1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/suspend.h> 27 #include <linux/fault-inject.h> 28 #include <linux/random.h> 29 30 #include <linux/mmc/card.h> 31 #include <linux/mmc/host.h> 32 #include <linux/mmc/mmc.h> 33 #include <linux/mmc/sd.h> 34 35 #include "core.h" 36 #include "bus.h" 37 #include "host.h" 38 #include "sdio_bus.h" 39 40 #include "mmc_ops.h" 41 #include "sd_ops.h" 42 #include "sdio_ops.h" 43 44 static struct workqueue_struct *workqueue; 45 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 46 47 /* 48 * Enabling software CRCs on the data blocks can be a significant (30%) 49 * performance cost, and for other reasons may not always be desired. 50 * So we allow it it to be disabled. 51 */ 52 bool use_spi_crc = 1; 53 module_param(use_spi_crc, bool, 0); 54 55 /* 56 * We normally treat cards as removed during suspend if they are not 57 * known to be on a non-removable bus, to avoid the risk of writing 58 * back data to a different card after resume. Allow this to be 59 * overridden if necessary. 60 */ 61 #ifdef CONFIG_MMC_UNSAFE_RESUME 62 bool mmc_assume_removable; 63 #else 64 bool mmc_assume_removable = 1; 65 #endif 66 EXPORT_SYMBOL(mmc_assume_removable); 67 module_param_named(removable, mmc_assume_removable, bool, 0644); 68 MODULE_PARM_DESC( 69 removable, 70 "MMC/SD cards are removable and may be removed during suspend"); 71 72 /* 73 * Internal function. Schedule delayed work in the MMC work queue. 74 */ 75 static int mmc_schedule_delayed_work(struct delayed_work *work, 76 unsigned long delay) 77 { 78 return queue_delayed_work(workqueue, work, delay); 79 } 80 81 /* 82 * Internal function. Flush all scheduled work from the MMC work queue. 83 */ 84 static void mmc_flush_scheduled_work(void) 85 { 86 flush_workqueue(workqueue); 87 } 88 89 #ifdef CONFIG_FAIL_MMC_REQUEST 90 91 /* 92 * Internal function. Inject random data errors. 93 * If mmc_data is NULL no errors are injected. 94 */ 95 static void mmc_should_fail_request(struct mmc_host *host, 96 struct mmc_request *mrq) 97 { 98 struct mmc_command *cmd = mrq->cmd; 99 struct mmc_data *data = mrq->data; 100 static const int data_errors[] = { 101 -ETIMEDOUT, 102 -EILSEQ, 103 -EIO, 104 }; 105 106 if (!data) 107 return; 108 109 if (cmd->error || data->error || 110 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 111 return; 112 113 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)]; 114 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9; 115 } 116 117 #else /* CONFIG_FAIL_MMC_REQUEST */ 118 119 static inline void mmc_should_fail_request(struct mmc_host *host, 120 struct mmc_request *mrq) 121 { 122 } 123 124 #endif /* CONFIG_FAIL_MMC_REQUEST */ 125 126 /** 127 * mmc_request_done - finish processing an MMC request 128 * @host: MMC host which completed request 129 * @mrq: MMC request which request 130 * 131 * MMC drivers should call this function when they have completed 132 * their processing of a request. 133 */ 134 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 135 { 136 struct mmc_command *cmd = mrq->cmd; 137 int err = cmd->error; 138 139 if (err && cmd->retries && mmc_host_is_spi(host)) { 140 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 141 cmd->retries = 0; 142 } 143 144 if (err && cmd->retries && !mmc_card_removed(host->card)) { 145 /* 146 * Request starter must handle retries - see 147 * mmc_wait_for_req_done(). 148 */ 149 if (mrq->done) 150 mrq->done(mrq); 151 } else { 152 mmc_should_fail_request(host, mrq); 153 154 led_trigger_event(host->led, LED_OFF); 155 156 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 157 mmc_hostname(host), cmd->opcode, err, 158 cmd->resp[0], cmd->resp[1], 159 cmd->resp[2], cmd->resp[3]); 160 161 if (mrq->data) { 162 pr_debug("%s: %d bytes transferred: %d\n", 163 mmc_hostname(host), 164 mrq->data->bytes_xfered, mrq->data->error); 165 } 166 167 if (mrq->stop) { 168 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 169 mmc_hostname(host), mrq->stop->opcode, 170 mrq->stop->error, 171 mrq->stop->resp[0], mrq->stop->resp[1], 172 mrq->stop->resp[2], mrq->stop->resp[3]); 173 } 174 175 if (mrq->done) 176 mrq->done(mrq); 177 178 mmc_host_clk_release(host); 179 } 180 } 181 182 EXPORT_SYMBOL(mmc_request_done); 183 184 static void 185 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 186 { 187 #ifdef CONFIG_MMC_DEBUG 188 unsigned int i, sz; 189 struct scatterlist *sg; 190 #endif 191 192 if (mrq->sbc) { 193 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 194 mmc_hostname(host), mrq->sbc->opcode, 195 mrq->sbc->arg, mrq->sbc->flags); 196 } 197 198 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 199 mmc_hostname(host), mrq->cmd->opcode, 200 mrq->cmd->arg, mrq->cmd->flags); 201 202 if (mrq->data) { 203 pr_debug("%s: blksz %d blocks %d flags %08x " 204 "tsac %d ms nsac %d\n", 205 mmc_hostname(host), mrq->data->blksz, 206 mrq->data->blocks, mrq->data->flags, 207 mrq->data->timeout_ns / 1000000, 208 mrq->data->timeout_clks); 209 } 210 211 if (mrq->stop) { 212 pr_debug("%s: CMD%u arg %08x flags %08x\n", 213 mmc_hostname(host), mrq->stop->opcode, 214 mrq->stop->arg, mrq->stop->flags); 215 } 216 217 WARN_ON(!host->claimed); 218 219 mrq->cmd->error = 0; 220 mrq->cmd->mrq = mrq; 221 if (mrq->data) { 222 BUG_ON(mrq->data->blksz > host->max_blk_size); 223 BUG_ON(mrq->data->blocks > host->max_blk_count); 224 BUG_ON(mrq->data->blocks * mrq->data->blksz > 225 host->max_req_size); 226 227 #ifdef CONFIG_MMC_DEBUG 228 sz = 0; 229 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 230 sz += sg->length; 231 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 232 #endif 233 234 mrq->cmd->data = mrq->data; 235 mrq->data->error = 0; 236 mrq->data->mrq = mrq; 237 if (mrq->stop) { 238 mrq->data->stop = mrq->stop; 239 mrq->stop->error = 0; 240 mrq->stop->mrq = mrq; 241 } 242 } 243 mmc_host_clk_hold(host); 244 led_trigger_event(host->led, LED_FULL); 245 host->ops->request(host, mrq); 246 } 247 248 static void mmc_wait_done(struct mmc_request *mrq) 249 { 250 complete(&mrq->completion); 251 } 252 253 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 254 { 255 init_completion(&mrq->completion); 256 mrq->done = mmc_wait_done; 257 if (mmc_card_removed(host->card)) { 258 mrq->cmd->error = -ENOMEDIUM; 259 complete(&mrq->completion); 260 return -ENOMEDIUM; 261 } 262 mmc_start_request(host, mrq); 263 return 0; 264 } 265 266 static void mmc_wait_for_req_done(struct mmc_host *host, 267 struct mmc_request *mrq) 268 { 269 struct mmc_command *cmd; 270 271 while (1) { 272 wait_for_completion(&mrq->completion); 273 274 cmd = mrq->cmd; 275 if (!cmd->error || !cmd->retries || 276 mmc_card_removed(host->card)) 277 break; 278 279 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 280 mmc_hostname(host), cmd->opcode, cmd->error); 281 cmd->retries--; 282 cmd->error = 0; 283 host->ops->request(host, mrq); 284 } 285 } 286 287 /** 288 * mmc_pre_req - Prepare for a new request 289 * @host: MMC host to prepare command 290 * @mrq: MMC request to prepare for 291 * @is_first_req: true if there is no previous started request 292 * that may run in parellel to this call, otherwise false 293 * 294 * mmc_pre_req() is called in prior to mmc_start_req() to let 295 * host prepare for the new request. Preparation of a request may be 296 * performed while another request is running on the host. 297 */ 298 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 299 bool is_first_req) 300 { 301 if (host->ops->pre_req) { 302 mmc_host_clk_hold(host); 303 host->ops->pre_req(host, mrq, is_first_req); 304 mmc_host_clk_release(host); 305 } 306 } 307 308 /** 309 * mmc_post_req - Post process a completed request 310 * @host: MMC host to post process command 311 * @mrq: MMC request to post process for 312 * @err: Error, if non zero, clean up any resources made in pre_req 313 * 314 * Let the host post process a completed request. Post processing of 315 * a request may be performed while another reuqest is running. 316 */ 317 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 318 int err) 319 { 320 if (host->ops->post_req) { 321 mmc_host_clk_hold(host); 322 host->ops->post_req(host, mrq, err); 323 mmc_host_clk_release(host); 324 } 325 } 326 327 /** 328 * mmc_start_req - start a non-blocking request 329 * @host: MMC host to start command 330 * @areq: async request to start 331 * @error: out parameter returns 0 for success, otherwise non zero 332 * 333 * Start a new MMC custom command request for a host. 334 * If there is on ongoing async request wait for completion 335 * of that request and start the new one and return. 