1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "bus.h" 44 #include "host.h" 45 #include "sdio_bus.h" 46 #include "pwrseq.h" 47 48 #include "mmc_ops.h" 49 #include "sd_ops.h" 50 #include "sdio_ops.h" 51 52 /* If the device is not responding */ 53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 54 55 /* 56 * Background operations can take a long time, depending on the housekeeping 57 * operations the card has to perform. 58 */ 59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 60 61 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 62 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 63 64 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 65 66 /* 67 * Enabling software CRCs on the data blocks can be a significant (30%) 68 * performance cost, and for other reasons may not always be desired. 69 * So we allow it it to be disabled. 70 */ 71 bool use_spi_crc = 1; 72 module_param(use_spi_crc, bool, 0); 73 74 static int mmc_schedule_delayed_work(struct delayed_work *work, 75 unsigned long delay) 76 { 77 /* 78 * We use the system_freezable_wq, because of two reasons. 79 * First, it allows several works (not the same work item) to be 80 * executed simultaneously. Second, the queue becomes frozen when 81 * userspace becomes frozen during system PM. 82 */ 83 return queue_delayed_work(system_freezable_wq, work, delay); 84 } 85 86 #ifdef CONFIG_FAIL_MMC_REQUEST 87 88 /* 89 * Internal function. Inject random data errors. 90 * If mmc_data is NULL no errors are injected. 91 */ 92 static void mmc_should_fail_request(struct mmc_host *host, 93 struct mmc_request *mrq) 94 { 95 struct mmc_command *cmd = mrq->cmd; 96 struct mmc_data *data = mrq->data; 97 static const int data_errors[] = { 98 -ETIMEDOUT, 99 -EILSEQ, 100 -EIO, 101 }; 102 103 if (!data) 104 return; 105 106 if (cmd->error || data->error || 107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 108 return; 109 110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 112 } 113 114 #else /* CONFIG_FAIL_MMC_REQUEST */ 115 116 static inline void mmc_should_fail_request(struct mmc_host *host, 117 struct mmc_request *mrq) 118 { 119 } 120 121 #endif /* CONFIG_FAIL_MMC_REQUEST */ 122 123 static inline void mmc_complete_cmd(struct mmc_request *mrq) 124 { 125 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 126 complete_all(&mrq->cmd_completion); 127 } 128 129 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 130 { 131 if (!mrq->cap_cmd_during_tfr) 132 return; 133 134 mmc_complete_cmd(mrq); 135 136 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 137 mmc_hostname(host), mrq->cmd->opcode); 138 } 139 EXPORT_SYMBOL(mmc_command_done); 140 141 /** 142 * mmc_request_done - finish processing an MMC request 143 * @host: MMC host which completed request 144 * @mrq: MMC request which request 145 * 146 * MMC drivers should call this function when they have completed 147 * their processing of a request. 148 */ 149 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 150 { 151 struct mmc_command *cmd = mrq->cmd; 152 int err = cmd->error; 153 154 /* Flag re-tuning needed on CRC errors */ 155 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 156 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 157 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 158 (mrq->data && mrq->data->error == -EILSEQ) || 159 (mrq->stop && mrq->stop->error == -EILSEQ))) 160 mmc_retune_needed(host); 161 162 if (err && cmd->retries && mmc_host_is_spi(host)) { 163 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 164 cmd->retries = 0; 165 } 166 167 if (host->ongoing_mrq == mrq) 168 host->ongoing_mrq = NULL; 169 170 mmc_complete_cmd(mrq); 171 172 trace_mmc_request_done(host, mrq); 173 174 if (err && cmd->retries && !mmc_card_removed(host->card)) { 175 /* 176 * Request starter must handle retries - see 177 * mmc_wait_for_req_done(). 178 */ 179 if (mrq->done) 180 mrq->done(mrq); 181 } else { 182 mmc_should_fail_request(host, mrq); 183 184 if (!host->ongoing_mrq) 185 led_trigger_event(host->led, LED_OFF); 186 187 if (mrq->sbc) { 188 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 189 mmc_hostname(host), mrq->sbc->opcode, 190 mrq->sbc->error, 191 mrq->sbc->resp[0], mrq->sbc->resp[1], 192 mrq->sbc->resp[2], mrq->sbc->resp[3]); 193 } 194 195 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 196 mmc_hostname(host), cmd->opcode, err, 197 cmd->resp[0], cmd->resp[1], 198 cmd->resp[2], cmd->resp[3]); 199 200 if (mrq->data) { 201 pr_debug("%s: %d bytes transferred: %d\n", 202 mmc_hostname(host), 203 mrq->data->bytes_xfered, mrq->data->error); 204 } 205 206 if (mrq->stop) { 207 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 208 mmc_hostname(host), mrq->stop->opcode, 209 mrq->stop->error, 210 mrq->stop->resp[0], mrq->stop->resp[1], 211 mrq->stop->resp[2], mrq->stop->resp[3]); 212 } 213 214 if (mrq->done) 215 mrq->done(mrq); 216 } 217 } 218 219 EXPORT_SYMBOL(mmc_request_done); 220 221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 222 { 223 int err; 224 225 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 226 err = mmc_retune(host); 227 if (err) { 228 mrq->cmd->error = err; 229 mmc_request_done(host, mrq); 230 return; 231 } 232 233 /* 234 * For sdio rw commands we must wait for card busy otherwise some 235 * sdio devices won't work properly. 236 */ 237 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) { 238 int tries = 500; /* Wait aprox 500ms at maximum */ 239 240 while (host->ops->card_busy(host) && --tries) 241 mmc_delay(1); 242 243 if (tries == 0) { 244 mrq->cmd->error = -EBUSY; 245 mmc_request_done(host, mrq); 246 return; 247 } 248 } 249 250 if (mrq->cap_cmd_during_tfr) { 251 host->ongoing_mrq = mrq; 252 /* 253 * Retry path could come through here without having waiting on 254 * cmd_completion, so ensure it is reinitialised. 255 */ 256 reinit_completion(&mrq->cmd_completion); 257 } 258 259 trace_mmc_request_start(host, mrq); 260 261 host->ops->request(host, mrq); 262 } 263 264 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 265 { 266 #ifdef CONFIG_MMC_DEBUG 267 unsigned int i, sz; 268 struct scatterlist *sg; 269 #endif 270 mmc_retune_hold(host); 271 272 if (mmc_card_removed(host->card)) 273 return -ENOMEDIUM; 274 275 if (mrq->sbc) { 276 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 277 mmc_hostname(host), mrq->sbc->opcode, 278 mrq->sbc->arg, mrq->sbc->flags); 279 } 280 281 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 282 mmc_hostname(host), mrq->cmd->opcode, 283 mrq->cmd->arg, mrq->cmd->flags); 284 285 if (mrq->data) { 286 pr_debug("%s: blksz %d blocks %d flags %08x " 287 "tsac %d ms nsac %d\n", 288 mmc_hostname(host), mrq->data->blksz, 289 mrq->data->blocks, mrq->data->flags, 290 mrq->data->timeout_ns / 1000000, 291 mrq->data->timeout_clks); 292 } 293 294 if (mrq->stop) { 295 pr_debug("%s: CMD%u arg %08x flags %08x\n", 296 mmc_hostname(host), mrq->stop->opcode, 297 mrq->stop->arg, mrq->stop->flags); 298 } 299 300 WARN_ON(!host->claimed); 301 302 mrq->cmd->error = 0; 303 mrq->cmd->mrq = mrq; 304 if (mrq->sbc) { 305 mrq->sbc->error = 0; 306 mrq->sbc->mrq = mrq; 307 } 308 if (mrq->data) { 309 if (mrq->data->blksz > host->max_blk_size || 310 mrq->data->blocks > host->max_blk_count || 311 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 312 return -EINVAL; 313 #ifdef CONFIG_MMC_DEBUG 314 sz = 0; 315 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 316 sz += sg->length; 317 if (sz != mrq->data->blocks * mrq->data->blksz) 318 return -EINVAL; 319 #endif 320 321 mrq->cmd->data = mrq->data; 322 mrq->data->error = 0; 323 mrq->data->mrq = mrq; 324 if (mrq->stop) { 325 mrq->data->stop = mrq->stop; 326 mrq->stop->error = 0; 327 mrq->stop->mrq = mrq; 328 } 329 } 330 led_trigger_event(host->led, LED_FULL); 331 __mmc_start_request(host, mrq); 332 333 return 0; 334 } 335 336 /** 337 * mmc_start_bkops - start BKOPS for supported cards 338 * @card: MMC card to start BKOPS 339 * @form_exception: A flag to indicate if this function was 340 * called due to an exception raised by the card 341 * 342 * Start background operations whenever requested. 343 * When the urgent BKOPS bit is set in a R1 command response 344 * then background operations should be started immediately. 345 */ 346 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 347 { 348 int err; 349 int timeout; 350 bool use_busy_signal; 351 352 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 353 return; 354 355 err = mmc_read_bkops_status(card); 356 if (err) { 357 pr_err("%s: Failed to read bkops status: %d\n", 358 mmc_hostname(card->host), err); 359 return; 360 } 361 362 if (!card->ext_csd.raw_bkops_status) 363 return; 364 365 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 366 from_exception) 367 return; 368 369 mmc_claim_host(card->host); 370 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 371 timeout = MMC_BKOPS_MAX_TIMEOUT; 372 use_busy_signal = true; 373 } else { 374 timeout = 0; 375 use_busy_signal = false; 376 } 377 378 mmc_retune_hold(card->host); 379 380 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 381 EXT_CSD_BKOPS_START, 1, timeout, 0, 382 use_busy_signal, true, false); 383 if (err) { 384 pr_warn("%s: Error %d starting bkops\n", 385 mmc_hostname(card->host), err); 386 mmc_retune_release(card->host); 387 goto out; 388 } 389 390 /* 391 * For urgent bkops status (LEVEL_2 and more) 392 * bkops executed synchronously, otherwise 393 * the operation is in progress 394 */ 395 if (!use_busy_signal) 396 mmc_card_set_doing_bkops(card); 397 else 398 mmc_retune_release(card->host); 399 out: 400 mmc_release_host(card->host); 401 } 402 EXPORT_SYMBOL(mmc_start_bkops); 403 404 /* 405 * mmc_wait_data_done() - done callback for data request 406 * @mrq: done data request 407 * 408 * Wakes up mmc context, passed as a callback to host controller driver 409 */ 410 static void mmc_wait_data_done(struct mmc_request *mrq) 411 { 412 struct mmc_context_info *context_info = &mrq->host->context_info; 413 414 context_info->is_done_rcv = true; 415 wake_up_interruptible(&context_info->wait); 416 } 417 418 static void mmc_wait_done(struct mmc_request *mrq) 419 { 420 complete(&mrq->completion); 421 } 422 423 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 424 { 425 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 426 427 /* 428 * If there is an ongoing transfer, wait for the command line to become 429 * available. 