1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 27 #include <linux/mmc/card.h> 28 #include <linux/mmc/host.h> 29 #include <linux/mmc/mmc.h> 30 #include <linux/mmc/sd.h> 31 32 #include "core.h" 33 #include "bus.h" 34 #include "host.h" 35 #include "sdio_bus.h" 36 37 #include "mmc_ops.h" 38 #include "sd_ops.h" 39 #include "sdio_ops.h" 40 41 static struct workqueue_struct *workqueue; 42 43 /* 44 * Enabling software CRCs on the data blocks can be a significant (30%) 45 * performance cost, and for other reasons may not always be desired. 46 * So we allow it it to be disabled. 47 */ 48 int use_spi_crc = 1; 49 module_param(use_spi_crc, bool, 0); 50 51 /* 52 * We normally treat cards as removed during suspend if they are not 53 * known to be on a non-removable bus, to avoid the risk of writing 54 * back data to a different card after resume. Allow this to be 55 * overridden if necessary. 56 */ 57 #ifdef CONFIG_MMC_UNSAFE_RESUME 58 int mmc_assume_removable; 59 #else 60 int mmc_assume_removable = 1; 61 #endif 62 EXPORT_SYMBOL(mmc_assume_removable); 63 module_param_named(removable, mmc_assume_removable, bool, 0644); 64 MODULE_PARM_DESC( 65 removable, 66 "MMC/SD cards are removable and may be removed during suspend"); 67 68 /* 69 * Internal function. Schedule delayed work in the MMC work queue. 70 */ 71 static int mmc_schedule_delayed_work(struct delayed_work *work, 72 unsigned long delay) 73 { 74 return queue_delayed_work(workqueue, work, delay); 75 } 76 77 /* 78 * Internal function. Flush all scheduled work from the MMC work queue. 79 */ 80 static void mmc_flush_scheduled_work(void) 81 { 82 flush_workqueue(workqueue); 83 } 84 85 /** 86 * mmc_request_done - finish processing an MMC request 87 * @host: MMC host which completed request 88 * @mrq: MMC request which request 89 * 90 * MMC drivers should call this function when they have completed 91 * their processing of a request. 92 */ 93 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 94 { 95 struct mmc_command *cmd = mrq->cmd; 96 int err = cmd->error; 97 98 if (err && cmd->retries && mmc_host_is_spi(host)) { 99 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 100 cmd->retries = 0; 101 } 102 103 if (err && cmd->retries) { 104 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 105 mmc_hostname(host), cmd->opcode, err); 106 107 cmd->retries--; 108 cmd->error = 0; 109 host->ops->request(host, mrq); 110 } else { 111 led_trigger_event(host->led, LED_OFF); 112 113 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 114 mmc_hostname(host), cmd->opcode, err, 115 cmd->resp[0], cmd->resp[1], 116 cmd->resp[2], cmd->resp[3]); 117 118 if (mrq->data) { 119 pr_debug("%s: %d bytes transferred: %d\n", 120 mmc_hostname(host), 121 mrq->data->bytes_xfered, mrq->data->error); 122 } 123 124 if (mrq->stop) { 125 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 126 mmc_hostname(host), mrq->stop->opcode, 127 mrq->stop->error, 128 mrq->stop->resp[0], mrq->stop->resp[1], 129 mrq->stop->resp[2], mrq->stop->resp[3]); 130 } 131 132 if (mrq->done) 133 mrq->done(mrq); 134 135 mmc_host_clk_gate(host); 136 } 137 } 138 139 EXPORT_SYMBOL(mmc_request_done); 140 141 static void 142 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 143 { 144 #ifdef CONFIG_MMC_DEBUG 145 unsigned int i, sz; 146 struct scatterlist *sg; 147 #endif 148 149 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 150 mmc_hostname(host), mrq->cmd->opcode, 151 mrq->cmd->arg, mrq->cmd->flags); 152 153 if (mrq->data) { 154 pr_debug("%s: blksz %d blocks %d flags %08x " 155 "tsac %d ms nsac %d\n", 156 mmc_hostname(host), mrq->data->blksz, 157 mrq->data->blocks, mrq->data->flags, 158 mrq->data->timeout_ns / 1000000, 159 mrq->data->timeout_clks); 160 } 161 162 if (mrq->stop) { 163 pr_debug("%s: CMD%u arg %08x flags %08x\n", 164 mmc_hostname(host), mrq->stop->opcode, 165 mrq->stop->arg, mrq->stop->flags); 166 } 167 168 WARN_ON(!host->claimed); 169 170 mrq->cmd->error = 0; 171 mrq->cmd->mrq = mrq; 172 if (mrq->data) { 173 BUG_ON(mrq->data->blksz > host->max_blk_size); 174 BUG_ON(mrq->data->blocks > host->max_blk_count); 175 BUG_ON(mrq->data->blocks * mrq->data->blksz > 176 host->max_req_size); 177 178 #ifdef CONFIG_MMC_DEBUG 179 sz = 0; 180 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 181 sz += sg->length; 182 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 183 #endif 184 185 mrq->cmd->data = mrq->data; 186 mrq->data->error = 0; 187 mrq->data->mrq = mrq; 188 if (mrq->stop) { 189 mrq->data->stop = mrq->stop; 190 mrq->stop->error = 0; 191 mrq->stop->mrq = mrq; 192 } 193 } 194 mmc_host_clk_ungate(host); 195 led_trigger_event(host->led, LED_FULL); 196 host->ops->request(host, mrq); 197 } 198 199 static void mmc_wait_done(struct mmc_request *mrq) 200 { 201 complete(mrq->done_data); 202 } 203 204 /** 205 * mmc_wait_for_req - start a request and wait for completion 206 * @host: MMC host to start command 207 * @mrq: MMC request to start 208 * 209 * Start a new MMC custom command request for a host, and wait 210 * for the command to complete. Does not attempt to parse the 211 * response. 212 */ 213 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 214 { 215 DECLARE_COMPLETION_ONSTACK(complete); 216 217 mrq->done_data = &complete; 218 mrq->done = mmc_wait_done; 219 220 mmc_start_request(host, mrq); 221 222 wait_for_completion(&complete); 223 } 224 225 EXPORT_SYMBOL(mmc_wait_for_req); 226 227 /** 228 * mmc_wait_for_cmd - start a command and wait for completion 229 * @host: MMC host to start command 230 * @cmd: MMC command to start 231 * @retries: maximum number of retries 232 * 233 * Start a new MMC command for a host, and wait for the command 234 * to complete. Return any error that occurred while the command 235 * was executing. Do not attempt to parse the response. 236 */ 237 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 238 { 239 struct mmc_request mrq = {0}; 240 241 WARN_ON(!host->claimed); 242 243 memset(cmd->resp, 0, sizeof(cmd->resp)); 244 cmd->retries = retries; 245 246 mrq.cmd = cmd; 247 cmd->data = NULL; 248 249 mmc_wait_for_req(host, &mrq); 250 251 return cmd->error; 252 } 253 254 EXPORT_SYMBOL(mmc_wait_for_cmd); 255 256 /** 257 * mmc_set_data_timeout - set the timeout for a data command 258 * @data: data phase for command 259 * @card: the MMC card associated with the data transfer 260 * 261 * Computes the data timeout parameters according to the 262 * correct algorithm given the card type. 263 */ 264 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 265 { 266 unsigned int mult; 267 268 /* 269 * SDIO cards only define an upper 1 s limit on access. 