336 * Does not wait for the new request to complete. 337 * 338 * Returns the completed request, NULL in case of none completed. 339 * Wait for the an ongoing request (previoulsy started) to complete and 340 * return the completed request. If there is no ongoing request, NULL 341 * is returned without waiting. NULL is not an error condition. 342 */ 343 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 344 struct mmc_async_req *areq, int *error) 345 { 346 int err = 0; 347 int start_err = 0; 348 struct mmc_async_req *data = host->areq; 349 350 /* Prepare a new request */ 351 if (areq) 352 mmc_pre_req(host, areq->mrq, !host->areq); 353 354 if (host->areq) { 355 mmc_wait_for_req_done(host, host->areq->mrq); 356 err = host->areq->err_check(host->card, host->areq); 357 } 358 359 if (!err && areq) 360 start_err = __mmc_start_req(host, areq->mrq); 361 362 if (host->areq) 363 mmc_post_req(host, host->areq->mrq, 0); 364 365 /* Cancel a prepared request if it was not started. */ 366 if ((err || start_err) && areq) 367 mmc_post_req(host, areq->mrq, -EINVAL); 368 369 if (err) 370 host->areq = NULL; 371 else 372 host->areq = areq; 373 374 if (error) 375 *error = err; 376 return data; 377 } 378 EXPORT_SYMBOL(mmc_start_req); 379 380 /** 381 * mmc_wait_for_req - start a request and wait for completion 382 * @host: MMC host to start command 383 * @mrq: MMC request to start 384 * 385 * Start a new MMC custom command request for a host, and wait 386 * for the command to complete. Does not attempt to parse the 387 * response. 388 */ 389 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 390 { 391 __mmc_start_req(host, mrq); 392 mmc_wait_for_req_done(host, mrq); 393 } 394 EXPORT_SYMBOL(mmc_wait_for_req); 395 396 /** 397 * mmc_interrupt_hpi - Issue for High priority Interrupt 398 * @card: the MMC card associated with the HPI transfer 399 * 400 * Issued High Priority Interrupt, and check for card status 401 * util out-of prg-state. 402 */ 403 int mmc_interrupt_hpi(struct mmc_card *card) 404 { 405 int err; 406 u32 status; 407 408 BUG_ON(!card); 409 410 if (!card->ext_csd.hpi_en) { 411 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 412 return 1; 413 } 414 415 mmc_claim_host(card->host); 416 err = mmc_send_status(card, &status); 417 if (err) { 418 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 419 goto out; 420 } 421 422 /* 423 * If the card status is in PRG-state, we can send the HPI command. 424 */ 425 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) { 426 do { 427 /* 428 * We don't know when the HPI command will finish 429 * processing, so we need to resend HPI until out 430 * of prg-state, and keep checking the card status 431 * with SEND_STATUS. If a timeout error occurs when 432 * sending the HPI command, we are already out of 433 * prg-state. 434 */ 435 err = mmc_send_hpi_cmd(card, &status); 436 if (err) 437 pr_debug("%s: abort HPI (%d error)\n", 438 mmc_hostname(card->host), err); 439 440 err = mmc_send_status(card, &status); 441 if (err) 442 break; 443 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG); 444 } else 445 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host)); 446 447 out: 448 mmc_release_host(card->host); 449 return err; 450 } 451 EXPORT_SYMBOL(mmc_interrupt_hpi); 452 453 /** 454 * mmc_wait_for_cmd - start a command and wait for completion 455 * @host: MMC host to start command 456 * @cmd: MMC command to start 457 * @retries: maximum number of retries 458 * 459 * Start a new MMC command for a host, and wait for the command 460 * to complete. Return any error that occurred while the command 461 * was executing. Do not attempt to parse the response. 462 */ 463 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 464 { 465 struct mmc_request mrq = {NULL}; 466 467 WARN_ON(!host->claimed); 468 469 memset(cmd->resp, 0, sizeof(cmd->resp)); 470 cmd->retries = retries; 471 472 mrq.cmd = cmd; 473 cmd->data = NULL; 474 475 mmc_wait_for_req(host, &mrq); 476 477 return cmd->error; 478 } 479 480 EXPORT_SYMBOL(mmc_wait_for_cmd); 481 482 /** 483 * mmc_set_data_timeout - set the timeout for a data command 484 * @data: data phase for command 485 * @card: the MMC card associated with the data transfer 486 * 487 * Computes the data timeout parameters according to the 488 * correct algorithm given the card type. 489 */ 490 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 491 { 492 unsigned int mult; 493 494 /* 495 * SDIO cards only define an upper 1 s limit on access. 496 */ 497 if (mmc_card_sdio(card)) { 498 data->timeout_ns = 1000000000; 499 data->timeout_clks = 0; 500 return; 501 } 502 503 /* 504 * SD cards use a 100 multiplier rather than 10 505 */ 506 mult = mmc_card_sd(card) ? 100 : 10; 507 508 /* 509 * Scale up the multiplier (and therefore the timeout) by 510 * the r2w factor for writes. 511 */ 512 if (data->flags & MMC_DATA_WRITE) 513 mult <<= card->csd.r2w_factor; 514 515 data->timeout_ns = card->csd.tacc_ns * mult; 516 data->timeout_clks = card->csd.tacc_clks * mult; 517 518 /* 519 * SD cards also have an upper limit on the timeout. 520 */ 521 if (mmc_card_sd(card)) { 522 unsigned int timeout_us, limit_us; 523 524 timeout_us = data->timeout_ns / 1000; 525 if (mmc_host_clk_rate(card->host)) 526 timeout_us += data->timeout_clks * 1000 / 527 (mmc_host_clk_rate(card->host) / 1000); 528 529 if (data->flags & MMC_DATA_WRITE) 530 /* 531 * The MMC spec "It is strongly recommended 532 * for hosts to implement more than 500ms 533 * timeout value even if the card indicates 534 * the 250ms maximum busy length." Even the 535 * previous value of 300ms is known to be 536 * insufficient for some cards. 537 */ 538 limit_us = 3000000; 539 else 540 limit_us = 100000; 541 542 /* 543 * SDHC cards always use these fixed values. 544 */ 545 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 546 data->timeout_ns = limit_us * 1000; 547 data->timeout_clks = 0; 548 } 549 } 550 551 /* 552 * Some cards require longer data read timeout than indicated in CSD. 553 * Address this by setting the read timeout to a "reasonably high" 554 * value. For the cards tested, 300ms has proven enough. If necessary, 555 * this value can be increased if other problematic cards require this. 556 */ 557 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 558 data->timeout_ns = 300000000; 559 data->timeout_clks = 0; 560 } 561 562 /* 563 * Some cards need very high timeouts if driven in SPI mode. 564 * The worst observed timeout was 900ms after writing a 565 * continuous stream of data until the internal logic 566 * overflowed. 567 */ 568 if (mmc_host_is_spi(card->host)) { 569 if (data->flags & MMC_DATA_WRITE) { 570 if (data->timeout_ns < 1000000000) 571 data->timeout_ns = 1000000000; /* 1s */ 572 } else { 573 if (data->timeout_ns < 100000000) 574 data->timeout_ns = 100000000; /* 100ms */ 575 } 576 } 577 } 578 EXPORT_SYMBOL(mmc_set_data_timeout); 579 580 /** 581 * mmc_align_data_size - pads a transfer size to a more optimal value 582 * @card: the MMC card associated with the data transfer 583 * @sz: original transfer size 584 * 585 * Pads the original data size with a number of extra bytes in 586 * order to avoid controller bugs and/or performance hits 587 * (e.g. some controllers revert to PIO for certain sizes). 588 * 589 * Returns the improved size, which might be unmodified. 590 * 591 * Note that this function is only relevant when issuing a 592 * single scatter gather entry. 593 */ 594 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 595 { 596 /* 597 * FIXME: We don't have a system for the controller to tell 598 * the core about its problems yet, so for now we just 32-bit 599 * align the size. 600 */ 601 sz = ((sz + 3) / 4) * 4; 602 603 return sz; 604 } 605 EXPORT_SYMBOL(mmc_align_data_size); 606 607 /** 608 * __mmc_claim_host - exclusively claim a host 609 * @host: mmc host to claim 610 * @abort: whether or not the operation should be aborted 611 * 612 * Claim a host for a set of operations. If @abort is non null and 613 * dereference a non-zero value then this will return prematurely with 614 * that non-zero value without acquiring the lock. Returns zero 615 * with the lock held otherwise. 