xref: /linux/drivers/mmc/core/core.c (revision 0e862838f290147ea9c16db852d8d494b552d38d)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/drivers/mmc/core/core.c
4   *
5   *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6   *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7   *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8   *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9   */
10  #include <linux/module.h>
11  #include <linux/init.h>
12  #include <linux/interrupt.h>
13  #include <linux/completion.h>
14  #include <linux/device.h>
15  #include <linux/delay.h>
16  #include <linux/pagemap.h>
17  #include <linux/err.h>
18  #include <linux/leds.h>
19  #include <linux/scatterlist.h>
20  #include <linux/log2.h>
21  #include <linux/pm_runtime.h>
22  #include <linux/pm_wakeup.h>
23  #include <linux/suspend.h>
24  #include <linux/fault-inject.h>
25  #include <linux/random.h>
26  #include <linux/slab.h>
27  #include <linux/of.h>
28  
29  #include <linux/mmc/card.h>
30  #include <linux/mmc/host.h>
31  #include <linux/mmc/mmc.h>
32  #include <linux/mmc/sd.h>
33  #include <linux/mmc/slot-gpio.h>
34  
35  #define CREATE_TRACE_POINTS
36  #include <trace/events/mmc.h>
37  
38  #include "core.h"
39  #include "card.h"
40  #include "crypto.h"
41  #include "bus.h"
42  #include "host.h"
43  #include "sdio_bus.h"
44  #include "pwrseq.h"
45  
46  #include "mmc_ops.h"
47  #include "sd_ops.h"
48  #include "sdio_ops.h"
49  
50  /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51  #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52  #define SD_DISCARD_TIMEOUT_MS	(250)
53  
54  static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55  
56  /*
57   * Enabling software CRCs on the data blocks can be a significant (30%)
58   * performance cost, and for other reasons may not always be desired.
59   * So we allow it it to be disabled.
60   */
61  bool use_spi_crc = 1;
62  module_param(use_spi_crc, bool, 0);
63  
64  static int mmc_schedule_delayed_work(struct delayed_work *work,
65  				     unsigned long delay)
66  {
67  	/*
68  	 * We use the system_freezable_wq, because of two reasons.
69  	 * First, it allows several works (not the same work item) to be
70  	 * executed simultaneously. Second, the queue becomes frozen when
71  	 * userspace becomes frozen during system PM.
72  	 */
73  	return queue_delayed_work(system_freezable_wq, work, delay);
74  }
75  
76  #ifdef CONFIG_FAIL_MMC_REQUEST
77  
78  /*
79   * Internal function. Inject random data errors.
80   * If mmc_data is NULL no errors are injected.
81   */
82  static void mmc_should_fail_request(struct mmc_host *host,
83  				    struct mmc_request *mrq)
84  {
85  	struct mmc_command *cmd = mrq->cmd;
86  	struct mmc_data *data = mrq->data;
87  	static const int data_errors[] = {
88  		-ETIMEDOUT,
89  		-EILSEQ,
90  		-EIO,
91  	};
92  
93  	if (!data)
94  		return;
95  
96  	if ((cmd && cmd->error) || data->error ||
97  	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98  		return;
99  
100  	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101  	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102  }
103  
104  #else /* CONFIG_FAIL_MMC_REQUEST */
105  
106  static inline void mmc_should_fail_request(struct mmc_host *host,
107  					   struct mmc_request *mrq)
108  {
109  }
110  
111  #endif /* CONFIG_FAIL_MMC_REQUEST */
112  
113  static inline void mmc_complete_cmd(struct mmc_request *mrq)
114  {
115  	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116  		complete_all(&mrq->cmd_completion);
117  }
118  
119  void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120  {
121  	if (!mrq->cap_cmd_during_tfr)
122  		return;
123  
124  	mmc_complete_cmd(mrq);
125  
126  	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127  		 mmc_hostname(host), mrq->cmd->opcode);
128  }
129  EXPORT_SYMBOL(mmc_command_done);
130  
131  /**
132   *	mmc_request_done - finish processing an MMC request
133   *	@host: MMC host which completed request
134   *	@mrq: MMC request which request
135   *
136   *	MMC drivers should call this function when they have completed
137   *	their processing of a request.
138   */
139  void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140  {
141  	struct mmc_command *cmd = mrq->cmd;
142  	int err = cmd->error;
143  
144  	/* Flag re-tuning needed on CRC errors */
145  	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146  	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147  	    !host->retune_crc_disable &&
148  	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149  	    (mrq->data && mrq->data->error == -EILSEQ) ||
150  	    (mrq->stop && mrq->stop->error == -EILSEQ)))
151  		mmc_retune_needed(host);
152  
153  	if (err && cmd->retries && mmc_host_is_spi(host)) {
154  		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155  			cmd->retries = 0;
156  	}
157  
158  	if (host->ongoing_mrq == mrq)
159  		host->ongoing_mrq = NULL;
160  
161  	mmc_complete_cmd(mrq);
162  
163  	trace_mmc_request_done(host, mrq);
164  
165  	/*
166  	 * We list various conditions for the command to be considered
167  	 * properly done:
168  	 *
169  	 * - There was no error, OK fine then
170  	 * - We are not doing some kind of retry
171  	 * - The card was removed (...so just complete everything no matter
172  	 *   if there are errors or retries)
173  	 */
174  	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175  		mmc_should_fail_request(host, mrq);
176  
177  		if (!host->ongoing_mrq)
178  			led_trigger_event(host->led, LED_OFF);
179  
180  		if (mrq->sbc) {
181  			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182  				mmc_hostname(host), mrq->sbc->opcode,
183  				mrq->sbc->error,
184  				mrq->sbc->resp[0], mrq->sbc->resp[1],
185  				mrq->sbc->resp[2], mrq->sbc->resp[3]);
186  		}
187  
188  		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189  			mmc_hostname(host), cmd->opcode, err,
190  			cmd->resp[0], cmd->resp[1],
191  			cmd->resp[2], cmd->resp[3]);
192  
193  		if (mrq->data) {
194  			pr_debug("%s:     %d bytes transferred: %d\n",
195  				mmc_hostname(host),
196  				mrq->data->bytes_xfered, mrq->data->error);
197  		}
198  
199  		if (mrq->stop) {
200  			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
201  				mmc_hostname(host), mrq->stop->opcode,
202  				mrq->stop->error,
203  				mrq->stop->resp[0], mrq->stop->resp[1],
204  				mrq->stop->resp[2], mrq->stop->resp[3]);
205  		}
206  	}
207  	/*
208  	 * Request starter must handle retries - see
209  	 * mmc_wait_for_req_done().
210  	 */
211  	if (mrq->done)
212  		mrq->done(mrq);
213  }
214  
215  EXPORT_SYMBOL(mmc_request_done);
216  
217  static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218  {
219  	int err;
220  
221  	/* Assumes host controller has been runtime resumed by mmc_claim_host */
222  	err = mmc_retune(host);
223  	if (err) {
224  		mrq->cmd->error = err;
225  		mmc_request_done(host, mrq);
226  		return;
227  	}
228  
229  	/*
230  	 * For sdio rw commands we must wait for card busy otherwise some
231  	 * sdio devices won't work properly.
232  	 * And bypass I/O abort, reset and bus suspend operations.
233  	 */
234  	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235  	    host->ops->card_busy) {
236  		int tries = 500; /* Wait aprox 500ms at maximum */
237  
238  		while (host->ops->card_busy(host) && --tries)
239  			mmc_delay(1);
240  
241  		if (tries == 0) {
242  			mrq->cmd->error = -EBUSY;
243  			mmc_request_done(host, mrq);
244  			return;
245  		}
246  	}
247  
248  	if (mrq->cap_cmd_during_tfr) {
249  		host->ongoing_mrq = mrq;
250  		/*
251  		 * Retry path could come through here without having waiting on
252  		 * cmd_completion, so ensure it is reinitialised.
