initialize any newly 1738 * inserted. 1739 */ 1740 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1741 { 1742 _mmc_detect_change(host, delay, true); 1743 } 1744 EXPORT_SYMBOL(mmc_detect_change); 1745 1746 void mmc_init_erase(struct mmc_card *card) 1747 { 1748 unsigned int sz; 1749 1750 if (is_power_of_2(card->erase_size)) 1751 card->erase_shift = ffs(card->erase_size) - 1; 1752 else 1753 card->erase_shift = 0; 1754 1755 /* 1756 * It is possible to erase an arbitrarily large area of an SD or MMC 1757 * card. That is not desirable because it can take a long time 1758 * (minutes) potentially delaying more important I/O, and also the 1759 * timeout calculations become increasingly hugely over-estimated. 1760 * Consequently, 'pref_erase' is defined as a guide to limit erases 1761 * to that size and alignment. 1762 * 1763 * For SD cards that define Allocation Unit size, limit erases to one 1764 * Allocation Unit at a time. For MMC cards that define High Capacity 1765 * Erase Size, whether it is switched on or not, limit to that size. 1766 * Otherwise just have a stab at a good value. For modern cards it 1767 * will end up being 4MiB. Note that if the value is too small, it 1768 * can end up taking longer to erase. 1769 */ 1770 if (mmc_card_sd(card) && card->ssr.au) { 1771 card->pref_erase = card->ssr.au; 1772 card->erase_shift = ffs(card->ssr.au) - 1; 1773 } else if (card->ext_csd.hc_erase_size) { 1774 card->pref_erase = card->ext_csd.hc_erase_size; 1775 } else if (card->erase_size) { 1776 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1777 if (sz < 128) 1778 card->pref_erase = 512 * 1024 / 512; 1779 else if (sz < 512) 1780 card->pref_erase = 1024 * 1024 / 512; 1781 else if (sz < 1024) 1782 card->pref_erase = 2 * 1024 * 1024 / 512; 1783 else 1784 card->pref_erase = 4 * 1024 * 1024 / 512; 1785 if (card->pref_erase < card->erase_size) 1786 card->pref_erase = card->erase_size; 1787 else { 1788 sz = card->pref_erase % card->erase_size; 1789 if (sz) 1790 card->pref_erase += card->erase_size - sz; 1791 } 1792 } else 1793 card->pref_erase = 0; 1794 } 1795 1796 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1797 unsigned int arg, unsigned int qty) 1798 { 1799 unsigned int erase_timeout; 1800 1801 if (arg == MMC_DISCARD_ARG || 1802 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1803 erase_timeout = card->ext_csd.trim_timeout; 1804 } else if (card->ext_csd.erase_group_def & 1) { 1805 /* High Capacity Erase Group Size uses HC timeouts */ 1806 if (arg == MMC_TRIM_ARG) 1807 erase_timeout = card->ext_csd.trim_timeout; 1808 else 1809 erase_timeout = card->ext_csd.hc_erase_timeout; 1810 } else { 1811 /* CSD Erase Group Size uses write timeout */ 1812 unsigned int mult = (10 << card->csd.r2w_factor); 1813 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1814 unsigned int timeout_us; 1815 1816 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1817 if (card->csd.tacc_ns < 1000000) 1818 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1819 else 1820 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1821 1822 /* 1823 * ios.clock is only a target. The real clock rate might be 1824 * less but not that much less, so fudge it by multiplying by 2. 1825 */ 1826 timeout_clks <<= 1; 1827 timeout_us += (timeout_clks * 1000) / 1828 (mmc_host_clk_rate(card->host) / 1000); 1829 1830 erase_timeout = timeout_us / 1000; 1831 1832 /* 1833 * Theoretically, the calculation could underflow so round up 1834 * to 1ms in that case. 1835 */ 1836 if (!erase_timeout) 1837 erase_timeout = 1; 1838 } 1839 1840 /* Multiplier for secure operations */ 1841 if (arg & MMC_SECURE_ARGS) { 1842 if (arg == MMC_SECURE_ERASE_ARG) 1843 erase_timeout *= card->ext_csd.sec_erase_mult; 1844 else 1845 erase_timeout *= card->ext_csd.sec_trim_mult; 1846 } 1847 1848 erase_timeout *= qty; 1849 1850 /* 1851 * Ensure at least a 1 second