616 */ 617 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 618 { 619 DECLARE_WAITQUEUE(wait, current); 620 unsigned long flags; 621 int stop; 622 623 might_sleep(); 624 625 add_wait_queue(&host->wq, &wait); 626 spin_lock_irqsave(&host->lock, flags); 627 while (1) { 628 set_current_state(TASK_UNINTERRUPTIBLE); 629 stop = abort ? atomic_read(abort) : 0; 630 if (stop || !host->claimed || host->claimer == current) 631 break; 632 spin_unlock_irqrestore(&host->lock, flags); 633 schedule(); 634 spin_lock_irqsave(&host->lock, flags); 635 } 636 set_current_state(TASK_RUNNING); 637 if (!stop) { 638 host->claimed = 1; 639 host->claimer = current; 640 host->claim_cnt += 1; 641 } else 642 wake_up(&host->wq); 643 spin_unlock_irqrestore(&host->lock, flags); 644 remove_wait_queue(&host->wq, &wait); 645 if (host->ops->enable && !stop && host->claim_cnt == 1) 646 host->ops->enable(host); 647 return stop; 648 } 649 650 EXPORT_SYMBOL(__mmc_claim_host); 651 652 /** 653 * mmc_try_claim_host - try exclusively to claim a host 654 * @host: mmc host to claim 655 * 656 * Returns %1 if the host is claimed, %0 otherwise. 657 */ 658 int mmc_try_claim_host(struct mmc_host *host) 659 { 660 int claimed_host = 0; 661 unsigned long flags; 662 663 spin_lock_irqsave(&host->lock, flags); 664 if (!host->claimed || host->claimer == current) { 665 host->claimed = 1; 666 host->claimer = current; 667 host->claim_cnt += 1; 668 claimed_host = 1; 669 } 670 spin_unlock_irqrestore(&host->lock, flags); 671 if (host->ops->enable && claimed_host && host->claim_cnt == 1) 672 host->ops->enable(host); 673 return claimed_host; 674 } 675 EXPORT_SYMBOL(mmc_try_claim_host); 676 677 /** 678 * mmc_release_host - release a host 679 * @host: mmc host to release 680 * 681 * Release a MMC host, allowing others to claim the host 682 * for their operations. 683 */ 684 void mmc_release_host(struct mmc_host *host) 685 { 686 unsigned long flags; 687 688 WARN_ON(!host->claimed); 689 690 if (host->ops->disable && host->claim_cnt == 1) 691 host->ops->disable(host); 692 693 spin_lock_irqsave(&host->lock, flags); 694 if (--host->claim_cnt) { 695 /* Release for nested claim */ 696 spin_unlock_irqrestore(&host->lock, flags); 697 } else { 698 host->claimed = 0; 699 host->claimer = NULL; 700 spin_unlock_irqrestore(&host->lock, flags); 701 wake_up(&host->wq); 702 } 703 } 704 EXPORT_SYMBOL(mmc_release_host); 705 706 /* 707 * Internal function that does the actual ios call to the host driver, 708 * optionally printing some debug output. 709 */ 710 static inline void mmc_set_ios(struct mmc_host *host) 711 { 712 struct mmc_ios *ios = &host->ios; 713 714 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 715 "width %u timing %u\n", 716 mmc_hostname(host), ios->clock, ios->bus_mode, 717 ios->power_mode, ios->chip_select, ios->vdd, 718 ios->bus_width, ios->timing); 719 720 if (ios->clock > 0) 721 mmc_set_ungated(host); 722 host->ops->set_ios(host, ios); 723 } 724 725 /* 726 * Control chip select pin on a host. 727 */ 728 void mmc_set_chip_select(struct mmc_host *host, int mode) 729 { 730 mmc_host_clk_hold(host); 731 host->ios.chip_select = mode; 732 mmc_set_ios(host); 733 mmc_host_clk_release(host); 734 } 735 736 /* 737 * Sets the host clock to the highest possible frequency that 738 * is below "hz". 739 */ 740 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 741 { 742 WARN_ON(hz < host->f_min); 743 744 if (hz > host->f_max) 745 hz = host->f_max; 746 747 host->ios.clock = hz; 748 mmc_set_ios(host); 749 } 750 751 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 752 { 753 mmc_host_clk_hold(host); 754 __mmc_set_clock(host, hz); 755 mmc_host_clk_release(host); 756 } 757 758 #ifdef CONFIG_MMC_CLKGATE 759 /* 760 * This gates the clock by setting it to 0 Hz. 761 */ 762 void mmc_gate_clock(struct mmc_host *host) 763 { 764 unsigned long flags; 765 766 spin_lock_irqsave(&host->clk_lock, flags); 767 host->clk_old = host->ios.clock; 768 host->ios.clock = 0; 769 host->clk_gated = true; 770 spin_unlock_irqrestore(&host->clk_lock, flags); 771 mmc_set_ios(host); 772 } 773 774 /* 775 * This restores the clock from gating by using the cached 776 * clock value. 777 */ 778 void mmc_ungate_clock(struct mmc_host *host) 779 { 780 /* 781 * We should previously have gated the clock, so the clock shall 782 * be 0 here! The clock may however be 0 during initialization, 783 * when some request operations are performed before setting 784 * the frequency. When ungate is requested in that situation 785 * we just ignore the call. 786 */ 787 if (host->clk_old) { 788 BUG_ON(host->ios.clock); 789 /* This call will also set host->clk_gated to false */ 790 __mmc_set_clock(host, host->clk_old); 791 } 792 } 793 794 void mmc_set_ungated(struct mmc_host *host) 795 { 796 unsigned long flags; 797 798 /* 799 * We've been given a new frequency while the clock is gated, 800 * so make sure we regard this as ungating it. 801 */ 802 spin_lock_irqsave(&host->clk_lock, flags); 803 host->clk_gated = false; 804 spin_unlock_irqrestore(&host->clk_lock, flags); 805 } 806 807 #else 808 void mmc_set_ungated(struct mmc_host *host) 809 { 810 } 811 #endif 812 813 /* 814 * Change the bus mode (open drain/push-pull) of a host. 815 */ 816 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 817 { 818 mmc_host_clk_hold(host); 819 host->ios.bus_mode = mode; 820 mmc_set_ios(host); 821 mmc_host_clk_release(host); 822 } 823 824 /* 825 * Change data bus width of a host. 826 */ 827 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 828 { 829 mmc_host_clk_hold(host); 830 host->ios.bus_width = width; 831 mmc_set_ios(host); 832 mmc_host_clk_release(host); 833 } 834 835 /** 836 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 837 * @vdd: voltage (mV) 838 * @low_bits: prefer low bits in boundary cases 839 * 840 * This function returns the OCR bit number according to the provided @vdd 841 * value. If conversion is not possible a negative errno value returned. 842 * 843 * Depending on the @low_bits flag the function prefers low or high OCR bits 844 * on boundary voltages. For example, 845 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 846 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 847 * 848 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 849 */ 850 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 851 { 852 const int max_bit = ilog2(MMC_VDD_35_36); 853 int bit; 854 855 if (vdd < 1650 || vdd > 3600) 856 return -EINVAL; 857 858 if (vdd >= 1650 && vdd <= 1950) 859 return ilog2(MMC_VDD_165_195); 860 861 if (low_bits) 862 vdd -= 1; 863 864 /* Base 2000 mV, step 100 mV, bit's base 8. */ 865 bit = (vdd - 2000) / 100 + 8; 866 if (bit > max_bit) 867 return max_bit; 868 return bit; 869 } 870 871 /** 872 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 873 * @vdd_min: minimum voltage value (mV) 874 * @vdd_max: maximum voltage value (mV) 875 * 876 * This function returns the OCR mask bits according to the provided @vdd_min 877 * and @vdd_max values. If conversion is not possible the function returns 0. 878 * 879 * Notes wrt boundary cases: 880 * This function sets the OCR bits for all boundary voltages, for example 881 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 882 * MMC_VDD_34_35 mask. 883 */ 884 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 885 { 886 u32 mask = 0; 887 888 if (vdd_max < vdd_min) 889 return 0; 890 891 /* Prefer high bits for the boundary vdd_max values. */ 892 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 893 if (vdd_max < 0) 894 return 0; 895 896 /* Prefer low bits for the boundary vdd_min values. */ 897 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 898 if (vdd_min < 0) 899 return 0; 900 901 /* Fill the mask, from max bit to min bit. */ 902 while (vdd_max >= vdd_min) 903 mask |= 1 << vdd_max--; 904 905 return mask; 906 } 907 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 908 909 #ifdef CONFIG_REGULATOR 910 911 /** 912 * mmc_regulator_get_ocrmask - return mask of supported voltages 913 * @supply: regulator to use 914 * 915 * This returns either a negative errno, or a mask of voltages that 916 * can be provided to MMC/SD/SDIO devices using the specified voltage 917 * regulator. This would normally be called before registering the 918 * MMC host adapter. 