253  		 */
254  		reinit_completion(&mrq->cmd_completion);
255  	}
256  
257  	trace_mmc_request_start(host, mrq);
258  
259  	if (host->cqe_on)
260  		host->cqe_ops->cqe_off(host);
261  
262  	host->ops->request(host, mrq);
263  }
264  
265  static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266  			     bool cqe)
267  {
268  	if (mrq->sbc) {
269  		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270  			 mmc_hostname(host), mrq->sbc->opcode,
271  			 mrq->sbc->arg, mrq->sbc->flags);
272  	}
273  
274  	if (mrq->cmd) {
275  		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276  			 mmc_hostname(host), cqe ? "CQE direct " : "",
277  			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278  	} else if (cqe) {
279  		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280  			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281  	}
282  
283  	if (mrq->data) {
284  		pr_debug("%s:     blksz %d blocks %d flags %08x "
285  			"tsac %d ms nsac %d\n",
286  			mmc_hostname(host), mrq->data->blksz,
287  			mrq->data->blocks, mrq->data->flags,
288  			mrq->data->timeout_ns / 1000000,
289  			mrq->data->timeout_clks);
290  	}
291  
292  	if (mrq->stop) {
293  		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
294  			 mmc_hostname(host), mrq->stop->opcode,
295  			 mrq->stop->arg, mrq->stop->flags);
296  	}
297  }
298  
299  static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300  {
301  	unsigned int i, sz = 0;
302  	struct scatterlist *sg;
303  
304  	if (mrq->cmd) {
305  		mrq->cmd->error = 0;
306  		mrq->cmd->mrq = mrq;
307  		mrq->cmd->data = mrq->data;
308  	}
309  	if (mrq->sbc) {
310  		mrq->sbc->error = 0;
311  		mrq->sbc->mrq = mrq;
312  	}
313  	if (mrq->data) {
314  		if (mrq->data->blksz > host->max_blk_size ||
315  		    mrq->data->blocks > host->max_blk_count ||
316  		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317  			return -EINVAL;
318  
319  		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320  			sz += sg->length;
321  		if (sz != mrq->data->blocks * mrq->data->blksz)
322  			return -EINVAL;
323  
324  		mrq->data->error = 0;
325  		mrq->data->mrq = mrq;
326  		if (mrq->stop) {
327  			mrq->data->stop = mrq->stop;
328  			mrq->stop->error = 0;
329  			mrq->stop->mrq = mrq;
330  		}
331  	}
332  
333  	return 0;
334  }
335  
336  int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337  {
338  	int err;
339  
340  	init_completion(&mrq->cmd_completion);
341  
342  	mmc_retune_hold(host);
343  
344  	if (mmc_card_removed(host->card))
345  		return -ENOMEDIUM;
346  
347  	mmc_mrq_pr_debug(host, mrq, false);
348  
349  	WARN_ON(!host->claimed);
350  
351  	err = mmc_mrq_prep(host, mrq);
352  	if (err)
353  		return err;
354  
355  	led_trigger_event(host->led, LED_FULL);
356  	__mmc_start_request(host, mrq);
357  
358  	return 0;
359  }
360  EXPORT_SYMBOL(mmc_start_request);
361  
362  static void mmc_wait_done(struct mmc_request *mrq)
363  {
364  	complete(&mrq->completion);
365  }
366  
367  static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368  {
369  	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370  
371  	/*
372  	 * If there is an ongoing transfer, wait for the command line to become
373  	 * available.
374  	 */
375  	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376  		wait_for_completion(&ongoing_mrq->cmd_completion);
377  }
378  
379  static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380  {
381  	int err;
382  
383  	mmc_wait_ongoing_tfr_cmd(host);
384  
385  	init_completion(&mrq->completion);
386  	mrq->done = mmc_wait_done;
387  
388  	err = mmc_start_request(host, mrq);
389  	if (err) {
390  		mrq->cmd->error = err;
391  		mmc_complete_cmd(mrq);
392  		complete(&mrq->completion);
393  	}
394  
395  	return err;
396  }
397  
398  void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399  {
400  	struct mmc_command *cmd;
401  
402  	while (1) {
403  		wait_for_completion(&mrq->completion);
404  
405  		cmd = mrq->cmd;
406  
407  		if (!cmd->error || !cmd->retries ||
408  		    mmc_card_removed(host->card))
409  			break;
410  
411  		mmc_retune_recheck(host);
412  
413  		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414  			 mmc_hostname(host), cmd->opcode, cmd->error);
415  		cmd->retries--;
416  		cmd->error = 0;
417  		__mmc_start_request(host, mrq);
418  	}
419  
420  	mmc_retune_release(host);
421  }
422  EXPORT_SYMBOL(mmc_wait_for_req_done);
423  
424  /*
425   * mmc_cqe_start_req - Start a CQE request.
426   * @host: MMC host to start the request
427   * @mrq: request to start
428   *
429   * Start the request, re-tuning if needed and it is possible. Returns an error
430   * code if the request fails to start or -EBUSY if CQE is busy.
431   */
432  int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433  {
434  	int err;
435  
436  	/*
437  	 * CQE cannot process re-tuning commands. Caller must hold retuning
438  	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
439  	 * active requests i.e. this is the first.  Note, re-tuning will call
440  	 * ->cqe_off().
441  	 */
442  	err = mmc_retune(host);
443  	if (err)
444  		goto out_err;
445  
446  	mrq->host = host;
447  
448  	mmc_mrq_pr_debug(host, mrq, true);
449  
450  	err = mmc_mrq_prep(host, mrq);
451  	if (err)
452  		goto out_err;
453  
454  	err = host->cqe_ops->cqe_request(host, mrq);
455  	if (err)
456  		goto out_err;
457  
458  	trace_mmc_request_start(host, mrq);
459  
460  	return 0;
461  
462  out_err:
463  	if (mrq->cmd) {
464  		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465  			 mmc_hostname(host), mrq->cmd->opcode, err);
466  	} else {
467  		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468  			 mmc_hostname(host), mrq->tag, err);
469  	}
470  	return err;
471  }
472  EXPORT_SYMBOL(mmc_cqe_start_req);
473  
474  /**
475   *	mmc_cqe_request_done - CQE has finished processing an MMC request
476   *	@host: MMC host which completed request
477   *	@mrq: MMC request which completed
478   *
479   *	CQE drivers should call this function when they have completed
480   *	their processing of a request.
481   */
482  void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483  {
484  	mmc_should_fail_request(host, mrq);
485  
486  	/* Flag re-tuning needed on CRC errors */
487  	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488  	    (mrq->data && mrq->data->error == -EILSEQ))
489  		mmc_retune_needed(host);
490  
491  	trace_mmc_request_done(host, mrq);
492  
493  	if (mrq->cmd) {
494  		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495  			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496  	} else {
497  		pr_debug("%s: CQE transfer done tag %d\n",
498  			 mmc_hostname(host), mrq->tag);
499  	}
500  
501  	if (mrq->data) {
502  		pr_debug("%s:     %d bytes transferred: %d\n",
503  			 mmc_hostname(host),
504  			 mrq->data->bytes_xfered, mrq->data->error);
505  	}
506  
507  	mrq->done(mrq);
508  }
509  EXPORT_SYMBOL(mmc_cqe_request_done);
510  
511  /**
512   *	mmc_cqe_post_req - CQE post process of a completed MMC request
513   *	@host: MMC host
514   *	@mrq: MMC request to be processed
515   */
516  void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517  {
518  	if (host->cqe_ops->cqe_post_req)
519  		host->cqe_ops->cqe_post_req(host, mrq);
520  }
521  EXPORT_SYMBOL(mmc_cqe_post_req);
522  
523  /* Arbitrary 1 second timeout */
524  #define MMC_CQE_RECOVERY_TIMEOUT	1000
525  
526  /*
527   * mmc_cqe_recovery - Recover from CQE errors.
528   * @host: MMC host to recover
529   *
530   * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531   * in eMMC, and discarding the queue in CQE. CQE must call
532   * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533   * fails to discard its queue.
534   */
535  int mmc_cqe_recovery(struct mmc_host *host)
536  {
537  	struct mmc_command cmd;
538  	int err;
539  
540  	mmc_retune_hold_now(host);
541  
542  	/*
543  	 * Recovery is expected seldom, if at all, but it reduces performance,
544  	 * so make sure it is not completely silent.
545  	 */
546  	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547  
548  	host->cqe_ops->cqe_recovery_start(host);
549  
550  	memset(&cmd, 0, sizeof(cmd));
551  	cmd.opcode       = MMC_STOP_TRANSMISSION;
552  	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
553  	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
554  	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555  	mmc_wait_for_cmd(host, &cmd, 0);
556  
557  	memset(&cmd, 0, sizeof(cmd));
558  	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
559  	cmd.arg          = 1; /* Discard entire queue */
560  	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
561  	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
562  	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563  	err = mmc_wait_for_cmd(host, &cmd, 0);
564  
565  	host->cqe_ops->cqe_recovery_finish(host);
566  
567  	mmc_retune_release(host);
568  
569  	return err;
570  }
571  EXPORT_SYMBOL(mmc_cqe_recovery);
572  
573  /**
574   *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
575   *	@host: MMC host
576   *	@mrq: MMC request
577   *
578   *	mmc_is_req_done() is used with requests that have
579   *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580   *	starting a request and before waiting for it to complete. That is,
581   *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582   *	and before mmc_wait_for_req_done(). If it is called at other times the
583   *	result is not meaningful.
584   */
585  bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586  {
587  	return completion_done(&mrq->completion);
588  }
589  EXPORT_SYMBOL(mmc_is_req_done);
590  
591  /**
592   *	mmc_wait_for_req - start a request and wait for completion
593   *	@host: MMC host to start command
594   *	@mrq: MMC request to start
595   *
596   *	Start a new MMC custom command request for a host, and wait
597   *	for the command to complete. In the case of 'cap_cmd_during_tfr'
598   *	requests, the transfer is ongoing and the caller can issue further
599   *	commands that do not use the data lines, and then wait by calling
600   *	mmc_wait_for_req_done().
601   *	Does not attempt to parse the response.
