xref: /linux/drivers/mmc/core/core.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/host.h>
29 #include <linux/mmc/mmc.h>
30 #include <linux/mmc/sd.h>
31 
32 #include "core.h"
33 #include "bus.h"
34 #include "host.h"
35 #include "sdio_bus.h"
36 
37 #include "mmc_ops.h"
38 #include "sd_ops.h"
39 #include "sdio_ops.h"
40 
41 static struct workqueue_struct *workqueue;
42 
43 /*
44  * Enabling software CRCs on the data blocks can be a significant (30%)
45  * performance cost, and for other reasons may not always be desired.
46  * So we allow it it to be disabled.
47  */
48 int use_spi_crc = 1;
49 module_param(use_spi_crc, bool, 0);
50 
51 /*
52  * We normally treat cards as removed during suspend if they are not
53  * known to be on a non-removable bus, to avoid the risk of writing
54  * back data to a different card after resume.  Allow this to be
55  * overridden if necessary.
56  */
57 #ifdef CONFIG_MMC_UNSAFE_RESUME
58 int mmc_assume_removable;
59 #else
60 int mmc_assume_removable = 1;
61 #endif
62 EXPORT_SYMBOL(mmc_assume_removable);
63 module_param_named(removable, mmc_assume_removable, bool, 0644);
64 MODULE_PARM_DESC(
65 	removable,
66 	"MMC/SD cards are removable and may be removed during suspend");
67 
68 /*
69  * Internal function. Schedule delayed work in the MMC work queue.
70  */
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	return queue_delayed_work(workqueue, work, delay);
75 }
76 
77 /*
78  * Internal function. Flush all scheduled work from the MMC work queue.
79  */
80 static void mmc_flush_scheduled_work(void)
81 {
82 	flush_workqueue(workqueue);
83 }
84 
85 /**
86  *	mmc_request_done - finish processing an MMC request
87  *	@host: MMC host which completed request
88  *	@mrq: MMC request which request
89  *
90  *	MMC drivers should call this function when they have completed
91  *	their processing of a request.
92  */
93 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	int err = cmd->error;
97 
98 	if (err && cmd->retries && mmc_host_is_spi(host)) {
99 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100 			cmd->retries = 0;
101 	}
102 
103 	if (err && cmd->retries) {
104 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105 			mmc_hostname(host), cmd->opcode, err);
106 
107 		cmd->retries--;
108 		cmd->error = 0;
109 		host->ops->request(host, mrq);
110 	} else {
111 		led_trigger_event(host->led, LED_OFF);
112 
113 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114 			mmc_hostname(host), cmd->opcode, err,
115 			cmd->resp[0], cmd->resp[1],
116 			cmd->resp[2], cmd->resp[3]);
117 
118 		if (mrq->data) {
119 			pr_debug("%s:     %d bytes transferred: %d\n",
120 				mmc_hostname(host),
121 				mrq->data->bytes_xfered, mrq->data->error);
122 		}
123 
124 		if (mrq->stop) {
125 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
126 				mmc_hostname(host), mrq->stop->opcode,
127 				mrq->stop->error,
128 				mrq->stop->resp[0], mrq->stop->resp[1],
129 				mrq->stop->resp[2], mrq->stop->resp[3]);
130 		}
131 
132 		if (mrq->done)
133 			mrq->done(mrq);
134 
135 		mmc_host_clk_gate(host);
136 	}
137 }
138 
139 EXPORT_SYMBOL(mmc_request_done);
140 
141 static void
142 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
143 {
144 #ifdef CONFIG_MMC_DEBUG
145 	unsigned int i, sz;
146 	struct scatterlist *sg;
147 #endif
148 
149 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150 		 mmc_hostname(host), mrq->cmd->opcode,
151 		 mrq->cmd->arg, mrq->cmd->flags);
152 
153 	if (mrq->data) {
154 		pr_debug("%s:     blksz %d blocks %d flags %08x "
155 			"tsac %d ms nsac %d\n",
156 			mmc_hostname(host), mrq->data->blksz,
157 			mrq->data->blocks, mrq->data->flags,
158 			mrq->data->timeout_ns / 1000000,
159 			mrq->data->timeout_clks);
160 	}
161 
162 	if (mrq->stop) {
163 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
164 			 mmc_hostname(host), mrq->stop->opcode,
165 			 mrq->stop->arg, mrq->stop->flags);
166 	}
167 
168 	WARN_ON(!host->claimed);
169 
170 	mrq->cmd->error = 0;
171 	mrq->cmd->mrq = mrq;
172 	if (mrq->data) {
173 		BUG_ON(mrq->data->blksz > host->max_blk_size);
174 		BUG_ON(mrq->data->blocks > host->max_blk_count);
175 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
176 			host->max_req_size);
177 
178 #ifdef CONFIG_MMC_DEBUG
179 		sz = 0;
180 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
181 			sz += sg->length;
182 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
183 #endif
184 
185 		mrq->cmd->data = mrq->data;
186 		mrq->data->error = 0;
187 		mrq->data->mrq = mrq;
188 		if (mrq->stop) {
189 			mrq->data->stop = mrq->stop;
190 			mrq->stop->error = 0;
191 			mrq->stop->mrq = mrq;
192 		}
193 	}
194 	mmc_host_clk_ungate(host);
195 	led_trigger_event(host->led, LED_FULL);
196 	host->ops->request(host, mrq);
197 }
198 
199 static void mmc_wait_done(struct mmc_request *mrq)
200 {
201 	complete(mrq->done_data);
202 }
203 
204 /**
205  *	mmc_wait_for_req - start a request and wait for completion
206  *	@host: MMC host to start command
207  *	@mrq: MMC request to start
208  *
209  *	Start a new MMC custom command request for a host, and wait
210  *	for the command to complete. Does not attempt to parse the
211  *	response.
212  */
213 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
214 {
215 	DECLARE_COMPLETION_ONSTACK(complete);
216 
217 	mrq->done_data = &complete;
218 	mrq->done = mmc_wait_done;
219 
220 	mmc_start_request(host, mrq);
221 
222 	wait_for_completion(&complete);
223 }
224 
225 EXPORT_SYMBOL(mmc_wait_for_req);
226 
227 /**
228  *	mmc_wait_for_cmd - start a command and wait for completion
229  *	@host: MMC host to start command
230  *	@cmd: MMC command to start
231  *	@retries: maximum number of retries
232  *
233  *	Start a new MMC command for a host, and wait for the command
234  *	to complete.  Return any error that occurred while the command
235  *	was executing.  Do not attempt to parse the response.
236  */
237 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
238 {
239 	struct mmc_request mrq = {0};
240 
241 	WARN_ON(!host->claimed);
242 
243 	memset(cmd->resp, 0, sizeof(cmd->resp));
244 	cmd->retries = retries;
245 
246 	mrq.cmd = cmd;
247 	cmd->data = NULL;
248 
249 	mmc_wait_for_req(host, &mrq);
250 
251 	return cmd->error;
252 }
253 
254 EXPORT_SYMBOL(mmc_wait_for_cmd);
255 
256 /**
257  *	mmc_set_data_timeout - set the timeout for a data command
258  *	@data: data phase for command
259  *	@card: the MMC card associated with the data transfer
260  *
261  *	Computes the data timeout parameters according to the
262  *	correct algorithm given the card type.