919 */ 920 int mmc_regulator_get_ocrmask(struct regulator *supply) 921 { 922 int result = 0; 923 int count; 924 int i; 925 926 count = regulator_count_voltages(supply); 927 if (count < 0) 928 return count; 929 930 for (i = 0; i < count; i++) { 931 int vdd_uV; 932 int vdd_mV; 933 934 vdd_uV = regulator_list_voltage(supply, i); 935 if (vdd_uV <= 0) 936 continue; 937 938 vdd_mV = vdd_uV / 1000; 939 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 940 } 941 942 return result; 943 } 944 EXPORT_SYMBOL(mmc_regulator_get_ocrmask); 945 946 /** 947 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 948 * @mmc: the host to regulate 949 * @supply: regulator to use 950 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 951 * 952 * Returns zero on success, else negative errno. 953 * 954 * MMC host drivers may use this to enable or disable a regulator using 955 * a particular supply voltage. This would normally be called from the 956 * set_ios() method. 957 */ 958 int mmc_regulator_set_ocr(struct mmc_host *mmc, 959 struct regulator *supply, 960 unsigned short vdd_bit) 961 { 962 int result = 0; 963 int min_uV, max_uV; 964 965 if (vdd_bit) { 966 int tmp; 967 int voltage; 968 969 /* REVISIT mmc_vddrange_to_ocrmask() may have set some 970 * bits this regulator doesn't quite support ... don't 971 * be too picky, most cards and regulators are OK with 972 * a 0.1V range goof (it's a small error percentage). 973 */ 974 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 975 if (tmp == 0) { 976 min_uV = 1650 * 1000; 977 max_uV = 1950 * 1000; 978 } else { 979 min_uV = 1900 * 1000 + tmp * 100 * 1000; 980 max_uV = min_uV + 100 * 1000; 981 } 982 983 /* avoid needless changes to this voltage; the regulator 984 * might not allow this operation 985 */ 986 voltage = regulator_get_voltage(supply); 987 988 if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE) 989 min_uV = max_uV = voltage; 990 991 if (voltage < 0) 992 result = voltage; 993 else if (voltage < min_uV || voltage > max_uV) 994 result = regulator_set_voltage(supply, min_uV, max_uV); 995 else 996 result = 0; 997 998 if (result == 0 && !mmc->regulator_enabled) { 999 result = regulator_enable(supply); 1000 if (!result) 1001 mmc->regulator_enabled = true; 1002 } 1003 } else if (mmc->regulator_enabled) { 1004 result = regulator_disable(supply); 1005 if (result == 0) 1006 mmc->regulator_enabled = false; 1007 } 1008 1009 if (result) 1010 dev_err(mmc_dev(mmc), 1011 "could not set regulator OCR (%d)\n", result); 1012 return result; 1013 } 1014 EXPORT_SYMBOL(mmc_regulator_set_ocr); 1015 1016 #endif /* CONFIG_REGULATOR */ 1017 1018 /* 1019 * Mask off any voltages we don't support and select 1020 * the lowest voltage 1021 */ 1022 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1023 { 1024 int bit; 1025 1026 ocr &= host->ocr_avail; 1027 1028 bit = ffs(ocr); 1029 if (bit) { 1030 bit -= 1; 1031 1032 ocr &= 3 << bit; 1033 1034 mmc_host_clk_hold(host); 1035 host->ios.vdd = bit; 1036 mmc_set_ios(host); 1037 mmc_host_clk_release(host); 1038 } else { 1039 pr_warning("%s: host doesn't support card's voltages\n", 1040 mmc_hostname(host)); 1041 ocr = 0; 1042 } 1043 1044 return ocr; 1045 } 1046 1047 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) 1048 { 1049 struct mmc_command cmd = {0}; 1050 int err = 0; 1051 1052 BUG_ON(!host); 1053 1054 /* 1055 * Send CMD11 only if the request is to switch the card to 1056 * 1.8V signalling. 1057 */ 1058 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { 1059 cmd.opcode = SD_SWITCH_VOLTAGE; 1060 cmd.arg = 0; 1061 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1062 1063 err = mmc_wait_for_cmd(host, &cmd, 0); 1064 if (err) 1065 return err; 1066 1067 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1068 return -EIO; 1069 } 1070 1071 host->ios.signal_voltage = signal_voltage; 1072 1073 if (host->ops->start_signal_voltage_switch) { 1074 mmc_host_clk_hold(host); 1075 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1076 mmc_host_clk_release(host); 1077 } 1078 1079 return err; 1080 } 1081 1082 /* 1083 * Select timing parameters for host. 1084 */ 1085 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1086 { 1087 mmc_host_clk_hold(host); 1088 host->ios.timing = timing; 1089 mmc_set_ios(host); 1090 mmc_host_clk_release(host); 1091 } 1092 1093 /* 1094 * Select appropriate driver type for host. 1095 */ 1096 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1097 { 1098 mmc_host_clk_hold(host); 1099 host->ios.drv_type = drv_type; 1100 mmc_set_ios(host); 1101 mmc_host_clk_release(host); 1102 } 1103 1104 static void mmc_poweroff_notify(struct mmc_host *host) 1105 { 1106 struct mmc_card *card; 1107 unsigned int timeout; 1108 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION; 1109 int err = 0; 1110 1111 card = host->card; 1112 mmc_claim_host(host); 1113 1114 /* 1115 * Send power notify command only if card 1116 * is mmc and notify state is powered ON 1117 */ 1118 if (card && mmc_card_mmc(card) && 1119 (card->poweroff_notify_state == MMC_POWERED_ON)) { 1120 1121 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) { 1122 notify_type = EXT_CSD_POWER_OFF_SHORT; 1123 timeout = card->ext_csd.generic_cmd6_time; 1124 card->poweroff_notify_state = MMC_POWEROFF_SHORT; 1125 } else { 1126 notify_type = EXT_CSD_POWER_OFF_LONG; 1127 timeout = card->ext_csd.power_off_longtime; 1128 card->poweroff_notify_state = MMC_POWEROFF_LONG; 1129 } 1130 1131 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1132 EXT_CSD_POWER_OFF_NOTIFICATION, 1133 notify_type, timeout); 1134 1135 if (err && err != -EBADMSG) 1136 pr_err("Device failed to respond within %d poweroff " 1137 "time. Forcefully powering down the device\n", 1138 timeout); 1139 1140 /* Set the card state to no notification after the poweroff */ 1141 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION; 1142 } 1143 mmc_release_host(host); 1144 } 1145 1146 /* 1147 * Apply power to the MMC stack. This is a two-stage process. 1148 * First, we enable power to the card without the clock running. 1149 * We then wait a bit for the power to stabilise. Finally, 1150 * enable the bus drivers and clock to the card. 1151 * 1152 * We must _NOT_ enable the clock prior to power stablising. 1153 * 1154 * If a host does all the power sequencing itself, ignore the 1155 * initial MMC_POWER_UP stage. 1156 */ 1157 static void mmc_power_up(struct mmc_host *host) 1158 { 1159 int bit; 1160 1161 if (host->ios.power_mode == MMC_POWER_ON) 1162 return; 1163 1164 mmc_host_clk_hold(host); 1165 1166 /* If ocr is set, we use it */ 1167 if (host->ocr) 1168 bit = ffs(host->ocr) - 1; 1169 else 1170 bit = fls(host->ocr_avail) - 1; 1171 1172 host->ios.vdd = bit; 1173 if (mmc_host_is_spi(host)) 1174 host->ios.chip_select = MMC_CS_HIGH; 1175 else 1176 host->ios.chip_select = MMC_CS_DONTCARE; 1177 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1178 host->ios.power_mode = MMC_POWER_UP; 1179 host->ios.bus_width = MMC_BUS_WIDTH_1; 1180 host->ios.timing = MMC_TIMING_LEGACY; 1181 mmc_set_ios(host); 1182 1183 /* 1184 * This delay should be sufficient to allow the power supply 1185 * to reach the minimum voltage. 1186 */ 1187 mmc_delay(10); 1188 1189 host->ios.clock = host->f_init; 1190 1191 host->ios.power_mode = MMC_POWER_ON; 1192 mmc_set_ios(host); 1193 1194 /* 1195 * This delay must be at least 74 clock sizes, or 1 ms, or the 1196 * time required to reach a stable voltage. 1197 */ 1198 mmc_delay(10); 1199 1200 mmc_host_clk_release(host); 1201 } 1202 1203 void mmc_power_off(struct mmc_host *host) 1204 { 1205 int err = 0; 1206 1207 if (host->ios.power_mode == MMC_POWER_OFF) 1208 return; 1209 1210 mmc_host_clk_hold(host); 1211 1212 host->ios.clock = 0; 1213 host->ios.vdd = 0; 1214 1215 /* 1216 * For eMMC 4.5 device send AWAKE command before 1217 * POWER_OFF_NOTIFY command, because in sleep state 1218 * eMMC 4.5 devices respond to only RESET and AWAKE cmd 1219 */ 1220 if (host->card && mmc_card_is_sleep(host->card) && 1221 host->bus_ops->resume) { 1222 err = host->bus_ops->resume(host); 1223 1224 if (!err) 1225 mmc_poweroff_notify(host); 1226 else 1227 pr_warning("%s: error %d during resume " 1228 "(continue with poweroff sequence)\n", 1229 mmc_hostname(host), err); 1230 } 1231 1232 /* 1233 * Reset ocr mask to be the highest possible voltage supported for 1234 * this mmc host. This value will be used at next power up. 1235 */ 1236 host->ocr = 1 << (fls(host->ocr_avail) - 1); 1237 1238 if (!mmc_host_is_spi(host)) { 1239 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1240 host->ios.chip_select = MMC_CS_DONTCARE; 1241 } 1242 host->ios.power_mode = MMC_POWER_OFF; 1243 host->ios.bus_width = MMC_BUS_WIDTH_1; 1244 host->ios.timing = MMC_TIMING_LEGACY; 1245 mmc_set_ios(host); 1246 1247 /* 1248 * Some configurations, such as the 802.11 SDIO card in the OLPC 1249 * XO-1.5, require a short delay after poweroff before the card 1250 * can be successfully turned on again. 