602   */
603  void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
604  {
605  	__mmc_start_req(host, mrq);
606  
607  	if (!mrq->cap_cmd_during_tfr)
608  		mmc_wait_for_req_done(host, mrq);
609  }
610  EXPORT_SYMBOL(mmc_wait_for_req);
611  
612  /**
613   *	mmc_wait_for_cmd - start a command and wait for completion
614   *	@host: MMC host to start command
615   *	@cmd: MMC command to start
616   *	@retries: maximum number of retries
617   *
618   *	Start a new MMC command for a host, and wait for the command
619   *	to complete.  Return any error that occurred while the command
620   *	was executing.  Do not attempt to parse the response.
621   */
622  int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623  {
624  	struct mmc_request mrq = {};
625  
626  	WARN_ON(!host->claimed);
627  
628  	memset(cmd->resp, 0, sizeof(cmd->resp));
629  	cmd->retries = retries;
630  
631  	mrq.cmd = cmd;
632  	cmd->data = NULL;
633  
634  	mmc_wait_for_req(host, &mrq);
635  
636  	return cmd->error;
637  }
638  
639  EXPORT_SYMBOL(mmc_wait_for_cmd);
640  
641  /**
642   *	mmc_set_data_timeout - set the timeout for a data command
643   *	@data: data phase for command
644   *	@card: the MMC card associated with the data transfer
645   *
646   *	Computes the data timeout parameters according to the
647   *	correct algorithm given the card type.
648   */
649  void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
650  {
651  	unsigned int mult;
652  
653  	/*
654  	 * SDIO cards only define an upper 1 s limit on access.
655  	 */
656  	if (mmc_card_sdio(card)) {
657  		data->timeout_ns = 1000000000;
658  		data->timeout_clks = 0;
659  		return;
660  	}
661  
662  	/*
663  	 * SD cards use a 100 multiplier rather than 10
664  	 */
665  	mult = mmc_card_sd(card) ? 100 : 10;
666  
667  	/*
668  	 * Scale up the multiplier (and therefore the timeout) by
669  	 * the r2w factor for writes.
670  	 */
671  	if (data->flags & MMC_DATA_WRITE)
672  		mult <<= card->csd.r2w_factor;
673  
674  	data->timeout_ns = card->csd.taac_ns * mult;
675  	data->timeout_clks = card->csd.taac_clks * mult;
676  
677  	/*
678  	 * SD cards also have an upper limit on the timeout.
679  	 */
680  	if (mmc_card_sd(card)) {
681  		unsigned int timeout_us, limit_us;
682  
683  		timeout_us = data->timeout_ns / 1000;
684  		if (card->host->ios.clock)
685  			timeout_us += data->timeout_clks * 1000 /
686  				(card->host->ios.clock / 1000);
687  
688  		if (data->flags & MMC_DATA_WRITE)
689  			/*
690  			 * The MMC spec "It is strongly recommended
691  			 * for hosts to implement more than 500ms
692  			 * timeout value even if the card indicates
693  			 * the 250ms maximum busy length."  Even the
694  			 * previous value of 300ms is known to be
695  			 * insufficient for some cards.
696  			 */
697  			limit_us = 3000000;
698  		else
699  			limit_us = 100000;
700  
701  		/*
702  		 * SDHC cards always use these fixed values.
703  		 */
704  		if (timeout_us > limit_us) {
705  			data->timeout_ns = limit_us * 1000;
706  			data->timeout_clks = 0;
707  		}
708  
709  		/* assign limit value if invalid */
710  		if (timeout_us == 0)
711  			data->timeout_ns = limit_us * 1000;
712  	}
713  
714  	/*
715  	 * Some cards require longer data read timeout than indicated in CSD.
716  	 * Address this by setting the read timeout to a "reasonably high"
717  	 * value. For the cards tested, 600ms has proven enough. If necessary,
718  	 * this value can be increased if other problematic cards require this.
719  	 */
720  	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
721  		data->timeout_ns = 600000000;
722  		data->timeout_clks = 0;
723  	}
724  
725  	/*
726  	 * Some cards need very high timeouts if driven in SPI mode.
727  	 * The worst observed timeout was 900ms after writing a
728  	 * continuous stream of data until the internal logic
729  	 * overflowed.
730  	 */
731  	if (mmc_host_is_spi(card->host)) {
732  		if (data->flags & MMC_DATA_WRITE) {
733  			if (data->timeout_ns < 1000000000)
734  				data->timeout_ns = 1000000000;	/* 1s */
735  		} else {
736  			if (data->timeout_ns < 100000000)
737  				data->timeout_ns =  100000000;	/* 100ms */
738  		}
739  	}
740  }
741  EXPORT_SYMBOL(mmc_set_data_timeout);
742  
743  /*
744   * Allow claiming an already claimed host if the context is the same or there is
745   * no context but the task is the same.
746   */
747  static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748  				   struct task_struct *task)
749  {
750  	return host->claimer == ctx ||
751  	       (!ctx && task && host->claimer->task == task);
752  }
753  
754  static inline void mmc_ctx_set_claimer(struct mmc_host *host,
755  				       struct mmc_ctx *ctx,
756  				       struct task_struct *task)
757  {
758  	if (!host->claimer) {
759  		if (ctx)
760  			host->claimer = ctx;
761  		else
762  			host->claimer = &host->default_ctx;
763  	}
764  	if (task)
765  		host->claimer->task = task;
766  }
767  
768  /**
769   *	__mmc_claim_host - exclusively claim a host
770   *	@host: mmc host to claim
771   *	@ctx: context that claims the host or NULL in which case the default
772   *	context will be used
773   *	@abort: whether or not the operation should be aborted
774   *
775   *	Claim a host for a set of operations.  If @abort is non null and
776   *	dereference a non-zero value then this will return prematurely with
777   *	that non-zero value without acquiring the lock.  Returns zero
778   *	with the lock held otherwise.
779   */
780  int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
781  		     atomic_t *abort)
782  {
783  	struct task_struct *task = ctx ? NULL : current;
784  	DECLARE_WAITQUEUE(wait, current);
785  	unsigned long flags;
786  	int stop;
787  	bool pm = false;
788  
789  	might_sleep();
790  
791  	add_wait_queue(&host->wq, &wait);
792  	spin_lock_irqsave(&host->lock, flags);
793  	while (1) {
794  		set_current_state(TASK_UNINTERRUPTIBLE);
795  		stop = abort ? atomic_read(abort) : 0;
796  		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
797  			break;
798  		spin_unlock_irqrestore(&host->lock, flags);
799  		schedule();
800  		spin_lock_irqsave(&host->lock, flags);
801  	}
802  	set_current_state(TASK_RUNNING);
803  	if (!stop) {
804  		host->claimed = 1;
805  		mmc_ctx_set_claimer(host, ctx, task);
806  		host->claim_cnt += 1;
807  		if (host->claim_cnt == 1)
808  			pm = true;
809  	} else
810  		wake_up(&host->wq);
811  	spin_unlock_irqrestore(&host->lock, flags);
812  	remove_wait_queue(&host->wq, &wait);
813  
814  	if (pm)
815  		pm_runtime_get_sync(mmc_dev(host));
816  
817  	return stop;
818  }
819  EXPORT_SYMBOL(__mmc_claim_host);
820  
821  /**
822   *	mmc_release_host - release a host
823   *	@host: mmc host to release
824   *
825   *	Release a MMC host, allowing others to claim the host
826   *	for their operations.
827   */
828  void mmc_release_host(struct mmc_host *host)
829  {
830  	unsigned long flags;
831  
832  	WARN_ON(!host->claimed);
833  
834  	spin_lock_irqsave(&host->lock, flags);
835  	if (--host->claim_cnt) {
836  		/* Release for nested claim */
837  		spin_unlock_irqrestore(&host->lock, flags);
838  	} else {
839  		host->claimed = 0;
840  		host->claimer->task = NULL;
841  		host->claimer = NULL;
842  		spin_unlock_irqrestore(&host->lock, flags);
843  		wake_up(&host->wq);
844  		pm_runtime_mark_last_busy(mmc_dev(host));
845  		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846  			pm_runtime_put_sync_suspend(mmc_dev(host));
847  		else
848  			pm_runtime_put_autosuspend(mmc_dev(host));
849  	}
850  }
851  EXPORT_SYMBOL(mmc_release_host);
852  
853  /*
854   * This is a helper function, which fetches a runtime pm reference for the
855   * card device and also claims the host.
856   */
857  void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
858  {
859  	pm_runtime_get_sync(&card->dev);
860  	__mmc_claim_host(card->host, ctx, NULL);
861  }
862  EXPORT_SYMBOL(mmc_get_card);
863  
864  /*
865   * This is a helper function, which releases the host and drops the runtime
866   * pm reference for the card device.
867   */
868  void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
869  {
870  	struct mmc_host *host = card->host;
871  
872  	WARN_ON(ctx && host->claimer != ctx);
873  
874  	mmc_release_host(host);
875  	pm_runtime_mark_last_busy(&card->dev);
876  	pm_runtime_put_autosuspend(&card->dev);
877  }
878  EXPORT_SYMBOL(mmc_put_card);
879  
880  /*
881   * Internal function that does the actual ios call to the host driver,
882   * optionally printing some debug output.