270 */ 271 if (mmc_card_sdio(card)) { 272 data->timeout_ns = 1000000000; 273 data->timeout_clks = 0; 274 return; 275 } 276 277 /* 278 * SD cards use a 100 multiplier rather than 10 279 */ 280 mult = mmc_card_sd(card) ? 100 : 10; 281 282 /* 283 * Scale up the multiplier (and therefore the timeout) by 284 * the r2w factor for writes. 285 */ 286 if (data->flags & MMC_DATA_WRITE) 287 mult <<= card->csd.r2w_factor; 288 289 data->timeout_ns = card->csd.tacc_ns * mult; 290 data->timeout_clks = card->csd.tacc_clks * mult; 291 292 /* 293 * SD cards also have an upper limit on the timeout. 294 */ 295 if (mmc_card_sd(card)) { 296 unsigned int timeout_us, limit_us; 297 298 timeout_us = data->timeout_ns / 1000; 299 if (mmc_host_clk_rate(card->host)) 300 timeout_us += data->timeout_clks * 1000 / 301 (mmc_host_clk_rate(card->host) / 1000); 302 303 if (data->flags & MMC_DATA_WRITE) 304 /* 305 * The limit is really 250 ms, but that is 306 * insufficient for some crappy cards. 307 */ 308 limit_us = 300000; 309 else 310 limit_us = 100000; 311 312 /* 313 * SDHC cards always use these fixed values. 314 */ 315 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 316 data->timeout_ns = limit_us * 1000; 317 data->timeout_clks = 0; 318 } 319 } 320 /* 321 * Some cards need very high timeouts if driven in SPI mode. 322 * The worst observed timeout was 900ms after writing a 323 * continuous stream of data until the internal logic 324 * overflowed. 325 */ 326 if (mmc_host_is_spi(card->host)) { 327 if (data->flags & MMC_DATA_WRITE) { 328 if (data->timeout_ns < 1000000000) 329 data->timeout_ns = 1000000000; /* 1s */ 330 } else { 331 if (data->timeout_ns < 100000000) 332 data->timeout_ns = 100000000; /* 100ms */ 333 } 334 } 335 } 336 EXPORT_SYMBOL(mmc_set_data_timeout); 337 338 /** 339 * mmc_align_data_size - pads a transfer size to a more optimal value 340 * @card: the MMC card associated with the data transfer 341 * @sz: original transfer size 342 * 343 * Pads the original data size with a number of extra bytes in 344 * order to avoid controller bugs and/or performance hits 345 * (e.g. some controllers revert to PIO for certain sizes). 346 * 347 * Returns the improved size, which might be unmodified. 348 * 349 * Note that this function is only relevant when issuing a 350 * single scatter gather entry. 351 */ 352 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 353 { 354 /* 355 * FIXME: We don't have a system for the controller to tell 356 * the core about its problems yet, so for now we just 32-bit 357 * align the size. 358 */ 359 sz = ((sz + 3) / 4) * 4; 360 361 return sz; 362 } 363 EXPORT_SYMBOL(mmc_align_data_size); 364 365 /** 366 * mmc_host_enable - enable a host. 367 * @host: mmc host to enable 368 * 369 * Hosts that support power saving can use the 'enable' and 'disable' 370 * methods to exit and enter power saving states. For more information 371 * see comments for struct mmc_host_ops. 372 */ 373 int mmc_host_enable(struct mmc_host *host) 374 { 375 if (!(host->caps & MMC_CAP_DISABLE)) 376 return 0; 377 378 if (host->en_dis_recurs) 379 return 0; 380 381 if (host->nesting_cnt++) 382 return 0; 383 384 cancel_delayed_work_sync(&host->disable); 385 386 if (host->enabled) 387 return 0; 388 389 if (host->ops->enable) { 390 int err; 391 392 host->en_dis_recurs = 1; 393 err = host->ops->enable(host); 394 host->en_dis_recurs = 0; 395 396 if (err) { 397 pr_debug("%s: enable error %d\n", 398 mmc_hostname(host), err); 399 return err; 400 } 401 } 402 host->enabled = 1; 403 return 0; 404 } 405 EXPORT_SYMBOL(mmc_host_enable); 406 407 static int mmc_host_do_disable(struct mmc_host *host, int lazy) 408 { 409 if (host->ops->disable) { 410 int err; 411 412 host->en_dis_recurs = 1; 413 err = host->ops->disable(host, lazy); 414 host->en_dis_recurs = 0; 415 416 if (err < 0) { 417 pr_debug("%s: disable error %d\n", 418 mmc_hostname(host), err); 419 return err; 420 } 421 if (err > 0) { 422 unsigned long delay = msecs_to_jiffies(err); 423 424 mmc_schedule_delayed_work(&host->disable, delay); 425 } 426 } 427 host->enabled = 0; 428 return 0; 429 } 430 431 /** 432 * mmc_host_disable - disable a host. 433 * @host: mmc host to disable 434 * 435 * Hosts that support power saving can use the 'enable' and 'disable' 436 * methods to exit and enter power saving states. For more information 437 * see comments for struct mmc_host_ops. 438 */ 439 int mmc_host_disable(struct mmc_host *host) 440 { 441 int err; 442 443 if (!(host->caps & MMC_CAP_DISABLE)) 444 return 0; 445 446 if (host->en_dis_recurs) 447 return 0; 448 449 if (--host->nesting_cnt) 450 return 0; 451 452 if (!host->enabled) 453 return 0; 454 455 err = mmc_host_do_disable(host, 0); 456 return err; 457 } 458 EXPORT_SYMBOL(mmc_host_disable); 459 460 /** 461 * __mmc_claim_host - exclusively claim a host 462 * @host: mmc host to claim 463 * @abort: whether or not the operation should be aborted 464 * 465 * Claim a host for a set of operations. If @abort is non null and 466 * dereference a non-zero value then this will return prematurely with 467 * that non-zero value without acquiring the lock. Returns zero 468 * with the lock held otherwise. 469 */ 470 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 471 { 472 DECLARE_WAITQUEUE(wait, current); 473 unsigned long flags; 474 int stop; 475 476 might_sleep(); 477 478 add_wait_queue(&host->wq, &wait); 479 spin_lock_irqsave(&host->lock, flags); 480 while (1) { 481 set_current_state(TASK_UNINTERRUPTIBLE); 482 stop = abort ? atomic_read(abort) : 0; 483 if (stop || !host->claimed || host->claimer == current) 484 break; 485 spin_unlock_irqrestore(&host->lock, flags); 486 schedule(); 487 spin_lock_irqsave(&host->lock, flags); 488 } 489 set_current_state(TASK_RUNNING); 490 if (!stop) { 491 host->claimed = 1; 492 host->claimer = current; 493 host->claim_cnt += 1; 494 } else 495 wake_up(&host->wq); 496 spin_unlock_irqrestore(&host->lock, flags); 497 remove_wait_queue(&host->wq, &wait); 498 if (!stop) 499 mmc_host_enable(host); 500 return stop; 501 } 502 503 EXPORT_SYMBOL(__mmc_claim_host); 504 505 /** 506 * mmc_try_claim_host - try exclusively to claim a host 507 * @host: mmc host to claim 508 * 509 * Returns %1 if the host is claimed, %0 otherwise. 