430 */ 431 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 432 wait_for_completion(&ongoing_mrq->cmd_completion); 433 } 434 435 /* 436 *__mmc_start_data_req() - starts data request 437 * @host: MMC host to start the request 438 * @mrq: data request to start 439 * 440 * Sets the done callback to be called when request is completed by the card. 441 * Starts data mmc request execution 442 * If an ongoing transfer is already in progress, wait for the command line 443 * to become available before sending another command. 444 */ 445 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 446 { 447 int err; 448 449 mmc_wait_ongoing_tfr_cmd(host); 450 451 mrq->done = mmc_wait_data_done; 452 mrq->host = host; 453 454 init_completion(&mrq->cmd_completion); 455 456 err = mmc_start_request(host, mrq); 457 if (err) { 458 mrq->cmd->error = err; 459 mmc_complete_cmd(mrq); 460 mmc_wait_data_done(mrq); 461 } 462 463 return err; 464 } 465 466 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 467 { 468 int err; 469 470 mmc_wait_ongoing_tfr_cmd(host); 471 472 init_completion(&mrq->completion); 473 mrq->done = mmc_wait_done; 474 475 init_completion(&mrq->cmd_completion); 476 477 err = mmc_start_request(host, mrq); 478 if (err) { 479 mrq->cmd->error = err; 480 mmc_complete_cmd(mrq); 481 complete(&mrq->completion); 482 } 483 484 return err; 485 } 486 487 /* 488 * mmc_wait_for_data_req_done() - wait for request completed 489 * @host: MMC host to prepare the command. 490 * @mrq: MMC request to wait for 491 * 492 * Blocks MMC context till host controller will ack end of data request 493 * execution or new request notification arrives from the block layer. 494 * Handles command retries. 495 * 496 * Returns enum mmc_blk_status after checking errors. 497 */ 498 static enum mmc_blk_status mmc_wait_for_data_req_done(struct mmc_host *host, 499 struct mmc_request *mrq, 500 struct mmc_async_req *next_req) 501 { 502 struct mmc_command *cmd; 503 struct mmc_context_info *context_info = &host->context_info; 504 enum mmc_blk_status status; 505 506 while (1) { 507 wait_event_interruptible(context_info->wait, 508 (context_info->is_done_rcv || 509 context_info->is_new_req)); 510 context_info->is_waiting_last_req = false; 511 if (context_info->is_done_rcv) { 512 context_info->is_done_rcv = false; 513 cmd = mrq->cmd; 514 515 if (!cmd->error || !cmd->retries || 516 mmc_card_removed(host->card)) { 517 status = host->areq->err_check(host->card, 518 host->areq); 519 break; /* return status */ 520 } else { 521 mmc_retune_recheck(host); 522 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 523 mmc_hostname(host), 524 cmd->opcode, cmd->error); 525 cmd->retries--; 526 cmd->error = 0; 527 __mmc_start_request(host, mrq); 528 continue; /* wait for done/new event again */ 529 } 530 } else if (context_info->is_new_req) { 531 if (!next_req) 532 return MMC_BLK_NEW_REQUEST; 533 } 534 } 535 mmc_retune_release(host); 536 return status; 537 } 538 539 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 540 { 541 struct mmc_command *cmd; 542 543 while (1) { 544 wait_for_completion(&mrq->completion); 545 546 cmd = mrq->cmd; 547 548 /* 549 * If host has timed out waiting for the sanitize 550 * to complete, card might be still in programming state 551 * so let's try to bring the card out of programming 552 * state. 553 */ 554 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 555 if (!mmc_interrupt_hpi(host->card)) { 556 pr_warn("%s: %s: Interrupted sanitize\n", 557 mmc_hostname(host), __func__); 558 cmd->error = 0; 559 break; 560 } else { 561 pr_err("%s: %s: Failed to interrupt sanitize\n", 562 mmc_hostname(host), __func__); 563 } 564 } 565 if (!cmd->error || !cmd->retries || 566 mmc_card_removed(host->card)) 567 break; 568 569 mmc_retune_recheck(host); 570 571 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 572 mmc_hostname(host), cmd->opcode, cmd->error); 573 cmd->retries--; 574 cmd->error = 0; 575 __mmc_start_request(host, mrq); 576 } 577 578 mmc_retune_release(host); 579 } 580 EXPORT_SYMBOL(mmc_wait_for_req_done); 581 582 /** 583 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 584 * @host: MMC host 585 * @mrq: MMC request 586 * 587 * mmc_is_req_done() is used with requests that have 588 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 589 * starting a request and before waiting for it to complete. That is, 590 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 591 * and before mmc_wait_for_req_done(). If it is called at other times the 592 * result is not meaningful. 593 */ 594 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 595 { 596 if (host->areq) 597 return host->context_info.is_done_rcv; 598 else 599 return completion_done(&mrq->completion); 600 } 601 EXPORT_SYMBOL(mmc_is_req_done); 602 603 /** 604 * mmc_pre_req - Prepare for a new request 605 * @host: MMC host to prepare command 606 * @mrq: MMC request to prepare for 607 * 608 * mmc_pre_req() is called in prior to mmc_start_req() to let 609 * host prepare for the new request. Preparation of a request may be 610 * performed while another request is running on the host. 611 */ 612 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq) 613 { 614 if (host->ops->pre_req) 615 host->ops->pre_req(host, mrq); 616 } 617 618 /** 619 * mmc_post_req - Post process a completed request 620 * @host: MMC host to post process command 621 * @mrq: MMC request to post process for 622 * @err: Error, if non zero, clean up any resources made in pre_req 623 * 624 * Let the host post process a completed request. Post processing of 625 * a request may be performed while another reuqest is running. 626 */ 627 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 628 int err) 629 { 630 if (host->ops->post_req) 631 host->ops->post_req(host, mrq, err); 632 } 633 634 /** 635 * mmc_start_req - start a non-blocking request 636 * @host: MMC host to start command 637 * @areq: async request to start 638 * @error: out parameter returns 0 for success, otherwise non zero 639 * 640 * Start a new MMC custom command request for a host. 641 * If there is on ongoing async request wait for completion 642 * of that request and start the new one and return. 643 * Does not wait for the new request to complete. 644 * 645 * Returns the completed request, NULL in case of none completed. 646 * Wait for the an ongoing request (previoulsy started) to complete and 647 * return the completed request. If there is no ongoing request, NULL 648 * is returned without waiting. NULL is not an error condition. 649 */ 650 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 651 struct mmc_async_req *areq, 652 enum mmc_blk_status *ret_stat) 653 { 654 enum mmc_blk_status status = MMC_BLK_SUCCESS; 655 int start_err = 0; 656 struct mmc_async_req *data = host->areq; 657 658 /* Prepare a new request */ 659 if (areq) 660 mmc_pre_req(host, areq->mrq); 661 662 if (host->areq) { 663 status = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 664 if (status == MMC_BLK_NEW_REQUEST) { 665 if (ret_stat) 666 *ret_stat = status; 667 /* 668 * The previous request was not completed, 669 * nothing to return 670 */ 671 return NULL; 672 } 673 /* 674 * Check BKOPS urgency for each R1 response 675 */ 676 if (host->card && mmc_card_mmc(host->card) && 677 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 678 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 679 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 680 681 /* Cancel the prepared request */ 682 if (areq) 683 mmc_post_req(host, areq->mrq, -EINVAL); 684 685 mmc_start_bkops(host->card, true); 686 687 /* prepare the request again */ 688 if (areq) 689 mmc_pre_req(host, areq->mrq); 690 } 691 } 692 693 if (status == MMC_BLK_SUCCESS && areq) 694 start_err = __mmc_start_data_req(host, areq->mrq); 695 696 if (host->areq) 697 mmc_post_req(host, host->areq->mrq, 0); 698 699 /* Cancel a prepared request if it was not started. */ 700 if ((status != MMC_BLK_SUCCESS || start_err) && areq) 701 mmc_post_req(host, areq->mrq, -EINVAL); 702 703 if (status != MMC_BLK_SUCCESS) 704 host->areq = NULL; 705 else 706 host->areq = areq; 707 708 if (ret_stat) 709 *ret_stat = status; 710 return data; 711 } 712 EXPORT_SYMBOL(mmc_start_req); 713 714 /** 715 * mmc_wait_for_req - start a request and wait for completion 716 * @host: MMC host to start command 717 * @mrq: MMC request to start 718 * 719 * Start a new MMC custom command request for a host, and wait 720 * for the command to complete. In the case of 'cap_cmd_during_tfr' 721 * requests, the transfer is ongoing and the caller can issue further 722 * commands that do not use the data lines, and then wait by calling 723 * mmc_wait_for_req_done(). 724 * Does not attempt to parse the response. 725 */ 726 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 727 { 728 __mmc_start_req(host, mrq); 729 730 if (!mrq->cap_cmd_during_tfr) 731 mmc_wait_for_req_done(host, mrq); 732 } 733 EXPORT_SYMBOL(mmc_wait_for_req); 734 735 /** 736 * mmc_interrupt_hpi - Issue for High priority Interrupt 737 * @card: the MMC card associated with the HPI transfer 738 * 739 * Issued High Priority Interrupt, and check for card status 740 * until out-of prg-state. 741 */ 742 int mmc_interrupt_hpi(struct mmc_card *card) 743 { 744 int err; 745 u32 status; 746 unsigned long prg_wait; 747 748 if (!card->ext_csd.hpi_en) { 749 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 750 return 1; 751 } 752 753 mmc_claim_host(card->host); 754 err = mmc_send_status(card, &status); 755 if (err) { 756 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 757 goto out; 758 } 759 760 switch (R1_CURRENT_STATE(status)) { 761 case R1_STATE_IDLE: 762 case R1_STATE_READY: 763 case R1_STATE_STBY: 764 case R1_STATE_TRAN: 765 /* 766 * In idle and transfer states, HPI is not needed and the caller 767 * can issue the next intended command immediately 768 */ 769 goto out; 770 case R1_STATE_PRG: 771 break; 772 default: 773 /* In all other states, it's illegal to issue HPI */ 774 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 775 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 776 err = -EINVAL; 777 goto out; 778 } 779 780 err = mmc_send_hpi_cmd(card, &status); 781 if (err) 782 goto out; 783 784 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 785 do { 786 err = mmc_send_status(card, &status); 787 788 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 789 break; 790 if (time_after(jiffies, prg_wait)) 791 err = -ETIMEDOUT; 792 } while (!err); 793 794 out: 795 mmc_release_host(card->host); 796 return err; 797 } 798 EXPORT_SYMBOL(mmc_interrupt_hpi); 799 800 /** 801 * mmc_wait_for_cmd - start a command and wait for completion 802 * @host: MMC host to start command 803 * @cmd: MMC command to start 804 * @retries: maximum number of retries 805 * 806 * Start a new MMC command for a host, and wait for the command 807 * to complete. Return any error that occurred while the command 808 * was executing. Do not attempt to parse the response. 