xref: /linux/drivers/mmc/core/core.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
39 
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
43 
44 static struct workqueue_struct *workqueue;
45 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
46 
47 /*
48  * Enabling software CRCs on the data blocks can be a significant (30%)
49  * performance cost, and for other reasons may not always be desired.
50  * So we allow it it to be disabled.
51  */
52 bool use_spi_crc = 1;
53 module_param(use_spi_crc, bool, 0);
54 
55 /*
56  * We normally treat cards as removed during suspend if they are not
57  * known to be on a non-removable bus, to avoid the risk of writing
58  * back data to a different card after resume.  Allow this to be
59  * overridden if necessary.
60  */
61 #ifdef CONFIG_MMC_UNSAFE_RESUME
62 bool mmc_assume_removable;
63 #else
64 bool mmc_assume_removable = 1;
65 #endif
66 EXPORT_SYMBOL(mmc_assume_removable);
67 module_param_named(removable, mmc_assume_removable, bool, 0644);
68 MODULE_PARM_DESC(
69 	removable,
70 	"MMC/SD cards are removable and may be removed during suspend");
71 
72 /*
73  * Internal function. Schedule delayed work in the MMC work queue.
74  */
75 static int mmc_schedule_delayed_work(struct delayed_work *work,
76 				     unsigned long delay)
77 {
78 	return queue_delayed_work(workqueue, work, delay);
79 }
80 
81 /*
82  * Internal function. Flush all scheduled work from the MMC work queue.
83  */
84 static void mmc_flush_scheduled_work(void)
85 {
86 	flush_workqueue(workqueue);
87 }
88 
89 #ifdef CONFIG_FAIL_MMC_REQUEST
90 
91 /*
92  * Internal function. Inject random data errors.
93  * If mmc_data is NULL no errors are injected.
94  */
95 static void mmc_should_fail_request(struct mmc_host *host,
96 				    struct mmc_request *mrq)
97 {
98 	struct mmc_command *cmd = mrq->cmd;
99 	struct mmc_data *data = mrq->data;
100 	static const int data_errors[] = {
101 		-ETIMEDOUT,
102 		-EILSEQ,
103 		-EIO,
104 	};
105 
106 	if (!data)
107 		return;
108 
109 	if (cmd->error || data->error ||
110 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
111 		return;
112 
113 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
114 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
115 }
116 
117 #else /* CONFIG_FAIL_MMC_REQUEST */
118 
119 static inline void mmc_should_fail_request(struct mmc_host *host,
120 					   struct mmc_request *mrq)
121 {
122 }
123 
124 #endif /* CONFIG_FAIL_MMC_REQUEST */
125 
126 /**
127  *	mmc_request_done - finish processing an MMC request
128  *	@host: MMC host which completed request
129  *	@mrq: MMC request which request
130  *
131  *	MMC drivers should call this function when they have completed
132  *	their processing of a request.
133  */
134 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
135 {
136 	struct mmc_command *cmd = mrq->cmd;
137 	int err = cmd->error;
138 
139 	if (err && cmd->retries && mmc_host_is_spi(host)) {
140 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
141 			cmd->retries = 0;
142 	}
143 
144 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
145 		/*
146 		 * Request starter must handle retries - see
147 		 * mmc_wait_for_req_done().
148 		 */
149 		if (mrq->done)
150 			mrq->done(mrq);
151 	} else {
152 		mmc_should_fail_request(host, mrq);
153 
154 		led_trigger_event(host->led, LED_OFF);
155 
156 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
157 			mmc_hostname(host), cmd->opcode, err,
158 			cmd->resp[0], cmd->resp[1],
159 			cmd->resp[2], cmd->resp[3]);
160 
161 		if (mrq->data) {
162 			pr_debug("%s:     %d bytes transferred: %d\n",
163 				mmc_hostname(host),
164 				mrq->data->bytes_xfered, mrq->data->error);
165 		}
166 
167 		if (mrq->stop) {
168 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
169 				mmc_hostname(host), mrq->stop->opcode,
170 				mrq->stop->error,
171 				mrq->stop->resp[0], mrq->stop->resp[1],
172 				mrq->stop->resp[2], mrq->stop->resp[3]);
173 		}
174 
175 		if (mrq->done)
176 			mrq->done(mrq);
177 
178 		mmc_host_clk_release(host);
179 	}
180 }
181 
182 EXPORT_SYMBOL(mmc_request_done);
183 
184 static void
185 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
186 {
187 #ifdef CONFIG_MMC_DEBUG
188 	unsigned int i, sz;
189 	struct scatterlist *sg;
190 #endif
191 
192 	if (mrq->sbc) {
193 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
194 			 mmc_hostname(host), mrq->sbc->opcode,
195 			 mrq->sbc->arg, mrq->sbc->flags);
196 	}
197 
198 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
199 		 mmc_hostname(host), mrq->cmd->opcode,
200 		 mrq->cmd->arg, mrq->cmd->flags);
201 
202 	if (mrq->data) {
203 		pr_debug("%s:     blksz %d blocks %d flags %08x "
204 			"tsac %d ms nsac %d\n",
205 			mmc_hostname(host), mrq->data->blksz,
206 			mrq->data->blocks, mrq->data->flags,
207 			mrq->data->timeout_ns / 1000000,
208 			mrq->data->timeout_clks);
209 	}
210 
211 	if (mrq->stop) {
212 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
213 			 mmc_hostname(host), mrq->stop->opcode,
214 			 mrq->stop->arg, mrq->stop->flags);
215 	}
216 
217 	WARN_ON(!host->claimed);
218 
219 	mrq->cmd->error = 0;
220 	mrq->cmd->mrq = mrq;
221 	if (mrq->data) {
222 		BUG_ON(mrq->data->blksz > host->max_blk_size);
223 		BUG_ON(mrq->data->blocks > host->max_blk_count);
224 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
225 			host->max_req_size);
226 
227 #ifdef CONFIG_MMC_DEBUG
228 		sz = 0;
229 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
230 			sz += sg->length;
231 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
232 #endif
233 
234 		mrq->cmd->data = mrq->data;
235 		mrq->data->error = 0;
236 		mrq->data->mrq = mrq;
237 		if (mrq->stop) {
238 			mrq->data->stop = mrq->stop;
239 			mrq->stop->error = 0;
240 			mrq->stop->mrq = mrq;
241 		}
242 	}
243 	mmc_host_clk_hold(host);
244 	led_trigger_event(host->led, LED_FULL);
245 	host->ops->request(host, mrq);
246 }
247 
248 static void mmc_wait_done(struct mmc_request *mrq)
249 {
250 	complete(&mrq->completion);
251 }
252 
253 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
254 {
255 	init_completion(&mrq->completion);
256 	mrq->done = mmc_wait_done;
257 	if (mmc_card_removed(host->card)) {
258 		mrq->cmd->error = -ENOMEDIUM;
259 		complete(&mrq->completion);
260 		return -ENOMEDIUM;
261 	}
262 	mmc_start_request(host, mrq);
263 	return 0;
264 }
265 
266 static void mmc_wait_for_req_done(struct mmc_host *host,
267 				  struct mmc_request *mrq)
268 {
269 	struct mmc_command *cmd;
270 
271 	while (1) {
272 		wait_for_completion(&mrq->completion);
273 
274 		cmd = mrq->cmd;
275 		if (!cmd->error || !cmd->retries ||
276 		    mmc_card_removed(host->card))
277 			break;
278 
279 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
280 			 mmc_hostname(host), cmd->opcode, cmd->error);
281 		cmd->retries--;
282 		cmd->error = 0;
283 		host->ops->request(host, mrq);
284 	}
285 }
286 
287 /**
288  *	mmc_pre_req - Prepare for a new request
289  *	@host: MMC host to prepare command
290  *	@mrq: MMC request to prepare for
291  *	@is_first_req: true if there is no previous started request
292  *                     that may run in parellel to this call, otherwise false
293  *
294  *	mmc_pre_req() is called in prior to mmc_start_req() to let
295  *	host prepare for the new request. Preparation of a request may be
296  *	performed while another request is running on the host.
297  */
298 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
299 		 bool is_first_req)
300 {
301 	if (host->ops->pre_req) {
302 		mmc_host_clk_hold(host);
303 		host->ops->pre_req(host, mrq, is_first_req);
304 		mmc_host_clk_release(host);
305 	}
306 }
307 
308 /**
309  *	mmc_post_req - Post process a completed request
310  *	@host: MMC host to post process command
311  *	@mrq: MMC request to post process for
312  *	@err: Error, if non zero, clean up any resources made in pre_req
313  *
314  *	Let the host post process a completed request. Post processing of
315  *	a request may be performed while another reuqest is running.
316  */
317 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
318 			 int err)
319 {
320 	if (host->ops->post_req) {
321 		mmc_host_clk_hold(host);
322 		host->ops->post_req(host, mrq, err);
323 		mmc_host_clk_release(host);
324 	}
325 }
326 
327 /**
328  *	mmc_start_req - start a non-blocking request
329  *	@host: MMC host to start command
330  *	@areq: async request to start
331  *	@error: out parameter returns 0 for success, otherwise non zero
332  *
333  *	Start a new MMC custom command request for a host.
334  *	If there is on ongoing async request wait for completion
335  *	of that request and start the new one and return.
336  *	Does not wait for the new request to complete.
337  *
338  *      Returns the completed request, NULL in case of none completed.