510 */ 511 int mmc_try_claim_host(struct mmc_host *host) 512 { 513 int claimed_host = 0; 514 unsigned long flags; 515 516 spin_lock_irqsave(&host->lock, flags); 517 if (!host->claimed || host->claimer == current) { 518 host->claimed = 1; 519 host->claimer = current; 520 host->claim_cnt += 1; 521 claimed_host = 1; 522 } 523 spin_unlock_irqrestore(&host->lock, flags); 524 return claimed_host; 525 } 526 EXPORT_SYMBOL(mmc_try_claim_host); 527 528 /** 529 * mmc_do_release_host - release a claimed host 530 * @host: mmc host to release 531 * 532 * If you successfully claimed a host, this function will 533 * release it again. 534 */ 535 void mmc_do_release_host(struct mmc_host *host) 536 { 537 unsigned long flags; 538 539 spin_lock_irqsave(&host->lock, flags); 540 if (--host->claim_cnt) { 541 /* Release for nested claim */ 542 spin_unlock_irqrestore(&host->lock, flags); 543 } else { 544 host->claimed = 0; 545 host->claimer = NULL; 546 spin_unlock_irqrestore(&host->lock, flags); 547 wake_up(&host->wq); 548 } 549 } 550 EXPORT_SYMBOL(mmc_do_release_host); 551 552 void mmc_host_deeper_disable(struct work_struct *work) 553 { 554 struct mmc_host *host = 555 container_of(work, struct mmc_host, disable.work); 556 557 /* If the host is claimed then we do not want to disable it anymore */ 558 if (!mmc_try_claim_host(host)) 559 return; 560 mmc_host_do_disable(host, 1); 561 mmc_do_release_host(host); 562 } 563 564 /** 565 * mmc_host_lazy_disable - lazily disable a host. 566 * @host: mmc host to disable 567 * 568 * Hosts that support power saving can use the 'enable' and 'disable' 569 * methods to exit and enter power saving states. For more information 570 * see comments for struct mmc_host_ops. 571 */ 572 int mmc_host_lazy_disable(struct mmc_host *host) 573 { 574 if (!(host->caps & MMC_CAP_DISABLE)) 575 return 0; 576 577 if (host->en_dis_recurs) 578 return 0; 579 580 if (--host->nesting_cnt) 581 return 0; 582 583 if (!host->enabled) 584 return 0; 585 586 if (host->disable_delay) { 587 mmc_schedule_delayed_work(&host->disable, 588 msecs_to_jiffies(host->disable_delay)); 589 return 0; 590 } else 591 return mmc_host_do_disable(host, 1); 592 } 593 EXPORT_SYMBOL(mmc_host_lazy_disable); 594 595 /** 596 * mmc_release_host - release a host 597 * @host: mmc host to release 598 * 599 * Release a MMC host, allowing others to claim the host 600 * for their operations. 601 */ 602 void mmc_release_host(struct mmc_host *host) 603 { 604 WARN_ON(!host->claimed); 605 606 mmc_host_lazy_disable(host); 607 608 mmc_do_release_host(host); 609 } 610 611 EXPORT_SYMBOL(mmc_release_host); 612 613 /* 614 * Internal function that does the actual ios call to the host driver, 615 * optionally printing some debug output. 616 */ 617 static inline void mmc_set_ios(struct mmc_host *host) 618 { 619 struct mmc_ios *ios = &host->ios; 620 621 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 622 "width %u timing %u\n", 623 mmc_hostname(host), ios->clock, ios->bus_mode, 624 ios->power_mode, ios->chip_select, ios->vdd, 625 ios->bus_width, ios->timing); 626 627 if (ios->clock > 0) 628 mmc_set_ungated(host); 629 host->ops->set_ios(host, ios); 630 } 631 632 /* 633 * Control chip select pin on a host. 634 */ 635 void mmc_set_chip_select(struct mmc_host *host, int mode) 636 { 637 host->ios.chip_select = mode; 638 mmc_set_ios(host); 639 } 640 641 /* 642 * Sets the host clock to the highest possible frequency that 643 * is below "hz". 644 */ 645 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 646 { 647 WARN_ON(hz < host->f_min); 648 649 if (hz > host->f_max) 650 hz = host->f_max; 651 652 host->ios.clock = hz; 653 mmc_set_ios(host); 654 } 655 656 #ifdef CONFIG_MMC_CLKGATE 657 /* 658 * This gates the clock by setting it to 0 Hz. 659 */ 660 void mmc_gate_clock(struct mmc_host *host) 661 { 662 unsigned long flags; 663 664 spin_lock_irqsave(&host->clk_lock, flags); 665 host->clk_old = host->ios.clock; 666 host->ios.clock = 0; 667 host->clk_gated = true; 668 spin_unlock_irqrestore(&host->clk_lock, flags); 669 mmc_set_ios(host); 670 } 671 672 /* 673 * This restores the clock from gating by using the cached 674 * clock value. 675 */ 676 void mmc_ungate_clock(struct mmc_host *host) 677 { 678 /* 679 * We should previously have gated the clock, so the clock shall 680 * be 0 here! The clock may however be 0 during initialization, 681 * when some request operations are performed before setting 682 * the frequency. When ungate is requested in that situation 683 * we just ignore the call. 684 */ 685 if (host->clk_old) { 686 BUG_ON(host->ios.clock); 687 /* This call will also set host->clk_gated to false */ 688 mmc_set_clock(host, host->clk_old); 689 } 690 } 691 692 void mmc_set_ungated(struct mmc_host *host) 693 { 694 unsigned long flags; 695 696 /* 697 * We've been given a new frequency while the clock is gated, 698 * so make sure we regard this as ungating it. 699 */ 700 spin_lock_irqsave(&host->clk_lock, flags); 701 host->clk_gated = false; 702 spin_unlock_irqrestore(&host->clk_lock, flags); 703 } 704 705 #else 706 void mmc_set_ungated(struct mmc_host *host) 707 { 708 } 709 #endif 710 711 /* 712 * Change the bus mode (open drain/push-pull) of a host. 713 */ 714 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 715 { 716 host->ios.bus_mode = mode; 717 mmc_set_ios(host); 718 } 719 720 /* 721 * Change data bus width of a host. 722 */ 723 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 724 { 725 host->ios.bus_width = width; 726 mmc_set_ios(host); 727 } 728 729 /** 730 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 731 * @vdd: voltage (mV) 732 * @low_bits: prefer low bits in boundary cases 733 * 734 * This function returns the OCR bit number according to the provided @vdd 735 * value. If conversion is not possible a negative errno value returned. 