809 */ 810 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 811 { 812 struct mmc_request mrq = {NULL}; 813 814 WARN_ON(!host->claimed); 815 816 memset(cmd->resp, 0, sizeof(cmd->resp)); 817 cmd->retries = retries; 818 819 mrq.cmd = cmd; 820 cmd->data = NULL; 821 822 mmc_wait_for_req(host, &mrq); 823 824 return cmd->error; 825 } 826 827 EXPORT_SYMBOL(mmc_wait_for_cmd); 828 829 /** 830 * mmc_stop_bkops - stop ongoing BKOPS 831 * @card: MMC card to check BKOPS 832 * 833 * Send HPI command to stop ongoing background operations to 834 * allow rapid servicing of foreground operations, e.g. read/ 835 * writes. Wait until the card comes out of the programming state 836 * to avoid errors in servicing read/write requests. 837 */ 838 int mmc_stop_bkops(struct mmc_card *card) 839 { 840 int err = 0; 841 842 err = mmc_interrupt_hpi(card); 843 844 /* 845 * If err is EINVAL, we can't issue an HPI. 846 * It should complete the BKOPS. 847 */ 848 if (!err || (err == -EINVAL)) { 849 mmc_card_clr_doing_bkops(card); 850 mmc_retune_release(card->host); 851 err = 0; 852 } 853 854 return err; 855 } 856 EXPORT_SYMBOL(mmc_stop_bkops); 857 858 int mmc_read_bkops_status(struct mmc_card *card) 859 { 860 int err; 861 u8 *ext_csd; 862 863 mmc_claim_host(card->host); 864 err = mmc_get_ext_csd(card, &ext_csd); 865 mmc_release_host(card->host); 866 if (err) 867 return err; 868 869 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 870 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 871 kfree(ext_csd); 872 return 0; 873 } 874 EXPORT_SYMBOL(mmc_read_bkops_status); 875 876 /** 877 * mmc_set_data_timeout - set the timeout for a data command 878 * @data: data phase for command 879 * @card: the MMC card associated with the data transfer 880 * 881 * Computes the data timeout parameters according to the 882 * correct algorithm given the card type. 883 */ 884 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 885 { 886 unsigned int mult; 887 888 /* 889 * SDIO cards only define an upper 1 s limit on access. 890 */ 891 if (mmc_card_sdio(card)) { 892 data->timeout_ns = 1000000000; 893 data->timeout_clks = 0; 894 return; 895 } 896 897 /* 898 * SD cards use a 100 multiplier rather than 10 899 */ 900 mult = mmc_card_sd(card) ? 100 : 10; 901 902 /* 903 * Scale up the multiplier (and therefore the timeout) by 904 * the r2w factor for writes. 905 */ 906 if (data->flags & MMC_DATA_WRITE) 907 mult <<= card->csd.r2w_factor; 908 909 data->timeout_ns = card->csd.tacc_ns * mult; 910 data->timeout_clks = card->csd.tacc_clks * mult; 911 912 /* 913 * SD cards also have an upper limit on the timeout. 914 */ 915 if (mmc_card_sd(card)) { 916 unsigned int timeout_us, limit_us; 917 918 timeout_us = data->timeout_ns / 1000; 919 if (card->host->ios.clock) 920 timeout_us += data->timeout_clks * 1000 / 921 (card->host->ios.clock / 1000); 922 923 if (data->flags & MMC_DATA_WRITE) 924 /* 925 * The MMC spec "It is strongly recommended 926 * for hosts to implement more than 500ms 927 * timeout value even if the card indicates 928 * the 250ms maximum busy length." Even the 929 * previous value of 300ms is known to be 930 * insufficient for some cards. 931 */ 932 limit_us = 3000000; 933 else 934 limit_us = 100000; 935 936 /* 937 * SDHC cards always use these fixed values. 938 */ 939 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 940 data->timeout_ns = limit_us * 1000; 941 data->timeout_clks = 0; 942 } 943 944 /* assign limit value if invalid */ 945 if (timeout_us == 0) 946 data->timeout_ns = limit_us * 1000; 947 } 948 949 /* 950 * Some cards require longer data read timeout than indicated in CSD. 951 * Address this by setting the read timeout to a "reasonably high" 952 * value. For the cards tested, 600ms has proven enough. If necessary, 953 * this value can be increased if other problematic cards require this. 954 */ 955 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 956 data->timeout_ns = 600000000; 957 data->timeout_clks = 0; 958 } 959 960 /* 961 * Some cards need very high timeouts if driven in SPI mode. 962 * The worst observed timeout was 900ms after writing a 963 * continuous stream of data until the internal logic 964 * overflowed. 965 */ 966 if (mmc_host_is_spi(card->host)) { 967 if (data->flags & MMC_DATA_WRITE) { 968 if (data->timeout_ns < 1000000000) 969 data->timeout_ns = 1000000000; /* 1s */ 970 } else { 971 if (data->timeout_ns < 100000000) 972 data->timeout_ns = 100000000; /* 100ms */ 973 } 974 } 975 } 976 EXPORT_SYMBOL(mmc_set_data_timeout); 977 978 /** 979 * mmc_align_data_size - pads a transfer size to a more optimal value 980 * @card: the MMC card associated with the data transfer 981 * @sz: original transfer size 982 * 983 * Pads the original data size with a number of extra bytes in 984 * order to avoid controller bugs and/or performance hits 985 * (e.g. some controllers revert to PIO for certain sizes). 986 * 987 * Returns the improved size, which might be unmodified. 988 * 989 * Note that this function is only relevant when issuing a 990 * single scatter gather entry. 991 */ 992 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 993 { 994 /* 995 * FIXME: We don't have a system for the controller to tell 996 * the core about its problems yet, so for now we just 32-bit 997 * align the size. 998 */ 999 sz = ((sz + 3) / 4) * 4; 1000 1001 return sz; 1002 } 1003 EXPORT_SYMBOL(mmc_align_data_size); 1004 1005 /** 1006 * __mmc_claim_host - exclusively claim a host 1007 * @host: mmc host to claim 1008 * @abort: whether or not the operation should be aborted 1009 * 1010 * Claim a host for a set of operations. If @abort is non null and 1011 * dereference a non-zero value then this will return prematurely with 1012 * that non-zero value without acquiring the lock. Returns zero 1013 * with the lock held otherwise. 1014 */ 1015 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 1016 { 1017 DECLARE_WAITQUEUE(wait, current); 1018 unsigned long flags; 1019 int stop; 1020 bool pm = false; 1021 1022 might_sleep(); 1023 1024 add_wait_queue(&host->wq, &wait); 1025 spin_lock_irqsave(&host->lock, flags); 1026 while (1) { 1027 set_current_state(TASK_UNINTERRUPTIBLE); 1028 stop = abort ? atomic_read(abort) : 0; 1029 if (stop || !host->claimed || host->claimer == current) 1030 break; 1031 spin_unlock_irqrestore(&host->lock, flags); 1032 schedule(); 1033 spin_lock_irqsave(&host->lock, flags); 1034 } 1035 set_current_state(TASK_RUNNING); 1036 if (!stop) { 1037 host->claimed = 1; 1038 host->claimer = current; 1039 host->claim_cnt += 1; 1040 if (host->claim_cnt == 1) 1041 pm = true; 1042 } else 1043 wake_up(&host->wq); 1044 spin_unlock_irqrestore(&host->lock, flags); 1045 remove_wait_queue(&host->wq, &wait); 1046 1047 if (pm) 1048 pm_runtime_get_sync(mmc_dev(host)); 1049 1050 return stop; 1051 } 1052 EXPORT_SYMBOL(__mmc_claim_host); 1053 1054 /** 1055 * mmc_release_host - release a host 1056 * @host: mmc host to release 1057 * 1058 * Release a MMC host, allowing others to claim the host 1059 * for their operations. 1060 */ 1061 void mmc_release_host(struct mmc_host *host) 1062 { 1063 unsigned long flags; 1064 1065 WARN_ON(!host->claimed); 1066 1067 spin_lock_irqsave(&host->lock, flags); 1068 if (--host->claim_cnt) { 1069 /* Release for nested claim */ 1070 spin_unlock_irqrestore(&host->lock, flags); 1071 } else { 1072 host->claimed = 0; 1073 host->claimer = NULL; 1074 spin_unlock_irqrestore(&host->lock, flags); 1075 wake_up(&host->wq); 1076 pm_runtime_mark_last_busy(mmc_dev(host)); 1077 pm_runtime_put_autosuspend(mmc_dev(host)); 1078 } 1079 } 1080 EXPORT_SYMBOL(mmc_release_host); 1081 1082 /* 1083 * This is a helper function, which fetches a runtime pm reference for the 1084 * card device and also claims the host. 1085 */ 1086 void mmc_get_card(struct mmc_card *card) 1087 { 1088 pm_runtime_get_sync(&card->dev); 1089 mmc_claim_host(card->host); 1090 } 1091 EXPORT_SYMBOL(mmc_get_card); 1092 1093 /* 1094 * This is a helper function, which releases the host and drops the runtime 1095 * pm reference for the card device. 1096 */ 1097 void mmc_put_card(struct mmc_card *card) 1098 { 1099 mmc_release_host(card->host); 1100 pm_runtime_mark_last_busy(&card->dev); 1101 pm_runtime_put_autosuspend(&card->dev); 1102 } 1103 EXPORT_SYMBOL(mmc_put_card); 1104 1105 /* 1106 * Internal function that does the actual ios call to the host driver, 1107 * optionally printing some debug output. 1108 */ 1109 static inline void mmc_set_ios(struct mmc_host *host) 1110 { 1111 struct mmc_ios *ios = &host->ios; 1112 1113 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1114 "width %u timing %u\n", 1115 mmc_hostname(host), ios->clock, ios->bus_mode, 1116 ios->power_mode, ios->chip_select, ios->vdd, 1117 1 << ios->bus_width, ios->timing); 1118 1119 host->ops->set_ios(host, ios); 1120 } 1121 1122 /* 1123 * Control chip select pin on a host. 1124 */ 1125 void mmc_set_chip_select(struct mmc_host *host, int mode) 1126 { 1127 host->ios.chip_select = mode; 1128 mmc_set_ios(host); 1129 } 1130 1131 /* 1132 * Sets the host clock to the highest possible frequency that 1133 * is below "hz". 1134 */ 1135 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1136 { 1137 WARN_ON(hz && hz < host->f_min); 1138 1139 if (hz > host->f_max) 1140 hz = host->f_max; 1141 1142 host->ios.clock = hz; 1143 mmc_set_ios(host); 1144 } 1145 1146 int mmc_execute_tuning(struct mmc_card *card) 1147 { 1148 struct mmc_host *host = card->host; 1149 u32 opcode; 1150 int err; 1151 1152 if (!host->ops->execute_tuning) 1153 return 0; 1154 1155 if (mmc_card_mmc(card)) 1156 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1157 else 1158 opcode = MMC_SEND_TUNING_BLOCK; 1159 1160 err = host->ops->execute_tuning(host, opcode); 1161 1162 if (err) 1163 pr_err("%s: tuning execution failed: %d\n", 1164 mmc_hostname(host), err); 1165 else 1166 mmc_retune_enable(host); 1167 1168 return err; 1169 } 1170 1171 /* 1172 * Change the bus mode (open drain/push-pull) of a host. 1173 */ 1174 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1175 { 1176 host->ios.bus_mode = mode; 1177 mmc_set_ios(host); 1178 } 1179 1180 /* 1181 * Change data bus width of a host. 1182 */ 1183 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1184 { 1185 host->ios.bus_width = width; 1186 mmc_set_ios(host); 1187 } 1188 1189 /* 1190 * Set initial state after a power cycle or a hw_reset. 