1251 */ 1252 mmc_delay(1); 1253 1254 mmc_host_clk_release(host); 1255 } 1256 1257 /* 1258 * Cleanup when the last reference to the bus operator is dropped. 1259 */ 1260 static void __mmc_release_bus(struct mmc_host *host) 1261 { 1262 BUG_ON(!host); 1263 BUG_ON(host->bus_refs); 1264 BUG_ON(!host->bus_dead); 1265 1266 host->bus_ops = NULL; 1267 } 1268 1269 /* 1270 * Increase reference count of bus operator 1271 */ 1272 static inline void mmc_bus_get(struct mmc_host *host) 1273 { 1274 unsigned long flags; 1275 1276 spin_lock_irqsave(&host->lock, flags); 1277 host->bus_refs++; 1278 spin_unlock_irqrestore(&host->lock, flags); 1279 } 1280 1281 /* 1282 * Decrease reference count of bus operator and free it if 1283 * it is the last reference. 1284 */ 1285 static inline void mmc_bus_put(struct mmc_host *host) 1286 { 1287 unsigned long flags; 1288 1289 spin_lock_irqsave(&host->lock, flags); 1290 host->bus_refs--; 1291 if ((host->bus_refs == 0) && host->bus_ops) 1292 __mmc_release_bus(host); 1293 spin_unlock_irqrestore(&host->lock, flags); 1294 } 1295 1296 /* 1297 * Assign a mmc bus handler to a host. Only one bus handler may control a 1298 * host at any given time. 1299 */ 1300 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1301 { 1302 unsigned long flags; 1303 1304 BUG_ON(!host); 1305 BUG_ON(!ops); 1306 1307 WARN_ON(!host->claimed); 1308 1309 spin_lock_irqsave(&host->lock, flags); 1310 1311 BUG_ON(host->bus_ops); 1312 BUG_ON(host->bus_refs); 1313 1314 host->bus_ops = ops; 1315 host->bus_refs = 1; 1316 host->bus_dead = 0; 1317 1318 spin_unlock_irqrestore(&host->lock, flags); 1319 } 1320 1321 /* 1322 * Remove the current bus handler from a host. 1323 */ 1324 void mmc_detach_bus(struct mmc_host *host) 1325 { 1326 unsigned long flags; 1327 1328 BUG_ON(!host); 1329 1330 WARN_ON(!host->claimed); 1331 WARN_ON(!host->bus_ops); 1332 1333 spin_lock_irqsave(&host->lock, flags); 1334 1335 host->bus_dead = 1; 1336 1337 spin_unlock_irqrestore(&host->lock, flags); 1338 1339 mmc_bus_put(host); 1340 } 1341 1342 /** 1343 * mmc_detect_change - process change of state on a MMC socket 1344 * @host: host which changed state. 1345 * @delay: optional delay to wait before detection (jiffies) 1346 * 1347 * MMC drivers should call this when they detect a card has been 1348 * inserted or removed. The MMC layer will confirm that any 1349 * present card is still functional, and initialize any newly 1350 * inserted. 1351 */ 1352 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1353 { 1354 #ifdef CONFIG_MMC_DEBUG 1355 unsigned long flags; 1356 spin_lock_irqsave(&host->lock, flags); 1357 WARN_ON(host->removed); 1358 spin_unlock_irqrestore(&host->lock, flags); 1359 #endif 1360 host->detect_change = 1; 1361 mmc_schedule_delayed_work(&host->detect, delay); 1362 } 1363 1364 EXPORT_SYMBOL(mmc_detect_change); 1365 1366 void mmc_init_erase(struct mmc_card *card) 1367 { 1368 unsigned int sz; 1369 1370 if (is_power_of_2(card->erase_size)) 1371 card->erase_shift = ffs(card->erase_size) - 1; 1372 else 1373 card->erase_shift = 0; 1374 1375 /* 1376 * It is possible to erase an arbitrarily large area of an SD or MMC 1377 * card. That is not desirable because it can take a long time 1378 * (minutes) potentially delaying more important I/O, and also the 1379 * timeout calculations become increasingly hugely over-estimated. 1380 * Consequently, 'pref_erase' is defined as a guide to limit erases 1381 * to that size and alignment. 1382 * 1383 * For SD cards that define Allocation Unit size, limit erases to one 1384 * Allocation Unit at a time. For MMC cards that define High Capacity 1385 * Erase Size, whether it is switched on or not, limit to that size. 1386 * Otherwise just have a stab at a good value. For modern cards it 1387 * will end up being 4MiB. Note that if the value is too small, it 1388 * can end up taking longer to erase. 1389 */ 1390 if (mmc_card_sd(card) && card->ssr.au) { 1391 card->pref_erase = card->ssr.au; 1392 card->erase_shift = ffs(card->ssr.au) - 1; 1393 } else if (card->ext_csd.hc_erase_size) { 1394 card->pref_erase = card->ext_csd.hc_erase_size; 1395 } else { 1396 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1397 if (sz < 128) 1398 card->pref_erase = 512 * 1024 / 512; 1399 else if (sz < 512) 1400 card->pref_erase = 1024 * 1024 / 512; 1401 else if (sz < 1024) 1402 card->pref_erase = 2 * 1024 * 1024 / 512; 1403 else 1404 card->pref_erase = 4 * 1024 * 1024 / 512; 1405 if (card->pref_erase < card->erase_size) 1406 card->pref_erase = card->erase_size; 1407 else { 1408 sz = card->pref_erase % card->erase_size; 1409 if (sz) 1410 card->pref_erase += card->erase_size - sz; 1411 } 1412 } 1413 } 1414 1415 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1416 unsigned int arg, unsigned int qty) 1417 { 1418 unsigned int erase_timeout; 1419 1420 if (arg == MMC_DISCARD_ARG || 1421 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1422 erase_timeout = card->ext_csd.trim_timeout; 1423 } else if (card->ext_csd.erase_group_def & 1) { 1424 /* High Capacity Erase Group Size uses HC timeouts */ 1425 if (arg == MMC_TRIM_ARG) 1426 erase_timeout = card->ext_csd.trim_timeout; 1427 else 1428 erase_timeout = card->ext_csd.hc_erase_timeout; 1429 } else { 1430 /* CSD Erase Group Size uses write timeout */ 1431 unsigned int mult = (10 << card->csd.r2w_factor); 1432 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1433 unsigned int timeout_us; 1434 1435 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1436 if (card->csd.tacc_ns < 1000000) 1437 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1438 else 1439 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1440 1441 /* 1442 * ios.clock is only a target. The real clock rate might be 1443 * less but not that much less, so fudge it by multiplying by 2. 1444 */ 1445 timeout_clks <<= 1; 1446 timeout_us += (timeout_clks * 1000) / 1447 (mmc_host_clk_rate(card->host) / 1000); 1448 1449 erase_timeout = timeout_us / 1000; 1450 1451 /* 1452 * Theoretically, the calculation could underflow so round up 1453 * to 1ms in that case. 1454 */ 1455 if (!erase_timeout) 1456 erase_timeout = 1; 1457 } 1458 1459 /* Multiplier for secure operations */ 1460 if (arg & MMC_SECURE_ARGS) { 1461 if (arg == MMC_SECURE_ERASE_ARG) 1462 erase_timeout *= card->ext_csd.sec_erase_mult; 1463 else 1464 erase_timeout *= card->ext_csd.sec_trim_mult; 1465 } 1466 1467 erase_timeout *= qty; 1468 1469 /* 1470 * Ensure at least a 1 second timeout for SPI as per 1471 * 'mmc_set_data_timeout()' 1472 */ 1473 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1474 erase_timeout = 1000; 1475 1476 return erase_timeout; 1477 } 1478 1479 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1480 unsigned int arg, 1481 unsigned int qty) 1482 { 1483 unsigned int erase_timeout; 1484 1485 if (card->ssr.erase_timeout) { 1486 /* Erase timeout specified in SD Status Register (SSR) */ 1487 erase_timeout = card->ssr.erase_timeout * qty + 1488 card->ssr.erase_offset; 1489 } else { 1490 /* 1491 * Erase timeout not specified in SD Status Register (SSR) so 1492 * use 250ms per write block. 1493 */ 1494 erase_timeout = 250 * qty; 1495 } 1496 1497 /* Must not be less than 1 second */ 1498 if (erase_timeout < 1000) 1499 erase_timeout = 1000; 1500 1501 return erase_timeout; 1502 } 1503 1504 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1505 unsigned int arg, 1506 unsigned int qty) 1507 { 1508 if (mmc_card_sd(card)) 1509 return mmc_sd_erase_timeout(card, arg, qty); 1510 else 1511 return mmc_mmc_erase_timeout(card, arg, qty); 1512 } 1513 1514 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1515 unsigned int to, unsigned int arg) 1516 { 1517 struct mmc_command cmd = {0}; 1518 unsigned int qty = 0; 1519 int err; 1520 1521 /* 1522 * qty is used to calculate the erase timeout which depends on how many 1523 * erase groups (or allocation units in SD terminology) are affected. 