736 * 737 * Depending on the @low_bits flag the function prefers low or high OCR bits 738 * on boundary voltages. For example, 739 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 740 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 741 * 742 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 743 */ 744 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 745 { 746 const int max_bit = ilog2(MMC_VDD_35_36); 747 int bit; 748 749 if (vdd < 1650 || vdd > 3600) 750 return -EINVAL; 751 752 if (vdd >= 1650 && vdd <= 1950) 753 return ilog2(MMC_VDD_165_195); 754 755 if (low_bits) 756 vdd -= 1; 757 758 /* Base 2000 mV, step 100 mV, bit's base 8. */ 759 bit = (vdd - 2000) / 100 + 8; 760 if (bit > max_bit) 761 return max_bit; 762 return bit; 763 } 764 765 /** 766 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 767 * @vdd_min: minimum voltage value (mV) 768 * @vdd_max: maximum voltage value (mV) 769 * 770 * This function returns the OCR mask bits according to the provided @vdd_min 771 * and @vdd_max values. If conversion is not possible the function returns 0. 772 * 773 * Notes wrt boundary cases: 774 * This function sets the OCR bits for all boundary voltages, for example 775 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 776 * MMC_VDD_34_35 mask. 777 */ 778 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 779 { 780 u32 mask = 0; 781 782 if (vdd_max < vdd_min) 783 return 0; 784 785 /* Prefer high bits for the boundary vdd_max values. */ 786 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 787 if (vdd_max < 0) 788 return 0; 789 790 /* Prefer low bits for the boundary vdd_min values. */ 791 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 792 if (vdd_min < 0) 793 return 0; 794 795 /* Fill the mask, from max bit to min bit. */ 796 while (vdd_max >= vdd_min) 797 mask |= 1 << vdd_max--; 798 799 return mask; 800 } 801 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 802 803 #ifdef CONFIG_REGULATOR 804 805 /** 806 * mmc_regulator_get_ocrmask - return mask of supported voltages 807 * @supply: regulator to use 808 * 809 * This returns either a negative errno, or a mask of voltages that 810 * can be provided to MMC/SD/SDIO devices using the specified voltage 811 * regulator. This would normally be called before registering the 812 * MMC host adapter. 813 */ 814 int mmc_regulator_get_ocrmask(struct regulator *supply) 815 { 816 int result = 0; 817 int count; 818 int i; 819 820 count = regulator_count_voltages(supply); 821 if (count < 0) 822 return count; 823 824 for (i = 0; i < count; i++) { 825 int vdd_uV; 826 int vdd_mV; 827 828 vdd_uV = regulator_list_voltage(supply, i); 829 if (vdd_uV <= 0) 830 continue; 831 832 vdd_mV = vdd_uV / 1000; 833 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 834 } 835 836 return result; 837 } 838 EXPORT_SYMBOL(mmc_regulator_get_ocrmask); 839 840 /** 841 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 842 * @mmc: the host to regulate 843 * @supply: regulator to use 844 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 845 * 846 * Returns zero on success, else negative errno. 847 * 848 * MMC host drivers may use this to enable or disable a regulator using 849 * a particular supply voltage. This would normally be called from the 850 * set_ios() method. 851 */ 852 int mmc_regulator_set_ocr(struct mmc_host *mmc, 853 struct regulator *supply, 854 unsigned short vdd_bit) 855 { 856 int result = 0; 857 int min_uV, max_uV; 858 859 if (vdd_bit) { 860 int tmp; 861 int voltage; 862 863 /* REVISIT mmc_vddrange_to_ocrmask() may have set some 864 * bits this regulator doesn't quite support ... don't 865 * be too picky, most cards and regulators are OK with 866 * a 0.1V range goof (it's a small error percentage). 867 */ 868 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 869 if (tmp == 0) { 870 min_uV = 1650 * 1000; 871 max_uV = 1950 * 1000; 872 } else { 873 min_uV = 1900 * 1000 + tmp * 100 * 1000; 874 max_uV = min_uV + 100 * 1000; 875 } 876 877 /* avoid needless changes to this voltage; the regulator 878 * might not allow this operation 879 */ 880 voltage = regulator_get_voltage(supply); 881 if (voltage < 0) 882 result = voltage; 883 else if (voltage < min_uV || voltage > max_uV) 884 result = regulator_set_voltage(supply, min_uV, max_uV); 885 else 886 result = 0; 887 888 if (result == 0 && !mmc->regulator_enabled) { 889 result = regulator_enable(supply); 890 if (!result) 891 mmc->regulator_enabled = true; 892 } 893 } else if (mmc->regulator_enabled) { 894 result = regulator_disable(supply); 895 if (result == 0) 896 mmc->regulator_enabled = false; 897 } 898 899 if (result) 900 dev_err(mmc_dev(mmc), 901 "could not set regulator OCR (%d)\n", result); 902 return result; 903 } 904 EXPORT_SYMBOL(mmc_regulator_set_ocr); 905 906 #endif /* CONFIG_REGULATOR */ 907 908 /* 909 * Mask off any voltages we don't support and select 910 * the lowest voltage 911 */ 912 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 913 { 914 int bit; 915 916 ocr &= host->ocr_avail; 917 918 bit = ffs(ocr); 919 if (bit) { 920 bit -= 1; 921 922 ocr &= 3 << bit; 923 924 host->ios.vdd = bit; 925 mmc_set_ios(host); 926 } else { 927 pr_warning("%s: host doesn't support card's voltages\n", 928 mmc_hostname(host)); 929 ocr = 0; 930 } 931 932 return ocr; 933 } 934 935 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) 936 { 937 struct mmc_command cmd = {0}; 938 int err = 0; 939 940 BUG_ON(!host); 941 942 /* 943 * Send CMD11 only if the request is to switch the card to 944 * 1.8V signalling. 945 */ 946 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { 947 cmd.opcode = SD_SWITCH_VOLTAGE; 948 cmd.arg = 0; 949 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 950 951 err = mmc_wait_for_cmd(host, &cmd, 0); 952 if (err) 953 return err; 954 955 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 956 return -EIO; 957 } 958 959 host->ios.signal_voltage = signal_voltage; 960 961 if (host->ops->start_signal_voltage_switch) 962 err = host->ops->start_signal_voltage_switch(host, &host->ios); 963 964 return err; 965 } 966 967 /* 968 * Select timing parameters for host. 969 */ 970 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 971 { 972 host->ios.timing = timing; 973 mmc_set_ios(host); 974 } 975 976 /* 977 * Select appropriate driver type for host. 978 */ 979 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 980 { 981 host->ios.drv_type = drv_type; 982 mmc_set_ios(host); 983 } 984 985 /* 986 * Apply power to the MMC stack. This is a two-stage process. 