883   */
884  static inline void mmc_set_ios(struct mmc_host *host)
885  {
886  	struct mmc_ios *ios = &host->ios;
887  
888  	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889  		"width %u timing %u\n",
890  		 mmc_hostname(host), ios->clock, ios->bus_mode,
891  		 ios->power_mode, ios->chip_select, ios->vdd,
892  		 1 << ios->bus_width, ios->timing);
893  
894  	host->ops->set_ios(host, ios);
895  }
896  
897  /*
898   * Control chip select pin on a host.
899   */
900  void mmc_set_chip_select(struct mmc_host *host, int mode)
901  {
902  	host->ios.chip_select = mode;
903  	mmc_set_ios(host);
904  }
905  
906  /*
907   * Sets the host clock to the highest possible frequency that
908   * is below "hz".
909   */
910  void mmc_set_clock(struct mmc_host *host, unsigned int hz)
911  {
912  	WARN_ON(hz && hz < host->f_min);
913  
914  	if (hz > host->f_max)
915  		hz = host->f_max;
916  
917  	host->ios.clock = hz;
918  	mmc_set_ios(host);
919  }
920  
921  int mmc_execute_tuning(struct mmc_card *card)
922  {
923  	struct mmc_host *host = card->host;
924  	u32 opcode;
925  	int err;
926  
927  	if (!host->ops->execute_tuning)
928  		return 0;
929  
930  	if (host->cqe_on)
931  		host->cqe_ops->cqe_off(host);
932  
933  	if (mmc_card_mmc(card))
934  		opcode = MMC_SEND_TUNING_BLOCK_HS200;
935  	else
936  		opcode = MMC_SEND_TUNING_BLOCK;
937  
938  	err = host->ops->execute_tuning(host, opcode);
939  	if (!err) {
940  		mmc_retune_clear(host);
941  		mmc_retune_enable(host);
942  		return 0;
943  	}
944  
945  	/* Only print error when we don't check for card removal */
946  	if (!host->detect_change)
947  		pr_err("%s: tuning execution failed: %d\n",
948  			mmc_hostname(host), err);
949  
950  	return err;
951  }
952  
953  /*
954   * Change the bus mode (open drain/push-pull) of a host.
955   */
956  void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
957  {
958  	host->ios.bus_mode = mode;
959  	mmc_set_ios(host);
960  }
961  
962  /*
963   * Change data bus width of a host.
964   */
965  void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
966  {
967  	host->ios.bus_width = width;
968  	mmc_set_ios(host);
969  }
970  
971  /*
972   * Set initial state after a power cycle or a hw_reset.
973   */
974  void mmc_set_initial_state(struct mmc_host *host)
975  {
976  	if (host->cqe_on)
977  		host->cqe_ops->cqe_off(host);
978  
979  	mmc_retune_disable(host);
980  
981  	if (mmc_host_is_spi(host))
982  		host->ios.chip_select = MMC_CS_HIGH;
983  	else
984  		host->ios.chip_select = MMC_CS_DONTCARE;
985  	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
986  	host->ios.bus_width = MMC_BUS_WIDTH_1;
987  	host->ios.timing = MMC_TIMING_LEGACY;
988  	host->ios.drv_type = 0;
989  	host->ios.enhanced_strobe = false;
990  
991  	/*
992  	 * Make sure we are in non-enhanced strobe mode before we
993  	 * actually enable it in ext_csd.
994  	 */
995  	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
996  	     host->ops->hs400_enhanced_strobe)
997  		host->ops->hs400_enhanced_strobe(host, &host->ios);
998  
999  	mmc_set_ios(host);
1000  
1001  	mmc_crypto_set_initial_state(host);
1002  }
1003  
1004  /**
1005   * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1006   * @vdd:	voltage (mV)
1007   * @low_bits:	prefer low bits in boundary cases
1008   *
1009   * This function returns the OCR bit number according to the provided @vdd
1010   * value. If conversion is not possible a negative errno value returned.
1011   *
1012   * Depending on the @low_bits flag the function prefers low or high OCR bits
1013   * on boundary voltages. For example,
1014   * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1015   * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1016   *
1017   * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1018   */
1019  static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1020  {
1021  	const int max_bit = ilog2(MMC_VDD_35_36);
1022  	int bit;
1023  
1024  	if (vdd < 1650 || vdd > 3600)
1025  		return -EINVAL;
1026  
1027  	if (vdd >= 1650 && vdd <= 1950)
1028  		return ilog2(MMC_VDD_165_195);
1029  
1030  	if (low_bits)
1031  		vdd -= 1;
1032  
1033  	/* Base 2000 mV, step 100 mV, bit's base 8. */
1034  	bit = (vdd - 2000) / 100 + 8;
1035  	if (bit > max_bit)
1036  		return max_bit;
1037  	return bit;
1038  }
1039  
1040  /**
1041   * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1042   * @vdd_min:	minimum voltage value (mV)
1043   * @vdd_max:	maximum voltage value (mV)
1044   *
1045   * This function returns the OCR mask bits according to the provided @vdd_min
1046   * and @vdd_max values. If conversion is not possible the function returns 0.
1047   *
1048   * Notes wrt boundary cases:
1049   * This function sets the OCR bits for all boundary voltages, for example
1050   * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1051   * MMC_VDD_34_35 mask.
1052   */
1053  u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1054  {
1055  	u32 mask = 0;
1056  
1057  	if (vdd_max < vdd_min)
1058  		return 0;
1059  
1060  	/* Prefer high bits for the boundary vdd_max values. */
1061  	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1062  	if (vdd_max < 0)
1063  		return 0;
1064  
1065  	/* Prefer low bits for the boundary vdd_min values. */
1066  	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1067  	if (vdd_min < 0)
1068  		return 0;
1069  
1070  	/* Fill the mask, from max bit to min bit. */
1071  	while (vdd_max >= vdd_min)
1072  		mask |= 1 << vdd_max--;
1073  
1074  	return mask;
1075  }
1076  
1077  static int mmc_of_get_func_num(struct device_node *node)
1078  {
1079  	u32 reg;
1080  	int ret;
1081  
1082  	ret = of_property_read_u32(node, "reg", &reg);
1083  	if (ret < 0)
1084  		return ret;
1085  
1086  	return reg;
1087  }
1088  
1089  struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1090  		unsigned func_num)
1091  {
1092  	struct device_node *node;
1093  
1094  	if (!host->parent || !host->parent->of_node)
1095  		return NULL;
1096  
1097  	for_each_child_of_node(host->parent->of_node, node) {
1098  		if (mmc_of_get_func_num(node) == func_num)
1099  			return node;
1100  	}
1101  
1102  	return NULL;
1103  }
1104  
1105  /*
1106   * Mask off any voltages we don't support and select
1107   * the lowest voltage
1108   */
1109  u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1110  {
1111  	int bit;
1112  
1113  	/*
1114  	 * Sanity check the voltages that the card claims to
1115  	 * support.
1116  	 */
1117  	if (ocr & 0x7F) {
1118  		dev_warn(mmc_dev(host),
1119  		"card claims to support voltages below defined range\n");
1120  		ocr &= ~0x7F;
1121  	}
1122  
1123  	ocr &= host->ocr_avail;
1124  	if (!ocr) {
1125  		dev_warn(mmc_dev(host), "no support for card's volts\n");
1126  		return 0;
1127  	}
1128  
1129  	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1130  		bit = ffs(ocr) - 1;
1131  		ocr &= 3 << bit;
1132  		mmc_power_cycle(host, ocr);
1133  	} else {
1134  		bit = fls(ocr) - 1;
1135  		ocr &= 3 << bit;
1136  		if (bit != host->ios.vdd)
1137  			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1138  	}
1139  
1140  	return ocr;
1141  }
1142  
1143  int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1144  {
1145  	int err = 0;
1146  	int old_signal_voltage = host->ios.signal_voltage;
1147  
1148  	host->ios.signal_voltage = signal_voltage;
1149  	if (host->ops->start_signal_voltage_switch)
1150  		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1151  
1152  	if (err)
1153  		host->ios.signal_voltage = old_signal_voltage;
1154  
1155  	return err;
1156  
1157  }
1158  
1159  void mmc_set_initial_signal_voltage(struct mmc_host *host)
1160  {
1161  	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1162  	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1163  		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1164  	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1165  		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1166  	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1167  		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1168  }
1169  
1170  int mmc_host_set_uhs_voltage(struct mmc_host *host)
1171  {
1172  	u32 clock;
1173  
1174  	/*
1175  	 * During a signal voltage level switch, the clock must be gated
1176  	 * for 5 ms according to the SD spec
1177  	 */
1178  	clock = host->ios.clock;
1179  	host->ios.clock = 0;
1180  	mmc_set_ios(host);
1181  
1182  	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1183  		return -EAGAIN;
1184  
1185  	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1186  	mmc_delay(10);
1187  	host->ios.clock = clock;
1188  	mmc_set_ios(host);
1189  
1190  	return 0;
1191  }
1192  
1193  int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1194  {
1195  	struct mmc_command cmd = {};
1196  	int err = 0;
1197  
1198  	/*
1199  	 * If we cannot switch voltages, return failure so the caller
1200  	 * can continue without UHS mode
1201  	 */
1202  	if (!host->ops->start_signal_voltage_switch)
1203  		return -EPERM;
1204  	if (!host->ops->card_busy)
1205  		pr_warn("%s: cannot verify signal voltage switch\n",
1206  			mmc_hostname(host));
1207  
1208  	cmd.opcode = SD_SWITCH_VOLTAGE;
1209  	cmd.arg = 0;
1210  	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1211  
1212  	err = mmc_wait_for_cmd(host, &cmd, 0);
1213  	if (err)
1214  		goto power_cycle;
1215  
1216  	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1217  		return -EIO;
1218  
1219  	/*
1220  	 * The card should drive cmd and dat[0:3] low immediately
1221  	 * after the response of cmd11, but wait 1 ms to be sure
1222  	 */
1223  	mmc_delay(1);
1224  	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1225  		err = -EAGAIN;
1226  		goto power_cycle;
1227  	}
1228  
1229  	if (mmc_host_set_uhs_voltage(host)) {
1230  		/*
1231  		 * Voltages may not have been switched, but we've already
1232  		 * sent CMD11, so a power cycle is required anyway
1233  		 */
1234  		err = -EAGAIN;
1235  		goto power_cycle;
1236  	}
1237  
1238  	/* Wait for at least 1 ms according to spec */
1239  	mmc_delay(1);
1240  
1241  	/*
1242  	 * Failure to switch is indicated by the card holding
1243  	 * dat[0:3] low
1244  	 */
1245  	if (host->ops->card_busy && host->ops->card_busy(host))
1246  		err = -EAGAIN;
1247  
1248  power_cycle:
1249  	if (err) {
1250  		pr_debug("%s: Signal voltage switch failed, "
1251  			"power cycling card\n", mmc_hostname(host));
1252  		mmc_power_cycle(host, ocr);
1253  	}
1254  
1255  	return err;
1256  }
1257  
1258  /*
1259   * Select timing parameters for host.