timeout for SPI as per 1852 * 'mmc_set_data_timeout()' 1853 */ 1854 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1855 erase_timeout = 1000; 1856 1857 return erase_timeout; 1858 } 1859 1860 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1861 unsigned int arg, 1862 unsigned int qty) 1863 { 1864 unsigned int erase_timeout; 1865 1866 if (card->ssr.erase_timeout) { 1867 /* Erase timeout specified in SD Status Register (SSR) */ 1868 erase_timeout = card->ssr.erase_timeout * qty + 1869 card->ssr.erase_offset; 1870 } else { 1871 /* 1872 * Erase timeout not specified in SD Status Register (SSR) so 1873 * use 250ms per write block. 1874 */ 1875 erase_timeout = 250 * qty; 1876 } 1877 1878 /* Must not be less than 1 second */ 1879 if (erase_timeout < 1000) 1880 erase_timeout = 1000; 1881 1882 return erase_timeout; 1883 } 1884 1885 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1886 unsigned int arg, 1887 unsigned int qty) 1888 { 1889 if (mmc_card_sd(card)) 1890 return mmc_sd_erase_timeout(card, arg, qty); 1891 else 1892 return mmc_mmc_erase_timeout(card, arg, qty); 1893 } 1894 1895 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1896 unsigned int to, unsigned int arg) 1897 { 1898 struct mmc_command cmd = {0}; 1899 unsigned int qty = 0; 1900 unsigned long timeout; 1901 int err; 1902 1903 /* 1904 * qty is used to calculate the erase timeout which depends on how many 1905 * erase groups (or allocation units in SD terminology) are affected. 1906 * We count erasing part of an erase group as one erase group. 1907 * For SD, the allocation units are always a power of 2. For MMC, the 1908 * erase group size is almost certainly also power of 2, but it does not 1909 * seem to insist on that in the JEDEC standard, so we fall back to 1910 * division in that case. SD may not specify an allocation unit size, 1911 * in which case the timeout is based on the number of write blocks. 1912 * 1913 * Note that the timeout for secure trim 2 will only be correct if the 1914 * number of erase groups specified is the same as the total of all 1915 * preceding secure trim 1 commands. Since the power may have been 1916 * lost since the secure trim 1 commands occurred, it is generally 1917 * impossible to calculate the secure trim 2 timeout correctly. 1918 */ 1919 if (card->erase_shift) 1920 qty += ((to >> card->erase_shift) - 1921 (from >> card->erase_shift)) + 1; 1922 else if (mmc_card_sd(card)) 1923 qty += to - from + 1; 1924 else 1925 qty += ((to / card->erase_size) - 1926 (from / card->erase_size)) + 1; 1927 1928 if (!mmc_card_blockaddr(card)) { 1929 from <<= 9; 1930 to <<= 9; 1931 } 1932 1933 if (mmc_card_sd(card)) 1934 cmd.opcode = SD_ERASE_WR_BLK_START; 1935 else 1936 cmd.opcode = MMC_ERASE_GROUP_START; 1937 cmd.arg = from; 1938 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1939 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1940 if (err) { 1941 pr_err("mmc_erase: group start error %d, " 1942 "status %#x\n", err, cmd.resp[0]); 1943 err = -EIO; 1944 goto out; 1945 } 1946 1947 memset(&cmd, 0, sizeof(struct mmc_command)); 1948 if (mmc_card_sd(card)) 1949 cmd.opcode = SD_ERASE_WR_BLK_END; 1950 else 1951 cmd.opcode = MMC_ERASE_GROUP_END; 1952 cmd.arg = to; 1953 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1954 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1955 if (err) { 1956 pr_err("mmc_erase: group end error %d, status %#x\n", 1957 err, cmd.resp[0]); 1958 err = -EIO; 1959 goto out; 1960 } 1961 1962 memset(&cmd, 0, sizeof(struct mmc_command)); 1963 cmd.opcode = MMC_ERASE; 1964 cmd.arg = arg; 1965 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1966 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); 1967 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1968 if (err) { 1969 pr_err("mmc_erase: erase error %d, status %#x\n", 1970 err, cmd.resp[0]); 1971 err = -EIO; 1972 goto out; 