263  */
264 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
265 {
266 	unsigned int mult;
267 
268 	/*
269 	 * SDIO cards only define an upper 1 s limit on access.
270 	 */
271 	if (mmc_card_sdio(card)) {
272 		data->timeout_ns = 1000000000;
273 		data->timeout_clks = 0;
274 		return;
275 	}
276 
277 	/*
278 	 * SD cards use a 100 multiplier rather than 10
279 	 */
280 	mult = mmc_card_sd(card) ? 100 : 10;
281 
282 	/*
283 	 * Scale up the multiplier (and therefore the timeout) by
284 	 * the r2w factor for writes.
285 	 */
286 	if (data->flags & MMC_DATA_WRITE)
287 		mult <<= card->csd.r2w_factor;
288 
289 	data->timeout_ns = card->csd.tacc_ns * mult;
290 	data->timeout_clks = card->csd.tacc_clks * mult;
291 
292 	/*
293 	 * SD cards also have an upper limit on the timeout.
294 	 */
295 	if (mmc_card_sd(card)) {
296 		unsigned int timeout_us, limit_us;
297 
298 		timeout_us = data->timeout_ns / 1000;
299 		if (mmc_host_clk_rate(card->host))
300 			timeout_us += data->timeout_clks * 1000 /
301 				(mmc_host_clk_rate(card->host) / 1000);
302 
303 		if (data->flags & MMC_DATA_WRITE)
304 			/*
305 			 * The limit is really 250 ms, but that is
306 			 * insufficient for some crappy cards.
307 			 */
308 			limit_us = 300000;
309 		else
310 			limit_us = 100000;
311 
312 		/*
313 		 * SDHC cards always use these fixed values.
314 		 */
315 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
316 			data->timeout_ns = limit_us * 1000;
317 			data->timeout_clks = 0;
318 		}
319 	}
320 	/*
321 	 * Some cards need very high timeouts if driven in SPI mode.
322 	 * The worst observed timeout was 900ms after writing a
323 	 * continuous stream of data until the internal logic
324 	 * overflowed.
325 	 */
326 	if (mmc_host_is_spi(card->host)) {
327 		if (data->flags & MMC_DATA_WRITE) {
328 			if (data->timeout_ns < 1000000000)
329 				data->timeout_ns = 1000000000;	/* 1s */
330 		} else {
331 			if (data->timeout_ns < 100000000)
332 				data->timeout_ns =  100000000;	/* 100ms */
333 		}
334 	}
335 }
336 EXPORT_SYMBOL(mmc_set_data_timeout);
337 
338 /**
339  *	mmc_align_data_size - pads a transfer size to a more optimal value
340  *	@card: the MMC card associated with the data transfer
341  *	@sz: original transfer size
342  *
343  *	Pads the original data size with a number of extra bytes in
344  *	order to avoid controller bugs and/or performance hits
345  *	(e.g. some controllers revert to PIO for certain sizes).
346  *
347  *	Returns the improved size, which might be unmodified.
348  *
349  *	Note that this function is only relevant when issuing a
350  *	single scatter gather entry.
351  */
352 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
353 {
354 	/*
355 	 * FIXME: We don't have a system for the controller to tell
356 	 * the core about its problems yet, so for now we just 32-bit
357 	 * align the size.
358 	 */
359 	sz = ((sz + 3) / 4) * 4;
360 
361 	return sz;
362 }
363 EXPORT_SYMBOL(mmc_align_data_size);
364 
365 /**
366  *	mmc_host_enable - enable a host.
367  *	@host: mmc host to enable
368  *
369  *	Hosts that support power saving can use the 'enable' and 'disable'
370  *	methods to exit and enter power saving states. For more information
371  *	see comments for struct mmc_host_ops.
372  */
373 int mmc_host_enable(struct mmc_host *host)
374 {
375 	if (!(host->caps & MMC_CAP_DISABLE))
376 		return 0;
377 
378 	if (host->en_dis_recurs)
379 		return 0;
380 
381 	if (host->nesting_cnt++)
382 		return 0;
383 
384 	cancel_delayed_work_sync(&host->disable);
385 
386 	if (host->enabled)
387 		return 0;
388 
389 	if (host->ops->enable) {
390 		int err;
391 
392 		host->en_dis_recurs = 1;
393 		err = host->ops->enable(host);
394 		host->en_dis_recurs = 0;
395 
396 		if (err) {
397 			pr_debug("%s: enable error %d\n",
398 				 mmc_hostname(host), err);
399 			return err;
400 		}
401 	}
402 	host->enabled = 1;
403 	return 0;
404 }
405 EXPORT_SYMBOL(mmc_host_enable);
406 
407 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
408 {
409 	if (host->ops->disable) {
410 		int err;
411 
412 		host->en_dis_recurs = 1;
413 		err = host->ops->disable(host, lazy);
414 		host->en_dis_recurs = 0;
415 
416 		if (err < 0) {
417 			pr_debug("%s: disable error %d\n",
418 				 mmc_hostname(host), err);
419 			return err;
420 		}
421 		if (err > 0) {
422 			unsigned long delay = msecs_to_jiffies(err);
423 
424 			mmc_schedule_delayed_work(&host->disable, delay);
425 		}
426 	}
427 	host->enabled = 0;
428 	return 0;
429 }
430 
431 /**
432  *	mmc_host_disable - disable a host.
433  *	@host: mmc host to disable
434  *
435  *	Hosts that support power saving can use the 'enable' and 'disable'
436  *	methods to exit and enter power saving states. For more information
437  *	see comments for struct mmc_host_ops.
438  */
439 int mmc_host_disable(struct mmc_host *host)
440 {
441 	int err;
442 
443 	if (!(host->caps & MMC_CAP_DISABLE))
444 		return 0;
445 
446 	if (host->en_dis_recurs)
447 		return 0;
448 
449 	if (--host->nesting_cnt)
450 		return 0;
451 
452 	if (!host->enabled)
453 		return 0;
454 
455 	err = mmc_host_do_disable(host, 0);
456 	return err;
457 }
458 EXPORT_SYMBOL(mmc_host_disable);
459 
460 /**
461  *	__mmc_claim_host - exclusively claim a host
462  *	@host: mmc host to claim
463  *	@abort: whether or not the operation should be aborted
464  *
465  *	Claim a host for a set of operations.  If @abort is non null and
466  *	dereference a non-zero value then this will return prematurely with
467  *	that non-zero value without acquiring the lock.  Returns zero
468  *	with the lock held otherwise.
469  */
470 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
471 {
472 	DECLARE_WAITQUEUE(wait, current);
473 	unsigned long flags;
474 	int stop;
475 
476 	might_sleep();
477 
478 	add_wait_queue(&host->wq, &wait);
479 	spin_lock_irqsave(&host->lock, flags);
480 	while (1) {
481 		set_current_state(TASK_UNINTERRUPTIBLE);
482 		stop = abort ? atomic_read(abort) : 0;
483 		if (stop || !host->claimed || host->claimer == current)
484 			break;
485 		spin_unlock_irqrestore(&host->lock, flags);
486 		schedule();
487 		spin_lock_irqsave(&host->lock, flags);
488 	}
489 	set_current_state(TASK_RUNNING);
490 	if (!stop) {
491 		host->claimed = 1;
492 		host->claimer = current;
493 		host->claim_cnt += 1;
494 	} else
495 		wake_up(&host->wq);
496 	spin_unlock_irqrestore(&host->lock, flags);
497 	remove_wait_queue(&host->wq, &wait);
498 	if (!stop)
499 		mmc_host_enable(host);
500 	return stop;
501 }
502 
503 EXPORT_SYMBOL(__mmc_claim_host);
504 
505 /**
506  *	mmc_try_claim_host - try exclusively to claim a host
507  *	@host: mmc host to claim
508  *
509  *	Returns %1 if the host is claimed, %0 otherwise.