1260   */
1261  void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1262  {
1263  	host->ios.timing = timing;
1264  	mmc_set_ios(host);
1265  }
1266  
1267  /*
1268   * Select appropriate driver type for host.
1269   */
1270  void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1271  {
1272  	host->ios.drv_type = drv_type;
1273  	mmc_set_ios(host);
1274  }
1275  
1276  int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1277  			      int card_drv_type, int *drv_type)
1278  {
1279  	struct mmc_host *host = card->host;
1280  	int host_drv_type = SD_DRIVER_TYPE_B;
1281  
1282  	*drv_type = 0;
1283  
1284  	if (!host->ops->select_drive_strength)
1285  		return 0;
1286  
1287  	/* Use SD definition of driver strength for hosts */
1288  	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1289  		host_drv_type |= SD_DRIVER_TYPE_A;
1290  
1291  	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1292  		host_drv_type |= SD_DRIVER_TYPE_C;
1293  
1294  	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1295  		host_drv_type |= SD_DRIVER_TYPE_D;
1296  
1297  	/*
1298  	 * The drive strength that the hardware can support
1299  	 * depends on the board design.  Pass the appropriate
1300  	 * information and let the hardware specific code
1301  	 * return what is possible given the options
1302  	 */
1303  	return host->ops->select_drive_strength(card, max_dtr,
1304  						host_drv_type,
1305  						card_drv_type,
1306  						drv_type);
1307  }
1308  
1309  /*
1310   * Apply power to the MMC stack.  This is a two-stage process.
1311   * First, we enable power to the card without the clock running.
1312   * We then wait a bit for the power to stabilise.  Finally,
1313   * enable the bus drivers and clock to the card.
1314   *
1315   * We must _NOT_ enable the clock prior to power stablising.
1316   *
1317   * If a host does all the power sequencing itself, ignore the
1318   * initial MMC_POWER_UP stage.
1319   */
1320  void mmc_power_up(struct mmc_host *host, u32 ocr)
1321  {
1322  	if (host->ios.power_mode == MMC_POWER_ON)
1323  		return;
1324  
1325  	mmc_pwrseq_pre_power_on(host);
1326  
1327  	host->ios.vdd = fls(ocr) - 1;
1328  	host->ios.power_mode = MMC_POWER_UP;
1329  	/* Set initial state and call mmc_set_ios */
1330  	mmc_set_initial_state(host);
1331  
1332  	mmc_set_initial_signal_voltage(host);
1333  
1334  	/*
1335  	 * This delay should be sufficient to allow the power supply
1336  	 * to reach the minimum voltage.
1337  	 */
1338  	mmc_delay(host->ios.power_delay_ms);
1339  
1340  	mmc_pwrseq_post_power_on(host);
1341  
1342  	host->ios.clock = host->f_init;
1343  
1344  	host->ios.power_mode = MMC_POWER_ON;
1345  	mmc_set_ios(host);
1346  
1347  	/*
1348  	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1349  	 * time required to reach a stable voltage.
1350  	 */
1351  	mmc_delay(host->ios.power_delay_ms);
1352  }
1353  
1354  void mmc_power_off(struct mmc_host *host)
1355  {
1356  	if (host->ios.power_mode == MMC_POWER_OFF)
1357  		return;
1358  
1359  	mmc_pwrseq_power_off(host);
1360  
1361  	host->ios.clock = 0;
1362  	host->ios.vdd = 0;
1363  
1364  	host->ios.power_mode = MMC_POWER_OFF;
1365  	/* Set initial state and call mmc_set_ios */
1366  	mmc_set_initial_state(host);
1367  
1368  	/*
1369  	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1370  	 * XO-1.5, require a short delay after poweroff before the card
1371  	 * can be successfully turned on again.
1372  	 */
1373  	mmc_delay(1);
1374  }
1375  
1376  void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1377  {
1378  	mmc_power_off(host);
1379  	/* Wait at least 1 ms according to SD spec */
1380  	mmc_delay(1);
1381  	mmc_power_up(host, ocr);
1382  }
1383  
1384  /*
1385   * Assign a mmc bus handler to a host. Only one bus handler may control a
1386   * host at any given time.
1387   */
1388  void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1389  {
1390  	host->bus_ops = ops;
1391  }
1392  
1393  /*
1394   * Remove the current bus handler from a host.
1395   */
1396  void mmc_detach_bus(struct mmc_host *host)
1397  {
1398  	host->bus_ops = NULL;
1399  }
1400  
1401  void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1402  {
1403  	/*
1404  	 * Prevent system sleep for 5s to allow user space to consume the
1405  	 * corresponding uevent. This is especially useful, when CD irq is used
1406  	 * as a system wakeup, but doesn't hurt in other cases.
1407  	 */
1408  	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1409  		__pm_wakeup_event(host->ws, 5000);
1410  
1411  	host->detect_change = 1;
1412  	mmc_schedule_delayed_work(&host->detect, delay);
1413  }
1414  
1415  /**
1416   *	mmc_detect_change - process change of state on a MMC socket
1417   *	@host: host which changed state.
1418   *	@delay: optional delay to wait before detection (jiffies)
1419   *
1420   *	MMC drivers should call this when they detect a card has been
1421   *	inserted or removed. The MMC layer will confirm that any
1422   *	present card is still functional, and initialize any newly
1423   *	inserted.
1424   */
1425  void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1426  {
1427  	_mmc_detect_change(host, delay, true);
1428  }
1429  EXPORT_SYMBOL(mmc_detect_change);
1430  
1431  void mmc_init_erase(struct mmc_card *card)
1432  {
1433  	unsigned int sz;
1434  
1435  	if (is_power_of_2(card->erase_size))
1436  		card->erase_shift = ffs(card->erase_size) - 1;
1437  	else
1438  		card->erase_shift = 0;
1439  
1440  	/*
1441  	 * It is possible to erase an arbitrarily large area of an SD or MMC
1442  	 * card.  That is not desirable because it can take a long time
1443  	 * (minutes) potentially delaying more important I/O, and also the
1444  	 * timeout calculations become increasingly hugely over-estimated.
1445  	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1446  	 * to that size and alignment.
1447  	 *
1448  	 * For SD cards that define Allocation Unit size, limit erases to one
1449  	 * Allocation Unit at a time.
1450  	 * For MMC, have a stab at ai good value and for modern cards it will
1451  	 * end up being 4MiB. Note that if the value is too small, it can end
1452  	 * up taking longer to erase. Also note, erase_size is already set to
1453  	 * High Capacity Erase Size if available when this function is called.