987 * First, we enable power to the card without the clock running. 988 * We then wait a bit for the power to stabilise. Finally, 989 * enable the bus drivers and clock to the card. 990 * 991 * We must _NOT_ enable the clock prior to power stablising. 992 * 993 * If a host does all the power sequencing itself, ignore the 994 * initial MMC_POWER_UP stage. 995 */ 996 static void mmc_power_up(struct mmc_host *host) 997 { 998 int bit; 999 1000 /* If ocr is set, we use it */ 1001 if (host->ocr) 1002 bit = ffs(host->ocr) - 1; 1003 else 1004 bit = fls(host->ocr_avail) - 1; 1005 1006 host->ios.vdd = bit; 1007 if (mmc_host_is_spi(host)) { 1008 host->ios.chip_select = MMC_CS_HIGH; 1009 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1010 } else { 1011 host->ios.chip_select = MMC_CS_DONTCARE; 1012 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1013 } 1014 host->ios.power_mode = MMC_POWER_UP; 1015 host->ios.bus_width = MMC_BUS_WIDTH_1; 1016 host->ios.timing = MMC_TIMING_LEGACY; 1017 mmc_set_ios(host); 1018 1019 /* 1020 * This delay should be sufficient to allow the power supply 1021 * to reach the minimum voltage. 1022 */ 1023 mmc_delay(10); 1024 1025 host->ios.clock = host->f_init; 1026 1027 host->ios.power_mode = MMC_POWER_ON; 1028 mmc_set_ios(host); 1029 1030 /* 1031 * This delay must be at least 74 clock sizes, or 1 ms, or the 1032 * time required to reach a stable voltage. 1033 */ 1034 mmc_delay(10); 1035 } 1036 1037 static void mmc_power_off(struct mmc_host *host) 1038 { 1039 host->ios.clock = 0; 1040 host->ios.vdd = 0; 1041 1042 /* 1043 * Reset ocr mask to be the highest possible voltage supported for 1044 * this mmc host. This value will be used at next power up. 1045 */ 1046 host->ocr = 1 << (fls(host->ocr_avail) - 1); 1047 1048 if (!mmc_host_is_spi(host)) { 1049 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1050 host->ios.chip_select = MMC_CS_DONTCARE; 1051 } 1052 host->ios.power_mode = MMC_POWER_OFF; 1053 host->ios.bus_width = MMC_BUS_WIDTH_1; 1054 host->ios.timing = MMC_TIMING_LEGACY; 1055 mmc_set_ios(host); 1056 } 1057 1058 /* 1059 * Cleanup when the last reference to the bus operator is dropped. 1060 */ 1061 static void __mmc_release_bus(struct mmc_host *host) 1062 { 1063 BUG_ON(!host); 1064 BUG_ON(host->bus_refs); 1065 BUG_ON(!host->bus_dead); 1066 1067 host->bus_ops = NULL; 1068 } 1069 1070 /* 1071 * Increase reference count of bus operator 1072 */ 1073 static inline void mmc_bus_get(struct mmc_host *host) 1074 { 1075 unsigned long flags; 1076 1077 spin_lock_irqsave(&host->lock, flags); 1078 host->bus_refs++; 1079 spin_unlock_irqrestore(&host->lock, flags); 1080 } 1081 1082 /* 1083 * Decrease reference count of bus operator and free it if 1084 * it is the last reference. 1085 */ 1086 static inline void mmc_bus_put(struct mmc_host *host) 1087 { 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&host->lock, flags); 1091 host->bus_refs--; 1092 if ((host->bus_refs == 0) && host->bus_ops) 1093 __mmc_release_bus(host); 1094 spin_unlock_irqrestore(&host->lock, flags); 1095 } 1096 1097 /* 1098 * Assign a mmc bus handler to a host. Only one bus handler may control a 1099 * host at any given time. 1100 */ 1101 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1102 { 1103 unsigned long flags; 1104 1105 BUG_ON(!host); 1106 BUG_ON(!ops); 1107 1108 WARN_ON(!host->claimed); 1109 1110 spin_lock_irqsave(&host->lock, flags); 1111 1112 BUG_ON(host->bus_ops); 1113 BUG_ON(host->bus_refs); 1114 1115 host->bus_ops = ops; 1116 host->bus_refs = 1; 1117 host->bus_dead = 0; 1118 1119 spin_unlock_irqrestore(&host->lock, flags); 1120 } 1121 1122 /* 1123 * Remove the current bus handler from a host. Assumes that there are 1124 * no interesting cards left, so the bus is powered down. 1125 */ 1126 void mmc_detach_bus(struct mmc_host *host) 1127 { 1128 unsigned long flags; 1129 1130 BUG_ON(!host); 1131 1132 WARN_ON(!host->claimed); 1133 WARN_ON(!host->bus_ops); 1134 1135 spin_lock_irqsave(&host->lock, flags); 1136 1137 host->bus_dead = 1; 1138 1139 spin_unlock_irqrestore(&host->lock, flags); 1140 1141 mmc_power_off(host); 1142 1143 mmc_bus_put(host); 1144 } 1145 1146 /** 1147 * mmc_detect_change - process change of state on a MMC socket 1148 * @host: host which changed state. 1149 * @delay: optional delay to wait before detection (jiffies) 1150 * 1151 * MMC drivers should call this when they detect a card has been 1152 * inserted or removed. The MMC layer will confirm that any 1153 * present card is still functional, and initialize any newly 1154 * inserted. 1155 */ 1156 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1157 { 1158 #ifdef CONFIG_MMC_DEBUG 1159 unsigned long flags; 1160 spin_lock_irqsave(&host->lock, flags); 1161 WARN_ON(host->removed); 1162 spin_unlock_irqrestore(&host->lock, flags); 1163 #endif 1164 1165 mmc_schedule_delayed_work(&host->detect, delay); 1166 } 1167 1168 EXPORT_SYMBOL(mmc_detect_change); 1169 1170 void mmc_init_erase(struct mmc_card *card) 1171 { 1172 unsigned int sz; 1173 1174 if (is_power_of_2(card->erase_size)) 1175 card->erase_shift = ffs(card->erase_size) - 1; 1176 else 1177 card->erase_shift = 0; 1178 1179 /* 1180 * It is possible to erase an arbitrarily large area of an SD or MMC 1181 * card. That is not desirable because it can take a long time 1182 * (minutes) potentially delaying more important I/O, and also the 1183 * timeout calculations become increasingly hugely over-estimated. 1184 * Consequently, 'pref_erase' is defined as a guide to limit erases 1185 * to that size and alignment. 1186 * 1187 * For SD cards that define Allocation Unit size, limit erases to one 1188 * Allocation Unit at a time. For MMC cards that define High Capacity 1189 * Erase Size, whether it is switched on or not, limit to that size. 1190 * Otherwise just have a stab at a good value. For modern cards it 1191 * will end up being 4MiB. Note that if the value is too small, it 1192 * can end up taking longer to erase. 