1973 } 1974 1975 if (mmc_host_is_spi(card->host)) 1976 goto out; 1977 1978 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 1979 do { 1980 memset(&cmd, 0, sizeof(struct mmc_command)); 1981 cmd.opcode = MMC_SEND_STATUS; 1982 cmd.arg = card->rca << 16; 1983 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1984 /* Do not retry else we can't see errors */ 1985 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1986 if (err || (cmd.resp[0] & 0xFDF92000)) { 1987 pr_err("error %d requesting status %#x\n", 1988 err, cmd.resp[0]); 1989 err = -EIO; 1990 goto out; 1991 } 1992 1993 /* Timeout if the device never becomes ready for data and 1994 * never leaves the program state. 1995 */ 1996 if (time_after(jiffies, timeout)) { 1997 pr_err("%s: Card stuck in programming state! %s\n", 1998 mmc_hostname(card->host), __func__); 1999 err = -EIO; 2000 goto out; 2001 } 2002 2003 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2004 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2005 out: 2006 return err; 2007 } 2008 2009 /** 2010 * mmc_erase - erase sectors. 2011 * @card: card to erase 2012 * @from: first sector to erase 2013 * @nr: number of sectors to erase 2014 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2015 * 2016 * Caller must claim host before calling this function. 2017 */ 2018 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2019 unsigned int arg) 2020 { 2021 unsigned int rem, to = from + nr; 2022 2023 if (!(card->host->caps & MMC_CAP_ERASE) || 2024 !(card->csd.cmdclass & CCC_ERASE)) 2025 return -EOPNOTSUPP; 2026 2027 if (!card->erase_size) 2028 return -EOPNOTSUPP; 2029 2030 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2031 return -EOPNOTSUPP; 2032 2033 if ((arg & MMC_SECURE_ARGS) && 2034 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2035 return -EOPNOTSUPP; 2036 2037 if ((arg & MMC_TRIM_ARGS) && 2038 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2039 return -EOPNOTSUPP; 2040 2041 if (arg == MMC_SECURE_ERASE_ARG) { 2042 if (from % card->erase_size || nr % card->erase_size) 2043 return -EINVAL; 2044 } 2045 2046 if (arg == MMC_ERASE_ARG) { 2047 rem = from % card->erase_size; 2048 if (rem) { 2049 rem = card->erase_size - rem; 2050 from += rem; 2051 if (nr > rem) 2052 nr -= rem; 2053 else 2054 return 0; 2055 } 2056 rem = nr % card->erase_size; 2057 if (rem) 2058 nr -= rem; 2059 } 2060 2061 if (nr == 0) 2062 return 0; 2063 2064 to = from + nr; 2065 2066 if (to <= from) 2067 return -EINVAL; 2068 2069 /* 'from' and 'to' are inclusive */ 2070 to -= 1; 2071 2072 return mmc_do_erase(card, from, to, arg); 2073 } 2074 EXPORT_SYMBOL(mmc_erase); 2075 2076 int mmc_can_erase(struct mmc_card *card) 2077 { 2078 if ((card->host->caps & MMC_CAP_ERASE) && 2079 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2080 return 1; 2081 return 0; 2082 } 2083 EXPORT_SYMBOL(mmc_can_erase); 2084 2085 int mmc_can_trim(struct mmc_card *card) 2086 { 2087 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 2088 return 1; 2089 return 0; 2090 } 2091 EXPORT_SYMBOL(mmc_can_trim); 2092 2093 int mmc_can_discard(struct mmc_card *card) 2094 { 2095 /* 2096 * As there's no way to detect the discard support bit at v4.5 2097 * use the s/w feature support filed. 2098 */ 2099 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2100 return 1; 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(mmc_can_discard); 2104 2105 int mmc_can_sanitize(struct mmc_card *card) 2106 { 2107 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2108 return 0; 2109 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2110 return 1; 2111 return 0; 2112 } 2113 EXPORT_SYMBOL(mmc_can_sanitize); 2114 2115 int mmc_can_secure_erase_trim(struct mmc_card *card) 2116 { 2117 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2118 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2119 return 1; 2120 return 0; 2121 } 2122 