339  *	Wait for the an ongoing request (previoulsy started) to complete and
340  *	return the completed request. If there is no ongoing request, NULL
341  *	is returned without waiting. NULL is not an error condition.
342  */
343 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
344 				    struct mmc_async_req *areq, int *error)
345 {
346 	int err = 0;
347 	int start_err = 0;
348 	struct mmc_async_req *data = host->areq;
349 
350 	/* Prepare a new request */
351 	if (areq)
352 		mmc_pre_req(host, areq->mrq, !host->areq);
353 
354 	if (host->areq) {
355 		mmc_wait_for_req_done(host, host->areq->mrq);
356 		err = host->areq->err_check(host->card, host->areq);
357 	}
358 
359 	if (!err && areq)
360 		start_err = __mmc_start_req(host, areq->mrq);
361 
362 	if (host->areq)
363 		mmc_post_req(host, host->areq->mrq, 0);
364 
365 	 /* Cancel a prepared request if it was not started. */
366 	if ((err || start_err) && areq)
367 			mmc_post_req(host, areq->mrq, -EINVAL);
368 
369 	if (err)
370 		host->areq = NULL;
371 	else
372 		host->areq = areq;
373 
374 	if (error)
375 		*error = err;
376 	return data;
377 }
378 EXPORT_SYMBOL(mmc_start_req);
379 
380 /**
381  *	mmc_wait_for_req - start a request and wait for completion
382  *	@host: MMC host to start command
383  *	@mrq: MMC request to start
384  *
385  *	Start a new MMC custom command request for a host, and wait
386  *	for the command to complete. Does not attempt to parse the
387  *	response.
388  */
389 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
390 {
391 	__mmc_start_req(host, mrq);
392 	mmc_wait_for_req_done(host, mrq);
393 }
394 EXPORT_SYMBOL(mmc_wait_for_req);
395 
396 /**
397  *	mmc_interrupt_hpi - Issue for High priority Interrupt
398  *	@card: the MMC card associated with the HPI transfer
399  *
400  *	Issued High Priority Interrupt, and check for card status
401  *	util out-of prg-state.
402  */
403 int mmc_interrupt_hpi(struct mmc_card *card)
404 {
405 	int err;
406 	u32 status;
407 
408 	BUG_ON(!card);
409 
410 	if (!card->ext_csd.hpi_en) {
411 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
412 		return 1;
413 	}
414 
415 	mmc_claim_host(card->host);
416 	err = mmc_send_status(card, &status);
417 	if (err) {
418 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
419 		goto out;
420 	}
421 
422 	/*
423 	 * If the card status is in PRG-state, we can send the HPI command.
424 	 */
425 	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
426 		do {
427 			/*
428 			 * We don't know when the HPI command will finish
429 			 * processing, so we need to resend HPI until out
430 			 * of prg-state, and keep checking the card status
431 			 * with SEND_STATUS.  If a timeout error occurs when
432 			 * sending the HPI command, we are already out of
433 			 * prg-state.
434 			 */
435 			err = mmc_send_hpi_cmd(card, &status);
436 			if (err)
437 				pr_debug("%s: abort HPI (%d error)\n",
438 					 mmc_hostname(card->host), err);
439 
440 			err = mmc_send_status(card, &status);
441 			if (err)
442 				break;
443 		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
444 	} else
445 		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
446 
447 out:
448 	mmc_release_host(card->host);
449 	return err;
450 }
451 EXPORT_SYMBOL(mmc_interrupt_hpi);
452 
453 /**
454  *	mmc_wait_for_cmd - start a command and wait for completion
455  *	@host: MMC host to start command
456  *	@cmd: MMC command to start
457  *	@retries: maximum number of retries
458  *
459  *	Start a new MMC command for a host, and wait for the command
460  *	to complete.  Return any error that occurred while the command
461  *	was executing.  Do not attempt to parse the response.
462  */
463 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
464 {
465 	struct mmc_request mrq = {NULL};
466 
467 	WARN_ON(!host->claimed);
468 
469 	memset(cmd->resp, 0, sizeof(cmd->resp));
470 	cmd->retries = retries;
471 
472 	mrq.cmd = cmd;
473 	cmd->data = NULL;
474 
475 	mmc_wait_for_req(host, &mrq);
476 
477 	return cmd->error;
478 }
479 
480 EXPORT_SYMBOL(mmc_wait_for_cmd);
481 
482 /**
483  *	mmc_set_data_timeout - set the timeout for a data command
484  *	@data: data phase for command
485  *	@card: the MMC card associated with the data transfer
486  *
487  *	Computes the data timeout parameters according to the
488  *	correct algorithm given the card type.
489  */
490 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
491 {
492 	unsigned int mult;
493 
494 	/*
495 	 * SDIO cards only define an upper 1 s limit on access.
496 	 */
497 	if (mmc_card_sdio(card)) {
498 		data->timeout_ns = 1000000000;
499 		data->timeout_clks = 0;
500 		return;
501 	}
502 
503 	/*
504 	 * SD cards use a 100 multiplier rather than 10
505 	 */
506 	mult = mmc_card_sd(card) ? 100 : 10;
507 
508 	/*
509 	 * Scale up the multiplier (and therefore the timeout) by
510 	 * the r2w factor for writes.
511 	 */
512 	if (data->flags & MMC_DATA_WRITE)
513 		mult <<= card->csd.r2w_factor;
514 
515 	data->timeout_ns = card->csd.tacc_ns * mult;
516 	data->timeout_clks = card->csd.tacc_clks * mult;
517 
518 	/*
519 	 * SD cards also have an upper limit on the timeout.
520 	 */
521 	if (mmc_card_sd(card)) {
522 		unsigned int timeout_us, limit_us;
523 
524 		timeout_us = data->timeout_ns / 1000;
525 		if (mmc_host_clk_rate(card->host))
526 			timeout_us += data->timeout_clks * 1000 /
527 				(mmc_host_clk_rate(card->host) / 1000);
528 
529 		if (data->flags & MMC_DATA_WRITE)
530 			/*
531 			 * The MMC spec "It is strongly recommended
532 			 * for hosts to implement more than 500ms
533 			 * timeout value even if the card indicates
534 			 * the 250ms maximum busy length."  Even the
535 			 * previous value of 300ms is known to be
536 			 * insufficient for some cards.
537 			 */
538 			limit_us = 3000000;
539 		else
540 			limit_us = 100000;
541 
542 		/*
543 		 * SDHC cards always use these fixed values.
544 		 */
545 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
546 			data->timeout_ns = limit_us * 1000;
547 			data->timeout_clks = 0;
548 		}
549 	}
550 
551 	/*
552 	 * Some cards require longer data read timeout than indicated in CSD.
553 	 * Address this by setting the read timeout to a "reasonably high"
554 	 * value. For the cards tested, 300ms has proven enough. If necessary,
555 	 * this value can be increased if other problematic cards require this.
556 	 */
557 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
558 		data->timeout_ns = 300000000;
559 		data->timeout_clks = 0;
560 	}
561 
562 	/*
563 	 * Some cards need very high timeouts if driven in SPI mode.
564 	 * The worst observed timeout was 900ms after writing a
565 	 * continuous stream of data until the internal logic
566 	 * overflowed.
567 	 */
568 	if (mmc_host_is_spi(card->host)) {
569 		if (data->flags & MMC_DATA_WRITE) {
570 			if (data->timeout_ns < 1000000000)
571 				data->timeout_ns = 1000000000;	/* 1s */
572 		} else {
573 			if (data->timeout_ns < 100000000)
574 				data->timeout_ns =  100000000;	/* 100ms */
575 		}
576 	}
577 }
578 EXPORT_SYMBOL(mmc_set_data_timeout);
579 
580 /**
581  *	mmc_align_data_size - pads a transfer size to a more optimal value
582  *	@card: the MMC card associated with the data transfer
583  *	@sz: original transfer size
584  *
585  *	Pads the original data size with a number of extra bytes in
586  *	order to avoid controller bugs and/or performance hits
587  *	(e.g. some controllers revert to PIO for certain sizes).
588  *
589  *	Returns the improved size, which might be unmodified.
590  *
591  *	Note that this function is only relevant when issuing a
592  *	single scatter gather entry.
593  */
594 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
595 {
596 	/*
597 	 * FIXME: We don't have a system for the controller to tell
598 	 * the core about its problems yet, so for now we just 32-bit
599 	 * align the size.
600 	 */
601 	sz = ((sz + 3) / 4) * 4;
602 
603 	return sz;
604 }
605 EXPORT_SYMBOL(mmc_align_data_size);
606 
607 /**
608  *	__mmc_claim_host - exclusively claim a host
609  *	@host: mmc host to claim
610  *	@abort: whether or not the operation should be aborted
611  *
612  *	Claim a host for a set of operations.  If @abort is non null and
613  *	dereference a non-zero value then this will return prematurely with
614  *	that non-zero value without acquiring the lock.  Returns zero
615  *	with the lock held otherwise.