1193 */ 1194 if (mmc_card_sd(card) && card->ssr.au) { 1195 card->pref_erase = card->ssr.au; 1196 card->erase_shift = ffs(card->ssr.au) - 1; 1197 } else if (card->ext_csd.hc_erase_size) { 1198 card->pref_erase = card->ext_csd.hc_erase_size; 1199 } else { 1200 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1201 if (sz < 128) 1202 card->pref_erase = 512 * 1024 / 512; 1203 else if (sz < 512) 1204 card->pref_erase = 1024 * 1024 / 512; 1205 else if (sz < 1024) 1206 card->pref_erase = 2 * 1024 * 1024 / 512; 1207 else 1208 card->pref_erase = 4 * 1024 * 1024 / 512; 1209 if (card->pref_erase < card->erase_size) 1210 card->pref_erase = card->erase_size; 1211 else { 1212 sz = card->pref_erase % card->erase_size; 1213 if (sz) 1214 card->pref_erase += card->erase_size - sz; 1215 } 1216 } 1217 } 1218 1219 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1220 unsigned int arg, unsigned int qty) 1221 { 1222 unsigned int erase_timeout; 1223 1224 if (card->ext_csd.erase_group_def & 1) { 1225 /* High Capacity Erase Group Size uses HC timeouts */ 1226 if (arg == MMC_TRIM_ARG) 1227 erase_timeout = card->ext_csd.trim_timeout; 1228 else 1229 erase_timeout = card->ext_csd.hc_erase_timeout; 1230 } else { 1231 /* CSD Erase Group Size uses write timeout */ 1232 unsigned int mult = (10 << card->csd.r2w_factor); 1233 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1234 unsigned int timeout_us; 1235 1236 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1237 if (card->csd.tacc_ns < 1000000) 1238 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1239 else 1240 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1241 1242 /* 1243 * ios.clock is only a target. The real clock rate might be 1244 * less but not that much less, so fudge it by multiplying by 2. 1245 */ 1246 timeout_clks <<= 1; 1247 timeout_us += (timeout_clks * 1000) / 1248 (card->host->ios.clock / 1000); 1249 1250 erase_timeout = timeout_us / 1000; 1251 1252 /* 1253 * Theoretically, the calculation could underflow so round up 1254 * to 1ms in that case. 1255 */ 1256 if (!erase_timeout) 1257 erase_timeout = 1; 1258 } 1259 1260 /* Multiplier for secure operations */ 1261 if (arg & MMC_SECURE_ARGS) { 1262 if (arg == MMC_SECURE_ERASE_ARG) 1263 erase_timeout *= card->ext_csd.sec_erase_mult; 1264 else 1265 erase_timeout *= card->ext_csd.sec_trim_mult; 1266 } 1267 1268 erase_timeout *= qty; 1269 1270 /* 1271 * Ensure at least a 1 second timeout for SPI as per 1272 * 'mmc_set_data_timeout()' 1273 */ 1274 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1275 erase_timeout = 1000; 1276 1277 return erase_timeout; 1278 } 1279 1280 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1281 unsigned int arg, 1282 unsigned int qty) 1283 { 1284 unsigned int erase_timeout; 1285 1286 if (card->ssr.erase_timeout) { 1287 /* Erase timeout specified in SD Status Register (SSR) */ 1288 erase_timeout = card->ssr.erase_timeout * qty + 1289 card->ssr.erase_offset; 1290 } else { 1291 /* 1292 * Erase timeout not specified in SD Status Register (SSR) so 1293 * use 250ms per write block. 1294 */ 1295 erase_timeout = 250 * qty; 1296 } 1297 1298 /* Must not be less than 1 second */ 1299 if (erase_timeout < 1000) 1300 erase_timeout = 1000; 1301 1302 return erase_timeout; 1303 } 1304 1305 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1306 unsigned int arg, 1307 unsigned int qty) 1308 { 1309 if (mmc_card_sd(card)) 1310 return mmc_sd_erase_timeout(card, arg, qty); 1311 else 1312 return mmc_mmc_erase_timeout(card, arg, qty); 1313 } 1314 1315 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1316 unsigned int to, unsigned int arg) 1317 { 1318 struct mmc_command cmd = {0}; 1319 unsigned int qty = 0; 1320 int err; 1321 1322 /* 1323 * qty is used to calculate the erase timeout which depends on how many 1324 * erase groups (or allocation units in SD terminology) are affected. 1325 * We count erasing part of an erase group as one erase group. 1326 * For SD, the allocation units are always a power of 2. For MMC, the 1327 * erase group size is almost certainly also power of 2, but it does not 1328 * seem to insist on that in the JEDEC standard, so we fall back to 1329 * division in that case. SD may not specify an allocation unit size, 1330 * in which case the timeout is based on the number of write blocks. 1331 * 1332 * Note that the timeout for secure trim 2 will only be correct if the 1333 * number of erase groups specified is the same as the total of all 1334 * preceding secure trim 1 commands. Since the power may have been 1335 * lost since the secure trim 1 commands occurred, it is generally 1336 * impossible to calculate the secure trim 2 timeout correctly. 1337 */ 1338 if (card->erase_shift) 1339 qty += ((to >> card->erase_shift) - 1340 (from >> card->erase_shift)) + 1; 1341 else if (mmc_card_sd(card)) 1342 qty += to - from + 1; 1343 else 1344 qty += ((to / card->erase_size) - 1345 (from / card->erase_size)) + 1; 1346 1347 if (!mmc_card_blockaddr(card)) { 1348 from <<= 9; 1349 to <<= 9; 1350 } 1351 1352 if (mmc_card_sd(card)) 1353 cmd.opcode = SD_ERASE_WR_BLK_START; 1354 else 1355 cmd.opcode = MMC_ERASE_GROUP_START; 1356 cmd.arg = from; 1357 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1358 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1359 if (err) { 1360 printk(KERN_ERR "mmc_erase: group start error %d, " 1361 "status %#x\n", err, cmd.resp[0]); 1362 err = -EINVAL; 1363 goto out; 1364 } 1365 1366 memset(&cmd, 0, sizeof(struct mmc_command)); 1367 if (mmc_card_sd(card)) 1368 cmd.opcode = SD_ERASE_WR_BLK_END; 1369 else 1370 cmd.opcode = MMC_ERASE_GROUP_END; 1371 cmd.arg = to; 1372 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1373 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1374 if (err) { 1375 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n", 1376 err, cmd.resp[0]); 1377 err = -EINVAL; 1378 goto out; 1379 } 1380 1381 memset(&cmd, 0, sizeof(struct mmc_command)); 1382 cmd.opcode = MMC_ERASE; 1383 cmd.arg = arg; 1384 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1385 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); 1386 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1387 if (err) { 1388 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n", 1389 err, cmd.resp[0]); 1390 err = -EIO; 1391 goto out; 1392 } 1393 1394 if (mmc_host_is_spi(card->host)) 1395 goto out; 1396 1397 do { 1398 memset(&cmd, 0, sizeof(struct mmc_command)); 1399 cmd.opcode = MMC_SEND_STATUS; 1400 cmd.arg = card->rca << 16; 1401 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1402 /* Do not retry else we can't see errors */ 1403 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1404 if (err || (cmd.resp[0] & 0xFDF92000)) { 1405 printk(KERN_ERR "error %d requesting status %#x\n", 1406 err, cmd.resp[0]); 1407 err = -EIO; 1408 goto out; 1409 } 1410 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1411 R1_CURRENT_STATE(cmd.resp[0]) == 7); 1412 out: 1413 return err; 1414 } 1415 1416 /** 1417 * mmc_erase - erase sectors. 