1454  	 */
1455  	if (mmc_card_sd(card) && card->ssr.au) {
1456  		card->pref_erase = card->ssr.au;
1457  		card->erase_shift = ffs(card->ssr.au) - 1;
1458  	} else if (card->erase_size) {
1459  		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1460  		if (sz < 128)
1461  			card->pref_erase = 512 * 1024 / 512;
1462  		else if (sz < 512)
1463  			card->pref_erase = 1024 * 1024 / 512;
1464  		else if (sz < 1024)
1465  			card->pref_erase = 2 * 1024 * 1024 / 512;
1466  		else
1467  			card->pref_erase = 4 * 1024 * 1024 / 512;
1468  		if (card->pref_erase < card->erase_size)
1469  			card->pref_erase = card->erase_size;
1470  		else {
1471  			sz = card->pref_erase % card->erase_size;
1472  			if (sz)
1473  				card->pref_erase += card->erase_size - sz;
1474  		}
1475  	} else
1476  		card->pref_erase = 0;
1477  }
1478  
1479  static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1480  				          unsigned int arg, unsigned int qty)
1481  {
1482  	unsigned int erase_timeout;
1483  
1484  	if (arg == MMC_DISCARD_ARG ||
1485  	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1486  		erase_timeout = card->ext_csd.trim_timeout;
1487  	} else if (card->ext_csd.erase_group_def & 1) {
1488  		/* High Capacity Erase Group Size uses HC timeouts */
1489  		if (arg == MMC_TRIM_ARG)
1490  			erase_timeout = card->ext_csd.trim_timeout;
1491  		else
1492  			erase_timeout = card->ext_csd.hc_erase_timeout;
1493  	} else {
1494  		/* CSD Erase Group Size uses write timeout */
1495  		unsigned int mult = (10 << card->csd.r2w_factor);
1496  		unsigned int timeout_clks = card->csd.taac_clks * mult;
1497  		unsigned int timeout_us;
1498  
1499  		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1500  		if (card->csd.taac_ns < 1000000)
1501  			timeout_us = (card->csd.taac_ns * mult) / 1000;
1502  		else
1503  			timeout_us = (card->csd.taac_ns / 1000) * mult;
1504  
1505  		/*
1506  		 * ios.clock is only a target.  The real clock rate might be
1507  		 * less but not that much less, so fudge it by multiplying by 2.
1508  		 */
1509  		timeout_clks <<= 1;
1510  		timeout_us += (timeout_clks * 1000) /
1511  			      (card->host->ios.clock / 1000);
1512  
1513  		erase_timeout = timeout_us / 1000;
1514  
1515  		/*
1516  		 * Theoretically, the calculation could underflow so round up
1517  		 * to 1ms in that case.
1518  		 */
1519  		if (!erase_timeout)
1520  			erase_timeout = 1;
1521  	}
1522  
1523  	/* Multiplier for secure operations */
1524  	if (arg & MMC_SECURE_ARGS) {
1525  		if (arg == MMC_SECURE_ERASE_ARG)
1526  			erase_timeout *= card->ext_csd.sec_erase_mult;
1527  		else
1528  			erase_timeout *= card->ext_csd.sec_trim_mult;
1529  	}
1530  
1531  	erase_timeout *= qty;
1532  
1533  	/*
1534  	 * Ensure at least a 1 second timeout for SPI as per
1535  	 * 'mmc_set_data_timeout()'
1536  	 */
1537  	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1538  		erase_timeout = 1000;
1539  
1540  	return erase_timeout;
1541  }
1542  
1543  static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1544  					 unsigned int arg,
1545  					 unsigned int qty)
1546  {
1547  	unsigned int erase_timeout;
1548  
1549  	/* for DISCARD none of the below calculation applies.
1550  	 * the busy timeout is 250msec per discard command.
1551  	 */
1552  	if (arg == SD_DISCARD_ARG)
1553  		return SD_DISCARD_TIMEOUT_MS;
1554  
1555  	if (card->ssr.erase_timeout) {
1556  		/* Erase timeout specified in SD Status Register (SSR) */
1557  		erase_timeout = card->ssr.erase_timeout * qty +
1558  				card->ssr.erase_offset;
1559  	} else {
1560  		/*
1561  		 * Erase timeout not specified in SD Status Register (SSR) so
1562  		 * use 250ms per write block.
1563  		 */
1564  		erase_timeout = 250 * qty;
1565  	}
1566  
1567  	/* Must not be less than 1 second */
1568  	if (erase_timeout < 1000)
1569  		erase_timeout = 1000;
1570  
1571  	return erase_timeout;
1572  }
1573  
1574  static unsigned int mmc_erase_timeout(struct mmc_card *card,
1575  				      unsigned int arg,
1576  				      unsigned int qty)
1577  {
1578  	if (mmc_card_sd(card))
1579  		return mmc_sd_erase_timeout(card, arg, qty);
1580  	else
1581  		return mmc_mmc_erase_timeout(card, arg, qty);
1582  }
1583  
1584  static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1585  			unsigned int to, unsigned int arg)
1586  {
1587  	struct mmc_command cmd = {};
1588  	unsigned int qty = 0, busy_timeout = 0;
1589  	bool use_r1b_resp;
1590  	int err;
1591  
1592  	mmc_retune_hold(card->host);
1593  
1594  	/*
1595  	 * qty is used to calculate the erase timeout which depends on how many
1596  	 * erase groups (or allocation units in SD terminology) are affected.
1597  	 * We count erasing part of an erase group as one erase group.
1598  	 * For SD, the allocation units are always a power of 2.  For MMC, the
1599  	 * erase group size is almost certainly also power of 2, but it does not
1600  	 * seem to insist on that in the JEDEC standard, so we fall back to
1601  	 * division in that case.  SD may not specify an allocation unit size,
1602  	 * in which case the timeout is based on the number of write blocks.
1603  	 *
1604  	 * Note that the timeout for secure trim 2 will only be correct if the
1605  	 * number of erase groups specified is the same as the total of all
1606  	 * preceding secure trim 1 commands.  Since the power may have been
1607  	 * lost since the secure trim 1 commands occurred, it is generally
1608  	 * impossible to calculate the secure trim 2 timeout correctly.
1609  	 */
1610  	if (card->erase_shift)
1611  		qty += ((to >> card->erase_shift) -
1612  			(from >> card->erase_shift)) + 1;
1613  	else if (mmc_card_sd(card))
1614  		qty += to - from + 1;
1615  	else
1616  		qty += ((to / card->erase_size) -
1617  			(from / card->erase_size)) + 1;
1618  
1619  	if (!mmc_card_blockaddr(card)) {
1620  		from <<= 9;
1621  		to <<= 9;
1622  	}
1623  
1624  	if (mmc_card_sd(card))
1625  		cmd.opcode = SD_ERASE_WR_BLK_START;
1626  	else
1627  		cmd.opcode = MMC_ERASE_GROUP_START;
1628  	cmd.arg = from;
1629  	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1630  	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1631  	if (err) {
1632  		pr_err("mmc_erase: group start error %d, "
1633  		       "status %#x\n", err, cmd.resp[0]);
1634  		err = -EIO;
1635  		goto out;
1636  	}
1637  
1638  	memset(&cmd, 0, sizeof(struct mmc_command));
1639  	if (mmc_card_sd(card))
1640  		cmd.opcode = SD_ERASE_WR_BLK_END;
1641  	else
1642  		cmd.opcode = MMC_ERASE_GROUP_END;
1643  	cmd.arg = to;
1644  	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1645  	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1646  	if (err) {
1647  		pr_err("mmc_erase: group end error %d, status %#x\n",
1648  		       err, cmd.resp[0]);
1649  		err = -EIO;
1650  		goto out;
1651  	}
1652  
1653  	memset(&cmd, 0, sizeof(struct mmc_command));
1654  	cmd.opcode = MMC_ERASE;
1655  	cmd.arg = arg;
1656  	busy_timeout = mmc_erase_timeout(card, arg, qty);
1657  	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1658  
1659  	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1660  	if (err) {
1661  		pr_err("mmc_erase: erase error %d, status %#x\n",
1662  		       err, cmd.resp[0]);
1663  		err = -EIO;
1664  		goto out;
1665  	}
1666  
1667  	if (mmc_host_is_spi(card->host))
1668  		goto out;
1669  
1670  	/*
1671  	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1672  	 * shall be avoided.
1673  	 */
1674  	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1675  		goto out;
1676  
1677  	/* Let's poll to find out when the erase operation completes. */
1678  	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1679  
1680  out:
1681  	mmc_retune_release(card->host);
1682  	return err;
1683  }
1684  
1685  static unsigned int mmc_align_erase_size(struct mmc_card *card,
1686  					 unsigned int *from,
1687  					 unsigned int *to,
1688  					 unsigned int nr)
1689  {
1690  	unsigned int from_new = *from, nr_new = nr, rem;
1691  
1692  	/*
1693  	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1694  	 * to align the erase size efficiently.
1695  	 */
1696  	if (is_power_of_2(card->erase_size)) {
1697  		unsigned int temp = from_new;
1698  
1699  		from_new = round_up(temp, card->erase_size);
1700  		rem = from_new - temp;
1701  
1702  		if (nr_new > rem)
1703  			nr_new -= rem;
1704  		else
1705  			return 0;
1706  
1707  		nr_new = round_down(nr_new, card->erase_size);
1708  	} else {
1709  		rem = from_new % card->erase_size;
1710  		if (rem) {
1711  			rem = card->erase_size - rem;
1712  			from_new += rem;
1713  			if (nr_new > rem)
1714  				nr_new -= rem;
1715  			else
1716  				return 0;
1717  		}
1718  
1719  		rem = nr_new % card->erase_size;
1720  		if (rem)
1721  			nr_new -= rem;
1722  	}
1723  
1724  	if (nr_new == 0)
1725  		return 0;
1726  
1727  	*to = from_new + nr_new;
1728  	*from = from_new;
1729  
1730  	return nr_new;
1731  }
1732  
1733  /**
1734   * mmc_erase - erase sectors.