510  */
511 int mmc_try_claim_host(struct mmc_host *host)
512 {
513 	int claimed_host = 0;
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&host->lock, flags);
517 	if (!host->claimed || host->claimer == current) {
518 		host->claimed = 1;
519 		host->claimer = current;
520 		host->claim_cnt += 1;
521 		claimed_host = 1;
522 	}
523 	spin_unlock_irqrestore(&host->lock, flags);
524 	return claimed_host;
525 }
526 EXPORT_SYMBOL(mmc_try_claim_host);
527 
528 /**
529  *	mmc_do_release_host - release a claimed host
530  *	@host: mmc host to release
531  *
532  *	If you successfully claimed a host, this function will
533  *	release it again.
534  */
535 void mmc_do_release_host(struct mmc_host *host)
536 {
537 	unsigned long flags;
538 
539 	spin_lock_irqsave(&host->lock, flags);
540 	if (--host->claim_cnt) {
541 		/* Release for nested claim */
542 		spin_unlock_irqrestore(&host->lock, flags);
543 	} else {
544 		host->claimed = 0;
545 		host->claimer = NULL;
546 		spin_unlock_irqrestore(&host->lock, flags);
547 		wake_up(&host->wq);
548 	}
549 }
550 EXPORT_SYMBOL(mmc_do_release_host);
551 
552 void mmc_host_deeper_disable(struct work_struct *work)
553 {
554 	struct mmc_host *host =
555 		container_of(work, struct mmc_host, disable.work);
556 
557 	/* If the host is claimed then we do not want to disable it anymore */
558 	if (!mmc_try_claim_host(host))
559 		return;
560 	mmc_host_do_disable(host, 1);
561 	mmc_do_release_host(host);
562 }
563 
564 /**
565  *	mmc_host_lazy_disable - lazily disable a host.
566  *	@host: mmc host to disable
567  *
568  *	Hosts that support power saving can use the 'enable' and 'disable'
569  *	methods to exit and enter power saving states. For more information
570  *	see comments for struct mmc_host_ops.
571  */
572 int mmc_host_lazy_disable(struct mmc_host *host)
573 {
574 	if (!(host->caps & MMC_CAP_DISABLE))
575 		return 0;
576 
577 	if (host->en_dis_recurs)
578 		return 0;
579 
580 	if (--host->nesting_cnt)
581 		return 0;
582 
583 	if (!host->enabled)
584 		return 0;
585 
586 	if (host->disable_delay) {
587 		mmc_schedule_delayed_work(&host->disable,
588 				msecs_to_jiffies(host->disable_delay));
589 		return 0;
590 	} else
591 		return mmc_host_do_disable(host, 1);
592 }
593 EXPORT_SYMBOL(mmc_host_lazy_disable);
594 
595 /**
596  *	mmc_release_host - release a host
597  *	@host: mmc host to release
598  *
599  *	Release a MMC host, allowing others to claim the host
600  *	for their operations.
601  */
602 void mmc_release_host(struct mmc_host *host)
603 {
604 	WARN_ON(!host->claimed);
605 
606 	mmc_host_lazy_disable(host);
607 
608 	mmc_do_release_host(host);
609 }
610 
611 EXPORT_SYMBOL(mmc_release_host);
612 
613 /*
614  * Internal function that does the actual ios call to the host driver,
615  * optionally printing some debug output.
616  */
617 static inline void mmc_set_ios(struct mmc_host *host)
618 {
619 	struct mmc_ios *ios = &host->ios;
620 
621 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
622 		"width %u timing %u\n",
623 		 mmc_hostname(host), ios->clock, ios->bus_mode,
624 		 ios->power_mode, ios->chip_select, ios->vdd,
625 		 ios->bus_width, ios->timing);
626 
627 	if (ios->clock > 0)
628 		mmc_set_ungated(host);
629 	host->ops->set_ios(host, ios);
630 }
631 
632 /*
633  * Control chip select pin on a host.
634  */
635 void mmc_set_chip_select(struct mmc_host *host, int mode)
636 {
637 	host->ios.chip_select = mode;
638 	mmc_set_ios(host);
639 }
640 
641 /*
642  * Sets the host clock to the highest possible frequency that
643  * is below "hz".
644  */
645 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
646 {
647 	WARN_ON(hz < host->f_min);
648 
649 	if (hz > host->f_max)
650 		hz = host->f_max;
651 
652 	host->ios.clock = hz;
653 	mmc_set_ios(host);
654 }
655 
656 #ifdef CONFIG_MMC_CLKGATE
657 /*
658  * This gates the clock by setting it to 0 Hz.
659  */
660 void mmc_gate_clock(struct mmc_host *host)
661 {
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&host->clk_lock, flags);
665 	host->clk_old = host->ios.clock;
666 	host->ios.clock = 0;
667 	host->clk_gated = true;
668 	spin_unlock_irqrestore(&host->clk_lock, flags);
669 	mmc_set_ios(host);
670 }
671 
672 /*
673  * This restores the clock from gating by using the cached
674  * clock value.
675  */
676 void mmc_ungate_clock(struct mmc_host *host)
677 {
678 	/*
679 	 * We should previously have gated the clock, so the clock shall
680 	 * be 0 here! The clock may however be 0 during initialization,
681 	 * when some request operations are performed before setting
682 	 * the frequency. When ungate is requested in that situation
683 	 * we just ignore the call.
684 	 */
685 	if (host->clk_old) {
686 		BUG_ON(host->ios.clock);
687 		/* This call will also set host->clk_gated to false */
688 		mmc_set_clock(host, host->clk_old);
689 	}
690 }
691 
692 void mmc_set_ungated(struct mmc_host *host)
693 {
694 	unsigned long flags;
695 
696 	/*
697 	 * We've been given a new frequency while the clock is gated,
698 	 * so make sure we regard this as ungating it.
699 	 */
700 	spin_lock_irqsave(&host->clk_lock, flags);
701 	host->clk_gated = false;
702 	spin_unlock_irqrestore(&host->clk_lock, flags);
703 }
704 
705 #else
706 void mmc_set_ungated(struct mmc_host *host)
707 {
708 }
709 #endif
710 
711 /*
712  * Change the bus mode (open drain/push-pull) of a host.
713  */
714 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
715 {
716 	host->ios.bus_mode = mode;
717 	mmc_set_ios(host);
718 }
719 
720 /*
721  * Change data bus width of a host.
722  */
723 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
724 {
725 	host->ios.bus_width = width;
726 	mmc_set_ios(host);
727 }
728 
729 /**
730  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
731  * @vdd:	voltage (mV)
732  * @low_bits:	prefer low bits in boundary cases
733  *
734  * This function returns the OCR bit number according to the provided @vdd
735  * value. If conversion is not possible a negative errno value returned.