616  */
617 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
618 {
619 	DECLARE_WAITQUEUE(wait, current);
620 	unsigned long flags;
621 	int stop;
622 
623 	might_sleep();
624 
625 	add_wait_queue(&host->wq, &wait);
626 	spin_lock_irqsave(&host->lock, flags);
627 	while (1) {
628 		set_current_state(TASK_UNINTERRUPTIBLE);
629 		stop = abort ? atomic_read(abort) : 0;
630 		if (stop || !host->claimed || host->claimer == current)
631 			break;
632 		spin_unlock_irqrestore(&host->lock, flags);
633 		schedule();
634 		spin_lock_irqsave(&host->lock, flags);
635 	}
636 	set_current_state(TASK_RUNNING);
637 	if (!stop) {
638 		host->claimed = 1;
639 		host->claimer = current;
640 		host->claim_cnt += 1;
641 	} else
642 		wake_up(&host->wq);
643 	spin_unlock_irqrestore(&host->lock, flags);
644 	remove_wait_queue(&host->wq, &wait);
645 	if (host->ops->enable && !stop && host->claim_cnt == 1)
646 		host->ops->enable(host);
647 	return stop;
648 }
649 
650 EXPORT_SYMBOL(__mmc_claim_host);
651 
652 /**
653  *	mmc_try_claim_host - try exclusively to claim a host
654  *	@host: mmc host to claim
655  *
656  *	Returns %1 if the host is claimed, %0 otherwise.
657  */
658 int mmc_try_claim_host(struct mmc_host *host)
659 {
660 	int claimed_host = 0;
661 	unsigned long flags;
662 
663 	spin_lock_irqsave(&host->lock, flags);
664 	if (!host->claimed || host->claimer == current) {
665 		host->claimed = 1;
666 		host->claimer = current;
667 		host->claim_cnt += 1;
668 		claimed_host = 1;
669 	}
670 	spin_unlock_irqrestore(&host->lock, flags);
671 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
672 		host->ops->enable(host);
673 	return claimed_host;
674 }
675 EXPORT_SYMBOL(mmc_try_claim_host);
676 
677 /**
678  *	mmc_release_host - release a host
679  *	@host: mmc host to release
680  *
681  *	Release a MMC host, allowing others to claim the host
682  *	for their operations.
683  */
684 void mmc_release_host(struct mmc_host *host)
685 {
686 	unsigned long flags;
687 
688 	WARN_ON(!host->claimed);
689 
690 	if (host->ops->disable && host->claim_cnt == 1)
691 		host->ops->disable(host);
692 
693 	spin_lock_irqsave(&host->lock, flags);
694 	if (--host->claim_cnt) {
695 		/* Release for nested claim */
696 		spin_unlock_irqrestore(&host->lock, flags);
697 	} else {
698 		host->claimed = 0;
699 		host->claimer = NULL;
700 		spin_unlock_irqrestore(&host->lock, flags);
701 		wake_up(&host->wq);
702 	}
703 }
704 EXPORT_SYMBOL(mmc_release_host);
705 
706 /*
707  * Internal function that does the actual ios call to the host driver,
708  * optionally printing some debug output.
709  */
710 static inline void mmc_set_ios(struct mmc_host *host)
711 {
712 	struct mmc_ios *ios = &host->ios;
713 
714 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
715 		"width %u timing %u\n",
716 		 mmc_hostname(host), ios->clock, ios->bus_mode,
717 		 ios->power_mode, ios->chip_select, ios->vdd,
718 		 ios->bus_width, ios->timing);
719 
720 	if (ios->clock > 0)
721 		mmc_set_ungated(host);
722 	host->ops->set_ios(host, ios);
723 }
724 
725 /*
726  * Control chip select pin on a host.
727  */
728 void mmc_set_chip_select(struct mmc_host *host, int mode)
729 {
730 	mmc_host_clk_hold(host);
731 	host->ios.chip_select = mode;
732 	mmc_set_ios(host);
733 	mmc_host_clk_release(host);
734 }
735 
736 /*
737  * Sets the host clock to the highest possible frequency that
738  * is below "hz".
739  */
740 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
741 {
742 	WARN_ON(hz < host->f_min);
743 
744 	if (hz > host->f_max)
745 		hz = host->f_max;
746 
747 	host->ios.clock = hz;
748 	mmc_set_ios(host);
749 }
750 
751 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
752 {
753 	mmc_host_clk_hold(host);
754 	__mmc_set_clock(host, hz);
755 	mmc_host_clk_release(host);
756 }
757 
758 #ifdef CONFIG_MMC_CLKGATE
759 /*
760  * This gates the clock by setting it to 0 Hz.
761  */
762 void mmc_gate_clock(struct mmc_host *host)
763 {
764 	unsigned long flags;
765 
766 	spin_lock_irqsave(&host->clk_lock, flags);
767 	host->clk_old = host->ios.clock;
768 	host->ios.clock = 0;
769 	host->clk_gated = true;
770 	spin_unlock_irqrestore(&host->clk_lock, flags);
771 	mmc_set_ios(host);
772 }
773 
774 /*
775  * This restores the clock from gating by using the cached
776  * clock value.
777  */
778 void mmc_ungate_clock(struct mmc_host *host)
779 {
780 	/*
781 	 * We should previously have gated the clock, so the clock shall
782 	 * be 0 here! The clock may however be 0 during initialization,
783 	 * when some request operations are performed before setting
784 	 * the frequency. When ungate is requested in that situation
785 	 * we just ignore the call.
786 	 */
787 	if (host->clk_old) {
788 		BUG_ON(host->ios.clock);
789 		/* This call will also set host->clk_gated to false */
790 		__mmc_set_clock(host, host->clk_old);
791 	}
792 }
793 
794 void mmc_set_ungated(struct mmc_host *host)
795 {
796 	unsigned long flags;
797 
798 	/*
799 	 * We've been given a new frequency while the clock is gated,
800 	 * so make sure we regard this as ungating it.
801 	 */
802 	spin_lock_irqsave(&host->clk_lock, flags);
803 	host->clk_gated = false;
804 	spin_unlock_irqrestore(&host->clk_lock, flags);
805 }
806 
807 #else
808 void mmc_set_ungated(struct mmc_host *host)
809 {
810 }
811 #endif
812 
813 /*
814  * Change the bus mode (open drain/push-pull) of a host.
815  */
816 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
817 {
818 	mmc_host_clk_hold(host);
819 	host->ios.bus_mode = mode;
820 	mmc_set_ios(host);
821 	mmc_host_clk_release(host);
822 }
823 
824 /*
825  * Change data bus width of a host.
826  */
827 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
828 {
829 	mmc_host_clk_hold(host);
830 	host->ios.bus_width = width;
831 	mmc_set_ios(host);
832 	mmc_host_clk_release(host);
833 }
834 
835 /**
836  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
837  * @vdd:	voltage (mV)
838  * @low_bits:	prefer low bits in boundary cases
839  *
840  * This function returns the OCR bit number according to the provided @vdd
841  * value. If conversion is not possible a negative errno value returned.
842  *
843  * Depending on the @low_bits flag the function prefers low or high OCR bits
844  * on boundary voltages. For example,
845  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
846  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
847  *
848  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
849  */
850 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
851 {
852 	const int max_bit = ilog2(MMC_VDD_35_36);
853 	int bit;
854 
855 	if (vdd < 1650 || vdd > 3600)
856 		return -EINVAL;
857 
858 	if (vdd >= 1650 && vdd <= 1950)
859 		return ilog2(MMC_VDD_165_195);
860 
861 	if (low_bits)
862 		vdd -= 1;
863 
864 	/* Base 2000 mV, step 100 mV, bit's base 8. */
865 	bit = (vdd - 2000) / 100 + 8;
866 	if (bit > max_bit)
867 		return max_bit;
868 	return bit;
869 }
870 
871 /**
872  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
873  * @vdd_min:	minimum voltage value (mV)
874  * @vdd_max:	maximum voltage value (mV)
875  *
876  * This function returns the OCR mask bits according to the provided @vdd_min
877  * and @vdd_max values. If conversion is not possible the function returns 0.
878  *
879  * Notes wrt boundary cases:
880  * This function sets the OCR bits for all boundary voltages, for example
881  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
882  * MMC_VDD_34_35 mask.
883  */
884 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
885 {
886 	u32 mask = 0;
887 
888 	if (vdd_max < vdd_min)
889 		return 0;
890 
891 	/* Prefer high bits for the boundary vdd_max values. */
892 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
893 	if (vdd_max < 0)
894 		return 0;
895 
896 	/* Prefer low bits for the boundary vdd_min values. */
897 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
898 	if (vdd_min < 0)
899 		return 0;
900 
901 	/* Fill the mask, from max bit to min bit. */
902 	while (vdd_max >= vdd_min)
903 		mask |= 1 << vdd_max--;
904 
905 	return mask;
906 }
907 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
908 
909 #ifdef CONFIG_REGULATOR
910 
911 /**
912  * mmc_regulator_get_ocrmask - return mask of supported voltages
913  * @supply: regulator to use
914  *
915  * This returns either a negative errno, or a mask of voltages that
916  * can be provided to MMC/SD/SDIO devices using the specified voltage
917  * regulator.  This would normally be called before registering the
918  * MMC host adapter.
919  */
920 int mmc_regulator_get_ocrmask(struct regulator *supply)
921 {
922 	int			result = 0;
923 	int			count;
924 	int			i;
925 
926 	count = regulator_count_voltages(supply);
927 	if (count < 0)
928 		return count;
929 
930 	for (i = 0; i < count; i++) {
931 		int		vdd_uV;
932 		int		vdd_mV;
933 
934 		vdd_uV = regulator_list_voltage(supply, i);
935 		if (vdd_uV <= 0)
936 			continue;
937 
938 		vdd_mV = vdd_uV / 1000;
939 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
940 	}
941 
942 	return result;
943 }
944 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
945 
946 /**
947  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
948  * @mmc: the host to regulate
949  * @supply: regulator to use
950  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
951  *
952  * Returns zero on success, else negative errno.