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2123 2124 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2125 unsigned int nr) 2126 { 2127 if (!card->erase_size) 2128 return 0; 2129 if (from % card->erase_size || nr % card->erase_size) 2130 return 0; 2131 return 1; 2132 } 2133 EXPORT_SYMBOL(mmc_erase_group_aligned); 2134 2135 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2136 unsigned int arg) 2137 { 2138 struct mmc_host *host = card->host; 2139 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2140 unsigned int last_timeout = 0; 2141 2142 if (card->erase_shift) 2143 max_qty = UINT_MAX >> card->erase_shift; 2144 else if (mmc_card_sd(card)) 2145 max_qty = UINT_MAX; 2146 else 2147 max_qty = UINT_MAX / card->erase_size; 2148 2149 /* Find the largest qty with an OK timeout */ 2150 do { 2151 y = 0; 2152 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2153 timeout = mmc_erase_timeout(card, arg, qty + x); 2154 if (timeout > host->max_busy_timeout) 2155 break; 2156 if (timeout < last_timeout) 2157 break; 2158 last_timeout = timeout; 2159 y = x; 2160 } 2161 qty += y; 2162 } while (y); 2163 2164 if (!qty) 2165 return 0; 2166 2167 if (qty == 1) 2168 return 1; 2169 2170 /* Convert qty to sectors */ 2171 if (card->erase_shift) 2172 max_discard = --qty << card->erase_shift; 2173 else if (mmc_card_sd(card)) 2174 max_discard = qty; 2175 else 2176 max_discard = --qty * card->erase_size; 2177 2178 return max_discard; 2179 } 2180 2181 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2182 { 2183 struct mmc_host *host = card->host; 2184 unsigned int max_discard, max_trim; 2185 2186 if (!host->max_busy_timeout) 2187 return UINT_MAX; 2188 2189 /* 2190 * Without erase_group_def set, MMC erase timeout depends on clock 2191 * frequence which can change. In that case, the best choice is 2192 * just the preferred erase size. 2193 */ 2194 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2195 return card->pref_erase; 2196 2197 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2198 if (mmc_can_trim(card)) { 2199 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2200 if (max_trim < max_discard) 2201 max_discard = max_trim; 2202 } else if (max_discard < card->erase_size) { 2203 max_discard = 0; 2204 } 2205 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2206 mmc_hostname(host), max_discard, host->max_busy_timeout); 2207 return max_discard; 2208 } 2209 EXPORT_SYMBOL(mmc_calc_max_discard); 2210 2211 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2212 { 2213 struct mmc_command cmd = {0}; 2214 2215 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card)) 2216 return 0; 2217 2218 cmd.opcode = MMC_SET_BLOCKLEN; 2219 cmd.arg = blocklen; 2220 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2221 return mmc_wait_for_cmd(card->host, &cmd, 5); 2222 } 2223 EXPORT_SYMBOL(mmc_set_blocklen); 2224 2225 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2226 bool is_rel_write) 2227 { 2228 struct mmc_command cmd = {0}; 2229 2230 cmd.opcode = MMC_SET_BLOCK_COUNT; 2231 cmd.arg = blockcount & 0x0000FFFF; 2232 if (is_rel_write) 2233 cmd.arg |= 1 << 31; 2234 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2235 return mmc_wait_for_cmd(card->host, &cmd, 5); 2236 } 2237 EXPORT_SYMBOL(mmc_set_blockcount); 2238 2239 static void mmc_hw_reset_for_init(struct mmc_host *host) 2240 { 2241 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2242 return; 2243 mmc_host_clk_hold(host); 2244 host->ops->hw_reset(host); 2245 mmc_host_clk_release(host); 2246 } 2247 2248 int mmc_can_reset(struct mmc_card *card) 2249 { 2250 u8 rst_n_function; 2251 2252 if (!mmc_card_mmc(card)) 2253 return 0; 2254 rst_n_function = card->ext_csd.rst_n_function; 2255 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2256 return 0; 2257 return 1; 2258 } 2259 EXPORT_SYMBOL(mmc_can_reset); 2260 2261 static int mmc_do_hw_reset(struct