1524 * We count erasing part of an erase group as one erase group. 1525 * For SD, the allocation units are always a power of 2. For MMC, the 1526 * erase group size is almost certainly also power of 2, but it does not 1527 * seem to insist on that in the JEDEC standard, so we fall back to 1528 * division in that case. SD may not specify an allocation unit size, 1529 * in which case the timeout is based on the number of write blocks. 1530 * 1531 * Note that the timeout for secure trim 2 will only be correct if the 1532 * number of erase groups specified is the same as the total of all 1533 * preceding secure trim 1 commands. Since the power may have been 1534 * lost since the secure trim 1 commands occurred, it is generally 1535 * impossible to calculate the secure trim 2 timeout correctly. 1536 */ 1537 if (card->erase_shift) 1538 qty += ((to >> card->erase_shift) - 1539 (from >> card->erase_shift)) + 1; 1540 else if (mmc_card_sd(card)) 1541 qty += to - from + 1; 1542 else 1543 qty += ((to / card->erase_size) - 1544 (from / card->erase_size)) + 1; 1545 1546 if (!mmc_card_blockaddr(card)) { 1547 from <<= 9; 1548 to <<= 9; 1549 } 1550 1551 if (mmc_card_sd(card)) 1552 cmd.opcode = SD_ERASE_WR_BLK_START; 1553 else 1554 cmd.opcode = MMC_ERASE_GROUP_START; 1555 cmd.arg = from; 1556 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1557 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1558 if (err) { 1559 pr_err("mmc_erase: group start error %d, " 1560 "status %#x\n", err, cmd.resp[0]); 1561 err = -EIO; 1562 goto out; 1563 } 1564 1565 memset(&cmd, 0, sizeof(struct mmc_command)); 1566 if (mmc_card_sd(card)) 1567 cmd.opcode = SD_ERASE_WR_BLK_END; 1568 else 1569 cmd.opcode = MMC_ERASE_GROUP_END; 1570 cmd.arg = to; 1571 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1572 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1573 if (err) { 1574 pr_err("mmc_erase: group end error %d, status %#x\n", 1575 err, cmd.resp[0]); 1576 err = -EIO; 1577 goto out; 1578 } 1579 1580 memset(&cmd, 0, sizeof(struct mmc_command)); 1581 cmd.opcode = MMC_ERASE; 1582 cmd.arg = arg; 1583 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1584 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); 1585 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1586 if (err) { 1587 pr_err("mmc_erase: erase error %d, status %#x\n", 1588 err, cmd.resp[0]); 1589 err = -EIO; 1590 goto out; 1591 } 1592 1593 if (mmc_host_is_spi(card->host)) 1594 goto out; 1595 1596 do { 1597 memset(&cmd, 0, sizeof(struct mmc_command)); 1598 cmd.opcode = MMC_SEND_STATUS; 1599 cmd.arg = card->rca << 16; 1600 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1601 /* Do not retry else we can't see errors */ 1602 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1603 if (err || (cmd.resp[0] & 0xFDF92000)) { 1604 pr_err("error %d requesting status %#x\n", 1605 err, cmd.resp[0]); 1606 err = -EIO; 1607 goto out; 1608 } 1609 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1610 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG); 1611 out: 1612 return err; 1613 } 1614 1615 /** 1616 * mmc_erase - erase sectors. 1617 * @card: card to erase 1618 * @from: first sector to erase 1619 * @nr: number of sectors to erase 1620 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1621 * 1622 * Caller must claim host before calling this function. 1623 */ 1624 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1625 unsigned int arg) 1626 { 1627 unsigned int rem, to = from + nr; 1628 1629 if (!(card->host->caps & MMC_CAP_ERASE) || 1630 !(card->csd.cmdclass & CCC_ERASE)) 1631 return -EOPNOTSUPP; 1632 1633 if (!card->erase_size) 1634 return -EOPNOTSUPP; 1635 1636 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 1637 return -EOPNOTSUPP; 1638 1639 if ((arg & MMC_SECURE_ARGS) && 1640 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1641 return -EOPNOTSUPP; 1642 1643 if ((arg & MMC_TRIM_ARGS) && 1644 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1645 return -EOPNOTSUPP; 1646 1647 if (arg == MMC_SECURE_ERASE_ARG) { 1648 if (from % card->erase_size || nr % card->erase_size) 1649 return -EINVAL; 1650 } 1651 1652 if (arg == MMC_ERASE_ARG) { 1653 rem = from % card->erase_size; 1654 if (rem) { 1655 rem = card->erase_size - rem; 1656 from += rem; 1657 if (nr > rem) 1658 nr -= rem; 1659 else 1660 return 0; 1661 } 1662 rem = nr % card->erase_size; 1663 if (rem) 1664 nr -= rem; 1665 } 1666 1667 if (nr == 0) 1668 return 0; 1669 1670 to = from + nr; 1671 1672 if (to <= from) 1673 return -EINVAL; 1674 1675 /* 'from' and 'to' are inclusive */ 1676 to -= 1; 1677 1678 return mmc_do_erase(card, from, to, arg); 1679 } 1680 EXPORT_SYMBOL(mmc_erase); 1681 1682 int mmc_can_erase(struct mmc_card *card) 1683 { 1684 if ((card->host->caps & MMC_CAP_ERASE) && 1685 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 1686 return 1; 1687 return 0; 1688 } 1689 EXPORT_SYMBOL(mmc_can_erase); 1690 1691 int mmc_can_trim(struct mmc_card *card) 1692 { 1693 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 1694 return 1; 1695 return 0; 1696 } 1697 EXPORT_SYMBOL(mmc_can_trim); 1698 1699 int mmc_can_discard(struct mmc_card *card) 1700 { 1701 /* 1702 * As there's no way to detect the discard support bit at v4.5 1703 * use the s/w feature support filed. 1704 */ 1705 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1706 return 1; 1707 return 0; 1708 } 1709 EXPORT_SYMBOL(mmc_can_discard); 1710 1711 int mmc_can_sanitize(struct mmc_card *card) 1712 { 1713 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 1714 return 0; 1715 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1716 return 1; 1717 return 0; 1718 } 1719 EXPORT_SYMBOL(mmc_can_sanitize); 1720 1721 int mmc_can_secure_erase_trim(struct mmc_card *card) 1722 { 1723 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 1724 return 1; 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1728 1729 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1730 unsigned int nr) 1731 { 1732 if (!card->erase_size) 1733 return 0; 1734 if (from % card->erase_size || nr % card->erase_size) 1735 return 0; 1736 return 1; 1737 } 1738 EXPORT_SYMBOL(mmc_erase_group_aligned); 1739 1740 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1741 unsigned int arg) 1742 { 1743 struct mmc_host *host = card->host; 1744 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 1745 unsigned int last_timeout = 0; 1746 1747 if (card->erase_shift) 1748 max_qty = UINT_MAX >> card->erase_shift; 1749 else if (mmc_card_sd(card)) 1750 max_qty = UINT_MAX; 1751 else 1752 max_qty = UINT_MAX / card->erase_size; 1753 1754 /* Find the largest qty with an OK timeout */ 1755 do { 1756 y = 0; 1757 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1758 timeout = mmc_erase_timeout(card, arg, qty + x); 1759 if (timeout > host->max_discard_to) 1760 break; 1761 if (timeout < last_timeout) 1762 break; 1763 last_timeout = timeout; 1764 y = x; 1765 } 1766 qty += y; 1767 } while (y); 1768 1769 if (!qty) 1770 return 0; 1771 1772 if (qty == 1) 1773 return 1; 1774 1775 /* Convert qty to sectors */ 1776 if (card->erase_shift) 1777 max_discard = --qty << card->erase_shift; 1778 else if (mmc_card_sd(card)) 1779 max_discard = qty; 1780 else 1781 max_discard = --qty * card->erase_size; 1782 1783 return max_discard; 1784 } 1785 1786 unsigned int mmc_calc_max_discard(struct mmc_card *card) 1787 { 1788 struct mmc_host *host = card->host; 1789 unsigned int max_discard, max_trim; 1790 1791 if (!host->max_discard_to) 1792 return UINT_MAX; 1793 1794 /* 1795 * Without erase_group_def set, MMC erase timeout depends on clock 1796 * frequence which can change. In that case, the best choice is 1797 * just the preferred erase size. 1798 */ 1799 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1800 return card->pref_erase; 1801 1802 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1803 if (mmc_can_trim(card)) { 1804 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1805 if (max_trim < max_discard) 1806 max_discard = max_trim; 1807 } else if (max_discard < card->erase_size) { 1808 max_discard = 0; 1809 } 1810 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1811 mmc_hostname(host), max_discard, host->max_discard_to); 1812 return max_discard; 1813 } 1814 EXPORT_SYMBOL(mmc_calc_max_discard); 1815 1816 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1817 { 1818 struct mmc_command cmd = {0}; 1819 1820 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 1821 return 0; 1822 1823 cmd.opcode = MMC_SET_BLOCKLEN; 1824 cmd.arg = blocklen; 1825 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1826 return mmc_wait_for_cmd(card->host, &cmd, 5); 1827 } 1828 EXPORT_SYMBOL(mmc_set_blocklen); 1829 1830 static void mmc_hw_reset_for_init(struct mmc_host *host) 1831 { 1832 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1833 return; 1834 mmc_host_clk_hold(host); 1835 host->ops->hw_reset(host); 1836 mmc_host_clk_release(host); 1837 } 1838 1839 int mmc_can_reset(struct mmc_card *card) 1840 { 1841 u8 rst_n_function; 1842 1843 if (!mmc_card_mmc(card)) 1844 return 0; 1845 rst_n_function = card->ext_csd.rst_n_function; 1846 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 1847 return 0; 1848 return 1; 1849 } 1850 EXPORT_SYMBOL(mmc_can_reset); 1851 1852 static int mmc_do_hw_reset(struct mmc_host *host, int check) 1853 { 1854 struct mmc_card *card = host->card; 1855 1856 if (!host->bus_ops->power_restore) 1857 return -EOPNOTSUPP; 1858 1859 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1860 return -EOPNOTSUPP; 1861 1862 if (!card) 1863 return -EINVAL; 1864 1865 if (!mmc_can_reset(card)) 1866 return -EOPNOTSUPP; 1867 1868 mmc_host_clk_hold(host); 1869 mmc_set_clock(host, host->f_init); 1870 1871 host->ops->hw_reset(host); 1872 1873 /* If the reset has happened, then a status command will fail */ 1874 if (check) { 1875 struct mmc_command cmd = {0}; 1876 int err; 1877 1878 cmd.opcode = MMC_SEND_STATUS; 1879 if (!mmc_host_is_spi(card->host)) 1880 cmd.arg = card->rca << 16; 1881 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 1882 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1883 if (!err) { 1884 mmc_host_clk_release(host); 1885 return -ENOSYS; 1886 } 1887 } 1888 1889 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); 1890 if (mmc_host_is_spi(host)) { 1891 host->ios.chip_select = MMC_CS_HIGH; 1892 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1893 } else { 1894 host->ios.chip_select = MMC_CS_DONTCARE; 1895 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1896 } 1897 host->ios.bus_width = MMC_BUS_WIDTH_1; 1898 host->ios.timing = MMC_TIMING_LEGACY; 1899 mmc_set_ios(host); 1900 1901 mmc_host_clk_release(host); 1902 1903 return host->bus_ops->power_restore(host); 1904 } 1905 1906 int mmc_hw_reset(struct mmc_host *host) 1907 { 1908 return mmc_do_hw_reset(host, 0); 1909 } 1910 EXPORT_SYMBOL(mmc_hw_reset); 1911 1912 int mmc_hw_reset_check(struct mmc_host *host) 1913 { 1914 return mmc_do_hw_reset(host, 1); 1915 } 1916 EXPORT_SYMBOL(mmc_hw_reset_check); 1917 1918 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 1919 { 1920 host->f_init = freq; 1921 1922 #ifdef CONFIG_MMC_DEBUG 1923 pr_info("%s: %s: trying to init card at %u Hz\n", 1924 mmc_hostname(host), __func__, host->f_init); 1925 #endif 1926 mmc_power_up(host); 1927 1928 /* 1929 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 1930 * do a hardware reset if possible. 1931 */ 1932 mmc_hw_reset_for_init(host); 1933 1934 /* Initialization should be done at 3.3 V I/O voltage. */ 1935 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0); 1936 1937 /* 1938 * sdio_reset sends CMD52 to reset card. Since we do not know 1939 * if the card is being re-initialized, just send it. CMD52 1940 * should be ignored by SD/eMMC cards. 1941 */ 1942 sdio_reset(host); 1943 mmc_go_idle(host); 1944 1945 mmc_send_if_cond(host, host->ocr_avail); 1946 1947 /* Order's important: probe SDIO, then SD, then MMC */ 1948 if (!mmc_attach_sdio(host)) 1949 return 0; 1950 if (!mmc_attach_sd(host)) 1951 return 0; 1952 if (!mmc_attach_mmc(host)) 1953 return 0; 1954 1955 mmc_power_off(host); 1956 return -EIO; 1957 } 1958 1959 int _mmc_detect_card_removed(struct mmc_host *host) 1960 { 1961 int ret; 1962 1963 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive) 1964 return 0; 1965 1966 if (!host->card || mmc_card_removed(host->card)) 1967 return 1; 1968 1969 ret = host->bus_ops->alive(host); 1970 if (ret) { 1971 mmc_card_set_removed(host->card); 1972 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 1973 } 1974 1975 return ret; 1976 } 1977 1978 int mmc_detect_card_removed(struct mmc_host *host) 1979 { 1980 struct mmc_card *card = host->card; 1981 int ret; 1982 1983 WARN_ON(!host->claimed); 1984 1985 if (!card) 1986 return 1; 1987 1988 ret = mmc_card_removed(card); 1989 /* 1990 * The card will be considered unchanged unless we have been asked to 1991 * detect a change or host requires polling to provide card detection. 1992 */ 1993 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) && 1994 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR)) 1995 return ret; 1996 1997 host->detect_change = 0; 1998 if (!ret) { 1999 ret = _mmc_detect_card_removed(host); 2000 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) { 2001 /* 2002 * Schedule a detect work as soon as possible to let a 2003 * rescan handle the card removal. 2004 */ 2005 cancel_delayed_work(&host->detect); 2006 mmc_detect_change(host, 0); 2007 } 2008 } 2009 2010 return ret; 2011 } 2012 EXPORT_SYMBOL(mmc_detect_card_removed); 2013 2014 void mmc_rescan(struct work_struct *work) 2015 { 2016 struct mmc_host *host = 2017 container_of(work, struct mmc_host, detect.work); 2018 int i; 2019 2020 if (host->rescan_disable) 2021 return; 2022 2023 mmc_bus_get(host); 2024 2025 /* 2026 * if there is a _removable_ card registered, check whether it is 2027 * still present 2028 */ 2029 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead 2030 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2031 host->bus_ops->detect(host); 2032 2033 host->detect_change = 0; 2034 2035 /* 2036 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2037 * the card is no longer present. 2038 */ 2039 mmc_bus_put(host); 2040 mmc_bus_get(host); 2041 2042 /* if there still is a card present, stop here */ 2043 if (host->bus_ops != NULL) { 2044 mmc_bus_put(host); 2045 goto out; 2046 } 2047 2048 /* 2049 * Only we can add a new handler, so it's safe to 2050 * release the lock here. 2051 */ 2052 mmc_bus_put(host); 2053 2054 if (host->ops->get_cd && host->ops->get_cd(host) == 0) { 2055 mmc_claim_host(host); 2056 mmc_power_off(host); 2057 mmc_release_host(host); 2058 goto out; 2059 } 2060 2061 mmc_claim_host(host); 2062 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2063 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2064 break; 2065 if (freqs[i] <= host->f_min) 2066 break; 2067 } 2068 mmc_release_host(host); 2069 2070 out: 2071 if (host->caps & MMC_CAP_NEEDS_POLL) 2072 mmc_schedule_delayed_work(&host->detect, HZ); 2073 } 2074 2075 void mmc_start_host(struct mmc_host *host) 2076 { 2077 host->f_init = max(freqs[0], host->f_min); 2078 mmc_power_up(host); 2079 mmc_detect_change(host, 0); 2080 } 2081 2082 void mmc_stop_host(struct mmc_host *host) 2083 { 2084 #ifdef CONFIG_MMC_DEBUG 2085 unsigned long flags; 2086 spin_lock_irqsave(&host->lock, flags); 2087 host->removed = 1; 2088 spin_unlock_irqrestore(&host->lock, flags); 2089 #endif 2090 2091 cancel_delayed_work_sync(&host->detect); 2092 mmc_flush_scheduled_work(); 2093 2094 /* clear pm flags now and let card drivers set them as needed */ 2095 host->pm_flags = 0; 2096 2097 mmc_bus_get(host); 2098 if (host->bus_ops && !host->bus_dead) { 2099 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2100 if (host->bus_ops->remove) 2101 host->bus_ops->remove(host); 2102 2103 mmc_claim_host(host); 2104 mmc_detach_bus(host); 2105 mmc_power_off(host); 2106 mmc_release_host(host); 2107 mmc_bus_put(host); 2108 return; 2109 } 2110 mmc_bus_put(host); 2111 2112 BUG_ON(host->card); 2113 2114 mmc_power_off(host); 2115 } 2116 2117 int mmc_power_save_host(struct mmc_host *host) 2118 { 2119 int ret = 0; 2120 2121 #ifdef CONFIG_MMC_DEBUG 2122 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2123 #endif 2124 2125 mmc_bus_get(host); 2126 2127 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2128 mmc_bus_put(host); 2129 return -EINVAL; 2130 } 2131 2132 if (host->bus_ops->power_save) 2133 ret = host->bus_ops->power_save(host); 2134 2135 mmc_bus_put(host); 2136 2137 mmc_power_off(host); 2138 2139 return ret; 2140 } 2141 EXPORT_SYMBOL(mmc_power_save_host); 2142 2143 int mmc_power_restore_host(struct mmc_host *host) 2144 { 2145 int ret; 2146 2147 #ifdef CONFIG_MMC_DEBUG 2148 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2149 #endif 2150 2151 mmc_bus_get(host); 2152 2153 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2154 mmc_bus_put(host); 2155 return -EINVAL; 2156 } 2157 2158 mmc_power_up(host); 2159 ret = host->bus_ops->power_restore(host); 2160 2161 mmc_bus_put(host); 2162 2163 return ret; 2164 } 2165 EXPORT_SYMBOL(mmc_power_restore_host); 2166 2167 int mmc_card_awake(struct mmc_host *host) 2168 { 2169 int err = -ENOSYS; 2170 2171 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) 2172 return 0; 2173 2174 mmc_bus_get(host); 2175 2176 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 2177 err = host->bus_ops->awake(host); 2178 2179 mmc_bus_put(host); 2180 2181 return err; 2182 } 2183 EXPORT_SYMBOL(mmc_card_awake); 2184 2185 int mmc_card_sleep(struct mmc_host *host) 2186 { 2187 int err = -ENOSYS; 2188 2189 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) 2190 return 0; 2191 2192 mmc_bus_get(host); 2193 2194 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep) 2195 err = host->bus_ops->sleep(host); 2196 2197 mmc_bus_put(host); 2198 2199 return err; 2200 } 2201 EXPORT_SYMBOL(mmc_card_sleep); 2202 2203 int mmc_card_can_sleep(struct mmc_host *host) 2204 { 2205 struct mmc_card *card = host->card; 2206 2207 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) 2208 return 1; 2209 return 0; 2210 } 2211 EXPORT_SYMBOL(mmc_card_can_sleep); 2212 2213 /* 2214 * Flush the cache to the non-volatile storage. 2215 */ 2216 int mmc_flush_cache(struct mmc_card *card) 2217 { 2218 struct mmc_host *host = card->host; 2219 int err = 0; 2220 2221 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) 2222 return err; 2223 2224 if (mmc_card_mmc(card) && 2225 (card->ext_csd.cache_size > 0) && 2226 (card->ext_csd.cache_ctrl & 1)) { 2227 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2228 EXT_CSD_FLUSH_CACHE, 1, 0); 2229 if (err) 2230 pr_err("%s: cache flush error %d\n", 2231 mmc_hostname(card->host), err); 2232 } 2233 2234 return err; 2235 } 2236 EXPORT_SYMBOL(mmc_flush_cache); 2237 2238 /* 2239 * Turn the cache ON/OFF. 2240 * Turning the cache OFF shall trigger flushing of the data 2241 * to the non-volatile storage. 2242 */ 2243 int mmc_cache_ctrl(struct mmc_host *host, u8 enable) 2244 { 2245 struct mmc_card *card = host->card; 2246 unsigned int timeout; 2247 int err = 0; 2248 2249 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) || 2250 mmc_card_is_removable(host)) 2251 return err; 2252 2253 mmc_claim_host(host); 2254 if (card && mmc_card_mmc(card) && 2255 (card->ext_csd.cache_size > 0)) { 2256 enable = !!enable; 2257 2258 if (card->ext_csd.cache_ctrl ^ enable) { 2259 timeout = enable ? card->ext_csd.generic_cmd6_time : 0; 2260 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2261 EXT_CSD_CACHE_CTRL, enable, timeout); 2262 if (err) 2263 pr_err("%s: cache %s error %d\n", 2264 mmc_hostname(card->host), 2265 enable ? "on" : "off", 2266 err); 2267 else 2268 card->ext_csd.cache_ctrl = enable; 2269 } 2270 } 2271 mmc_release_host(host); 2272 2273 return err; 2274 } 2275 EXPORT_SYMBOL(mmc_cache_ctrl); 2276 2277 #ifdef CONFIG_PM 2278 2279 /** 2280 * mmc_suspend_host - suspend a host 2281 * @host: mmc host 2282 */ 2283 int mmc_suspend_host(struct mmc_host *host) 2284 { 2285 int err = 0; 2286 2287 cancel_delayed_work(&host->detect); 2288 mmc_flush_scheduled_work(); 2289 2290 err = mmc_cache_ctrl(host, 0); 2291 if (err) 2292 goto out; 2293 2294 mmc_bus_get(host); 2295 if (host->bus_ops && !host->bus_dead) { 2296 2297 if (host->bus_ops->suspend) 2298 err = host->bus_ops->suspend(host); 2299 2300 if (err == -ENOSYS || !host->bus_ops->resume) { 2301 /* 2302 * We simply "remove" the card in this case. 2303 * It will be redetected on resume. (Calling 2304 * bus_ops->remove() with a claimed host can 2305 * deadlock.) 2306 */ 2307 if (host->bus_ops->remove) 2308 host->bus_ops->remove(host); 2309 mmc_claim_host(host); 2310 mmc_detach_bus(host); 2311 mmc_power_off(host); 2312 mmc_release_host(host); 2313 host->pm_flags = 0; 2314 err = 0; 2315 } 2316 } 2317 mmc_bus_put(host); 2318 2319 if (!err && !mmc_card_keep_power(host)) 2320 mmc_power_off(host); 2321 2322 out: 2323 return err; 2324 } 2325 2326 EXPORT_SYMBOL(mmc_suspend_host); 2327 2328 /** 2329 * mmc_resume_host - resume a previously suspended host 2330 * @host: mmc host 2331 */ 2332 int mmc_resume_host(struct mmc_host *host) 2333 { 2334 int err = 0; 2335 2336 mmc_bus_get(host); 2337 if (host->bus_ops && !host->bus_dead) { 2338 if (!mmc_card_keep_power(host)) { 2339 mmc_power_up(host); 2340 mmc_select_voltage(host, host->ocr); 2341 /* 2342 * Tell runtime PM core we just powered up the card, 2343 * since it still believes the card is powered off. 2344 * Note that currently runtime PM is only enabled 2345 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD 2346 */ 2347 if (mmc_card_sdio(host->card) && 2348 (host->caps & MMC_CAP_POWER_OFF_CARD)) { 2349 pm_runtime_disable(&host->card->dev); 2350 pm_runtime_set_active(&host->card->dev); 2351 pm_runtime_enable(&host->card->dev); 2352 } 2353 } 2354 BUG_ON(!host->bus_ops->resume); 2355 err = host->bus_ops->resume(host); 2356 if (err) { 2357 pr_warning("%s: error %d during resume " 2358 "(card was removed?)\n", 2359 mmc_hostname(host), err); 2360 err = 0; 2361 } 2362 } 2363 host->pm_flags &= ~MMC_PM_KEEP_POWER; 2364 mmc_bus_put(host); 2365 2366 return err; 2367 } 2368 EXPORT_SYMBOL(mmc_resume_host); 2369 2370 /* Do the card removal on suspend if card is assumed removeable 2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2372 to sync the card. 2373 */ 2374 int mmc_pm_notify(struct notifier_block *notify_block, 2375 unsigned long mode, void *unused) 2376 { 2377 struct mmc_host *host = container_of( 2378 notify_block, struct mmc_host, pm_notify); 2379 unsigned long flags; 2380 2381 2382 switch (mode) { 2383 case PM_HIBERNATION_PREPARE: 2384 case PM_SUSPEND_PREPARE: 2385 2386 spin_lock_irqsave(&host->lock, flags); 2387 host->rescan_disable = 1; 2388 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT; 2389 spin_unlock_irqrestore(&host->lock, flags); 2390 cancel_delayed_work_sync(&host->detect); 2391 2392 if (!host->bus_ops || host->bus_ops->suspend) 2393 break; 2394 2395 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2396 if (host->bus_ops->remove) 2397 host->bus_ops->remove(host); 2398 2399 mmc_claim_host(host); 2400 mmc_detach_bus(host); 2401 mmc_power_off(host); 2402 mmc_release_host(host); 2403 host->pm_flags = 0; 2404 break; 2405 2406 case PM_POST_SUSPEND: 2407 case PM_POST_HIBERNATION: 2408 case PM_POST_RESTORE: 2409 2410 spin_lock_irqsave(&host->lock, flags); 2411 host->rescan_disable = 0; 2412 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG; 2413 spin_unlock_irqrestore(&host->lock, flags); 2414 mmc_detect_change(host, 0); 2415 2416 } 2417 2418 return 0; 2419 } 2420 #endif 2421 2422 static int __init mmc_init(void) 2423 { 2424 int ret; 2425 2426 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2427 if (!workqueue) 2428 return -ENOMEM; 2429 2430 ret = mmc_register_bus(); 2431 if (ret) 2432 goto destroy_workqueue; 2433 2434 ret = mmc_register_host_class(); 2435 if (ret) 2436 goto unregister_bus; 2437 2438 ret = sdio_register_bus(); 2439 if (ret) 2440 goto unregister_host_class; 2441 2442 return 0; 2443 2444 unregister_host_class: 2445 mmc_unregister_host_class(); 2446 unregister_bus: 2447 mmc_unregister_bus(); 2448 destroy_workqueue: 2449 destroy_workqueue(workqueue); 2450 2451 return ret; 2452 } 2453 2454 static void __exit mmc_exit(void) 2455 { 2456 sdio_unregister_bus(); 2457 mmc_unregister_host_class(); 2458 mmc_unregister_bus(); 2459 destroy_workqueue(workqueue); 2460 } 2461 2462 subsys_initcall(mmc_init); 2463 module_exit(mmc_exit); 2464 2465 MODULE_LICENSE("GPL"); 2466