953  *
954  * MMC host drivers may use this to enable or disable a regulator using
955  * a particular supply voltage.  This would normally be called from the
956  * set_ios() method.
957  */
958 int mmc_regulator_set_ocr(struct mmc_host *mmc,
959 			struct regulator *supply,
960 			unsigned short vdd_bit)
961 {
962 	int			result = 0;
963 	int			min_uV, max_uV;
964 
965 	if (vdd_bit) {
966 		int		tmp;
967 		int		voltage;
968 
969 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
970 		 * bits this regulator doesn't quite support ... don't
971 		 * be too picky, most cards and regulators are OK with
972 		 * a 0.1V range goof (it's a small error percentage).
973 		 */
974 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
975 		if (tmp == 0) {
976 			min_uV = 1650 * 1000;
977 			max_uV = 1950 * 1000;
978 		} else {
979 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
980 			max_uV = min_uV + 100 * 1000;
981 		}
982 
983 		/* avoid needless changes to this voltage; the regulator
984 		 * might not allow this operation
985 		 */
986 		voltage = regulator_get_voltage(supply);
987 
988 		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
989 			min_uV = max_uV = voltage;
990 
991 		if (voltage < 0)
992 			result = voltage;
993 		else if (voltage < min_uV || voltage > max_uV)
994 			result = regulator_set_voltage(supply, min_uV, max_uV);
995 		else
996 			result = 0;
997 
998 		if (result == 0 && !mmc->regulator_enabled) {
999 			result = regulator_enable(supply);
1000 			if (!result)
1001 				mmc->regulator_enabled = true;
1002 		}
1003 	} else if (mmc->regulator_enabled) {
1004 		result = regulator_disable(supply);
1005 		if (result == 0)
1006 			mmc->regulator_enabled = false;
1007 	}
1008 
1009 	if (result)
1010 		dev_err(mmc_dev(mmc),
1011 			"could not set regulator OCR (%d)\n", result);
1012 	return result;
1013 }
1014 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1015 
1016 #endif /* CONFIG_REGULATOR */
1017 
1018 /*
1019  * Mask off any voltages we don't support and select
1020  * the lowest voltage
1021  */
1022 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1023 {
1024 	int bit;
1025 
1026 	ocr &= host->ocr_avail;
1027 
1028 	bit = ffs(ocr);
1029 	if (bit) {
1030 		bit -= 1;
1031 
1032 		ocr &= 3 << bit;
1033 
1034 		mmc_host_clk_hold(host);
1035 		host->ios.vdd = bit;
1036 		mmc_set_ios(host);
1037 		mmc_host_clk_release(host);
1038 	} else {
1039 		pr_warning("%s: host doesn't support card's voltages\n",
1040 				mmc_hostname(host));
1041 		ocr = 0;
1042 	}
1043 
1044 	return ocr;
1045 }
1046 
1047 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1048 {
1049 	struct mmc_command cmd = {0};
1050 	int err = 0;
1051 
1052 	BUG_ON(!host);
1053 
1054 	/*
1055 	 * Send CMD11 only if the request is to switch the card to
1056 	 * 1.8V signalling.
1057 	 */
1058 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1059 		cmd.opcode = SD_SWITCH_VOLTAGE;
1060 		cmd.arg = 0;
1061 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1062 
1063 		err = mmc_wait_for_cmd(host, &cmd, 0);
1064 		if (err)
1065 			return err;
1066 
1067 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1068 			return -EIO;
1069 	}
1070 
1071 	host->ios.signal_voltage = signal_voltage;
1072 
1073 	if (host->ops->start_signal_voltage_switch) {
1074 		mmc_host_clk_hold(host);
1075 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1076 		mmc_host_clk_release(host);
1077 	}
1078 
1079 	return err;
1080 }
1081 
1082 /*
1083  * Select timing parameters for host.
1084  */
1085 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1086 {
1087 	mmc_host_clk_hold(host);
1088 	host->ios.timing = timing;
1089 	mmc_set_ios(host);
1090 	mmc_host_clk_release(host);
1091 }
1092 
1093 /*
1094  * Select appropriate driver type for host.
1095  */
1096 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1097 {
1098 	mmc_host_clk_hold(host);
1099 	host->ios.drv_type = drv_type;
1100 	mmc_set_ios(host);
1101 	mmc_host_clk_release(host);
1102 }
1103 
1104 static void mmc_poweroff_notify(struct mmc_host *host)
1105 {
1106 	struct mmc_card *card;
1107 	unsigned int timeout;
1108 	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1109 	int err = 0;
1110 
1111 	card = host->card;
1112 	mmc_claim_host(host);
1113 
1114 	/*
1115 	 * Send power notify command only if card
1116 	 * is mmc and notify state is powered ON
1117 	 */
1118 	if (card && mmc_card_mmc(card) &&
1119 	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1120 
1121 		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1122 			notify_type = EXT_CSD_POWER_OFF_SHORT;
1123 			timeout = card->ext_csd.generic_cmd6_time;
1124 			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1125 		} else {
1126 			notify_type = EXT_CSD_POWER_OFF_LONG;
1127 			timeout = card->ext_csd.power_off_longtime;
1128 			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1129 		}
1130 
1131 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1132 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1133 				 notify_type, timeout);
1134 
1135 		if (err && err != -EBADMSG)
1136 			pr_err("Device failed to respond within %d poweroff "
1137 			       "time. Forcefully powering down the device\n",
1138 			       timeout);
1139 
1140 		/* Set the card state to no notification after the poweroff */
1141 		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1142 	}
1143 	mmc_release_host(host);
1144 }
1145 
1146 /*
1147  * Apply power to the MMC stack.  This is a two-stage process.
1148  * First, we enable power to the card without the clock running.
1149  * We then wait a bit for the power to stabilise.  Finally,
1150  * enable the bus drivers and clock to the card.
1151  *
1152  * We must _NOT_ enable the clock prior to power stablising.
1153  *
1154  * If a host does all the power sequencing itself, ignore the
1155  * initial MMC_POWER_UP stage.
1156  */
1157 static void mmc_power_up(struct mmc_host *host)
1158 {
1159 	int bit;
1160 
1161 	if (host->ios.power_mode == MMC_POWER_ON)
1162 		return;
1163 
1164 	mmc_host_clk_hold(host);
1165 
1166 	/* If ocr is set, we use it */
1167 	if (host->ocr)
1168 		bit = ffs(host->ocr) - 1;
1169 	else
1170 		bit = fls(host->ocr_avail) - 1;
1171 
1172 	host->ios.vdd = bit;
1173 	if (mmc_host_is_spi(host))
1174 		host->ios.chip_select = MMC_CS_HIGH;
1175 	else
1176 		host->ios.chip_select = MMC_CS_DONTCARE;
1177 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1178 	host->ios.power_mode = MMC_POWER_UP;
1179 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1180 	host->ios.timing = MMC_TIMING_LEGACY;
1181 	mmc_set_ios(host);
1182 
1183 	/*
1184 	 * This delay should be sufficient to allow the power supply
1185 	 * to reach the minimum voltage.
1186 	 */
1187 	mmc_delay(10);
1188 
1189 	host->ios.clock = host->f_init;
1190 
1191 	host->ios.power_mode = MMC_POWER_ON;
1192 	mmc_set_ios(host);
1193 
1194 	/*
1195 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1196 	 * time required to reach a stable voltage.
1197 	 */
1198 	mmc_delay(10);
1199 
1200 	mmc_host_clk_release(host);
1201 }
1202 
1203 void mmc_power_off(struct mmc_host *host)
1204 {
1205 	int err = 0;
1206 
1207 	if (host->ios.power_mode == MMC_POWER_OFF)
1208 		return;
1209 
1210 	mmc_host_clk_hold(host);
1211 
1212 	host->ios.clock = 0;
1213 	host->ios.vdd = 0;
1214 
1215 	/*
1216 	 * For eMMC 4.5 device send AWAKE command before
1217 	 * POWER_OFF_NOTIFY command, because in sleep state
1218 	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1219 	 */
1220 	if (host->card && mmc_card_is_sleep(host->card) &&
1221 	    host->bus_ops->resume) {
1222 		err = host->bus_ops->resume(host);
1223 
1224 		if (!err)
1225 			mmc_poweroff_notify(host);
1226 		else
1227 			pr_warning("%s: error %d during resume "
1228 				   "(continue with poweroff sequence)\n",
1229 				   mmc_hostname(host), err);
1230 	}
1231 
1232 	/*
1233 	 * Reset ocr mask to be the highest possible voltage supported for
1234 	 * this mmc host. This value will be used at next power up.
1235 	 */
1236 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1237 
1238 	if (!mmc_host_is_spi(host)) {
1239 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1240 		host->ios.chip_select = MMC_CS_DONTCARE;
1241 	}
1242 	host->ios.power_mode = MMC_POWER_OFF;
1243 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1244 	host->ios.timing = MMC_TIMING_LEGACY;
1245 	mmc_set_ios(host);
1246 
1247 	/*
1248 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1249 	 * XO-1.5, require a short delay after poweroff before the card
1250 	 * can be successfully turned on again.