1418 * @card: card to erase 1419 * @from: first sector to erase 1420 * @nr: number of sectors to erase 1421 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1422 * 1423 * Caller must claim host before calling this function. 1424 */ 1425 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1426 unsigned int arg) 1427 { 1428 unsigned int rem, to = from + nr; 1429 1430 if (!(card->host->caps & MMC_CAP_ERASE) || 1431 !(card->csd.cmdclass & CCC_ERASE)) 1432 return -EOPNOTSUPP; 1433 1434 if (!card->erase_size) 1435 return -EOPNOTSUPP; 1436 1437 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 1438 return -EOPNOTSUPP; 1439 1440 if ((arg & MMC_SECURE_ARGS) && 1441 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1442 return -EOPNOTSUPP; 1443 1444 if ((arg & MMC_TRIM_ARGS) && 1445 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1446 return -EOPNOTSUPP; 1447 1448 if (arg == MMC_SECURE_ERASE_ARG) { 1449 if (from % card->erase_size || nr % card->erase_size) 1450 return -EINVAL; 1451 } 1452 1453 if (arg == MMC_ERASE_ARG) { 1454 rem = from % card->erase_size; 1455 if (rem) { 1456 rem = card->erase_size - rem; 1457 from += rem; 1458 if (nr > rem) 1459 nr -= rem; 1460 else 1461 return 0; 1462 } 1463 rem = nr % card->erase_size; 1464 if (rem) 1465 nr -= rem; 1466 } 1467 1468 if (nr == 0) 1469 return 0; 1470 1471 to = from + nr; 1472 1473 if (to <= from) 1474 return -EINVAL; 1475 1476 /* 'from' and 'to' are inclusive */ 1477 to -= 1; 1478 1479 return mmc_do_erase(card, from, to, arg); 1480 } 1481 EXPORT_SYMBOL(mmc_erase); 1482 1483 int mmc_can_erase(struct mmc_card *card) 1484 { 1485 if ((card->host->caps & MMC_CAP_ERASE) && 1486 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 1487 return 1; 1488 return 0; 1489 } 1490 EXPORT_SYMBOL(mmc_can_erase); 1491 1492 int mmc_can_trim(struct mmc_card *card) 1493 { 1494 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 1495 return 1; 1496 return 0; 1497 } 1498 EXPORT_SYMBOL(mmc_can_trim); 1499 1500 int mmc_can_secure_erase_trim(struct mmc_card *card) 1501 { 1502 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 1503 return 1; 1504 return 0; 1505 } 1506 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1507 1508 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1509 unsigned int nr) 1510 { 1511 if (!card->erase_size) 1512 return 0; 1513 if (from % card->erase_size || nr % card->erase_size) 1514 return 0; 1515 return 1; 1516 } 1517 EXPORT_SYMBOL(mmc_erase_group_aligned); 1518 1519 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1520 { 1521 struct mmc_command cmd = {0}; 1522 1523 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 1524 return 0; 1525 1526 cmd.opcode = MMC_SET_BLOCKLEN; 1527 cmd.arg = blocklen; 1528 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1529 return mmc_wait_for_cmd(card->host, &cmd, 5); 1530 } 1531 EXPORT_SYMBOL(mmc_set_blocklen); 1532 1533 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 1534 { 1535 host->f_init = freq; 1536 1537 #ifdef CONFIG_MMC_DEBUG 1538 pr_info("%s: %s: trying to init card at %u Hz\n", 1539 mmc_hostname(host), __func__, host->f_init); 1540 #endif 1541 mmc_power_up(host); 1542 1543 /* 1544 * sdio_reset sends CMD52 to reset card. Since we do not know 1545 * if the card is being re-initialized, just send it. CMD52 1546 * should be ignored by SD/eMMC cards. 1547 */ 1548 sdio_reset(host); 1549 mmc_go_idle(host); 1550 1551 mmc_send_if_cond(host, host->ocr_avail); 1552 1553 /* Order's important: probe SDIO, then SD, then MMC */ 1554 if (!mmc_attach_sdio(host)) 1555 return 0; 1556 if (!mmc_attach_sd(host)) 1557 return 0; 1558 if (!mmc_attach_mmc(host)) 1559 return 0; 1560 1561 mmc_power_off(host); 1562 return -EIO; 1563 } 1564 1565 void mmc_rescan(struct work_struct *work) 1566 { 1567 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 1568 struct mmc_host *host = 1569 container_of(work, struct mmc_host, detect.work); 1570 int i; 1571 1572 if (host->rescan_disable) 1573 return; 1574 1575 mmc_bus_get(host); 1576 1577 /* 1578 * if there is a _removable_ card registered, check whether it is 1579 * still present 1580 */ 1581 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead 1582 && !(host->caps & MMC_CAP_NONREMOVABLE)) 1583 host->bus_ops->detect(host); 1584 1585 /* 1586 * Let mmc_bus_put() free the bus/bus_ops if we've found that 1587 * the card is no longer present. 1588 */ 1589 mmc_bus_put(host); 1590 mmc_bus_get(host); 1591 1592 /* if there still is a card present, stop here */ 1593 if (host->bus_ops != NULL) { 1594 mmc_bus_put(host); 1595 goto out; 1596 } 1597 1598 /* 1599 * Only we can add a new handler, so it's safe to 1600 * release the lock here. 1601 */ 1602 mmc_bus_put(host); 1603 1604 if (host->ops->get_cd && host->ops->get_cd(host) == 0) 1605 goto out; 1606 1607 mmc_claim_host(host); 1608 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 1609 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 1610 break; 1611 if (freqs[i] <= host->f_min) 1612 break; 1613 } 1614 mmc_release_host(host); 1615 1616 out: 1617 if (host->caps & MMC_CAP_NEEDS_POLL) 1618 mmc_schedule_delayed_work(&host->detect, HZ); 1619 } 1620 1621 void mmc_start_host(struct mmc_host *host) 1622 { 1623 mmc_power_off(host); 1624 mmc_detect_change(host, 0); 1625 } 1626 1627 void mmc_stop_host(struct mmc_host *host) 1628 { 1629 #ifdef CONFIG_MMC_DEBUG 1630 unsigned long flags; 1631 spin_lock_irqsave(&host->lock, flags); 1632 host->removed = 1; 1633 spin_unlock_irqrestore(&host->lock, flags); 1634 #endif 1635 1636 if (host->caps & MMC_CAP_DISABLE) 1637 cancel_delayed_work(&host->disable); 1638 cancel_delayed_work_sync(&host->detect); 1639 mmc_flush_scheduled_work(); 1640 1641 /* clear pm flags now and let card drivers set them as needed */ 1642 host->pm_flags = 0; 1643 1644 mmc_bus_get(host); 1645 if (host->bus_ops && !host->bus_dead) { 1646 if (host->bus_ops->remove) 1647 host->bus_ops->remove(host); 1648 1649 mmc_claim_host(host); 