736  *
737  * Depending on the @low_bits flag the function prefers low or high OCR bits
738  * on boundary voltages. For example,
739  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
740  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
741  *
742  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
743  */
744 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
745 {
746 	const int max_bit = ilog2(MMC_VDD_35_36);
747 	int bit;
748 
749 	if (vdd < 1650 || vdd > 3600)
750 		return -EINVAL;
751 
752 	if (vdd >= 1650 && vdd <= 1950)
753 		return ilog2(MMC_VDD_165_195);
754 
755 	if (low_bits)
756 		vdd -= 1;
757 
758 	/* Base 2000 mV, step 100 mV, bit's base 8. */
759 	bit = (vdd - 2000) / 100 + 8;
760 	if (bit > max_bit)
761 		return max_bit;
762 	return bit;
763 }
764 
765 /**
766  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
767  * @vdd_min:	minimum voltage value (mV)
768  * @vdd_max:	maximum voltage value (mV)
769  *
770  * This function returns the OCR mask bits according to the provided @vdd_min
771  * and @vdd_max values. If conversion is not possible the function returns 0.
772  *
773  * Notes wrt boundary cases:
774  * This function sets the OCR bits for all boundary voltages, for example
775  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
776  * MMC_VDD_34_35 mask.
777  */
778 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
779 {
780 	u32 mask = 0;
781 
782 	if (vdd_max < vdd_min)
783 		return 0;
784 
785 	/* Prefer high bits for the boundary vdd_max values. */
786 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
787 	if (vdd_max < 0)
788 		return 0;
789 
790 	/* Prefer low bits for the boundary vdd_min values. */
791 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
792 	if (vdd_min < 0)
793 		return 0;
794 
795 	/* Fill the mask, from max bit to min bit. */
796 	while (vdd_max >= vdd_min)
797 		mask |= 1 << vdd_max--;
798 
799 	return mask;
800 }
801 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
802 
803 #ifdef CONFIG_REGULATOR
804 
805 /**
806  * mmc_regulator_get_ocrmask - return mask of supported voltages
807  * @supply: regulator to use
808  *
809  * This returns either a negative errno, or a mask of voltages that
810  * can be provided to MMC/SD/SDIO devices using the specified voltage
811  * regulator.  This would normally be called before registering the
812  * MMC host adapter.
813  */
814 int mmc_regulator_get_ocrmask(struct regulator *supply)
815 {
816 	int			result = 0;
817 	int			count;
818 	int			i;
819 
820 	count = regulator_count_voltages(supply);
821 	if (count < 0)
822 		return count;
823 
824 	for (i = 0; i < count; i++) {
825 		int		vdd_uV;
826 		int		vdd_mV;
827 
828 		vdd_uV = regulator_list_voltage(supply, i);
829 		if (vdd_uV <= 0)
830 			continue;
831 
832 		vdd_mV = vdd_uV / 1000;
833 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
834 	}
835 
836 	return result;
837 }
838 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
839 
840 /**
841  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
842  * @mmc: the host to regulate
843  * @supply: regulator to use
844  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
845  *
846  * Returns zero on success, else negative errno.
847  *
848  * MMC host drivers may use this to enable or disable a regulator using
849  * a particular supply voltage.  This would normally be called from the
850  * set_ios() method.
851  */
852 int mmc_regulator_set_ocr(struct mmc_host *mmc,
853 			struct regulator *supply,
854 			unsigned short vdd_bit)
855 {
856 	int			result = 0;
857 	int			min_uV, max_uV;
858 
859 	if (vdd_bit) {
860 		int		tmp;
861 		int		voltage;
862 
863 		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
864 		 * bits this regulator doesn't quite support ... don't
865 		 * be too picky, most cards and regulators are OK with
866 		 * a 0.1V range goof (it's a small error percentage).
867 		 */
868 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
869 		if (tmp == 0) {
870 			min_uV = 1650 * 1000;
871 			max_uV = 1950 * 1000;
872 		} else {
873 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
874 			max_uV = min_uV + 100 * 1000;
875 		}
876 
877 		/* avoid needless changes to this voltage; the regulator
878 		 * might not allow this operation
879 		 */
880 		voltage = regulator_get_voltage(supply);
881 		if (voltage < 0)
882 			result = voltage;
883 		else if (voltage < min_uV || voltage > max_uV)
884 			result = regulator_set_voltage(supply, min_uV, max_uV);
885 		else
886 			result = 0;
887 
888 		if (result == 0 && !mmc->regulator_enabled) {
889 			result = regulator_enable(supply);
890 			if (!result)
891 				mmc->regulator_enabled = true;
892 		}
893 	} else if (mmc->regulator_enabled) {
894 		result = regulator_disable(supply);
895 		if (result == 0)
896 			mmc->regulator_enabled = false;
897 	}
898 
899 	if (result)
900 		dev_err(mmc_dev(mmc),
901 			"could not set regulator OCR (%d)\n", result);
902 	return result;
903 }
904 EXPORT_SYMBOL(mmc_regulator_set_ocr);
905 
906 #endif /* CONFIG_REGULATOR */
907 
908 /*
909  * Mask off any voltages we don't support and select
910  * the lowest voltage
911  */
912 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
913 {
914 	int bit;
915 
916 	ocr &= host->ocr_avail;
917 
918 	bit = ffs(ocr);
919 	if (bit) {
920 		bit -= 1;
921 
922 		ocr &= 3 << bit;
923 
924 		host->ios.vdd = bit;
925 		mmc_set_ios(host);
926 	} else {
927 		pr_warning("%s: host doesn't support card's voltages\n",
928 				mmc_hostname(host));
929 		ocr = 0;
930 	}
931 
932 	return ocr;
933 }
934 
935 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
936 {
937 	struct mmc_command cmd = {0};
938 	int err = 0;
939 
940 	BUG_ON(!host);
941 
942 	/*
943 	 * Send CMD11 only if the request is to switch the card to
944 	 * 1.8V signalling.
945 	 */
946 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
947 		cmd.opcode = SD_SWITCH_VOLTAGE;
948 		cmd.arg = 0;
949 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
950 
951 		err = mmc_wait_for_cmd(host, &cmd, 0);
952 		if (err)
953 			return err;
954 
955 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
956 			return -EIO;
957 	}
958 
959 	host->ios.signal_voltage = signal_voltage;
960 
961 	if (host->ops->start_signal_voltage_switch)
962 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
963 
964 	return err;
965 }
966 
967 /*
968  * Select timing parameters for host.
969  */
970 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
971 {
972 	host->ios.timing = timing;
973 	mmc_set_ios(host);
974 }
975 
976 /*
977  * Select appropriate driver type for host.
978  */
979 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
980 {
981 	host->ios.drv_type = drv_type;
982 	mmc_set_ios(host);
983 }
984 
985 /*
986  * Apply power to the MMC stack.  This is a two-stage process.
987  * First, we enable power to the card without the clock running.
988  * We then wait a bit for the power to stabilise.  Finally,
989  * enable the bus drivers and clock to the card.
990  *
991  * We must _NOT_ enable the clock prior to power stablising.
992  *
993  * If a host does all the power sequencing itself, ignore the
994  * initial MMC_POWER_UP stage.