mmc_host *host, int check) 2262 { 2263 struct mmc_card *card = host->card; 2264 2265 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2266 return -EOPNOTSUPP; 2267 2268 if (!card) 2269 return -EINVAL; 2270 2271 if (!mmc_can_reset(card)) 2272 return -EOPNOTSUPP; 2273 2274 mmc_host_clk_hold(host); 2275 mmc_set_clock(host, host->f_init); 2276 2277 host->ops->hw_reset(host); 2278 2279 /* If the reset has happened, then a status command will fail */ 2280 if (check) { 2281 u32 status; 2282 2283 if (!mmc_send_status(card, &status)) { 2284 mmc_host_clk_release(host); 2285 return -ENOSYS; 2286 } 2287 } 2288 2289 /* Set initial state and call mmc_set_ios */ 2290 mmc_set_initial_state(host); 2291 2292 mmc_host_clk_release(host); 2293 2294 return host->bus_ops->power_restore(host); 2295 } 2296 2297 int mmc_hw_reset(struct mmc_host *host) 2298 { 2299 return mmc_do_hw_reset(host, 0); 2300 } 2301 EXPORT_SYMBOL(mmc_hw_reset); 2302 2303 int mmc_hw_reset_check(struct mmc_host *host) 2304 { 2305 return mmc_do_hw_reset(host, 1); 2306 } 2307 EXPORT_SYMBOL(mmc_hw_reset_check); 2308 2309 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2310 { 2311 host->f_init = freq; 2312 2313 #ifdef CONFIG_MMC_DEBUG 2314 pr_info("%s: %s: trying to init card at %u Hz\n", 2315 mmc_hostname(host), __func__, host->f_init); 2316 #endif 2317 mmc_power_up(host, host->ocr_avail); 2318 2319 /* 2320 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2321 * do a hardware reset if possible. 2322 */ 2323 mmc_hw_reset_for_init(host); 2324 2325 /* 2326 * sdio_reset sends CMD52 to reset card. Since we do not know 2327 * if the card is being re-initialized, just send it. CMD52 2328 * should be ignored by SD/eMMC cards. 2329 */ 2330 sdio_reset(host); 2331 mmc_go_idle(host); 2332 2333 mmc_send_if_cond(host, host->ocr_avail); 2334 2335 /* Order's important: probe SDIO, then SD, then MMC */ 2336 if (!mmc_attach_sdio(host)) 2337 return 0; 2338 if (!mmc_attach_sd(host)) 2339 return 0; 2340 if (!mmc_attach_mmc(host)) 2341 return 0; 2342 2343 mmc_power_off(host); 2344 return -EIO; 2345 } 2346 2347 int _mmc_detect_card_removed(struct mmc_host *host) 2348 { 2349 int ret; 2350 2351 if (host->caps & MMC_CAP_NONREMOVABLE) 2352 return 0; 2353 2354 if (!host->card || mmc_card_removed(host->card)) 2355 return 1; 2356 2357 ret = host->bus_ops->alive(host); 2358 2359 /* 2360 * Card detect status and alive check may be out of sync if card is 2361 * removed slowly, when card detect switch changes while card/slot 2362 * pads are still contacted in hardware (refer to "SD Card Mechanical 2363 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2364 * detect work 200ms later for this case. 2365 */ 2366 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2367 mmc_detect_change(host, msecs_to_jiffies(200)); 2368 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2369 } 2370 2371 if (ret) { 2372 mmc_card_set_removed(host->card); 2373 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2374 } 2375 2376 return ret; 2377 } 2378 2379 int mmc_detect_card_removed(struct mmc_host *host) 2380 { 2381 struct mmc_card *card = host->card; 2382 int ret; 2383 2384 WARN_ON(!host->claimed); 2385 2386 if (!card) 2387 return 1; 2388 2389 ret = mmc_card_removed(card); 2390 /* 2391 * The card will be considered unchanged unless we have been asked to 2392 * detect a change or host requires polling to provide card detection. 2393 */ 2394 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2395 return ret; 2396 2397 host->detect_change = 0; 2398 if (!ret) { 2399 ret = _mmc_detect_card_removed(host); 2400 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2401 /* 2402 * Schedule a detect work as soon as possible to let a 2403 * rescan handle the card removal. 