1251 	 */
1252 	mmc_delay(1);
1253 
1254 	mmc_host_clk_release(host);
1255 }
1256 
1257 /*
1258  * Cleanup when the last reference to the bus operator is dropped.
1259  */
1260 static void __mmc_release_bus(struct mmc_host *host)
1261 {
1262 	BUG_ON(!host);
1263 	BUG_ON(host->bus_refs);
1264 	BUG_ON(!host->bus_dead);
1265 
1266 	host->bus_ops = NULL;
1267 }
1268 
1269 /*
1270  * Increase reference count of bus operator
1271  */
1272 static inline void mmc_bus_get(struct mmc_host *host)
1273 {
1274 	unsigned long flags;
1275 
1276 	spin_lock_irqsave(&host->lock, flags);
1277 	host->bus_refs++;
1278 	spin_unlock_irqrestore(&host->lock, flags);
1279 }
1280 
1281 /*
1282  * Decrease reference count of bus operator and free it if
1283  * it is the last reference.
1284  */
1285 static inline void mmc_bus_put(struct mmc_host *host)
1286 {
1287 	unsigned long flags;
1288 
1289 	spin_lock_irqsave(&host->lock, flags);
1290 	host->bus_refs--;
1291 	if ((host->bus_refs == 0) && host->bus_ops)
1292 		__mmc_release_bus(host);
1293 	spin_unlock_irqrestore(&host->lock, flags);
1294 }
1295 
1296 /*
1297  * Assign a mmc bus handler to a host. Only one bus handler may control a
1298  * host at any given time.
1299  */
1300 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1301 {
1302 	unsigned long flags;
1303 
1304 	BUG_ON(!host);
1305 	BUG_ON(!ops);
1306 
1307 	WARN_ON(!host->claimed);
1308 
1309 	spin_lock_irqsave(&host->lock, flags);
1310 
1311 	BUG_ON(host->bus_ops);
1312 	BUG_ON(host->bus_refs);
1313 
1314 	host->bus_ops = ops;
1315 	host->bus_refs = 1;
1316 	host->bus_dead = 0;
1317 
1318 	spin_unlock_irqrestore(&host->lock, flags);
1319 }
1320 
1321 /*
1322  * Remove the current bus handler from a host.
1323  */
1324 void mmc_detach_bus(struct mmc_host *host)
1325 {
1326 	unsigned long flags;
1327 
1328 	BUG_ON(!host);
1329 
1330 	WARN_ON(!host->claimed);
1331 	WARN_ON(!host->bus_ops);
1332 
1333 	spin_lock_irqsave(&host->lock, flags);
1334 
1335 	host->bus_dead = 1;
1336 
1337 	spin_unlock_irqrestore(&host->lock, flags);
1338 
1339 	mmc_bus_put(host);
1340 }
1341 
1342 /**
1343  *	mmc_detect_change - process change of state on a MMC socket
1344  *	@host: host which changed state.
1345  *	@delay: optional delay to wait before detection (jiffies)
1346  *
1347  *	MMC drivers should call this when they detect a card has been
1348  *	inserted or removed. The MMC layer will confirm that any
1349  *	present card is still functional, and initialize any newly
1350  *	inserted.
1351  */
1352 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1353 {
1354 #ifdef CONFIG_MMC_DEBUG
1355 	unsigned long flags;
1356 	spin_lock_irqsave(&host->lock, flags);
1357 	WARN_ON(host->removed);
1358 	spin_unlock_irqrestore(&host->lock, flags);
1359 #endif
1360 	host->detect_change = 1;
1361 	mmc_schedule_delayed_work(&host->detect, delay);
1362 }
1363 
1364 EXPORT_SYMBOL(mmc_detect_change);
1365 
1366 void mmc_init_erase(struct mmc_card *card)
1367 {
1368 	unsigned int sz;
1369 
1370 	if (is_power_of_2(card->erase_size))
1371 		card->erase_shift = ffs(card->erase_size) - 1;
1372 	else
1373 		card->erase_shift = 0;
1374 
1375 	/*
1376 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1377 	 * card.  That is not desirable because it can take a long time
1378 	 * (minutes) potentially delaying more important I/O, and also the
1379 	 * timeout calculations become increasingly hugely over-estimated.
1380 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1381 	 * to that size and alignment.
1382 	 *
1383 	 * For SD cards that define Allocation Unit size, limit erases to one
1384 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1385 	 * Erase Size, whether it is switched on or not, limit to that size.
1386 	 * Otherwise just have a stab at a good value.  For modern cards it
1387 	 * will end up being 4MiB.  Note that if the value is too small, it
1388 	 * can end up taking longer to erase.
1389 	 */
1390 	if (mmc_card_sd(card) && card->ssr.au) {
1391 		card->pref_erase = card->ssr.au;
1392 		card->erase_shift = ffs(card->ssr.au) - 1;
1393 	} else if (card->ext_csd.hc_erase_size) {
1394 		card->pref_erase = card->ext_csd.hc_erase_size;
1395 	} else {
1396 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1397 		if (sz < 128)
1398 			card->pref_erase = 512 * 1024 / 512;
1399 		else if (sz < 512)
1400 			card->pref_erase = 1024 * 1024 / 512;
1401 		else if (sz < 1024)
1402 			card->pref_erase = 2 * 1024 * 1024 / 512;
1403 		else
1404 			card->pref_erase = 4 * 1024 * 1024 / 512;
1405 		if (card->pref_erase < card->erase_size)
1406 			card->pref_erase = card->erase_size;
1407 		else {
1408 			sz = card->pref_erase % card->erase_size;
1409 			if (sz)
1410 				card->pref_erase += card->erase_size - sz;
1411 		}
1412 	}
1413 }
1414 
1415 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1416 				          unsigned int arg, unsigned int qty)
1417 {
1418 	unsigned int erase_timeout;
1419 
1420 	if (arg == MMC_DISCARD_ARG ||
1421 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1422 		erase_timeout = card->ext_csd.trim_timeout;
1423 	} else if (card->ext_csd.erase_group_def & 1) {
1424 		/* High Capacity Erase Group Size uses HC timeouts */
1425 		if (arg == MMC_TRIM_ARG)
1426 			erase_timeout = card->ext_csd.trim_timeout;
1427 		else
1428 			erase_timeout = card->ext_csd.hc_erase_timeout;
1429 	} else {
1430 		/* CSD Erase Group Size uses write timeout */
1431 		unsigned int mult = (10 << card->csd.r2w_factor);
1432 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1433 		unsigned int timeout_us;
1434 
1435 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1436 		if (card->csd.tacc_ns < 1000000)
1437 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1438 		else
1439 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1440 
1441 		/*
1442 		 * ios.clock is only a target.  The real clock rate might be
1443 		 * less but not that much less, so fudge it by multiplying by 2.
1444 		 */
1445 		timeout_clks <<= 1;
1446 		timeout_us += (timeout_clks * 1000) /
1447 			      (mmc_host_clk_rate(card->host) / 1000);
1448 
1449 		erase_timeout = timeout_us / 1000;
1450 
1451 		/*
1452 		 * Theoretically, the calculation could underflow so round up
1453 		 * to 1ms in that case.
1454 		 */
1455 		if (!erase_timeout)
1456 			erase_timeout = 1;
1457 	}
1458 
1459 	/* Multiplier for secure operations */
1460 	if (arg & MMC_SECURE_ARGS) {
1461 		if (arg == MMC_SECURE_ERASE_ARG)
1462 			erase_timeout *= card->ext_csd.sec_erase_mult;
1463 		else
1464 			erase_timeout *= card->ext_csd.sec_trim_mult;
1465 	}
1466 
1467 	erase_timeout *= qty;
1468 
1469 	/*
1470 	 * Ensure at least a 1 second timeout for SPI as per
1471 	 * 'mmc_set_data_timeout()'
1472 	 */
1473 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1474 		erase_timeout = 1000;
1475 
1476 	return erase_timeout;
1477 }
1478 
1479 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1480 					 unsigned int arg,
1481 					 unsigned int qty)
1482 {
1483 	unsigned int erase_timeout;
1484 
1485 	if (card->ssr.erase_timeout) {
1486 		/* Erase timeout specified in SD Status Register (SSR) */
1487 		erase_timeout = card->ssr.erase_timeout * qty +
1488 				card->ssr.erase_offset;
1489 	} else {
1490 		/*
1491 		 * Erase timeout not specified in SD Status Register (SSR) so
1492 		 * use 250ms per write block.
1493 		 */
1494 		erase_timeout = 250 * qty;
1495 	}
1496 
1497 	/* Must not be less than 1 second */
1498 	if (erase_timeout < 1000)
1499 		erase_timeout = 1000;
1500 
1501 	return erase_timeout;
1502 }
1503 
1504 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1505 				      unsigned int arg,
1506 				      unsigned int qty)
1507 {
1508 	if (mmc_card_sd(card))
1509 		return mmc_sd_erase_timeout(card, arg, qty);
1510 	else
1511 		return mmc_mmc_erase_timeout(card, arg, qty);
1512 }
1513 
1514 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1515 			unsigned int to, unsigned int arg)
1516 {
1517 	struct mmc_command cmd = {0};
1518 	unsigned int qty = 0;
1519 	int err;
1520 
1521 	/*
1522 	 * qty is used to calculate the erase timeout which depends on how many
1523 	 * erase groups (or allocation units in SD terminology) are affected.