1735   * @card: card to erase
1736   * @from: first sector to erase
1737   * @nr: number of sectors to erase
1738   * @arg: erase command argument
1739   *
1740   * Caller must claim host before calling this function.
1741   */
1742  int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1743  	      unsigned int arg)
1744  {
1745  	unsigned int rem, to = from + nr;
1746  	int err;
1747  
1748  	if (!(card->csd.cmdclass & CCC_ERASE))
1749  		return -EOPNOTSUPP;
1750  
1751  	if (!card->erase_size)
1752  		return -EOPNOTSUPP;
1753  
1754  	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1755  		return -EOPNOTSUPP;
1756  
1757  	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1758  	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1759  		return -EOPNOTSUPP;
1760  
1761  	if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1762  	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1763  		return -EOPNOTSUPP;
1764  
1765  	if (arg == MMC_SECURE_ERASE_ARG) {
1766  		if (from % card->erase_size || nr % card->erase_size)
1767  			return -EINVAL;
1768  	}
1769  
1770  	if (arg == MMC_ERASE_ARG)
1771  		nr = mmc_align_erase_size(card, &from, &to, nr);
1772  
1773  	if (nr == 0)
1774  		return 0;
1775  
1776  	if (to <= from)
1777  		return -EINVAL;
1778  
1779  	/* 'from' and 'to' are inclusive */
1780  	to -= 1;
1781  
1782  	/*
1783  	 * Special case where only one erase-group fits in the timeout budget:
1784  	 * If the region crosses an erase-group boundary on this particular
1785  	 * case, we will be trimming more than one erase-group which, does not
1786  	 * fit in the timeout budget of the controller, so we need to split it
1787  	 * and call mmc_do_erase() twice if necessary. This special case is
1788  	 * identified by the card->eg_boundary flag.
1789  	 */
1790  	rem = card->erase_size - (from % card->erase_size);
1791  	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1792  		err = mmc_do_erase(card, from, from + rem - 1, arg);
1793  		from += rem;
1794  		if ((err) || (to <= from))
1795  			return err;
1796  	}
1797  
1798  	return mmc_do_erase(card, from, to, arg);
1799  }
1800  EXPORT_SYMBOL(mmc_erase);
1801  
1802  int mmc_can_erase(struct mmc_card *card)
1803  {
1804  	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1805  		return 1;
1806  	return 0;
1807  }
1808  EXPORT_SYMBOL(mmc_can_erase);
1809  
1810  int mmc_can_trim(struct mmc_card *card)
1811  {
1812  	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1813  	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1814  		return 1;
1815  	return 0;
1816  }
1817  EXPORT_SYMBOL(mmc_can_trim);
1818  
1819  int mmc_can_discard(struct mmc_card *card)
1820  {
1821  	/*
1822  	 * As there's no way to detect the discard support bit at v4.5
1823  	 * use the s/w feature support filed.
1824  	 */
1825  	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1826  		return 1;
1827  	return 0;
1828  }
1829  EXPORT_SYMBOL(mmc_can_discard);
1830  
1831  int mmc_can_sanitize(struct mmc_card *card)
1832  {
1833  	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1834  		return 0;
1835  	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1836  		return 1;
1837  	return 0;
1838  }
1839  
1840  int mmc_can_secure_erase_trim(struct mmc_card *card)
1841  {
1842  	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1843  	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1844  		return 1;
1845  	return 0;
1846  }
1847  EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1848  
1849  int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1850  			    unsigned int nr)
1851  {
1852  	if (!card->erase_size)
1853  		return 0;
1854  	if (from % card->erase_size || nr % card->erase_size)
1855  		return 0;
1856  	return 1;
1857  }
1858  EXPORT_SYMBOL(mmc_erase_group_aligned);
1859  
1860  static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1861  					    unsigned int arg)
1862  {
1863  	struct mmc_host *host = card->host;
1864  	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1865  	unsigned int last_timeout = 0;
1866  	unsigned int max_busy_timeout = host->max_busy_timeout ?
1867  			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1868  
1869  	if (card->erase_shift) {
1870  		max_qty = UINT_MAX >> card->erase_shift;
1871  		min_qty = card->pref_erase >> card->erase_shift;
1872  	} else if (mmc_card_sd(card)) {
1873  		max_qty = UINT_MAX;
1874  		min_qty = card->pref_erase;
1875  	} else {
1876  		max_qty = UINT_MAX / card->erase_size;
1877  		min_qty = card->pref_erase / card->erase_size;
1878  	}
1879  
1880  	/*
1881  	 * We should not only use 'host->max_busy_timeout' as the limitation
1882  	 * when deciding the max discard sectors. We should set a balance value
1883  	 * to improve the erase speed, and it can not get too long timeout at
1884  	 * the same time.
1885  	 *
1886  	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1887  	 * matter what size of 'host->max_busy_timeout', but if the
1888  	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1889  	 * then we can continue to increase the max discard sectors until we
1890  	 * get a balance value. In cases when the 'host->max_busy_timeout'
1891  	 * isn't specified, use the default max erase timeout.
1892  	 */
1893  	do {
1894  		y = 0;
1895  		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1896  			timeout = mmc_erase_timeout(card, arg, qty + x);
1897  
1898  			if (qty + x > min_qty && timeout > max_busy_timeout)
1899  				break;
1900  
1901  			if (timeout < last_timeout)
1902  				break;
1903  			last_timeout = timeout;
1904  			y = x;
1905  		}
1906  		qty += y;
1907  	} while (y);
1908  
1909  	if (!qty)
1910  		return 0;
1911  
1912  	/*
1913  	 * When specifying a sector range to trim, chances are we might cross
1914  	 * an erase-group boundary even if the amount of sectors is less than
1915  	 * one erase-group.
1916  	 * If we can only fit one erase-group in the controller timeout budget,
1917  	 * we have to care that erase-group boundaries are not crossed by a
1918  	 * single trim operation. We flag that special case with "eg_boundary".
1919  	 * In all other cases we can just decrement qty and pretend that we
1920  	 * always touch (qty + 1) erase-groups as a simple optimization.
1921  	 */
1922  	if (qty == 1)
1923  		card->eg_boundary = 1;
1924  	else
1925  		qty--;
1926  
1927  	/* Convert qty to sectors */
1928  	if (card->erase_shift)
1929  		max_discard = qty << card->erase_shift;
1930  	else if (mmc_card_sd(card))
1931  		max_discard = qty + 1;
1932  	else
1933  		max_discard = qty * card->erase_size;
1934  
1935  	return max_discard;
1936  }
1937  
1938  unsigned int mmc_calc_max_discard(struct mmc_card *card)
1939  {
1940  	struct mmc_host *host = card->host;
1941  	unsigned int max_discard, max_trim;
1942  
1943  	/*
1944  	 * Without erase_group_def set, MMC erase timeout depends on clock
1945  	 * frequence which can change.  In that case, the best choice is
1946  	 * just the preferred erase size.
1947  	 */
1948  	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1949  		return card->pref_erase;
1950  
1951  	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1952  	if (mmc_can_trim(card)) {
1953  		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1954  		if (max_trim < max_discard || max_discard == 0)
1955  			max_discard = max_trim;
1956  	} else if (max_discard < card->erase_size) {
1957  		max_discard = 0;
1958  	}
1959  	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1960  		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1961  		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1962  	return max_discard;
1963  }
1964  EXPORT_SYMBOL(mmc_calc_max_discard);
1965  
1966  bool mmc_card_is_blockaddr(struct mmc_card *card)
1967  {
1968  	return card ? mmc_card_blockaddr(card) : false;
1969  }
1970  EXPORT_SYMBOL(mmc_card_is_blockaddr);
1971  
1972  int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1973  {
1974  	struct mmc_command cmd = {};
1975  
1976  	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1977  	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1978  		return 0;
1979  
1980  	cmd.opcode = MMC_SET_BLOCKLEN;
1981  	cmd.arg = blocklen;
1982  	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1983  	return mmc_wait_for_cmd(card->host, &cmd, 5);
1984  }
1985  EXPORT_SYMBOL(mmc_set_blocklen);
1986  
1987  static void mmc_hw_reset_for_init(struct mmc_host *host)
1988  {
1989  	mmc_pwrseq_reset(host);
1990  
1991  	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
1992  		return;
1993  	host->ops->card_hw_reset(host);
1994  }
1995  
1996  /**
1997   * mmc_hw_reset - reset the card in hardware
1998   * @card: card to be reset
1999   *
2000   * Hard reset the card. This function is only for upper layers, like the
2001   * block layer or card drivers. You cannot use it in host drivers (struct
2002   * mmc_card might be gone then).