2404 */ 2405 cancel_delayed_work(&host->detect); 2406 _mmc_detect_change(host, 0, false); 2407 } 2408 } 2409 2410 return ret; 2411 } 2412 EXPORT_SYMBOL(mmc_detect_card_removed); 2413 2414 void mmc_rescan(struct work_struct *work) 2415 { 2416 struct mmc_host *host = 2417 container_of(work, struct mmc_host, detect.work); 2418 int i; 2419 2420 if (host->trigger_card_event && host->ops->card_event) { 2421 host->ops->card_event(host); 2422 host->trigger_card_event = false; 2423 } 2424 2425 if (host->rescan_disable) 2426 return; 2427 2428 /* If there is a non-removable card registered, only scan once */ 2429 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2430 return; 2431 host->rescan_entered = 1; 2432 2433 mmc_bus_get(host); 2434 2435 /* 2436 * if there is a _removable_ card registered, check whether it is 2437 * still present 2438 */ 2439 if (host->bus_ops && !host->bus_dead 2440 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2441 host->bus_ops->detect(host); 2442 2443 host->detect_change = 0; 2444 2445 /* 2446 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2447 * the card is no longer present. 2448 */ 2449 mmc_bus_put(host); 2450 mmc_bus_get(host); 2451 2452 /* if there still is a card present, stop here */ 2453 if (host->bus_ops != NULL) { 2454 mmc_bus_put(host); 2455 goto out; 2456 } 2457 2458 /* 2459 * Only we can add a new handler, so it's safe to 2460 * release the lock here. 2461 */ 2462 mmc_bus_put(host); 2463 2464 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd && 2465 host->ops->get_cd(host) == 0) { 2466 mmc_claim_host(host); 2467 mmc_power_off(host); 2468 mmc_release_host(host); 2469 goto out; 2470 } 2471 2472 mmc_claim_host(host); 2473 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2474 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2475 break; 2476 if (freqs[i] <= host->f_min) 2477 break; 2478 } 2479 mmc_release_host(host); 2480 2481 out: 2482 if (host->caps & MMC_CAP_NEEDS_POLL) 2483 mmc_schedule_delayed_work(&host->detect, HZ); 2484 } 2485 2486 void mmc_start_host(struct mmc_host *host) 2487 { 2488 host->f_init = max(freqs[0], host->f_min); 2489 host->rescan_disable = 0; 2490 host->ios.power_mode = MMC_POWER_UNDEFINED; 2491 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2492 mmc_power_off(host); 2493 else 2494 mmc_power_up(host, host->ocr_avail); 2495 mmc_gpiod_request_cd_irq(host); 2496 _mmc_detect_change(host, 0, false); 2497 } 2498 2499 void mmc_stop_host(struct mmc_host *host) 2500 { 2501 #ifdef CONFIG_MMC_DEBUG 2502 unsigned long flags; 2503 spin_lock_irqsave(&host->lock, flags); 2504 host->removed = 1; 2505 spin_unlock_irqrestore(&host->lock, flags); 2506 #endif 2507 if (host->slot.cd_irq >= 0) 2508 disable_irq(host->slot.cd_irq); 2509 2510 host->rescan_disable = 1; 2511 cancel_delayed_work_sync(&host->detect); 2512 mmc_flush_scheduled_work(); 2513 2514 /* clear pm flags now and let card drivers set them as needed */ 2515 host->pm_flags = 0; 2516 2517 mmc_bus_get(host); 2518 if (host->bus_ops && !host->bus_dead) { 2519 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2520 host->bus_ops->remove(host); 2521 mmc_claim_host(host); 2522 mmc_detach_bus(host); 2523 mmc_power_off(host); 2524 mmc_release_host(host); 2525 mmc_bus_put(host); 2526 return; 2527 } 2528 mmc_bus_put(host); 2529 2530 BUG_ON(host->card); 2531 2532 mmc_power_off(host); 2533 } 2534 2535 int mmc_power_save_host(struct mmc_host *host) 2536 { 2537 int ret = 0; 2538 2539 #ifdef CONFIG_MMC_DEBUG 2540 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2541 #endif 2542 2543 mmc_bus_get(host); 2544 2545 if (!host->bus_ops || host->bus_dead) { 2546 mmc_bus_put(host); 2547 return -EINVAL; 2548 } 2549 2550 if (host->bus_ops->power_save) 2551 ret = host->bus_ops->power_save(host); 2552 2553 mmc_bus_put(host); 2554 2555 mmc_power_off(host); 2556 2557 return ret; 2558 } 2559 EXPORT_SYMBOL(mmc_power_save_host); 2560 2561 int mmc_power_restore_host(struct mmc_host *host) 2562 { 2563 int ret; 2564 2565 #ifdef CONFIG_MMC_DEBUG 2566 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2567 #endif 2568 2569 mmc_bus_get(host); 2570 2571 if (!host->bus_ops || host->bus_dead) { 2572 mmc_bus_put(host); 2573 return -EINVAL; 2574 } 2575 2576 mmc_power_up(host, host->card->ocr); 2577 ret = host->bus_ops->power_restore(host); 2578 2579 mmc_bus_put(host); 2580 2581 return ret; 2582 } 2583 EXPORT_SYMBOL(mmc_power_restore_host); 2584 2585 /* 2586 * Flush the cache to the non-volatile storage. 