995  */
996 static void mmc_power_up(struct mmc_host *host)
997 {
998 	int bit;
999 
1000 	/* If ocr is set, we use it */
1001 	if (host->ocr)
1002 		bit = ffs(host->ocr) - 1;
1003 	else
1004 		bit = fls(host->ocr_avail) - 1;
1005 
1006 	host->ios.vdd = bit;
1007 	if (mmc_host_is_spi(host)) {
1008 		host->ios.chip_select = MMC_CS_HIGH;
1009 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1010 	} else {
1011 		host->ios.chip_select = MMC_CS_DONTCARE;
1012 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1013 	}
1014 	host->ios.power_mode = MMC_POWER_UP;
1015 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1016 	host->ios.timing = MMC_TIMING_LEGACY;
1017 	mmc_set_ios(host);
1018 
1019 	/*
1020 	 * This delay should be sufficient to allow the power supply
1021 	 * to reach the minimum voltage.
1022 	 */
1023 	mmc_delay(10);
1024 
1025 	host->ios.clock = host->f_init;
1026 
1027 	host->ios.power_mode = MMC_POWER_ON;
1028 	mmc_set_ios(host);
1029 
1030 	/*
1031 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1032 	 * time required to reach a stable voltage.
1033 	 */
1034 	mmc_delay(10);
1035 }
1036 
1037 static void mmc_power_off(struct mmc_host *host)
1038 {
1039 	host->ios.clock = 0;
1040 	host->ios.vdd = 0;
1041 
1042 	/*
1043 	 * Reset ocr mask to be the highest possible voltage supported for
1044 	 * this mmc host. This value will be used at next power up.
1045 	 */
1046 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1047 
1048 	if (!mmc_host_is_spi(host)) {
1049 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1050 		host->ios.chip_select = MMC_CS_DONTCARE;
1051 	}
1052 	host->ios.power_mode = MMC_POWER_OFF;
1053 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1054 	host->ios.timing = MMC_TIMING_LEGACY;
1055 	mmc_set_ios(host);
1056 }
1057 
1058 /*
1059  * Cleanup when the last reference to the bus operator is dropped.
1060  */
1061 static void __mmc_release_bus(struct mmc_host *host)
1062 {
1063 	BUG_ON(!host);
1064 	BUG_ON(host->bus_refs);
1065 	BUG_ON(!host->bus_dead);
1066 
1067 	host->bus_ops = NULL;
1068 }
1069 
1070 /*
1071  * Increase reference count of bus operator
1072  */
1073 static inline void mmc_bus_get(struct mmc_host *host)
1074 {
1075 	unsigned long flags;
1076 
1077 	spin_lock_irqsave(&host->lock, flags);
1078 	host->bus_refs++;
1079 	spin_unlock_irqrestore(&host->lock, flags);
1080 }
1081 
1082 /*
1083  * Decrease reference count of bus operator and free it if
1084  * it is the last reference.
1085  */
1086 static inline void mmc_bus_put(struct mmc_host *host)
1087 {
1088 	unsigned long flags;
1089 
1090 	spin_lock_irqsave(&host->lock, flags);
1091 	host->bus_refs--;
1092 	if ((host->bus_refs == 0) && host->bus_ops)
1093 		__mmc_release_bus(host);
1094 	spin_unlock_irqrestore(&host->lock, flags);
1095 }
1096 
1097 /*
1098  * Assign a mmc bus handler to a host. Only one bus handler may control a
1099  * host at any given time.
1100  */
1101 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1102 {
1103 	unsigned long flags;
1104 
1105 	BUG_ON(!host);
1106 	BUG_ON(!ops);
1107 
1108 	WARN_ON(!host->claimed);
1109 
1110 	spin_lock_irqsave(&host->lock, flags);
1111 
1112 	BUG_ON(host->bus_ops);
1113 	BUG_ON(host->bus_refs);
1114 
1115 	host->bus_ops = ops;
1116 	host->bus_refs = 1;
1117 	host->bus_dead = 0;
1118 
1119 	spin_unlock_irqrestore(&host->lock, flags);
1120 }
1121 
1122 /*
1123  * Remove the current bus handler from a host. Assumes that there are
1124  * no interesting cards left, so the bus is powered down.
1125  */
1126 void mmc_detach_bus(struct mmc_host *host)
1127 {
1128 	unsigned long flags;
1129 
1130 	BUG_ON(!host);
1131 
1132 	WARN_ON(!host->claimed);
1133 	WARN_ON(!host->bus_ops);
1134 
1135 	spin_lock_irqsave(&host->lock, flags);
1136 
1137 	host->bus_dead = 1;
1138 
1139 	spin_unlock_irqrestore(&host->lock, flags);
1140 
1141 	mmc_power_off(host);
1142 
1143 	mmc_bus_put(host);
1144 }
1145 
1146 /**
1147  *	mmc_detect_change - process change of state on a MMC socket
1148  *	@host: host which changed state.
1149  *	@delay: optional delay to wait before detection (jiffies)
1150  *
1151  *	MMC drivers should call this when they detect a card has been
1152  *	inserted or removed. The MMC layer will confirm that any
1153  *	present card is still functional, and initialize any newly
1154  *	inserted.
1155  */
1156 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1157 {
1158 #ifdef CONFIG_MMC_DEBUG
1159 	unsigned long flags;
1160 	spin_lock_irqsave(&host->lock, flags);
1161 	WARN_ON(host->removed);
1162 	spin_unlock_irqrestore(&host->lock, flags);
1163 #endif
1164 
1165 	mmc_schedule_delayed_work(&host->detect, delay);
1166 }
1167 
1168 EXPORT_SYMBOL(mmc_detect_change);
1169 
1170 void mmc_init_erase(struct mmc_card *card)
1171 {
1172 	unsigned int sz;
1173 
1174 	if (is_power_of_2(card->erase_size))
1175 		card->erase_shift = ffs(card->erase_size) - 1;
1176 	else
1177 		card->erase_shift = 0;
1178 
1179 	/*
1180 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1181 	 * card.  That is not desirable because it can take a long time
1182 	 * (minutes) potentially delaying more important I/O, and also the
1183 	 * timeout calculations become increasingly hugely over-estimated.
1184 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1185 	 * to that size and alignment.
1186 	 *
1187 	 * For SD cards that define Allocation Unit size, limit erases to one
1188 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1189 	 * Erase Size, whether it is switched on or not, limit to that size.
1190 	 * Otherwise just have a stab at a good value.  For modern cards it
1191 	 * will end up being 4MiB.  Note that if the value is too small, it
1192 	 * can end up taking longer to erase.