1524 	 * We count erasing part of an erase group as one erase group.
1525 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1526 	 * erase group size is almost certainly also power of 2, but it does not
1527 	 * seem to insist on that in the JEDEC standard, so we fall back to
1528 	 * division in that case.  SD may not specify an allocation unit size,
1529 	 * in which case the timeout is based on the number of write blocks.
1530 	 *
1531 	 * Note that the timeout for secure trim 2 will only be correct if the
1532 	 * number of erase groups specified is the same as the total of all
1533 	 * preceding secure trim 1 commands.  Since the power may have been
1534 	 * lost since the secure trim 1 commands occurred, it is generally
1535 	 * impossible to calculate the secure trim 2 timeout correctly.
1536 	 */
1537 	if (card->erase_shift)
1538 		qty += ((to >> card->erase_shift) -
1539 			(from >> card->erase_shift)) + 1;
1540 	else if (mmc_card_sd(card))
1541 		qty += to - from + 1;
1542 	else
1543 		qty += ((to / card->erase_size) -
1544 			(from / card->erase_size)) + 1;
1545 
1546 	if (!mmc_card_blockaddr(card)) {
1547 		from <<= 9;
1548 		to <<= 9;
1549 	}
1550 
1551 	if (mmc_card_sd(card))
1552 		cmd.opcode = SD_ERASE_WR_BLK_START;
1553 	else
1554 		cmd.opcode = MMC_ERASE_GROUP_START;
1555 	cmd.arg = from;
1556 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1557 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1558 	if (err) {
1559 		pr_err("mmc_erase: group start error %d, "
1560 		       "status %#x\n", err, cmd.resp[0]);
1561 		err = -EIO;
1562 		goto out;
1563 	}
1564 
1565 	memset(&cmd, 0, sizeof(struct mmc_command));
1566 	if (mmc_card_sd(card))
1567 		cmd.opcode = SD_ERASE_WR_BLK_END;
1568 	else
1569 		cmd.opcode = MMC_ERASE_GROUP_END;
1570 	cmd.arg = to;
1571 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1572 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1573 	if (err) {
1574 		pr_err("mmc_erase: group end error %d, status %#x\n",
1575 		       err, cmd.resp[0]);
1576 		err = -EIO;
1577 		goto out;
1578 	}
1579 
1580 	memset(&cmd, 0, sizeof(struct mmc_command));
1581 	cmd.opcode = MMC_ERASE;
1582 	cmd.arg = arg;
1583 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1584 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1585 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1586 	if (err) {
1587 		pr_err("mmc_erase: erase error %d, status %#x\n",
1588 		       err, cmd.resp[0]);
1589 		err = -EIO;
1590 		goto out;
1591 	}
1592 
1593 	if (mmc_host_is_spi(card->host))
1594 		goto out;
1595 
1596 	do {
1597 		memset(&cmd, 0, sizeof(struct mmc_command));
1598 		cmd.opcode = MMC_SEND_STATUS;
1599 		cmd.arg = card->rca << 16;
1600 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1601 		/* Do not retry else we can't see errors */
1602 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1603 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1604 			pr_err("error %d requesting status %#x\n",
1605 				err, cmd.resp[0]);
1606 			err = -EIO;
1607 			goto out;
1608 		}
1609 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1610 		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1611 out:
1612 	return err;
1613 }
1614 
1615 /**
1616  * mmc_erase - erase sectors.
1617  * @card: card to erase
1618  * @from: first sector to erase
1619  * @nr: number of sectors to erase
1620  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1621  *
1622  * Caller must claim host before calling this function.
1623  */
1624 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1625 	      unsigned int arg)
1626 {
1627 	unsigned int rem, to = from + nr;
1628 
1629 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1630 	    !(card->csd.cmdclass & CCC_ERASE))
1631 		return -EOPNOTSUPP;
1632 
1633 	if (!card->erase_size)
1634 		return -EOPNOTSUPP;
1635 
1636 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1637 		return -EOPNOTSUPP;
1638 
1639 	if ((arg & MMC_SECURE_ARGS) &&
1640 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1641 		return -EOPNOTSUPP;
1642 
1643 	if ((arg & MMC_TRIM_ARGS) &&
1644 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1645 		return -EOPNOTSUPP;
1646 
1647 	if (arg == MMC_SECURE_ERASE_ARG) {
1648 		if (from % card->erase_size || nr % card->erase_size)
1649 			return -EINVAL;
1650 	}
1651 
1652 	if (arg == MMC_ERASE_ARG) {
1653 		rem = from % card->erase_size;
1654 		if (rem) {
1655 			rem = card->erase_size - rem;
1656 			from += rem;
1657 			if (nr > rem)
1658 				nr -= rem;
1659 			else
1660 				return 0;
1661 		}
1662 		rem = nr % card->erase_size;
1663 		if (rem)
1664 			nr -= rem;
1665 	}
1666 
1667 	if (nr == 0)
1668 		return 0;
1669 
1670 	to = from + nr;
1671 
1672 	if (to <= from)
1673 		return -EINVAL;
1674 
1675 	/* 'from' and 'to' are inclusive */
1676 	to -= 1;
1677 
1678 	return mmc_do_erase(card, from, to, arg);
1679 }
1680 EXPORT_SYMBOL(mmc_erase);
1681 
1682 int mmc_can_erase(struct mmc_card *card)
1683 {
1684 	if ((card->host->caps & MMC_CAP_ERASE) &&
1685 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1686 		return 1;
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(mmc_can_erase);
1690 
1691 int mmc_can_trim(struct mmc_card *card)
1692 {
1693 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1694 		return 1;
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL(mmc_can_trim);
1698 
1699 int mmc_can_discard(struct mmc_card *card)
1700 {
1701 	/*
1702 	 * As there's no way to detect the discard support bit at v4.5
1703 	 * use the s/w feature support filed.
1704 	 */
1705 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1706 		return 1;
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(mmc_can_discard);
1710 
1711 int mmc_can_sanitize(struct mmc_card *card)
1712 {
1713 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1714 		return 0;
1715 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1716 		return 1;
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL(mmc_can_sanitize);
1720 
1721 int mmc_can_secure_erase_trim(struct mmc_card *card)
1722 {
1723 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1724 		return 1;
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1728 
1729 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1730 			    unsigned int nr)
1731 {
1732 	if (!card->erase_size)
1733 		return 0;
1734 	if (from % card->erase_size || nr % card->erase_size)
1735 		return 0;
1736 	return 1;
1737 }
1738 EXPORT_SYMBOL(mmc_erase_group_aligned);
1739 
1740 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1741 					    unsigned int arg)
1742 {
1743 	struct mmc_host *host = card->host;
1744 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1745 	unsigned int last_timeout = 0;
1746 
1747 	if (card->erase_shift)
1748 		max_qty = UINT_MAX >> card->erase_shift;
1749 	else if (mmc_card_sd(card))
1750 		max_qty = UINT_MAX;
1751 	else
1752 		max_qty = UINT_MAX / card->erase_size;
1753 
1754 	/* Find the largest qty with an OK timeout */
1755 	do {
1756 		y = 0;
1757 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1758 			timeout = mmc_erase_timeout(card, arg, qty + x);
1759 			if (timeout > host->max_discard_to)
1760 				break;
1761 			if (timeout < last_timeout)
1762 				break;
1763 			last_timeout = timeout;
1764 			y = x;
1765 		}
1766 		qty += y;
1767 	} while (y);
1768 
1769 	if (!qty)
1770 		return 0;
1771 
1772 	if (qty == 1)
1773 		return 1;
1774 
1775 	/* Convert qty to sectors */
1776 	if (card->erase_shift)
1777 		max_discard = --qty << card->erase_shift;
1778 	else if (mmc_card_sd(card))
1779 		max_discard = qty;
1780 	else
1781 		max_discard = --qty * card->erase_size;
1782 
1783 	return max_discard;
1784 }
1785 
1786 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1787 {
1788 	struct mmc_host *host = card->host;
1789 	unsigned int max_discard, max_trim;
1790 
1791 	if (!host->max_discard_to)
1792 		return UINT_MAX;
1793 
1794 	/*
1795 	 * Without erase_group_def set, MMC erase timeout depends on clock
1796 	 * frequence which can change.  In that case, the best choice is
1797 	 * just the preferred erase size.