2587 */ 2588 int mmc_flush_cache(struct mmc_card *card) 2589 { 2590 int err = 0; 2591 2592 if (mmc_card_mmc(card) && 2593 (card->ext_csd.cache_size > 0) && 2594 (card->ext_csd.cache_ctrl & 1)) { 2595 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2596 EXT_CSD_FLUSH_CACHE, 1, 0); 2597 if (err) 2598 pr_err("%s: cache flush error %d\n", 2599 mmc_hostname(card->host), err); 2600 } 2601 2602 return err; 2603 } 2604 EXPORT_SYMBOL(mmc_flush_cache); 2605 2606 #ifdef CONFIG_PM 2607 2608 /* Do the card removal on suspend if card is assumed removeable 2609 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2610 to sync the card. 2611 */ 2612 int mmc_pm_notify(struct notifier_block *notify_block, 2613 unsigned long mode, void *unused) 2614 { 2615 struct mmc_host *host = container_of( 2616 notify_block, struct mmc_host, pm_notify); 2617 unsigned long flags; 2618 int err = 0; 2619 2620 switch (mode) { 2621 case PM_HIBERNATION_PREPARE: 2622 case PM_SUSPEND_PREPARE: 2623 spin_lock_irqsave(&host->lock, flags); 2624 host->rescan_disable = 1; 2625 spin_unlock_irqrestore(&host->lock, flags); 2626 cancel_delayed_work_sync(&host->detect); 2627 2628 if (!host->bus_ops) 2629 break; 2630 2631 /* Validate prerequisites for suspend */ 2632 if (host->bus_ops->pre_suspend) 2633 err = host->bus_ops->pre_suspend(host); 2634 if (!err) 2635 break; 2636 2637 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2638 host->bus_ops->remove(host); 2639 mmc_claim_host(host); 2640 mmc_detach_bus(host); 2641 mmc_power_off(host); 2642 mmc_release_host(host); 2643 host->pm_flags = 0; 2644 break; 2645 2646 case PM_POST_SUSPEND: 2647 case PM_POST_HIBERNATION: 2648 case PM_POST_RESTORE: 2649 2650 spin_lock_irqsave(&host->lock, flags); 2651 host->rescan_disable = 0; 2652 spin_unlock_irqrestore(&host->lock, flags); 2653 _mmc_detect_change(host, 0, false); 2654 2655 } 2656 2657 return 0; 2658 } 2659 #endif 2660 2661 /** 2662 * mmc_init_context_info() - init synchronization context 2663 * @host: mmc host 2664 * 2665 * Init struct context_info needed to implement asynchronous 2666 * request mechanism, used by mmc core, host driver and mmc requests 2667 * supplier. 2668 */ 2669 void mmc_init_context_info(struct mmc_host *host) 2670 { 2671 spin_lock_init(&host->context_info.lock); 2672 host->context_info.is_new_req = false; 2673 host->context_info.is_done_rcv = false; 2674 host->context_info.is_waiting_last_req = false; 2675 init_waitqueue_head(&host->context_info.wait); 2676 } 2677 2678 static int __init mmc_init(void) 2679 { 2680 int ret; 2681 2682 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2683 if (!workqueue) 2684 return -ENOMEM; 2685 2686 ret = mmc_register_bus(); 2687 if (ret) 2688 goto destroy_workqueue; 2689 2690 ret = mmc_register_host_class(); 2691 if (ret) 2692 goto unregister_bus; 2693 2694 ret = sdio_register_bus(); 2695 if (ret) 2696 goto unregister_host_class; 2697 2698 return 0; 2699 2700 unregister_host_class: 2701 mmc_unregister_host_class(); 2702 unregister_bus: 2703 mmc_unregister_bus(); 2704 destroy_workqueue: 2705 destroy_workqueue(workqueue); 2706 2707 return ret; 2708 } 2709 2710 static void __exit mmc_exit(void) 2711 { 2712 sdio_unregister_bus(); 2713 mmc_unregister_host_class(); 2714 mmc_unregister_bus(); 2715 destroy_workqueue(workqueue); 2716 } 2717 2718 subsys_initcall(mmc_init); 2719 module_exit(mmc_exit); 2720 2721 MODULE_LICENSE("GPL"); 2722