1193 	 */
1194 	if (mmc_card_sd(card) && card->ssr.au) {
1195 		card->pref_erase = card->ssr.au;
1196 		card->erase_shift = ffs(card->ssr.au) - 1;
1197 	} else if (card->ext_csd.hc_erase_size) {
1198 		card->pref_erase = card->ext_csd.hc_erase_size;
1199 	} else {
1200 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1201 		if (sz < 128)
1202 			card->pref_erase = 512 * 1024 / 512;
1203 		else if (sz < 512)
1204 			card->pref_erase = 1024 * 1024 / 512;
1205 		else if (sz < 1024)
1206 			card->pref_erase = 2 * 1024 * 1024 / 512;
1207 		else
1208 			card->pref_erase = 4 * 1024 * 1024 / 512;
1209 		if (card->pref_erase < card->erase_size)
1210 			card->pref_erase = card->erase_size;
1211 		else {
1212 			sz = card->pref_erase % card->erase_size;
1213 			if (sz)
1214 				card->pref_erase += card->erase_size - sz;
1215 		}
1216 	}
1217 }
1218 
1219 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1220 				          unsigned int arg, unsigned int qty)
1221 {
1222 	unsigned int erase_timeout;
1223 
1224 	if (card->ext_csd.erase_group_def & 1) {
1225 		/* High Capacity Erase Group Size uses HC timeouts */
1226 		if (arg == MMC_TRIM_ARG)
1227 			erase_timeout = card->ext_csd.trim_timeout;
1228 		else
1229 			erase_timeout = card->ext_csd.hc_erase_timeout;
1230 	} else {
1231 		/* CSD Erase Group Size uses write timeout */
1232 		unsigned int mult = (10 << card->csd.r2w_factor);
1233 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1234 		unsigned int timeout_us;
1235 
1236 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1237 		if (card->csd.tacc_ns < 1000000)
1238 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1239 		else
1240 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1241 
1242 		/*
1243 		 * ios.clock is only a target.  The real clock rate might be
1244 		 * less but not that much less, so fudge it by multiplying by 2.
1245 		 */
1246 		timeout_clks <<= 1;
1247 		timeout_us += (timeout_clks * 1000) /
1248 			      (card->host->ios.clock / 1000);
1249 
1250 		erase_timeout = timeout_us / 1000;
1251 
1252 		/*
1253 		 * Theoretically, the calculation could underflow so round up
1254 		 * to 1ms in that case.
1255 		 */
1256 		if (!erase_timeout)
1257 			erase_timeout = 1;
1258 	}
1259 
1260 	/* Multiplier for secure operations */
1261 	if (arg & MMC_SECURE_ARGS) {
1262 		if (arg == MMC_SECURE_ERASE_ARG)
1263 			erase_timeout *= card->ext_csd.sec_erase_mult;
1264 		else
1265 			erase_timeout *= card->ext_csd.sec_trim_mult;
1266 	}
1267 
1268 	erase_timeout *= qty;
1269 
1270 	/*
1271 	 * Ensure at least a 1 second timeout for SPI as per
1272 	 * 'mmc_set_data_timeout()'
1273 	 */
1274 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1275 		erase_timeout = 1000;
1276 
1277 	return erase_timeout;
1278 }
1279 
1280 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1281 					 unsigned int arg,
1282 					 unsigned int qty)
1283 {
1284 	unsigned int erase_timeout;
1285 
1286 	if (card->ssr.erase_timeout) {
1287 		/* Erase timeout specified in SD Status Register (SSR) */
1288 		erase_timeout = card->ssr.erase_timeout * qty +
1289 				card->ssr.erase_offset;
1290 	} else {
1291 		/*
1292 		 * Erase timeout not specified in SD Status Register (SSR) so
1293 		 * use 250ms per write block.
1294 		 */
1295 		erase_timeout = 250 * qty;
1296 	}
1297 
1298 	/* Must not be less than 1 second */
1299 	if (erase_timeout < 1000)
1300 		erase_timeout = 1000;
1301 
1302 	return erase_timeout;
1303 }
1304 
1305 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1306 				      unsigned int arg,
1307 				      unsigned int qty)
1308 {
1309 	if (mmc_card_sd(card))
1310 		return mmc_sd_erase_timeout(card, arg, qty);
1311 	else
1312 		return mmc_mmc_erase_timeout(card, arg, qty);
1313 }
1314 
1315 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1316 			unsigned int to, unsigned int arg)
1317 {
1318 	struct mmc_command cmd = {0};
1319 	unsigned int qty = 0;
1320 	int err;
1321 
1322 	/*
1323 	 * qty is used to calculate the erase timeout which depends on how many
1324 	 * erase groups (or allocation units in SD terminology) are affected.
1325 	 * We count erasing part of an erase group as one erase group.
1326 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1327 	 * erase group size is almost certainly also power of 2, but it does not
1328 	 * seem to insist on that in the JEDEC standard, so we fall back to
1329 	 * division in that case.  SD may not specify an allocation unit size,
1330 	 * in which case the timeout is based on the number of write blocks.
1331 	 *
1332 	 * Note that the timeout for secure trim 2 will only be correct if the
1333 	 * number of erase groups specified is the same as the total of all
1334 	 * preceding secure trim 1 commands.  Since the power may have been
1335 	 * lost since the secure trim 1 commands occurred, it is generally
1336 	 * impossible to calculate the secure trim 2 timeout correctly.
1337 	 */
1338 	if (card->erase_shift)
1339 		qty += ((to >> card->erase_shift) -
1340 			(from >> card->erase_shift)) + 1;
1341 	else if (mmc_card_sd(card))
1342 		qty += to - from + 1;
1343 	else
1344 		qty += ((to / card->erase_size) -
1345 			(from / card->erase_size)) + 1;
1346 
1347 	if (!mmc_card_blockaddr(card)) {
1348 		from <<= 9;
1349 		to <<= 9;
1350 	}
1351 
1352 	if (mmc_card_sd(card))
1353 		cmd.opcode = SD_ERASE_WR_BLK_START;
1354 	else
1355 		cmd.opcode = MMC_ERASE_GROUP_START;
1356 	cmd.arg = from;
1357 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1358 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1359 	if (err) {
1360 		printk(KERN_ERR "mmc_erase: group start error %d, "
1361 		       "status %#x\n", err, cmd.resp[0]);
1362 		err = -EINVAL;
1363 		goto out;
1364 	}
1365 
1366 	memset(&cmd, 0, sizeof(struct mmc_command));
1367 	if (mmc_card_sd(card))
1368 		cmd.opcode = SD_ERASE_WR_BLK_END;
1369 	else
1370 		cmd.opcode = MMC_ERASE_GROUP_END;
1371 	cmd.arg = to;
1372 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1373 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1374 	if (err) {
1375 		printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1376 		       err, cmd.resp[0]);
1377 		err = -EINVAL;
1378 		goto out;
1379 	}
1380 
1381 	memset(&cmd, 0, sizeof(struct mmc_command));
1382 	cmd.opcode = MMC_ERASE;
1383 	cmd.arg = arg;
1384 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1385 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1386 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1387 	if (err) {
1388 		printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1389 		       err, cmd.resp[0]);
1390 		err = -EIO;
1391 		goto out;
1392 	}
1393 
1394 	if (mmc_host_is_spi(card->host))
1395 		goto out;
1396 
1397 	do {
1398 		memset(&cmd, 0, sizeof(struct mmc_command));
1399 		cmd.opcode = MMC_SEND_STATUS;
1400 		cmd.arg = card->rca << 16;
1401 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1402 		/* Do not retry else we can't see errors */
1403 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1404 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1405 			printk(KERN_ERR "error %d requesting status %#x\n",
1406 				err, cmd.resp[0]);
1407 			err = -EIO;
1408 			goto out;
1409 		}
1410 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1411 		 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1412 out:
1413 	return err;
1414 }
1415 
1416 /**
1417  * mmc_erase - erase sectors.
1418  * @card: card to erase
1419  * @from: first sector to erase
1420  * @nr: number of sectors to erase
1421  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1422  *
1423  * Caller must claim host before calling this function.