1798 	 */
1799 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1800 		return card->pref_erase;
1801 
1802 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1803 	if (mmc_can_trim(card)) {
1804 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1805 		if (max_trim < max_discard)
1806 			max_discard = max_trim;
1807 	} else if (max_discard < card->erase_size) {
1808 		max_discard = 0;
1809 	}
1810 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1811 		 mmc_hostname(host), max_discard, host->max_discard_to);
1812 	return max_discard;
1813 }
1814 EXPORT_SYMBOL(mmc_calc_max_discard);
1815 
1816 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1817 {
1818 	struct mmc_command cmd = {0};
1819 
1820 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1821 		return 0;
1822 
1823 	cmd.opcode = MMC_SET_BLOCKLEN;
1824 	cmd.arg = blocklen;
1825 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1826 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1827 }
1828 EXPORT_SYMBOL(mmc_set_blocklen);
1829 
1830 static void mmc_hw_reset_for_init(struct mmc_host *host)
1831 {
1832 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1833 		return;
1834 	mmc_host_clk_hold(host);
1835 	host->ops->hw_reset(host);
1836 	mmc_host_clk_release(host);
1837 }
1838 
1839 int mmc_can_reset(struct mmc_card *card)
1840 {
1841 	u8 rst_n_function;
1842 
1843 	if (!mmc_card_mmc(card))
1844 		return 0;
1845 	rst_n_function = card->ext_csd.rst_n_function;
1846 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1847 		return 0;
1848 	return 1;
1849 }
1850 EXPORT_SYMBOL(mmc_can_reset);
1851 
1852 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1853 {
1854 	struct mmc_card *card = host->card;
1855 
1856 	if (!host->bus_ops->power_restore)
1857 		return -EOPNOTSUPP;
1858 
1859 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1860 		return -EOPNOTSUPP;
1861 
1862 	if (!card)
1863 		return -EINVAL;
1864 
1865 	if (!mmc_can_reset(card))
1866 		return -EOPNOTSUPP;
1867 
1868 	mmc_host_clk_hold(host);
1869 	mmc_set_clock(host, host->f_init);
1870 
1871 	host->ops->hw_reset(host);
1872 
1873 	/* If the reset has happened, then a status command will fail */
1874 	if (check) {
1875 		struct mmc_command cmd = {0};
1876 		int err;
1877 
1878 		cmd.opcode = MMC_SEND_STATUS;
1879 		if (!mmc_host_is_spi(card->host))
1880 			cmd.arg = card->rca << 16;
1881 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1882 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1883 		if (!err) {
1884 			mmc_host_clk_release(host);
1885 			return -ENOSYS;
1886 		}
1887 	}
1888 
1889 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1890 	if (mmc_host_is_spi(host)) {
1891 		host->ios.chip_select = MMC_CS_HIGH;
1892 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1893 	} else {
1894 		host->ios.chip_select = MMC_CS_DONTCARE;
1895 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1896 	}
1897 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1898 	host->ios.timing = MMC_TIMING_LEGACY;
1899 	mmc_set_ios(host);
1900 
1901 	mmc_host_clk_release(host);
1902 
1903 	return host->bus_ops->power_restore(host);
1904 }
1905 
1906 int mmc_hw_reset(struct mmc_host *host)
1907 {
1908 	return mmc_do_hw_reset(host, 0);
1909 }
1910 EXPORT_SYMBOL(mmc_hw_reset);
1911 
1912 int mmc_hw_reset_check(struct mmc_host *host)
1913 {
1914 	return mmc_do_hw_reset(host, 1);
1915 }
1916 EXPORT_SYMBOL(mmc_hw_reset_check);
1917 
1918 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1919 {
1920 	host->f_init = freq;
1921 
1922 #ifdef CONFIG_MMC_DEBUG
1923 	pr_info("%s: %s: trying to init card at %u Hz\n",
1924 		mmc_hostname(host), __func__, host->f_init);
1925 #endif
1926 	mmc_power_up(host);
1927 
1928 	/*
1929 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1930 	 * do a hardware reset if possible.
1931 	 */
1932 	mmc_hw_reset_for_init(host);
1933 
1934 	/* Initialization should be done at 3.3 V I/O voltage. */
1935 	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1936 
1937 	/*
1938 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1939 	 * if the card is being re-initialized, just send it.  CMD52
1940 	 * should be ignored by SD/eMMC cards.
1941 	 */
1942 	sdio_reset(host);
1943 	mmc_go_idle(host);
1944 
1945 	mmc_send_if_cond(host, host->ocr_avail);
1946 
1947 	/* Order's important: probe SDIO, then SD, then MMC */
1948 	if (!mmc_attach_sdio(host))
1949 		return 0;
1950 	if (!mmc_attach_sd(host))
1951 		return 0;
1952 	if (!mmc_attach_mmc(host))
1953 		return 0;
1954 
1955 	mmc_power_off(host);
1956 	return -EIO;
1957 }
1958 
1959 int _mmc_detect_card_removed(struct mmc_host *host)
1960 {
1961 	int ret;
1962 
1963 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1964 		return 0;
1965 
1966 	if (!host->card || mmc_card_removed(host->card))
1967 		return 1;
1968 
1969 	ret = host->bus_ops->alive(host);
1970 	if (ret) {
1971 		mmc_card_set_removed(host->card);
1972 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 int mmc_detect_card_removed(struct mmc_host *host)
1979 {
1980 	struct mmc_card *card = host->card;
1981 	int ret;
1982 
1983 	WARN_ON(!host->claimed);
1984 
1985 	if (!card)
1986 		return 1;
1987 
1988 	ret = mmc_card_removed(card);
1989 	/*
1990 	 * The card will be considered unchanged unless we have been asked to
1991 	 * detect a change or host requires polling to provide card detection.
1992 	 */
1993 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1994 	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1995 		return ret;
1996 
1997 	host->detect_change = 0;
1998 	if (!ret) {
1999 		ret = _mmc_detect_card_removed(host);
2000 		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2001 			/*
2002 			 * Schedule a detect work as soon as possible to let a
2003 			 * rescan handle the card removal.
2004 			 */
2005 			cancel_delayed_work(&host->detect);
2006 			mmc_detect_change(host, 0);
2007 		}
2008 	}
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL(mmc_detect_card_removed);
2013 
2014 void mmc_rescan(struct work_struct *work)
2015 {
2016 	struct mmc_host *host =
2017 		container_of(work, struct mmc_host, detect.work);
2018 	int i;
2019 
2020 	if (host->rescan_disable)
2021 		return;
2022 
2023 	mmc_bus_get(host);
2024 
2025 	/*
2026 	 * if there is a _removable_ card registered, check whether it is
2027 	 * still present
2028 	 */
2029 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2030 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2031 		host->bus_ops->detect(host);
2032 
2033 	host->detect_change = 0;
2034 
2035 	/*
2036 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2037 	 * the card is no longer present.
2038 	 */
2039 	mmc_bus_put(host);
2040 	mmc_bus_get(host);
2041 
2042 	/* if there still is a card present, stop here */
2043 	if (host->bus_ops != NULL) {
2044 		mmc_bus_put(host);
2045 		goto out;
2046 	}
2047 
2048 	/*
2049 	 * Only we can add a new handler, so it's safe to
2050 	 * release the lock here.
2051 	 */
2052 	mmc_bus_put(host);
2053 
2054 	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2055 		mmc_claim_host(host);
2056 		mmc_power_off(host);
2057 		mmc_release_host(host);
2058 		goto out;
2059 	}
2060 
2061 	mmc_claim_host(host);
2062 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2063 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2064 			break;
2065 		if (freqs[i] <= host->f_min)
2066 			break;
2067 	}
2068 	mmc_release_host(host);
2069 
2070  out:
2071 	if (host->caps & MMC_CAP_NEEDS_POLL)
2072 		mmc_schedule_delayed_work(&host->detect, HZ);
2073 }
2074 
2075 void mmc_start_host(struct mmc_host *host)
2076 {
2077 	host->f_init = max(freqs[0], host->f_min);
2078 	mmc_power_up(host);
2079 	mmc_detect_change(host, 0);
2080 }
2081 
2082 void mmc_stop_host(struct mmc_host *host)
2083 {
2084 #ifdef CONFIG_MMC_DEBUG
2085 	unsigned long flags;
2086 	spin_lock_irqsave(&host->lock, flags);
2087 	host->removed = 1;
2088 	spin_unlock_irqrestore(&host->lock, flags);
2089 #endif
2090 
2091 	cancel_delayed_work_sync(&host->detect);
2092 	mmc_flush_scheduled_work();
2093 
2094 	/* clear pm flags now and let card drivers set them as needed */
2095 	host->pm_flags = 0;
2096 
2097 	mmc_bus_get(host);
2098 	if (host->bus_ops && !host->bus_dead) {
2099 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2100 		if (host->bus_ops->remove)
2101 			host->bus_ops->remove(host);
2102 
2103 		mmc_claim_host(host);
2104 		mmc_detach_bus(host);
2105 		mmc_power_off(host);
2106 		mmc_release_host(host);
2107 		mmc_bus_put(host);
2108 		return;
2109 	}
2110 	mmc_bus_put(host);
2111 
2112 	BUG_ON(host->card);
2113 
2114 	mmc_power_off(host);
2115 }
2116 
2117 int mmc_power_save_host(struct mmc_host *host)
2118 {
2119 	int ret = 0;
2120 
2121 #ifdef CONFIG_MMC_DEBUG
2122 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2123 #endif
2124 
2125 	mmc_bus_get(host);
2126 
2127 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2128 		mmc_bus_put(host);
2129 		return -EINVAL;
2130 	}
2131 
2132 	if (host->bus_ops->power_save)
2133 		ret = host->bus_ops->power_save(host);
2134 
2135 	mmc_bus_put(host);
2136 
2137 	mmc_power_off(host);
2138 
2139 	return ret;
2140 }
2141 EXPORT_SYMBOL(mmc_power_save_host);
2142 
2143 int mmc_power_restore_host(struct mmc_host *host)
2144 {
2145 	int ret;
2146 
2147 #ifdef CONFIG_MMC_DEBUG
2148 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2149 #endif
2150 
2151 	mmc_bus_get(host);
2152 
2153 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2154 		mmc_bus_put(host);
2155 		return -EINVAL;
2156 	}
2157 
2158 	mmc_power_up(host);
2159 	ret = host->bus_ops->power_restore(host);
2160 
2161 	mmc_bus_put(host);
2162 
2163 	return ret;
2164 }
2165 EXPORT_SYMBOL(mmc_power_restore_host);
2166 
2167 int mmc_card_awake(struct mmc_host *host)
2168 {
2169 	int err = -ENOSYS;
2170 
2171 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2172 		return 0;
2173 
2174 	mmc_bus_get(host);
2175 
2176 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2177 		err = host->bus_ops->awake(host);
2178 
2179 	mmc_bus_put(host);
2180 
2181 	return err;
2182 }
2183 EXPORT_SYMBOL(mmc_card_awake);
2184 
2185 int mmc_card_sleep(struct mmc_host *host)
2186 {
2187 	int err = -ENOSYS;
2188 
2189 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2190 		return 0;
2191 
2192 	mmc_bus_get(host);
2193 
2194 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2195 		err = host->bus_ops->sleep(host);
2196 
2197 	mmc_bus_put(host);
2198 
2199 	return err;
2200 }
2201 EXPORT_SYMBOL(mmc_card_sleep);
2202 
2203 int mmc_card_can_sleep(struct mmc_host *host)
2204 {
2205 	struct mmc_card *card = host->card;
2206 
2207 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2208 		return 1;
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL(mmc_card_can_sleep);
2212 
2213 /*
2214  * Flush the cache to the non-volatile storage.