1191 */ 1192 void mmc_set_initial_state(struct mmc_host *host) 1193 { 1194 mmc_retune_disable(host); 1195 1196 if (mmc_host_is_spi(host)) 1197 host->ios.chip_select = MMC_CS_HIGH; 1198 else 1199 host->ios.chip_select = MMC_CS_DONTCARE; 1200 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1201 host->ios.bus_width = MMC_BUS_WIDTH_1; 1202 host->ios.timing = MMC_TIMING_LEGACY; 1203 host->ios.drv_type = 0; 1204 host->ios.enhanced_strobe = false; 1205 1206 /* 1207 * Make sure we are in non-enhanced strobe mode before we 1208 * actually enable it in ext_csd. 1209 */ 1210 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1211 host->ops->hs400_enhanced_strobe) 1212 host->ops->hs400_enhanced_strobe(host, &host->ios); 1213 1214 mmc_set_ios(host); 1215 } 1216 1217 /** 1218 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1219 * @vdd: voltage (mV) 1220 * @low_bits: prefer low bits in boundary cases 1221 * 1222 * This function returns the OCR bit number according to the provided @vdd 1223 * value. If conversion is not possible a negative errno value returned. 1224 * 1225 * Depending on the @low_bits flag the function prefers low or high OCR bits 1226 * on boundary voltages. For example, 1227 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1228 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1229 * 1230 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1231 */ 1232 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1233 { 1234 const int max_bit = ilog2(MMC_VDD_35_36); 1235 int bit; 1236 1237 if (vdd < 1650 || vdd > 3600) 1238 return -EINVAL; 1239 1240 if (vdd >= 1650 && vdd <= 1950) 1241 return ilog2(MMC_VDD_165_195); 1242 1243 if (low_bits) 1244 vdd -= 1; 1245 1246 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1247 bit = (vdd - 2000) / 100 + 8; 1248 if (bit > max_bit) 1249 return max_bit; 1250 return bit; 1251 } 1252 1253 /** 1254 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1255 * @vdd_min: minimum voltage value (mV) 1256 * @vdd_max: maximum voltage value (mV) 1257 * 1258 * This function returns the OCR mask bits according to the provided @vdd_min 1259 * and @vdd_max values. If conversion is not possible the function returns 0. 1260 * 1261 * Notes wrt boundary cases: 1262 * This function sets the OCR bits for all boundary voltages, for example 1263 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1264 * MMC_VDD_34_35 mask. 1265 */ 1266 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1267 { 1268 u32 mask = 0; 1269 1270 if (vdd_max < vdd_min) 1271 return 0; 1272 1273 /* Prefer high bits for the boundary vdd_max values. */ 1274 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1275 if (vdd_max < 0) 1276 return 0; 1277 1278 /* Prefer low bits for the boundary vdd_min values. */ 1279 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1280 if (vdd_min < 0) 1281 return 0; 1282 1283 /* Fill the mask, from max bit to min bit. */ 1284 while (vdd_max >= vdd_min) 1285 mask |= 1 << vdd_max--; 1286 1287 return mask; 1288 } 1289 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1290 1291 #ifdef CONFIG_OF 1292 1293 /** 1294 * mmc_of_parse_voltage - return mask of supported voltages 1295 * @np: The device node need to be parsed. 1296 * @mask: mask of voltages available for MMC/SD/SDIO 1297 * 1298 * Parse the "voltage-ranges" DT property, returning zero if it is not 1299 * found, negative errno if the voltage-range specification is invalid, 1300 * or one if the voltage-range is specified and successfully parsed. 1301 */ 1302 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1303 { 1304 const u32 *voltage_ranges; 1305 int num_ranges, i; 1306 1307 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1308 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1309 if (!voltage_ranges) { 1310 pr_debug("%s: voltage-ranges unspecified\n", np->full_name); 1311 return 0; 1312 } 1313 if (!num_ranges) { 1314 pr_err("%s: voltage-ranges empty\n", np->full_name); 1315 return -EINVAL; 1316 } 1317 1318 for (i = 0; i < num_ranges; i++) { 1319 const int j = i * 2; 1320 u32 ocr_mask; 1321 1322 ocr_mask = mmc_vddrange_to_ocrmask( 1323 be32_to_cpu(voltage_ranges[j]), 1324 be32_to_cpu(voltage_ranges[j + 1])); 1325 if (!ocr_mask) { 1326 pr_err("%s: voltage-range #%d is invalid\n", 1327 np->full_name, i); 1328 return -EINVAL; 1329 } 1330 *mask |= ocr_mask; 1331 } 1332 1333 return 1; 1334 } 1335 EXPORT_SYMBOL(mmc_of_parse_voltage); 1336 1337 #endif /* CONFIG_OF */ 1338 1339 static int mmc_of_get_func_num(struct device_node *node) 1340 { 1341 u32 reg; 1342 int ret; 1343 1344 ret = of_property_read_u32(node, "reg", ®); 1345 if (ret < 0) 1346 return ret; 1347 1348 return reg; 1349 } 1350 1351 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1352 unsigned func_num) 1353 { 1354 struct device_node *node; 1355 1356 if (!host->parent || !host->parent->of_node) 1357 return NULL; 1358 1359 for_each_child_of_node(host->parent->of_node, node) { 1360 if (mmc_of_get_func_num(node) == func_num) 1361 return node; 1362 } 1363 1364 return NULL; 1365 } 1366 1367 #ifdef CONFIG_REGULATOR 1368 1369 /** 1370 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1371 * @vdd_bit: OCR bit number 1372 * @min_uV: minimum voltage value (mV) 1373 * @max_uV: maximum voltage value (mV) 1374 * 1375 * This function returns the voltage range according to the provided OCR 1376 * bit number. If conversion is not possible a negative errno value returned. 1377 */ 1378 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1379 { 1380 int tmp; 1381 1382 if (!vdd_bit) 1383 return -EINVAL; 1384 1385 /* 1386 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1387 * bits this regulator doesn't quite support ... don't 1388 * be too picky, most cards and regulators are OK with 1389 * a 0.1V range goof (it's a small error percentage). 1390 */ 1391 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1392 if (tmp == 0) { 1393 *min_uV = 1650 * 1000; 1394 *max_uV = 1950 * 1000; 1395 } else { 1396 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1397 *max_uV = *min_uV + 100 * 1000; 1398 } 1399 1400 return 0; 1401 } 1402 1403 /** 1404 * mmc_regulator_get_ocrmask - return mask of supported voltages 1405 * @supply: regulator to use 1406 * 1407 * This returns either a negative errno, or a mask of voltages that 1408 * can be provided to MMC/SD/SDIO devices using the specified voltage 1409 * regulator. This would normally be called before registering the 1410 * MMC host adapter. 1411 */ 1412 int mmc_regulator_get_ocrmask(struct regulator *supply) 1413 { 1414 int result = 0; 1415 int count; 1416 int i; 1417 int vdd_uV; 1418 int vdd_mV; 1419 1420 count = regulator_count_voltages(supply); 1421 if (count < 0) 1422 return count; 1423 1424 for (i = 0; i < count; i++) { 1425 vdd_uV = regulator_list_voltage(supply, i); 1426 if (vdd_uV <= 0) 1427 continue; 1428 1429 vdd_mV = vdd_uV / 1000; 1430 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1431 } 1432 1433 if (!result) { 1434 vdd_uV = regulator_get_voltage(supply); 1435 if (vdd_uV <= 0) 1436 return vdd_uV; 1437 1438 vdd_mV = vdd_uV / 1000; 1439 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1440 } 1441 1442 return result; 1443 } 1444 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1445 1446 /** 1447 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1448 * @mmc: the host to regulate 1449 * @supply: regulator to use 1450 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1451 * 1452 * Returns zero on success, else negative errno. 1453 * 1454 * MMC host drivers may use this to enable or disable a regulator using 1455 * a particular supply voltage. This would normally be called from the 1456 * set_ios() method. 1457 */ 1458 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1459 struct regulator *supply, 1460 unsigned short vdd_bit) 1461 { 1462 int result = 0; 1463 int min_uV, max_uV; 1464 1465 if (vdd_bit) { 1466 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1467 1468 result = regulator_set_voltage(supply, min_uV, max_uV); 1469 if (result == 0 && !mmc->regulator_enabled) { 1470 result = regulator_enable(supply); 1471 if (!result) 1472 mmc->regulator_enabled = true; 1473 } 1474 } else if (mmc->regulator_enabled) { 1475 result = regulator_disable(supply); 1476 if (result == 0) 1477 mmc->regulator_enabled = false; 1478 } 1479 1480 if (result) 1481 dev_err(mmc_dev(mmc), 1482 "could not set regulator OCR (%d)\n", result); 1483 return result; 1484 } 1485 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1486 1487 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1488 int min_uV, int target_uV, 1489 int max_uV) 1490 { 1491 /* 1492 * Check if supported first to avoid errors since we may try several 1493 * signal levels during power up and don't want to show errors. 1494 */ 1495 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1496 return -EINVAL; 1497 1498 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1499 max_uV); 1500 } 1501 1502 /** 1503 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1504 * 1505 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1506 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1507 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1508 * SD card spec also define VQMMC in terms of VMMC. 1509 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1510 * 1511 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1512 * requested voltage. This is definitely a good idea for UHS where there's a 1513 * separate regulator on the card that's trying to make 1.8V and it's best if 1514 * we match. 1515 * 1516 * This function is expected to be used by a controller's 1517 * start_signal_voltage_switch() function. 1518 */ 1519 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1520 { 1521 struct device *dev = mmc_dev(mmc); 1522 int ret, volt, min_uV, max_uV; 1523 1524 /* If no vqmmc supply then we can't change the voltage */ 1525 if (IS_ERR(mmc->supply.vqmmc)) 1526 return -EINVAL; 1527 1528 switch (ios->signal_voltage) { 1529 case MMC_SIGNAL_VOLTAGE_120: 1530 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1531 1100000, 1200000, 1300000); 1532 case MMC_SIGNAL_VOLTAGE_180: 1533 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1534 1700000, 1800000, 1950000); 1535 case MMC_SIGNAL_VOLTAGE_330: 1536 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1537 if (ret < 0) 1538 return ret; 1539 1540 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1541 __func__, volt, max_uV); 1542 1543 min_uV = max(volt - 300000, 2700000); 1544 max_uV = min(max_uV + 200000, 3600000); 1545 1546 /* 1547 * Due to a limitation in the current implementation of 1548 * regulator_set_voltage_triplet() which is taking the lowest 1549 * voltage possible if below the target, search for a suitable 1550 * voltage in two steps and try to stay close to vmmc 1551 * with a 0.3V tolerance at first. 