1424  */
1425 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1426 	      unsigned int arg)
1427 {
1428 	unsigned int rem, to = from + nr;
1429 
1430 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1431 	    !(card->csd.cmdclass & CCC_ERASE))
1432 		return -EOPNOTSUPP;
1433 
1434 	if (!card->erase_size)
1435 		return -EOPNOTSUPP;
1436 
1437 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1438 		return -EOPNOTSUPP;
1439 
1440 	if ((arg & MMC_SECURE_ARGS) &&
1441 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1442 		return -EOPNOTSUPP;
1443 
1444 	if ((arg & MMC_TRIM_ARGS) &&
1445 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1446 		return -EOPNOTSUPP;
1447 
1448 	if (arg == MMC_SECURE_ERASE_ARG) {
1449 		if (from % card->erase_size || nr % card->erase_size)
1450 			return -EINVAL;
1451 	}
1452 
1453 	if (arg == MMC_ERASE_ARG) {
1454 		rem = from % card->erase_size;
1455 		if (rem) {
1456 			rem = card->erase_size - rem;
1457 			from += rem;
1458 			if (nr > rem)
1459 				nr -= rem;
1460 			else
1461 				return 0;
1462 		}
1463 		rem = nr % card->erase_size;
1464 		if (rem)
1465 			nr -= rem;
1466 	}
1467 
1468 	if (nr == 0)
1469 		return 0;
1470 
1471 	to = from + nr;
1472 
1473 	if (to <= from)
1474 		return -EINVAL;
1475 
1476 	/* 'from' and 'to' are inclusive */
1477 	to -= 1;
1478 
1479 	return mmc_do_erase(card, from, to, arg);
1480 }
1481 EXPORT_SYMBOL(mmc_erase);
1482 
1483 int mmc_can_erase(struct mmc_card *card)
1484 {
1485 	if ((card->host->caps & MMC_CAP_ERASE) &&
1486 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1487 		return 1;
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL(mmc_can_erase);
1491 
1492 int mmc_can_trim(struct mmc_card *card)
1493 {
1494 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1495 		return 1;
1496 	return 0;
1497 }
1498 EXPORT_SYMBOL(mmc_can_trim);
1499 
1500 int mmc_can_secure_erase_trim(struct mmc_card *card)
1501 {
1502 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1503 		return 1;
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1507 
1508 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1509 			    unsigned int nr)
1510 {
1511 	if (!card->erase_size)
1512 		return 0;
1513 	if (from % card->erase_size || nr % card->erase_size)
1514 		return 0;
1515 	return 1;
1516 }
1517 EXPORT_SYMBOL(mmc_erase_group_aligned);
1518 
1519 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1520 {
1521 	struct mmc_command cmd = {0};
1522 
1523 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1524 		return 0;
1525 
1526 	cmd.opcode = MMC_SET_BLOCKLEN;
1527 	cmd.arg = blocklen;
1528 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1529 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1530 }
1531 EXPORT_SYMBOL(mmc_set_blocklen);
1532 
1533 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1534 {
1535 	host->f_init = freq;
1536 
1537 #ifdef CONFIG_MMC_DEBUG
1538 	pr_info("%s: %s: trying to init card at %u Hz\n",
1539 		mmc_hostname(host), __func__, host->f_init);
1540 #endif
1541 	mmc_power_up(host);
1542 
1543 	/*
1544 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1545 	 * if the card is being re-initialized, just send it.  CMD52
1546 	 * should be ignored by SD/eMMC cards.
1547 	 */
1548 	sdio_reset(host);
1549 	mmc_go_idle(host);
1550 
1551 	mmc_send_if_cond(host, host->ocr_avail);
1552 
1553 	/* Order's important: probe SDIO, then SD, then MMC */
1554 	if (!mmc_attach_sdio(host))
1555 		return 0;
1556 	if (!mmc_attach_sd(host))
1557 		return 0;
1558 	if (!mmc_attach_mmc(host))
1559 		return 0;
1560 
1561 	mmc_power_off(host);
1562 	return -EIO;
1563 }
1564 
1565 void mmc_rescan(struct work_struct *work)
1566 {
1567 	static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1568 	struct mmc_host *host =
1569 		container_of(work, struct mmc_host, detect.work);
1570 	int i;
1571 
1572 	if (host->rescan_disable)
1573 		return;
1574 
1575 	mmc_bus_get(host);
1576 
1577 	/*
1578 	 * if there is a _removable_ card registered, check whether it is
1579 	 * still present
1580 	 */
1581 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1582 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
1583 		host->bus_ops->detect(host);
1584 
1585 	/*
1586 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1587 	 * the card is no longer present.
1588 	 */
1589 	mmc_bus_put(host);
1590 	mmc_bus_get(host);
1591 
1592 	/* if there still is a card present, stop here */
1593 	if (host->bus_ops != NULL) {
1594 		mmc_bus_put(host);
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * Only we can add a new handler, so it's safe to
1600 	 * release the lock here.
1601 	 */
1602 	mmc_bus_put(host);
1603 
1604 	if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1605 		goto out;
1606 
1607 	mmc_claim_host(host);
1608 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1609 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1610 			break;
1611 		if (freqs[i] <= host->f_min)
1612 			break;
1613 	}
1614 	mmc_release_host(host);
1615 
1616  out:
1617 	if (host->caps & MMC_CAP_NEEDS_POLL)
1618 		mmc_schedule_delayed_work(&host->detect, HZ);
1619 }
1620 
1621 void mmc_start_host(struct mmc_host *host)
1622 {
1623 	mmc_power_off(host);
1624 	mmc_detect_change(host, 0);
1625 }
1626 
1627 void mmc_stop_host(struct mmc_host *host)
1628 {
1629 #ifdef CONFIG_MMC_DEBUG
1630 	unsigned long flags;
1631 	spin_lock_irqsave(&host->lock, flags);
1632 	host->removed = 1;
1633 	spin_unlock_irqrestore(&host->lock, flags);
1634 #endif
1635 
1636 	if (host->caps & MMC_CAP_DISABLE)
1637 		cancel_delayed_work(&host->disable);
1638 	cancel_delayed_work_sync(&host->detect);
1639 	mmc_flush_scheduled_work();
1640 
1641 	/* clear pm flags now and let card drivers set them as needed */
1642 	host->pm_flags = 0;
1643 
1644 	mmc_bus_get(host);
1645 	if (host->bus_ops && !host->bus_dead) {
1646 		if (host->bus_ops->remove)
1647 			host->bus_ops->remove(host);
1648 
1649 		mmc_claim_host(host);
1650 		mmc_detach_bus(host);
1651 		mmc_release_host(host);
1652 		mmc_bus_put(host);
1653 		return;
1654 	}
1655 	mmc_bus_put(host);
1656 
1657 	BUG_ON(host->card);
1658 
1659 	mmc_power_off(host);
1660 }
1661 
1662 int mmc_power_save_host(struct mmc_host *host)
1663 {
1664 	int ret = 0;
1665 
1666 	mmc_bus_get(host);
1667 