1650 mmc_detach_bus(host); 1651 mmc_release_host(host); 1652 mmc_bus_put(host); 1653 return; 1654 } 1655 mmc_bus_put(host); 1656 1657 BUG_ON(host->card); 1658 1659 mmc_power_off(host); 1660 } 1661 1662 int mmc_power_save_host(struct mmc_host *host) 1663 { 1664 int ret = 0; 1665 1666 mmc_bus_get(host); 1667 1668 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 1669 mmc_bus_put(host); 1670 return -EINVAL; 1671 } 1672 1673 if (host->bus_ops->power_save) 1674 ret = host->bus_ops->power_save(host); 1675 1676 mmc_bus_put(host); 1677 1678 mmc_power_off(host); 1679 1680 return ret; 1681 } 1682 EXPORT_SYMBOL(mmc_power_save_host); 1683 1684 int mmc_power_restore_host(struct mmc_host *host) 1685 { 1686 int ret; 1687 1688 mmc_bus_get(host); 1689 1690 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 1691 mmc_bus_put(host); 1692 return -EINVAL; 1693 } 1694 1695 mmc_power_up(host); 1696 ret = host->bus_ops->power_restore(host); 1697 1698 mmc_bus_put(host); 1699 1700 return ret; 1701 } 1702 EXPORT_SYMBOL(mmc_power_restore_host); 1703 1704 int mmc_card_awake(struct mmc_host *host) 1705 { 1706 int err = -ENOSYS; 1707 1708 mmc_bus_get(host); 1709 1710 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 1711 err = host->bus_ops->awake(host); 1712 1713 mmc_bus_put(host); 1714 1715 return err; 1716 } 1717 EXPORT_SYMBOL(mmc_card_awake); 1718 1719 int mmc_card_sleep(struct mmc_host *host) 1720 { 1721 int err = -ENOSYS; 1722 1723 mmc_bus_get(host); 1724 1725 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 1726 err = host->bus_ops->sleep(host); 1727 1728 mmc_bus_put(host); 1729 1730 return err; 1731 } 1732 EXPORT_SYMBOL(mmc_card_sleep); 1733 1734 int mmc_card_can_sleep(struct mmc_host *host) 1735 { 1736 struct mmc_card *card = host->card; 1737 1738 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) 1739 return 1; 1740 return 0; 1741 } 1742 EXPORT_SYMBOL(mmc_card_can_sleep); 1743 1744 #ifdef CONFIG_PM 1745 1746 /** 1747 * mmc_suspend_host - suspend a host 1748 * @host: mmc host 1749 */ 1750 int mmc_suspend_host(struct mmc_host *host) 1751 { 1752 int err = 0; 1753 1754 if (host->caps & MMC_CAP_DISABLE) 1755 cancel_delayed_work(&host->disable); 1756 cancel_delayed_work(&host->detect); 1757 mmc_flush_scheduled_work(); 1758 1759 mmc_bus_get(host); 1760 if (host->bus_ops && !host->bus_dead) { 1761 if (host->bus_ops->suspend) 1762 err = host->bus_ops->suspend(host); 1763 if (err == -ENOSYS || !host->bus_ops->resume) { 1764 /* 1765 * We simply "remove" the card in this case. 1766 * It will be redetected on resume. 1767 */ 1768 if (host->bus_ops->remove) 1769 host->bus_ops->remove(host); 1770 mmc_claim_host(host); 1771 mmc_detach_bus(host); 1772 mmc_release_host(host); 1773 host->pm_flags = 0; 1774 err = 0; 1775 } 1776 } 1777 mmc_bus_put(host); 1778 1779 if (!err && !mmc_card_keep_power(host)) 1780 mmc_power_off(host); 1781 1782 return err; 1783 } 1784 1785 EXPORT_SYMBOL(mmc_suspend_host); 1786 1787 /** 1788 * mmc_resume_host - resume a previously suspended host 1789 * @host: mmc host 1790 */ 1791 int mmc_resume_host(struct mmc_host *host) 1792 { 1793 int err = 0; 1794 1795 mmc_bus_get(host); 1796 if (host->bus_ops && !host->bus_dead) { 1797 if (!mmc_card_keep_power(host)) { 1798 mmc_power_up(host); 1799 mmc_select_voltage(host, host->ocr); 1800 /* 1801 * Tell runtime PM core we just powered up the card, 1802 * since it still believes the card is powered off. 1803 * Note that currently runtime PM is only enabled 1804 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD 1805 */ 1806 if (mmc_card_sdio(host->card) && 1807 (host->caps & MMC_CAP_POWER_OFF_CARD)) { 1808 pm_runtime_disable(&host->card->dev); 1809 pm_runtime_set_active(&host->card->dev); 1810 pm_runtime_enable(&host->card->dev); 1811 } 1812 } 1813 BUG_ON(!host->bus_ops->resume); 1814 err = host->bus_ops->resume(host); 1815 if (err) { 1816 printk(KERN_WARNING "%s: error %d during resume " 1817 "(card was removed?)\n", 1818 mmc_hostname(host), err); 1819 err = 0; 1820 } 1821 } 1822 host->pm_flags &= ~MMC_PM_KEEP_POWER; 1823 mmc_bus_put(host); 1824 1825 return err; 1826 } 1827 EXPORT_SYMBOL(mmc_resume_host); 1828 1829 /* Do the card removal on suspend if card is assumed removeable 1830 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 1831 to sync the card. 1832 */ 1833 int mmc_pm_notify(struct notifier_block *notify_block, 1834 unsigned long mode, void *unused) 1835 { 1836 struct mmc_host *host = container_of( 1837 notify_block, struct mmc_host, pm_notify); 1838 unsigned long flags; 1839 1840 1841 switch (mode) { 1842 case PM_HIBERNATION_PREPARE: 1843 case PM_SUSPEND_PREPARE: 1844 1845 spin_lock_irqsave(&host->lock, flags); 1846 host->rescan_disable = 1; 1847 spin_unlock_irqrestore(&host->lock, flags); 1848 cancel_delayed_work_sync(&host->detect); 1849 1850 if (!host->bus_ops || host->bus_ops->suspend) 1851 break; 1852 1853 mmc_claim_host(host); 1854 1855 if (host->bus_ops->remove) 1856 host->bus_ops->remove(host); 1857 1858 mmc_detach_bus(host); 1859 mmc_release_host(host); 1860 host->pm_flags = 0; 1861 break; 1862 1863 case PM_POST_SUSPEND: 1864 case PM_POST_HIBERNATION: 1865 case PM_POST_RESTORE: 1866 1867 spin_lock_irqsave(&host->lock, flags); 1868 host->rescan_disable = 0; 1869 spin_unlock_irqrestore(&host->lock, flags); 1870 mmc_detect_change(host, 0); 1871 1872 } 1873 1874 return 0; 1875 } 1876 #endif 1877 1878 static int __init mmc_init(void) 1879 { 1880 int ret; 1881 1882 workqueue = alloc_ordered_workqueue("kmmcd", 0); 1883 if (!workqueue) 1884 return -ENOMEM; 1885 1886 ret = mmc_register_bus(); 1887 if (ret) 1888 goto destroy_workqueue; 1889 1890 ret = mmc_register_host_class(); 1891 if (ret) 1892 goto unregister_bus; 1893 1894 ret = sdio_register_bus(); 1895 if (ret) 1896 goto unregister_host_class; 1897 1898 return 0; 1899 1900 unregister_host_class: 1901 mmc_unregister_host_class(); 1902 unregister_bus: 1903 mmc_unregister_bus(); 1904 destroy_workqueue: 1905 destroy_workqueue(workqueue); 1906 1907 return ret; 1908 } 1909 1910 static void __exit mmc_exit(void) 1911 { 1912 sdio_unregister_bus(); 1913 mmc_unregister_host_class(); 1914 mmc_unregister_bus(); 1915 destroy_workqueue(workqueue); 1916 } 1917 1918 subsys_initcall(mmc_init); 1919 module_exit(mmc_exit); 1920 1921 MODULE_LICENSE("GPL"); 1922