1552 */ 1553 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1554 min_uV, volt, max_uV)) 1555 return 0; 1556 1557 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1558 2700000, volt, 3600000); 1559 default: 1560 return -EINVAL; 1561 } 1562 } 1563 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1564 1565 #endif /* CONFIG_REGULATOR */ 1566 1567 int mmc_regulator_get_supply(struct mmc_host *mmc) 1568 { 1569 struct device *dev = mmc_dev(mmc); 1570 int ret; 1571 1572 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1573 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1574 1575 if (IS_ERR(mmc->supply.vmmc)) { 1576 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1577 return -EPROBE_DEFER; 1578 dev_dbg(dev, "No vmmc regulator found\n"); 1579 } else { 1580 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1581 if (ret > 0) 1582 mmc->ocr_avail = ret; 1583 else 1584 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1585 } 1586 1587 if (IS_ERR(mmc->supply.vqmmc)) { 1588 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1589 return -EPROBE_DEFER; 1590 dev_dbg(dev, "No vqmmc regulator found\n"); 1591 } 1592 1593 return 0; 1594 } 1595 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1596 1597 /* 1598 * Mask off any voltages we don't support and select 1599 * the lowest voltage 1600 */ 1601 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1602 { 1603 int bit; 1604 1605 /* 1606 * Sanity check the voltages that the card claims to 1607 * support. 1608 */ 1609 if (ocr & 0x7F) { 1610 dev_warn(mmc_dev(host), 1611 "card claims to support voltages below defined range\n"); 1612 ocr &= ~0x7F; 1613 } 1614 1615 ocr &= host->ocr_avail; 1616 if (!ocr) { 1617 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1618 return 0; 1619 } 1620 1621 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1622 bit = ffs(ocr) - 1; 1623 ocr &= 3 << bit; 1624 mmc_power_cycle(host, ocr); 1625 } else { 1626 bit = fls(ocr) - 1; 1627 ocr &= 3 << bit; 1628 if (bit != host->ios.vdd) 1629 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1630 } 1631 1632 return ocr; 1633 } 1634 1635 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1636 { 1637 int err = 0; 1638 int old_signal_voltage = host->ios.signal_voltage; 1639 1640 host->ios.signal_voltage = signal_voltage; 1641 if (host->ops->start_signal_voltage_switch) 1642 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1643 1644 if (err) 1645 host->ios.signal_voltage = old_signal_voltage; 1646 1647 return err; 1648 1649 } 1650 1651 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1652 { 1653 struct mmc_command cmd = {0}; 1654 int err = 0; 1655 u32 clock; 1656 1657 /* 1658 * Send CMD11 only if the request is to switch the card to 1659 * 1.8V signalling. 1660 */ 1661 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1662 return __mmc_set_signal_voltage(host, signal_voltage); 1663 1664 /* 1665 * If we cannot switch voltages, return failure so the caller 1666 * can continue without UHS mode 1667 */ 1668 if (!host->ops->start_signal_voltage_switch) 1669 return -EPERM; 1670 if (!host->ops->card_busy) 1671 pr_warn("%s: cannot verify signal voltage switch\n", 1672 mmc_hostname(host)); 1673 1674 cmd.opcode = SD_SWITCH_VOLTAGE; 1675 cmd.arg = 0; 1676 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1677 1678 err = mmc_wait_for_cmd(host, &cmd, 0); 1679 if (err) 1680 return err; 1681 1682 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1683 return -EIO; 1684 1685 /* 1686 * The card should drive cmd and dat[0:3] low immediately 1687 * after the response of cmd11, but wait 1 ms to be sure 1688 */ 1689 mmc_delay(1); 1690 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1691 err = -EAGAIN; 1692 goto power_cycle; 1693 } 1694 /* 1695 * During a signal voltage level switch, the clock must be gated 1696 * for 5 ms according to the SD spec 1697 */ 1698 clock = host->ios.clock; 1699 host->ios.clock = 0; 1700 mmc_set_ios(host); 1701 1702 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1703 /* 1704 * Voltages may not have been switched, but we've already 1705 * sent CMD11, so a power cycle is required anyway 1706 */ 1707 err = -EAGAIN; 1708 goto power_cycle; 1709 } 1710 1711 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1712 mmc_delay(10); 1713 host->ios.clock = clock; 1714 mmc_set_ios(host); 1715 1716 /* Wait for at least 1 ms according to spec */ 1717 mmc_delay(1); 1718 1719 /* 1720 * Failure to switch is indicated by the card holding 1721 * dat[0:3] low 1722 */ 1723 if (host->ops->card_busy && host->ops->card_busy(host)) 1724 err = -EAGAIN; 1725 1726 power_cycle: 1727 if (err) { 1728 pr_debug("%s: Signal voltage switch failed, " 1729 "power cycling card\n", mmc_hostname(host)); 1730 mmc_power_cycle(host, ocr); 1731 } 1732 1733 return err; 1734 } 1735 1736 /* 1737 * Select timing parameters for host. 1738 */ 1739 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1740 { 1741 host->ios.timing = timing; 1742 mmc_set_ios(host); 1743 } 1744 1745 /* 1746 * Select appropriate driver type for host. 1747 */ 1748 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1749 { 1750 host->ios.drv_type = drv_type; 1751 mmc_set_ios(host); 1752 } 1753 1754 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1755 int card_drv_type, int *drv_type) 1756 { 1757 struct mmc_host *host = card->host; 1758 int host_drv_type = SD_DRIVER_TYPE_B; 1759 1760 *drv_type = 0; 1761 1762 if (!host->ops->select_drive_strength) 1763 return 0; 1764 1765 /* Use SD definition of driver strength for hosts */ 1766 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1767 host_drv_type |= SD_DRIVER_TYPE_A; 1768 1769 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1770 host_drv_type |= SD_DRIVER_TYPE_C; 1771 1772 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1773 host_drv_type |= SD_DRIVER_TYPE_D; 1774 1775 /* 1776 * The drive strength that the hardware can support 1777 * depends on the board design. Pass the appropriate 1778 * information and let the hardware specific code 1779 * return what is possible given the options 1780 */ 1781 return host->ops->select_drive_strength(card, max_dtr, 1782 host_drv_type, 1783 card_drv_type, 1784 drv_type); 1785 } 1786 1787 /* 1788 * Apply power to the MMC stack. This is a two-stage process. 1789 * First, we enable power to the card without the clock running. 1790 * We then wait a bit for the power to stabilise. Finally, 1791 * enable the bus drivers and clock to the card. 1792 * 1793 * We must _NOT_ enable the clock prior to power stablising. 1794 * 1795 * If a host does all the power sequencing itself, ignore the 1796 * initial MMC_POWER_UP stage. 1797 */ 1798 void mmc_power_up(struct mmc_host *host, u32 ocr) 1799 { 1800 if (host->ios.power_mode == MMC_POWER_ON) 1801 return; 1802 1803 mmc_pwrseq_pre_power_on(host); 1804 1805 host->ios.vdd = fls(ocr) - 1; 1806 host->ios.power_mode = MMC_POWER_UP; 1807 /* Set initial state and call mmc_set_ios */ 1808 mmc_set_initial_state(host); 1809 1810 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1811 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0) 1812 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1813 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0) 1814 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1815 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0) 1816 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1817 1818 /* 1819 * This delay should be sufficient to allow the power supply 1820 * to reach the minimum voltage. 1821 */ 1822 mmc_delay(10); 1823 1824 mmc_pwrseq_post_power_on(host); 1825 1826 host->ios.clock = host->f_init; 1827 1828 host->ios.power_mode = MMC_POWER_ON; 1829 mmc_set_ios(host); 1830 1831 /* 1832 * This delay must be at least 74 clock sizes, or 1 ms, or the 1833 * time required to reach a stable voltage. 1834 */ 1835 mmc_delay(10); 1836 } 1837 1838 void mmc_power_off(struct mmc_host *host) 1839 { 1840 if (host->ios.power_mode == MMC_POWER_OFF) 1841 return; 1842 1843 mmc_pwrseq_power_off(host); 1844 1845 host->ios.clock = 0; 1846 host->ios.vdd = 0; 1847 1848 host->ios.power_mode = MMC_POWER_OFF; 1849 /* Set initial state and call mmc_set_ios */ 1850 mmc_set_initial_state(host); 1851 1852 /* 1853 * Some configurations, such as the 802.11 SDIO card in the OLPC 1854 * XO-1.5, require a short delay after poweroff before the card 1855 * can be successfully turned on again. 1856 */ 1857 mmc_delay(1); 1858 } 1859 1860 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1861 { 1862 mmc_power_off(host); 1863 /* Wait at least 1 ms according to SD spec */ 1864 mmc_delay(1); 1865 mmc_power_up(host, ocr); 1866 } 1867 1868 /* 1869 * Cleanup when the last reference to the bus operator is dropped. 1870 */ 1871 static void __mmc_release_bus(struct mmc_host *host) 1872 { 1873 WARN_ON(!host->bus_dead); 1874 1875 host->bus_ops = NULL; 1876 } 1877 1878 /* 1879 * Increase reference count of bus operator 1880 */ 1881 static inline void mmc_bus_get(struct mmc_host *host) 1882 { 1883 unsigned long flags; 1884 1885 spin_lock_irqsave(&host->lock, flags); 1886 host->bus_refs++; 1887 spin_unlock_irqrestore(&host->lock, flags); 1888 } 1889 1890 /* 1891 * Decrease reference count of bus operator and free it if 1892 * it is the last reference. 1893 */ 1894 static inline void mmc_bus_put(struct mmc_host *host) 1895 { 1896 unsigned long flags; 1897 1898 spin_lock_irqsave(&host->lock, flags); 1899 host->bus_refs--; 1900 if ((host->bus_refs == 0) && host->bus_ops) 1901 __mmc_release_bus(host); 1902 spin_unlock_irqrestore(&host->lock, flags); 1903 } 1904 1905 /* 1906 * Assign a mmc bus handler to a host. Only one bus handler may control a 1907 * host at any given time. 1908 */ 1909 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1910 { 1911 unsigned long flags; 1912 1913 WARN_ON(!host->claimed); 1914 1915 spin_lock_irqsave(&host->lock, flags); 1916 1917 WARN_ON(host->bus_ops); 1918 WARN_ON(host->bus_refs); 1919 1920 host->bus_ops = ops; 1921 host->bus_refs = 1; 1922 host->bus_dead = 0; 1923 1924 spin_unlock_irqrestore(&host->lock, flags); 1925 } 1926 1927 /* 1928 * Remove the current bus handler from a host. 1929 */ 1930 void mmc_detach_bus(struct mmc_host *host) 1931 { 1932 unsigned long flags; 1933 1934 WARN_ON(!host->claimed); 1935 WARN_ON(!host->bus_ops); 1936 1937 spin_lock_irqsave(&host->lock, flags); 1938 1939 host->bus_dead = 1; 1940 1941 spin_unlock_irqrestore(&host->lock, flags); 1942 1943 mmc_bus_put(host); 1944 } 1945 1946 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1947 bool cd_irq) 1948 { 1949 #ifdef CONFIG_MMC_DEBUG 1950 unsigned long flags; 1951 spin_lock_irqsave(&host->lock, flags); 1952 WARN_ON(host->removed); 1953 spin_unlock_irqrestore(&host->lock, flags); 1954 #endif 1955 1956 /* 1957 * If the device is configured as wakeup, we prevent a new sleep for 1958 * 5 s to give provision for user space to consume the event. 