1668 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1669 		mmc_bus_put(host);
1670 		return -EINVAL;
1671 	}
1672 
1673 	if (host->bus_ops->power_save)
1674 		ret = host->bus_ops->power_save(host);
1675 
1676 	mmc_bus_put(host);
1677 
1678 	mmc_power_off(host);
1679 
1680 	return ret;
1681 }
1682 EXPORT_SYMBOL(mmc_power_save_host);
1683 
1684 int mmc_power_restore_host(struct mmc_host *host)
1685 {
1686 	int ret;
1687 
1688 	mmc_bus_get(host);
1689 
1690 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1691 		mmc_bus_put(host);
1692 		return -EINVAL;
1693 	}
1694 
1695 	mmc_power_up(host);
1696 	ret = host->bus_ops->power_restore(host);
1697 
1698 	mmc_bus_put(host);
1699 
1700 	return ret;
1701 }
1702 EXPORT_SYMBOL(mmc_power_restore_host);
1703 
1704 int mmc_card_awake(struct mmc_host *host)
1705 {
1706 	int err = -ENOSYS;
1707 
1708 	mmc_bus_get(host);
1709 
1710 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1711 		err = host->bus_ops->awake(host);
1712 
1713 	mmc_bus_put(host);
1714 
1715 	return err;
1716 }
1717 EXPORT_SYMBOL(mmc_card_awake);
1718 
1719 int mmc_card_sleep(struct mmc_host *host)
1720 {
1721 	int err = -ENOSYS;
1722 
1723 	mmc_bus_get(host);
1724 
1725 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1726 		err = host->bus_ops->sleep(host);
1727 
1728 	mmc_bus_put(host);
1729 
1730 	return err;
1731 }
1732 EXPORT_SYMBOL(mmc_card_sleep);
1733 
1734 int mmc_card_can_sleep(struct mmc_host *host)
1735 {
1736 	struct mmc_card *card = host->card;
1737 
1738 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1739 		return 1;
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL(mmc_card_can_sleep);
1743 
1744 #ifdef CONFIG_PM
1745 
1746 /**
1747  *	mmc_suspend_host - suspend a host
1748  *	@host: mmc host
1749  */
1750 int mmc_suspend_host(struct mmc_host *host)
1751 {
1752 	int err = 0;
1753 
1754 	if (host->caps & MMC_CAP_DISABLE)
1755 		cancel_delayed_work(&host->disable);
1756 	cancel_delayed_work(&host->detect);
1757 	mmc_flush_scheduled_work();
1758 
1759 	mmc_bus_get(host);
1760 	if (host->bus_ops && !host->bus_dead) {
1761 		if (host->bus_ops->suspend)
1762 			err = host->bus_ops->suspend(host);
1763 		if (err == -ENOSYS || !host->bus_ops->resume) {
1764 			/*
1765 			 * We simply "remove" the card in this case.
1766 			 * It will be redetected on resume.
1767 			 */
1768 			if (host->bus_ops->remove)
1769 				host->bus_ops->remove(host);
1770 			mmc_claim_host(host);
1771 			mmc_detach_bus(host);
1772 			mmc_release_host(host);
1773 			host->pm_flags = 0;
1774 			err = 0;
1775 		}
1776 	}
1777 	mmc_bus_put(host);
1778 
1779 	if (!err && !mmc_card_keep_power(host))
1780 		mmc_power_off(host);
1781 
1782 	return err;
1783 }
1784 
1785 EXPORT_SYMBOL(mmc_suspend_host);
1786 
1787 /**
1788  *	mmc_resume_host - resume a previously suspended host
1789  *	@host: mmc host
1790  */
1791 int mmc_resume_host(struct mmc_host *host)
1792 {
1793 	int err = 0;
1794 
1795 	mmc_bus_get(host);
1796 	if (host->bus_ops && !host->bus_dead) {
1797 		if (!mmc_card_keep_power(host)) {
1798 			mmc_power_up(host);
1799 			mmc_select_voltage(host, host->ocr);
1800 			/*
1801 			 * Tell runtime PM core we just powered up the card,
1802 			 * since it still believes the card is powered off.
1803 			 * Note that currently runtime PM is only enabled
1804 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1805 			 */
1806 			if (mmc_card_sdio(host->card) &&
1807 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1808 				pm_runtime_disable(&host->card->dev);
1809 				pm_runtime_set_active(&host->card->dev);
1810 				pm_runtime_enable(&host->card->dev);
1811 			}
1812 		}
1813 		BUG_ON(!host->bus_ops->resume);
1814 		err = host->bus_ops->resume(host);
1815 		if (err) {
1816 			printk(KERN_WARNING "%s: error %d during resume "
1817 					    "(card was removed?)\n",
1818 					    mmc_hostname(host), err);
1819 			err = 0;
1820 		}
1821 	}
1822 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
1823 	mmc_bus_put(host);
1824 
1825 	return err;
1826 }
1827 EXPORT_SYMBOL(mmc_resume_host);
1828 
1829 /* Do the card removal on suspend if card is assumed removeable
1830  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1831    to sync the card.
1832 */
1833 int mmc_pm_notify(struct notifier_block *notify_block,
1834 					unsigned long mode, void *unused)
1835 {
1836 	struct mmc_host *host = container_of(
1837 		notify_block, struct mmc_host, pm_notify);
1838 	unsigned long flags;
1839 
1840 
1841 	switch (mode) {
1842 	case PM_HIBERNATION_PREPARE:
1843 	case PM_SUSPEND_PREPARE:
1844 
1845 		spin_lock_irqsave(&host->lock, flags);
1846 		host->rescan_disable = 1;
1847 		spin_unlock_irqrestore(&host->lock, flags);
1848 		cancel_delayed_work_sync(&host->detect);
1849 
1850 		if (!host->bus_ops || host->bus_ops->suspend)
1851 			break;
1852 
1853 		mmc_claim_host(host);
1854 
1855 		if (host->bus_ops->remove)
1856 			host->bus_ops->remove(host);
1857 
1858 		mmc_detach_bus(host);
1859 		mmc_release_host(host);
1860 		host->pm_flags = 0;
1861 		break;
1862 
1863 	case PM_POST_SUSPEND:
1864 	case PM_POST_HIBERNATION:
1865 	case PM_POST_RESTORE:
1866 
1867 		spin_lock_irqsave(&host->lock, flags);
1868 		host->rescan_disable = 0;
1869 		spin_unlock_irqrestore(&host->lock, flags);
1870 		mmc_detect_change(host, 0);
1871 
1872 	}
1873 
1874 	return 0;
1875 }
1876 #endif
1877 
1878 static int __init mmc_init(void)
1879 {
1880 	int ret;
1881 
1882 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
1883 	if (!workqueue)
1884 		return -ENOMEM;
1885 
1886 	ret = mmc_register_bus();
1887 	if (ret)
1888 		goto destroy_workqueue;
1889 
1890 	ret = mmc_register_host_class();
1891 	if (ret)
1892 		goto unregister_bus;
1893 
1894 	ret = sdio_register_bus();
1895 	if (ret)
1896 		goto unregister_host_class;
1897 
1898 	return 0;
1899 
1900 unregister_host_class:
1901 	mmc_unregister_host_class();
1902 unregister_bus:
1903 	mmc_unregister_bus();
1904 destroy_workqueue:
1905 	destroy_workqueue(workqueue);
1906 
1907 	return ret;
1908 }
1909 
1910 static void __exit mmc_exit(void)
1911 {
1912 	sdio_unregister_bus();
1913 	mmc_unregister_host_class();
1914 	mmc_unregister_bus();
1915 	destroy_workqueue(workqueue);
1916 }
1917 
1918 subsys_initcall(mmc_init);
1919 module_exit(mmc_exit);
1920 
1921 MODULE_LICENSE("GPL");
1922