2215  */
2216 int mmc_flush_cache(struct mmc_card *card)
2217 {
2218 	struct mmc_host *host = card->host;
2219 	int err = 0;
2220 
2221 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2222 		return err;
2223 
2224 	if (mmc_card_mmc(card) &&
2225 			(card->ext_csd.cache_size > 0) &&
2226 			(card->ext_csd.cache_ctrl & 1)) {
2227 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2228 				EXT_CSD_FLUSH_CACHE, 1, 0);
2229 		if (err)
2230 			pr_err("%s: cache flush error %d\n",
2231 					mmc_hostname(card->host), err);
2232 	}
2233 
2234 	return err;
2235 }
2236 EXPORT_SYMBOL(mmc_flush_cache);
2237 
2238 /*
2239  * Turn the cache ON/OFF.
2240  * Turning the cache OFF shall trigger flushing of the data
2241  * to the non-volatile storage.
2242  */
2243 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2244 {
2245 	struct mmc_card *card = host->card;
2246 	unsigned int timeout;
2247 	int err = 0;
2248 
2249 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2250 			mmc_card_is_removable(host))
2251 		return err;
2252 
2253 	mmc_claim_host(host);
2254 	if (card && mmc_card_mmc(card) &&
2255 			(card->ext_csd.cache_size > 0)) {
2256 		enable = !!enable;
2257 
2258 		if (card->ext_csd.cache_ctrl ^ enable) {
2259 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2260 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2261 					EXT_CSD_CACHE_CTRL, enable, timeout);
2262 			if (err)
2263 				pr_err("%s: cache %s error %d\n",
2264 						mmc_hostname(card->host),
2265 						enable ? "on" : "off",
2266 						err);
2267 			else
2268 				card->ext_csd.cache_ctrl = enable;
2269 		}
2270 	}
2271 	mmc_release_host(host);
2272 
2273 	return err;
2274 }
2275 EXPORT_SYMBOL(mmc_cache_ctrl);
2276 
2277 #ifdef CONFIG_PM
2278 
2279 /**
2280  *	mmc_suspend_host - suspend a host
2281  *	@host: mmc host
2282  */
2283 int mmc_suspend_host(struct mmc_host *host)
2284 {
2285 	int err = 0;
2286 
2287 	cancel_delayed_work(&host->detect);
2288 	mmc_flush_scheduled_work();
2289 
2290 	err = mmc_cache_ctrl(host, 0);
2291 	if (err)
2292 		goto out;
2293 
2294 	mmc_bus_get(host);
2295 	if (host->bus_ops && !host->bus_dead) {
2296 
2297 		if (host->bus_ops->suspend)
2298 			err = host->bus_ops->suspend(host);
2299 
2300 		if (err == -ENOSYS || !host->bus_ops->resume) {
2301 			/*
2302 			 * We simply "remove" the card in this case.
2303 			 * It will be redetected on resume.  (Calling
2304 			 * bus_ops->remove() with a claimed host can
2305 			 * deadlock.)
2306 			 */
2307 			if (host->bus_ops->remove)
2308 				host->bus_ops->remove(host);
2309 			mmc_claim_host(host);
2310 			mmc_detach_bus(host);
2311 			mmc_power_off(host);
2312 			mmc_release_host(host);
2313 			host->pm_flags = 0;
2314 			err = 0;
2315 		}
2316 	}
2317 	mmc_bus_put(host);
2318 
2319 	if (!err && !mmc_card_keep_power(host))
2320 		mmc_power_off(host);
2321 
2322 out:
2323 	return err;
2324 }
2325 
2326 EXPORT_SYMBOL(mmc_suspend_host);
2327 
2328 /**
2329  *	mmc_resume_host - resume a previously suspended host
2330  *	@host: mmc host
2331  */
2332 int mmc_resume_host(struct mmc_host *host)
2333 {
2334 	int err = 0;
2335 
2336 	mmc_bus_get(host);
2337 	if (host->bus_ops && !host->bus_dead) {
2338 		if (!mmc_card_keep_power(host)) {
2339 			mmc_power_up(host);
2340 			mmc_select_voltage(host, host->ocr);
2341 			/*
2342 			 * Tell runtime PM core we just powered up the card,
2343 			 * since it still believes the card is powered off.
2344 			 * Note that currently runtime PM is only enabled
2345 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2346 			 */
2347 			if (mmc_card_sdio(host->card) &&
2348 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2349 				pm_runtime_disable(&host->card->dev);
2350 				pm_runtime_set_active(&host->card->dev);
2351 				pm_runtime_enable(&host->card->dev);
2352 			}
2353 		}
2354 		BUG_ON(!host->bus_ops->resume);
2355 		err = host->bus_ops->resume(host);
2356 		if (err) {
2357 			pr_warning("%s: error %d during resume "
2358 					    "(card was removed?)\n",
2359 					    mmc_hostname(host), err);
2360 			err = 0;
2361 		}
2362 	}
2363 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2364 	mmc_bus_put(host);
2365 
2366 	return err;
2367 }
2368 EXPORT_SYMBOL(mmc_resume_host);
2369 
2370 /* Do the card removal on suspend if card is assumed removeable
2371  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372    to sync the card.
2373 */
2374 int mmc_pm_notify(struct notifier_block *notify_block,
2375 					unsigned long mode, void *unused)
2376 {
2377 	struct mmc_host *host = container_of(
2378 		notify_block, struct mmc_host, pm_notify);
2379 	unsigned long flags;
2380 
2381 
2382 	switch (mode) {
2383 	case PM_HIBERNATION_PREPARE:
2384 	case PM_SUSPEND_PREPARE:
2385 
2386 		spin_lock_irqsave(&host->lock, flags);
2387 		host->rescan_disable = 1;
2388 		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2389 		spin_unlock_irqrestore(&host->lock, flags);
2390 		cancel_delayed_work_sync(&host->detect);
2391 
2392 		if (!host->bus_ops || host->bus_ops->suspend)
2393 			break;
2394 
2395 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2396 		if (host->bus_ops->remove)
2397 			host->bus_ops->remove(host);
2398 
2399 		mmc_claim_host(host);
2400 		mmc_detach_bus(host);
2401 		mmc_power_off(host);
2402 		mmc_release_host(host);
2403 		host->pm_flags = 0;
2404 		break;
2405 
2406 	case PM_POST_SUSPEND:
2407 	case PM_POST_HIBERNATION:
2408 	case PM_POST_RESTORE:
2409 
2410 		spin_lock_irqsave(&host->lock, flags);
2411 		host->rescan_disable = 0;
2412 		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2413 		spin_unlock_irqrestore(&host->lock, flags);
2414 		mmc_detect_change(host, 0);
2415 
2416 	}
2417 
2418 	return 0;
2419 }
2420 #endif
2421 
2422 static int __init mmc_init(void)
2423 {
2424 	int ret;
2425 
2426 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2427 	if (!workqueue)
2428 		return -ENOMEM;
2429 
2430 	ret = mmc_register_bus();
2431 	if (ret)
2432 		goto destroy_workqueue;
2433 
2434 	ret = mmc_register_host_class();
2435 	if (ret)
2436 		goto unregister_bus;
2437 
2438 	ret = sdio_register_bus();
2439 	if (ret)
2440 		goto unregister_host_class;
2441 
2442 	return 0;
2443 
2444 unregister_host_class:
2445 	mmc_unregister_host_class();
2446 unregister_bus:
2447 	mmc_unregister_bus();
2448 destroy_workqueue:
2449 	destroy_workqueue(workqueue);
2450 
2451 	return ret;
2452 }
2453 
2454 static void __exit mmc_exit(void)
2455 {
2456 	sdio_unregister_bus();
2457 	mmc_unregister_host_class();
2458 	mmc_unregister_bus();
2459 	destroy_workqueue(workqueue);
2460 }
2461 
2462 subsys_initcall(mmc_init);
2463 module_exit(mmc_exit);
2464 
2465 MODULE_LICENSE("GPL");
2466