1959 */ 1960 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1961 device_can_wakeup(mmc_dev(host))) 1962 pm_wakeup_event(mmc_dev(host), 5000); 1963 1964 host->detect_change = 1; 1965 mmc_schedule_delayed_work(&host->detect, delay); 1966 } 1967 1968 /** 1969 * mmc_detect_change - process change of state on a MMC socket 1970 * @host: host which changed state. 1971 * @delay: optional delay to wait before detection (jiffies) 1972 * 1973 * MMC drivers should call this when they detect a card has been 1974 * inserted or removed. The MMC layer will confirm that any 1975 * present card is still functional, and initialize any newly 1976 * inserted. 1977 */ 1978 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1979 { 1980 _mmc_detect_change(host, delay, true); 1981 } 1982 EXPORT_SYMBOL(mmc_detect_change); 1983 1984 void mmc_init_erase(struct mmc_card *card) 1985 { 1986 unsigned int sz; 1987 1988 if (is_power_of_2(card->erase_size)) 1989 card->erase_shift = ffs(card->erase_size) - 1; 1990 else 1991 card->erase_shift = 0; 1992 1993 /* 1994 * It is possible to erase an arbitrarily large area of an SD or MMC 1995 * card. That is not desirable because it can take a long time 1996 * (minutes) potentially delaying more important I/O, and also the 1997 * timeout calculations become increasingly hugely over-estimated. 1998 * Consequently, 'pref_erase' is defined as a guide to limit erases 1999 * to that size and alignment. 2000 * 2001 * For SD cards that define Allocation Unit size, limit erases to one 2002 * Allocation Unit at a time. 2003 * For MMC, have a stab at ai good value and for modern cards it will 2004 * end up being 4MiB. Note that if the value is too small, it can end 2005 * up taking longer to erase. Also note, erase_size is already set to 2006 * High Capacity Erase Size if available when this function is called. 2007 */ 2008 if (mmc_card_sd(card) && card->ssr.au) { 2009 card->pref_erase = card->ssr.au; 2010 card->erase_shift = ffs(card->ssr.au) - 1; 2011 } else if (card->erase_size) { 2012 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 2013 if (sz < 128) 2014 card->pref_erase = 512 * 1024 / 512; 2015 else if (sz < 512) 2016 card->pref_erase = 1024 * 1024 / 512; 2017 else if (sz < 1024) 2018 card->pref_erase = 2 * 1024 * 1024 / 512; 2019 else 2020 card->pref_erase = 4 * 1024 * 1024 / 512; 2021 if (card->pref_erase < card->erase_size) 2022 card->pref_erase = card->erase_size; 2023 else { 2024 sz = card->pref_erase % card->erase_size; 2025 if (sz) 2026 card->pref_erase += card->erase_size - sz; 2027 } 2028 } else 2029 card->pref_erase = 0; 2030 } 2031 2032 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 2033 unsigned int arg, unsigned int qty) 2034 { 2035 unsigned int erase_timeout; 2036 2037 if (arg == MMC_DISCARD_ARG || 2038 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 2039 erase_timeout = card->ext_csd.trim_timeout; 2040 } else if (card->ext_csd.erase_group_def & 1) { 2041 /* High Capacity Erase Group Size uses HC timeouts */ 2042 if (arg == MMC_TRIM_ARG) 2043 erase_timeout = card->ext_csd.trim_timeout; 2044 else 2045 erase_timeout = card->ext_csd.hc_erase_timeout; 2046 } else { 2047 /* CSD Erase Group Size uses write timeout */ 2048 unsigned int mult = (10 << card->csd.r2w_factor); 2049 unsigned int timeout_clks = card->csd.tacc_clks * mult; 2050 unsigned int timeout_us; 2051 2052 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 2053 if (card->csd.tacc_ns < 1000000) 2054 timeout_us = (card->csd.tacc_ns * mult) / 1000; 2055 else 2056 timeout_us = (card->csd.tacc_ns / 1000) * mult; 2057 2058 /* 2059 * ios.clock is only a target. The real clock rate might be 2060 * less but not that much less, so fudge it by multiplying by 2. 2061 */ 2062 timeout_clks <<= 1; 2063 timeout_us += (timeout_clks * 1000) / 2064 (card->host->ios.clock / 1000); 2065 2066 erase_timeout = timeout_us / 1000; 2067 2068 /* 2069 * Theoretically, the calculation could underflow so round up 2070 * to 1ms in that case. 2071 */ 2072 if (!erase_timeout) 2073 erase_timeout = 1; 2074 } 2075 2076 /* Multiplier for secure operations */ 2077 if (arg & MMC_SECURE_ARGS) { 2078 if (arg == MMC_SECURE_ERASE_ARG) 2079 erase_timeout *= card->ext_csd.sec_erase_mult; 2080 else 2081 erase_timeout *= card->ext_csd.sec_trim_mult; 2082 } 2083 2084 erase_timeout *= qty; 2085 2086 /* 2087 * Ensure at least a 1 second timeout for SPI as per 2088 * 'mmc_set_data_timeout()' 2089 */ 2090 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2091 erase_timeout = 1000; 2092 2093 return erase_timeout; 2094 } 2095 2096 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2097 unsigned int arg, 2098 unsigned int qty) 2099 { 2100 unsigned int erase_timeout; 2101 2102 if (card->ssr.erase_timeout) { 2103 /* Erase timeout specified in SD Status Register (SSR) */ 2104 erase_timeout = card->ssr.erase_timeout * qty + 2105 card->ssr.erase_offset; 2106 } else { 2107 /* 2108 * Erase timeout not specified in SD Status Register (SSR) so 2109 * use 250ms per write block. 2110 */ 2111 erase_timeout = 250 * qty; 2112 } 2113 2114 /* Must not be less than 1 second */ 2115 if (erase_timeout < 1000) 2116 erase_timeout = 1000; 2117 2118 return erase_timeout; 2119 } 2120 2121 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2122 unsigned int arg, 2123 unsigned int qty) 2124 { 2125 if (mmc_card_sd(card)) 2126 return mmc_sd_erase_timeout(card, arg, qty); 2127 else 2128 return mmc_mmc_erase_timeout(card, arg, qty); 2129 } 2130 2131 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2132 unsigned int to, unsigned int arg) 2133 { 2134 struct mmc_command cmd = {0}; 2135 unsigned int qty = 0, busy_timeout = 0; 2136 bool use_r1b_resp = false; 2137 unsigned long timeout; 2138 int err; 2139 2140 mmc_retune_hold(card->host); 2141 2142 /* 2143 * qty is used to calculate the erase timeout which depends on how many 2144 * erase groups (or allocation units in SD terminology) are affected. 2145 * We count erasing part of an erase group as one erase group. 2146 * For SD, the allocation units are always a power of 2. For MMC, the 2147 * erase group size is almost certainly also power of 2, but it does not 2148 * seem to insist on that in the JEDEC standard, so we fall back to 2149 * division in that case. SD may not specify an allocation unit size, 2150 * in which case the timeout is based on the number of write blocks. 2151 * 2152 * Note that the timeout for secure trim 2 will only be correct if the 2153 * number of erase groups specified is the same as the total of all 2154 * preceding secure trim 1 commands. Since the power may have been 2155 * lost since the secure trim 1 commands occurred, it is generally 2156 * impossible to calculate the secure trim 2 timeout correctly. 2157 */ 2158 if (card->erase_shift) 2159 qty += ((to >> card->erase_shift) - 2160 (from >> card->erase_shift)) + 1; 2161 else if (mmc_card_sd(card)) 2162 qty += to - from + 1; 2163 else 2164 qty += ((to / card->erase_size) - 2165 (from / card->erase_size)) + 1; 2166 2167 if (!mmc_card_blockaddr(card)) { 2168 from <<= 9; 2169 to <<= 9; 2170 } 2171 2172 if (mmc_card_sd(card)) 2173 cmd.opcode = SD_ERASE_WR_BLK_START; 2174 else 2175 cmd.opcode = MMC_ERASE_GROUP_START; 2176 cmd.arg = from; 2177 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2178 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2179 if (err) { 2180 pr_err("mmc_erase: group start error %d, " 2181 "status %#x\n", err, cmd.resp[0]); 2182 err = -EIO; 2183 goto out; 2184 } 2185 2186 memset(&cmd, 0, sizeof(struct mmc_command)); 2187 if (mmc_card_sd(card)) 2188 cmd.opcode = SD_ERASE_WR_BLK_END; 2189 else 2190 cmd.opcode = MMC_ERASE_GROUP_END; 2191 cmd.arg = to; 2192 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2193 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2194 if (err) { 2195 pr_err("mmc_erase: group end error %d, status %#x\n", 2196 err, cmd.resp[0]); 2197 err = -EIO; 2198 goto out; 2199 } 2200 2201 memset(&cmd, 0, sizeof(struct mmc_command)); 2202 cmd.opcode = MMC_ERASE; 2203 cmd.arg = arg; 2204 busy_timeout = mmc_erase_timeout(card, arg, qty); 2205 /* 2206 * If the host controller supports busy signalling and the timeout for 2207 * the erase operation does not exceed the max_busy_timeout, we should 2208 * use R1B response. Or we need to prevent the host from doing hw busy 2209 * detection, which is done by converting to a R1 response instead. 2210 */ 2211 if (card->host->max_busy_timeout && 2212 busy_timeout > card->host->max_busy_timeout) { 2213 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2214 } else { 2215 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2216 cmd.busy_timeout = busy_timeout; 2217 use_r1b_resp = true; 2218 } 2219 2220 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2221 if (err) { 2222 pr_err("mmc_erase: erase error %d, status %#x\n", 2223 err, cmd.resp[0]); 2224 err = -EIO; 2225 goto out; 2226 } 2227 2228 if (mmc_host_is_spi(card->host)) 2229 goto out; 2230 2231 /* 2232 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2233 * shall be avoided. 2234 */ 2235 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2236 goto out; 2237 2238 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2239 do { 2240 memset(&cmd, 0, sizeof(struct mmc_command)); 2241 cmd.opcode = MMC_SEND_STATUS; 2242 cmd.arg = card->rca << 16; 2243 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2244 /* Do not retry else we can't see errors */ 2245 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2246 if (err || (cmd.resp[0] & 0xFDF92000)) { 2247 pr_err("error %d requesting status %#x\n", 2248 err, cmd.resp[0]); 2249 err = -EIO; 2250 goto out; 2251 } 2252 2253 /* Timeout if the device never becomes ready for data and 2254 * never leaves the program state. 2255 */ 2256 if (time_after(jiffies, timeout)) { 2257 pr_err("%s: Card stuck in programming state! %s\n", 2258 mmc_hostname(card->host), __func__); 2259 err = -EIO; 2260 goto out; 2261 } 2262 2263 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2264 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2265 out: 2266 mmc_retune_release(card->host); 2267 return err; 2268 } 2269 2270 static unsigned int mmc_align_erase_size(struct mmc_card *card, 2271 unsigned int *from, 2272 unsigned int *to, 2273 unsigned int nr) 2274 { 2275 unsigned int from_new = *from, nr_new = nr, rem; 2276 2277 /* 2278 * When the 'card->erase_size' is power of 2, we can use round_up/down() 2279 * to align the erase size efficiently. 2280 */ 2281 if (is_power_of_2(card->erase_size)) { 2282 unsigned int temp = from_new; 2283 2284 from_new = round_up(temp, card->erase_size); 2285 rem = from_new - temp; 2286 2287 if (nr_new > rem) 2288 nr_new -= rem; 2289 else 2290 return 0; 2291 2292 nr_new = round_down(nr_new, card->erase_size); 2293 } else { 2294 rem = from_new % card->erase_size; 2295 if (rem) { 2296 rem = card->erase_size - rem; 2297 from_new += rem; 2298 if (nr_new > rem) 2299 nr_new -= rem; 2300 else 2301 return 0; 2302 } 2303 2304 rem = nr_new % card->erase_size; 2305 if (rem) 2306 nr_new -= rem; 2307 } 2308 2309 if (nr_new == 0) 2310 return 0; 2311 2312 *to = from_new + nr_new; 2313 *from = from_new; 2314 2315 return nr_new; 2316 } 2317 2318 /** 2319 * mmc_erase - erase sectors. 2320 * @card: card to erase 2321 * @from: first sector to erase 2322 * @nr: number of sectors to erase 2323 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2324 * 2325 * Caller must claim host before calling this function. 2326 */ 2327 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2328 unsigned int arg) 2329 { 2330 unsigned int rem, to = from + nr; 2331 int err; 2332 2333 if (!(card->host->caps & MMC_CAP_ERASE) || 2334 !(card->csd.cmdclass & CCC_ERASE)) 2335 return -EOPNOTSUPP; 2336 2337 if (!card->erase_size) 2338 return -EOPNOTSUPP; 2339 2340 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2341 return -EOPNOTSUPP; 2342 2343 if ((arg & MMC_SECURE_ARGS) && 2344 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2345 return -EOPNOTSUPP; 2346 2347 if ((arg & MMC_TRIM_ARGS) && 2348 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2349 return -EOPNOTSUPP; 2350 2351 if (arg == MMC_SECURE_ERASE_ARG) { 2352 if (from % card->erase_size || nr % card->erase_size) 2353 return -EINVAL; 2354 } 2355 2356 if (arg == MMC_ERASE_ARG) 2357 nr = mmc_align_erase_size(card, &from, &to, nr); 2358 2359 if (nr == 0) 2360 return 0; 2361 2362 if (to <= from) 2363 return -EINVAL; 2364 2365 /* 'from' and 'to' are inclusive */ 2366 to -= 1; 2367 2368 /* 2369 * Special case where only one erase-group fits in the timeout budget: 2370 * If the region crosses an erase-group boundary on this particular 2371 * case, we will be trimming more than one erase-group which, does not 2372 * fit in the timeout budget of the controller, so we need to split it 2373 * and call mmc_do_erase() twice if necessary. This special case is 2374 * identified by the card->eg_boundary flag. 2375 */ 2376 rem = card->erase_size - (from % card->erase_size); 2377 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2378 err = mmc_do_erase(card, from, from + rem - 1, arg); 2379 from += rem; 2380 if ((err) || (to <= from)) 2381 return err; 2382 } 2383 2384 return mmc_do_erase(card, from, to, arg); 2385 } 2386 EXPORT_SYMBOL(mmc_erase); 2387 2388 int mmc_can_erase(struct mmc_card *card) 2389 { 2390 if ((card->host->caps & MMC_CAP_ERASE) && 2391 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2392 return 1; 2393 return 0; 2394 } 2395 EXPORT_SYMBOL(mmc_can_erase); 2396 2397 int mmc_can_trim(struct mmc_card *card) 2398 { 2399 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2400 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2401 return 1; 2402 return 0; 2403 } 2404 EXPORT_SYMBOL(mmc_can_trim); 2405 2406 int mmc_can_discard(struct mmc_card *card) 2407 { 2408 /* 2409 * As there's no way to detect the discard support bit at v4.5 2410 * use the s/w feature support filed. 2411 */ 2412 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2413 return 1; 2414 return 0; 2415 } 2416 EXPORT_SYMBOL(mmc_can_discard); 2417 2418 int mmc_can_sanitize(struct mmc_card *card) 2419 { 2420 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2421 return 0; 2422 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2423 return 1; 2424 return 0; 2425 } 2426 EXPORT_SYMBOL(mmc_can_sanitize); 2427 2428 int mmc_can_secure_erase_trim(struct mmc_card *card) 2429 { 2430 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2431 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2432 return 1; 2433 return 0; 2434 } 2435 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2436 2437 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2438 unsigned int nr) 2439 { 2440 if (!card->erase_size) 2441 return 0; 2442 if (from % card->erase_size || nr % card->erase_size) 2443 return 0; 2444 return 1; 2445 } 2446 EXPORT_SYMBOL(mmc_erase_group_aligned); 2447 2448 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2449 unsigned int arg) 2450 { 2451 struct mmc_host *host = card->host; 2452 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2453 unsigned int last_timeout = 0; 2454 unsigned int max_busy_timeout = host->max_busy_timeout ? 2455 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 2456 2457 if (card->erase_shift) { 2458 max_qty = UINT_MAX >> card->erase_shift; 2459 min_qty = card->pref_erase >> card->erase_shift; 2460 } else if (mmc_card_sd(card)) { 2461 max_qty = UINT_MAX; 2462 min_qty = card->pref_erase; 2463 } else { 2464 max_qty = UINT_MAX / card->erase_size; 2465 min_qty = card->pref_erase / card->erase_size; 2466 } 2467 2468 /* 2469 * We should not only use 'host->max_busy_timeout' as the limitation 2470 * when deciding the max discard sectors. We should set a balance value 2471 * to improve the erase speed, and it can not get too long timeout at 2472 * the same time. 2473 * 2474 * Here we set 'card->pref_erase' as the minimal discard sectors no 2475 * matter what size of 'host->max_busy_timeout', but if the 2476 * 'host->max_busy_timeout' is large enough for more discard sectors, 2477 * then we can continue to increase the max discard sectors until we 2478 * get a balance value. In cases when the 'host->max_busy_timeout' 2479 * isn't specified, use the default max erase timeout. 2480 */ 2481 do { 2482 y = 0; 2483 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2484 timeout = mmc_erase_timeout(card, arg, qty + x); 2485 2486 if (qty + x > min_qty && timeout > max_busy_timeout) 2487 break; 2488 2489 if (timeout < last_timeout) 2490 break; 2491 last_timeout = timeout; 2492 y = x; 2493 } 2494 qty += y; 2495 } while (y); 2496 2497 if (!qty) 2498 return 0; 2499 2500 /* 2501 * When specifying a sector range to trim, chances are we might cross 2502 * an erase-group boundary even if the amount of sectors is less than 2503 * one erase-group. 2504 * If we can only fit one erase-group in the controller timeout budget, 2505 * we have to care that erase-group boundaries are not crossed by a 2506 * single trim operation. We flag that special case with "eg_boundary". 2507 * In all other cases we can just decrement qty and pretend that we 2508 * always touch (qty + 1) erase-groups as a simple optimization. 2509 */ 2510 if (qty == 1) 2511 card->eg_boundary = 1; 2512 else 2513 qty--; 2514 2515 /* Convert qty to sectors */ 2516 if (card->erase_shift) 2517 max_discard = qty << card->erase_shift; 2518 else if (mmc_card_sd(card)) 2519 max_discard = qty + 1; 2520 else 2521 max_discard = qty * card->erase_size; 2522 2523 return max_discard; 2524 } 2525 2526 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2527 { 2528 struct mmc_host *host = card->host; 2529 unsigned int max_discard, max_trim; 2530 2531 /* 2532 * Without erase_group_def set, MMC erase timeout depends on clock 2533 * frequence which can change. In that case, the best choice is 2534 * just the preferred erase size. 2535 */ 2536 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2537 return card->pref_erase; 2538 2539 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2540 if (mmc_can_trim(card)) { 2541 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2542 if (max_trim < max_discard) 2543 max_discard = max_trim; 2544 } else if (max_discard < card->erase_size) { 2545 max_discard = 0; 2546 } 2547 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2548 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2549 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2550 return max_discard; 2551 } 2552 EXPORT_SYMBOL(mmc_calc_max_discard); 2553 2554 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2555 { 2556 struct mmc_command cmd = {0}; 2557 2558 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2559 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2560 return 0; 2561 2562 cmd.opcode = MMC_SET_BLOCKLEN; 2563 cmd.arg = blocklen; 2564 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2565 return mmc_wait_for_cmd(card->host, &cmd, 5); 2566 } 2567 EXPORT_SYMBOL(mmc_set_blocklen); 2568 2569 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2570 bool is_rel_write) 2571 { 2572 struct mmc_command cmd = {0}; 2573 2574 cmd.opcode = MMC_SET_BLOCK_COUNT; 2575 cmd.arg = blockcount & 0x0000FFFF; 2576 if (is_rel_write) 2577 cmd.arg |= 1 << 31; 2578 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2579 return mmc_wait_for_cmd(card->host, &cmd, 5); 2580 } 2581 EXPORT_SYMBOL(mmc_set_blockcount); 2582 2583 static void mmc_hw_reset_for_init(struct mmc_host *host) 2584 { 2585 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2586 return; 2587 host->ops->hw_reset(host); 2588 } 2589 2590 int mmc_hw_reset(struct mmc_host *host) 2591 { 2592 int ret; 2593 2594 if (!host->card) 2595 return -EINVAL; 2596 2597 mmc_bus_get(host); 2598 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2599 mmc_bus_put(host); 2600 return -EOPNOTSUPP; 2601 } 2602 2603 ret = host->bus_ops->reset(host); 2604 mmc_bus_put(host); 2605 2606 if (ret) 2607 pr_warn("%s: tried to reset card, got error %d\n", 2608 mmc_hostname(host), ret); 2609 2610 return ret; 2611 } 2612 EXPORT_SYMBOL(mmc_hw_reset); 2613 2614 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2615 { 2616 host->f_init = freq; 2617 2618 #ifdef CONFIG_MMC_DEBUG 2619 pr_info("%s: %s: trying to init card at %u Hz\n", 2620 mmc_hostname(host), __func__, host->f_init); 2621 #endif 2622 mmc_power_up(host, host->ocr_avail); 2623 2624 /* 2625 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2626 * do a hardware reset if possible. 2627 */ 2628 mmc_hw_reset_for_init(host); 2629 2630 /* 2631 * sdio_reset sends CMD52 to reset card. Since we do not know 2632 * if the card is being re-initialized, just send it. CMD52 2633 * should be ignored by SD/eMMC cards. 2634 * Skip it if we already know that we do not support SDIO commands 2635 */ 2636 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2637 sdio_reset(host); 2638 2639 mmc_go_idle(host); 2640 2641 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2642 mmc_send_if_cond(host, host->ocr_avail); 2643 2644 /* Order's important: probe SDIO, then SD, then MMC */ 2645 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2646 if (!mmc_attach_sdio(host)) 2647 return 0; 2648 2649 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2650 if (!mmc_attach_sd(host)) 2651 return 0; 2652 2653 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2654 if (!mmc_attach_mmc(host)) 2655 return 0; 2656 2657 mmc_power_off(host); 2658 return -EIO; 2659 } 2660 2661 int _mmc_detect_card_removed(struct mmc_host *host) 2662 { 2663 int ret; 2664 2665 if (!host->card || mmc_card_removed(host->card)) 2666 return 1; 2667 2668 ret = host->bus_ops->alive(host); 2669 2670 /* 2671 * Card detect status and alive check may be out of sync if card is 2672 * removed slowly, when card detect switch changes while card/slot 2673 * pads are still contacted in hardware (refer to "SD Card Mechanical 2674 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2675 * detect work 200ms later for this case. 2676 */ 2677 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2678 mmc_detect_change(host, msecs_to_jiffies(200)); 2679 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2680 } 2681 2682 if (ret) { 2683 mmc_card_set_removed(host->card); 2684 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2685 } 2686 2687 return ret; 2688 } 2689 2690 int mmc_detect_card_removed(struct mmc_host *host) 2691 { 2692 struct mmc_card *card = host->card; 2693 int ret; 2694 2695 WARN_ON(!host->claimed); 2696 2697 if (!card) 2698 return 1; 2699 2700 if (!mmc_card_is_removable(host)) 2701 return 0; 2702 2703 ret = mmc_card_removed(card); 2704 /* 2705 * The card will be considered unchanged unless we have been asked to 2706 * detect a change or host requires polling to provide card detection. 2707 */ 2708 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2709 return ret; 2710 2711 host->detect_change = 0; 2712 if (!ret) { 2713 ret = _mmc_detect_card_removed(host); 2714 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2715 /* 2716 * Schedule a detect work as soon as possible to let a 2717 * rescan handle the card removal. 2718 */ 2719 cancel_delayed_work(&host->detect); 2720 _mmc_detect_change(host, 0, false); 2721 } 2722 } 2723 2724 return ret; 2725 } 2726 EXPORT_SYMBOL(mmc_detect_card_removed); 2727 2728 void mmc_rescan(struct work_struct *work) 2729 { 2730 struct mmc_host *host = 2731 container_of(work, struct mmc_host, detect.work); 2732 int i; 2733 2734 if (host->rescan_disable) 2735 return; 2736 2737 /* If there is a non-removable card registered, only scan once */ 2738 if (!mmc_card_is_removable(host) && host->rescan_entered) 2739 return; 2740 host->rescan_entered = 1; 2741 2742 if (host->trigger_card_event && host->ops->card_event) { 2743 mmc_claim_host(host); 2744 host->ops->card_event(host); 2745 mmc_release_host(host); 2746 host->trigger_card_event = false; 2747 } 2748 2749 mmc_bus_get(host); 2750 2751 /* 2752 * if there is a _removable_ card registered, check whether it is 2753 * still present 2754 */ 2755 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2756 host->bus_ops->detect(host); 2757 2758 host->detect_change = 0; 2759 2760 /* 2761 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2762 * the card is no longer present. 2763 */ 2764 mmc_bus_put(host); 2765 mmc_bus_get(host); 2766 2767 /* if there still is a card present, stop here */ 2768 if (host->bus_ops != NULL) { 2769 mmc_bus_put(host); 2770 goto out; 2771 } 2772 2773 /* 2774 * Only we can add a new handler, so it's safe to 2775 * release the lock here. 2776 */ 2777 mmc_bus_put(host); 2778 2779 mmc_claim_host(host); 2780 if (mmc_card_is_removable(host) && host->ops->get_cd && 2781 host->ops->get_cd(host) == 0) { 2782 mmc_power_off(host); 2783 mmc_release_host(host); 2784 goto out; 2785 } 2786 2787 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2788 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2789 break; 2790 if (freqs[i] <= host->f_min) 2791 break; 2792 } 2793 mmc_release_host(host); 2794 2795 out: 2796 if (host->caps & MMC_CAP_NEEDS_POLL) 2797 mmc_schedule_delayed_work(&host->detect, HZ); 2798 } 2799 2800 void mmc_start_host(struct mmc_host *host) 2801 { 2802 host->f_init = max(freqs[0], host->f_min); 2803 host->rescan_disable = 0; 2804 host->ios.power_mode = MMC_POWER_UNDEFINED; 2805 2806 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2807 mmc_claim_host(host); 2808 mmc_power_up(host, host->ocr_avail); 2809 mmc_release_host(host); 2810 } 2811 2812 mmc_gpiod_request_cd_irq(host); 2813 _mmc_detect_change(host, 0, false); 2814 } 2815 2816 void mmc_stop_host(struct mmc_host *host) 2817 { 2818 #ifdef CONFIG_MMC_DEBUG 2819 unsigned long flags; 2820 spin_lock_irqsave(&host->lock, flags); 2821 host->removed = 1; 2822 spin_unlock_irqrestore(&host->lock, flags); 2823 #endif 2824 if (host->slot.cd_irq >= 0) 2825 disable_irq(host->slot.cd_irq); 2826 2827 host->rescan_disable = 1; 2828 cancel_delayed_work_sync(&host->detect); 2829 2830 /* clear pm flags now and let card drivers set them as needed */ 2831 host->pm_flags = 0; 2832 2833 mmc_bus_get(host); 2834 if (host->bus_ops && !host->bus_dead) { 2835 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2836 host->bus_ops->remove(host); 2837 mmc_claim_host(host); 2838 mmc_detach_bus(host); 2839 mmc_power_off(host); 2840 mmc_release_host(host); 2841 mmc_bus_put(host); 2842 return; 2843 } 2844 mmc_bus_put(host); 2845 2846 mmc_claim_host(host); 2847 mmc_power_off(host); 2848 mmc_release_host(host); 2849 } 2850 2851 int mmc_power_save_host(struct mmc_host *host) 2852 { 2853 int ret = 0; 2854 2855 #ifdef CONFIG_MMC_DEBUG 2856 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2857 #endif 2858 2859 mmc_bus_get(host); 2860 2861 if (!host->bus_ops || host->bus_dead) { 2862 mmc_bus_put(host); 2863 return -EINVAL; 2864 } 2865 2866 if (host->bus_ops->power_save) 2867 ret = host->bus_ops->power_save(host); 2868 2869 mmc_bus_put(host); 2870 2871 mmc_power_off(host); 2872 2873 return ret; 2874 } 2875 EXPORT_SYMBOL(mmc_power_save_host); 2876 2877 int mmc_power_restore_host(struct mmc_host *host) 2878 { 2879 int ret; 2880 2881 #ifdef CONFIG_MMC_DEBUG 2882 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2883 #endif 2884 2885 mmc_bus_get(host); 2886 2887 if (!host->bus_ops || host->bus_dead) { 2888 mmc_bus_put(host); 2889 return -EINVAL; 2890 } 2891 2892 mmc_power_up(host, host->card->ocr); 2893 ret = host->bus_ops->power_restore(host); 2894 2895 mmc_bus_put(host); 2896 2897 return ret; 2898 } 2899 EXPORT_SYMBOL(mmc_power_restore_host); 2900 2901 /* 2902 * Flush the cache to the non-volatile storage. 2903 */ 2904 int mmc_flush_cache(struct mmc_card *card) 2905 { 2906 int err = 0; 2907 2908 if (mmc_card_mmc(card) && 2909 (card->ext_csd.cache_size > 0) && 2910 (card->ext_csd.cache_ctrl & 1)) { 2911 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2912 EXT_CSD_FLUSH_CACHE, 1, 0); 2913 if (err) 2914 pr_err("%s: cache flush error %d\n", 2915 mmc_hostname(card->host), err); 2916 } 2917 2918 return err; 2919 } 2920 EXPORT_SYMBOL(mmc_flush_cache); 2921 2922 #ifdef CONFIG_PM_SLEEP 2923 /* Do the card removal on suspend if card is assumed removeable 2924 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2925 to sync the card. 2926 */ 2927 static int mmc_pm_notify(struct notifier_block *notify_block, 2928 unsigned long mode, void *unused) 2929 { 2930 struct mmc_host *host = container_of( 2931 notify_block, struct mmc_host, pm_notify); 2932 unsigned long flags; 2933 int err = 0; 2934 2935 switch (mode) { 2936 case PM_HIBERNATION_PREPARE: 2937 case PM_SUSPEND_PREPARE: 2938 case PM_RESTORE_PREPARE: 2939 spin_lock_irqsave(&host->lock, flags); 2940 host->rescan_disable = 1; 2941 spin_unlock_irqrestore(&host->lock, flags); 2942 cancel_delayed_work_sync(&host->detect); 2943 2944 if (!host->bus_ops) 2945 break; 2946 2947 /* Validate prerequisites for suspend */ 2948 if (host->bus_ops->pre_suspend) 2949 err = host->bus_ops->pre_suspend(host); 2950 if (!err) 2951 break; 2952 2953 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2954 host->bus_ops->remove(host); 2955 mmc_claim_host(host); 2956 mmc_detach_bus(host); 2957 mmc_power_off(host); 2958 mmc_release_host(host); 2959 host->pm_flags = 0; 2960 break; 2961 2962 case PM_POST_SUSPEND: 2963 case PM_POST_HIBERNATION: 2964 case PM_POST_RESTORE: 2965 2966 spin_lock_irqsave(&host->lock, flags); 2967 host->rescan_disable = 0; 2968 spin_unlock_irqrestore(&host->lock, flags); 2969 _mmc_detect_change(host, 0, false); 2970 2971 } 2972 2973 return 0; 2974 } 2975 2976 void mmc_register_pm_notifier(struct mmc_host *host) 2977 { 2978 host->pm_notify.notifier_call = mmc_pm_notify; 2979 register_pm_notifier(&host->pm_notify); 2980 } 2981 2982 void mmc_unregister_pm_notifier(struct mmc_host *host) 2983 { 2984 unregister_pm_notifier(&host->pm_notify); 2985 } 2986 #endif 2987 2988 /** 2989 * mmc_init_context_info() - init synchronization context 2990 * @host: mmc host 2991 * 2992 * Init struct context_info needed to implement asynchronous 2993 * request mechanism, used by mmc core, host driver and mmc requests 2994 * supplier. 2995 */ 2996 void mmc_init_context_info(struct mmc_host *host) 2997 { 2998 host->context_info.is_new_req = false; 2999 host->context_info.is_done_rcv = false; 3000 host->context_info.is_waiting_last_req = false; 3001 init_waitqueue_head(&host->context_info.wait); 3002 } 3003 3004 static int __init mmc_init(void) 3005 { 3006 int ret; 3007 3008 ret = mmc_register_bus(); 3009 if (ret) 3010 return ret; 3011 3012 ret = mmc_register_host_class(); 3013 if (ret) 3014 goto unregister_bus; 3015 3016 ret = sdio_register_bus(); 3017 if (ret) 3018 goto unregister_host_class; 3019 3020 return 0; 3021 3022 unregister_host_class: 3023 mmc_unregister_host_class(); 3024 unregister_bus: 3025 mmc_unregister_bus(); 3026 return ret; 3027 } 3028 3029 static void __exit mmc_exit(void) 3030 { 3031 sdio_unregister_bus(); 3032 mmc_unregister_host_class(); 3033 mmc_unregister_bus(); 3034 } 3035 3036 subsys_initcall(mmc_init); 3037 module_exit(mmc_exit); 3038 3039 MODULE_LICENSE("GPL"); 3040