2003   *
2004   * Return: 0 on success, -errno on failure
2005   */
2006  int mmc_hw_reset(struct mmc_card *card)
2007  {
2008  	struct mmc_host *host = card->host;
2009  	int ret;
2010  
2011  	ret = host->bus_ops->hw_reset(host);
2012  	if (ret < 0)
2013  		pr_warn("%s: tried to HW reset card, got error %d\n",
2014  			mmc_hostname(host), ret);
2015  
2016  	return ret;
2017  }
2018  EXPORT_SYMBOL(mmc_hw_reset);
2019  
2020  int mmc_sw_reset(struct mmc_card *card)
2021  {
2022  	struct mmc_host *host = card->host;
2023  	int ret;
2024  
2025  	if (!host->bus_ops->sw_reset)
2026  		return -EOPNOTSUPP;
2027  
2028  	ret = host->bus_ops->sw_reset(host);
2029  	if (ret)
2030  		pr_warn("%s: tried to SW reset card, got error %d\n",
2031  			mmc_hostname(host), ret);
2032  
2033  	return ret;
2034  }
2035  EXPORT_SYMBOL(mmc_sw_reset);
2036  
2037  static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2038  {
2039  	host->f_init = freq;
2040  
2041  	pr_debug("%s: %s: trying to init card at %u Hz\n",
2042  		mmc_hostname(host), __func__, host->f_init);
2043  
2044  	mmc_power_up(host, host->ocr_avail);
2045  
2046  	/*
2047  	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2048  	 * do a hardware reset if possible.
2049  	 */
2050  	mmc_hw_reset_for_init(host);
2051  
2052  	/*
2053  	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2054  	 * if the card is being re-initialized, just send it.  CMD52
2055  	 * should be ignored by SD/eMMC cards.
2056  	 * Skip it if we already know that we do not support SDIO commands
2057  	 */
2058  	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2059  		sdio_reset(host);
2060  
2061  	mmc_go_idle(host);
2062  
2063  	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2064  		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2065  			goto out;
2066  		if (mmc_card_sd_express(host))
2067  			return 0;
2068  	}
2069  
2070  	/* Order's important: probe SDIO, then SD, then MMC */
2071  	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2072  		if (!mmc_attach_sdio(host))
2073  			return 0;
2074  
2075  	if (!(host->caps2 & MMC_CAP2_NO_SD))
2076  		if (!mmc_attach_sd(host))
2077  			return 0;
2078  
2079  	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2080  		if (!mmc_attach_mmc(host))
2081  			return 0;
2082  
2083  out:
2084  	mmc_power_off(host);
2085  	return -EIO;
2086  }
2087  
2088  int _mmc_detect_card_removed(struct mmc_host *host)
2089  {
2090  	int ret;
2091  
2092  	if (!host->card || mmc_card_removed(host->card))
2093  		return 1;
2094  
2095  	ret = host->bus_ops->alive(host);
2096  
2097  	/*
2098  	 * Card detect status and alive check may be out of sync if card is
2099  	 * removed slowly, when card detect switch changes while card/slot
2100  	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2101  	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2102  	 * detect work 200ms later for this case.
2103  	 */
2104  	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2105  		mmc_detect_change(host, msecs_to_jiffies(200));
2106  		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2107  	}
2108  
2109  	if (ret) {
2110  		mmc_card_set_removed(host->card);
2111  		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2112  	}
2113  
2114  	return ret;
2115  }
2116  
2117  int mmc_detect_card_removed(struct mmc_host *host)
2118  {
2119  	struct mmc_card *card = host->card;
2120  	int ret;
2121  
2122  	WARN_ON(!host->claimed);
2123  
2124  	if (!card)
2125  		return 1;
2126  
2127  	if (!mmc_card_is_removable(host))
2128  		return 0;
2129  
2130  	ret = mmc_card_removed(card);
2131  	/*
2132  	 * The card will be considered unchanged unless we have been asked to
2133  	 * detect a change or host requires polling to provide card detection.
2134  	 */
2135  	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2136  		return ret;
2137  
2138  	host->detect_change = 0;
2139  	if (!ret) {
2140  		ret = _mmc_detect_card_removed(host);
2141  		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2142  			/*
2143  			 * Schedule a detect work as soon as possible to let a
2144  			 * rescan handle the card removal.
2145  			 */
2146  			cancel_delayed_work(&host->detect);
2147  			_mmc_detect_change(host, 0, false);
2148  		}
2149  	}
2150  
2151  	return ret;
2152  }
2153  EXPORT_SYMBOL(mmc_detect_card_removed);
2154  
2155  int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2156  {
2157  	unsigned int boot_sectors_num;
2158  
2159  	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2160  		return -EOPNOTSUPP;
2161  
2162  	/* filter out unrelated cards */
2163  	if (card->ext_csd.rev < 3 ||
2164  	    !mmc_card_mmc(card) ||
2165  	    !mmc_card_is_blockaddr(card) ||
2166  	     mmc_card_is_removable(card->host))
2167  		return -ENOENT;
2168  
2169  	/*
2170  	 * eMMC storage has two special boot partitions in addition to the
2171  	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2172  	 * accesses, this means that the partition table addresses are shifted
2173  	 * by the size of boot partitions.  In accordance with the eMMC
2174  	 * specification, the boot partition size is calculated as follows:
2175  	 *
2176  	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2177  	 *
2178  	 * Calculate number of sectors occupied by the both boot partitions.
2179  	 */
2180  	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2181  			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2182  
2183  	/* Defined by NVIDIA and used by Android devices. */
2184  	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2185  
2186  	return 0;
2187  }
2188  EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2189  
2190  void mmc_rescan(struct work_struct *work)
2191  {
2192  	struct mmc_host *host =
2193  		container_of(work, struct mmc_host, detect.work);
2194  	int i;
2195  
2196  	if (host->rescan_disable)
2197  		return;
2198  
2199  	/* If there is a non-removable card registered, only scan once */
2200  	if (!mmc_card_is_removable(host) && host->rescan_entered)
2201  		return;
2202  	host->rescan_entered = 1;
2203  
2204  	if (host->trigger_card_event && host->ops->card_event) {
2205  		mmc_claim_host(host);
2206  		host->ops->card_event(host);
2207  		mmc_release_host(host);
2208  		host->trigger_card_event = false;
2209  	}
2210  
2211  	/* Verify a registered card to be functional, else remove it. */
2212  	if (host->bus_ops)
2213  		host->bus_ops->detect(host);
2214  
2215  	host->detect_change = 0;
2216  
2217  	/* if there still is a card present, stop here */
2218  	if (host->bus_ops != NULL)
2219  		goto out;
2220  
2221  	mmc_claim_host(host);
2222  	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2223  			host->ops->get_cd(host) == 0) {
2224  		mmc_power_off(host);
2225  		mmc_release_host(host);
2226  		goto out;
2227  	}
2228  
2229  	/* If an SD express card is present, then leave it as is. */
2230  	if (mmc_card_sd_express(host)) {
2231  		mmc_release_host(host);
2232  		goto out;
2233  	}
2234  
2235  	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2236  		unsigned int freq = freqs[i];
2237  		if (freq > host->f_max) {
2238  			if (i + 1 < ARRAY_SIZE(freqs))
2239  				continue;
2240  			freq = host->f_max;
2241  		}
2242  		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2243  			break;
2244  		if (freqs[i] <= host->f_min)
2245  			break;
2246  	}
2247  	mmc_release_host(host);
2248  
2249   out:
2250  	if (host->caps & MMC_CAP_NEEDS_POLL)
2251  		mmc_schedule_delayed_work(&host->detect, HZ);
2252  }
2253  
2254  void mmc_start_host(struct mmc_host *host)
2255  {
2256  	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2257  	host->rescan_disable = 0;
2258  
2259  	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2260  		mmc_claim_host(host);
2261  		mmc_power_up(host, host->ocr_avail);
2262  		mmc_release_host(host);
2263  	}
2264  
2265  	mmc_gpiod_request_cd_irq(host);
2266  	_mmc_detect_change(host, 0, false);
2267  }
2268  
2269  void __mmc_stop_host(struct mmc_host *host)
2270  {
2271  	if (host->slot.cd_irq >= 0) {
2272  		mmc_gpio_set_cd_wake(host, false);
2273  		disable_irq(host->slot.cd_irq);
2274  	}
2275  
2276  	host->rescan_disable = 1;
2277  	cancel_delayed_work_sync(&host->detect);
2278  }
2279  
2280  void mmc_stop_host(struct mmc_host *host)
2281  {
2282  	__mmc_stop_host(host);
2283  
2284  	/* clear pm flags now and let card drivers set them as needed */
2285  	host->pm_flags = 0;
2286  
2287  	if (host->bus_ops) {
2288  		/* Calling bus_ops->remove() with a claimed host can deadlock */
2289  		host->bus_ops->remove(host);
2290  		mmc_claim_host(host);
2291  		mmc_detach_bus(host);
2292  		mmc_power_off(host);
2293  		mmc_release_host(host);
2294  		return;
2295  	}
2296  
2297  	mmc_claim_host(host);
2298  	mmc_power_off(host);
2299  	mmc_release_host(host);
2300  }
2301  
2302  static int __init mmc_init(void)
2303  {
2304  	int ret;
2305  
2306  	ret = mmc_register_bus();
2307  	if (ret)
2308  		return ret;
2309  
2310  	ret = mmc_register_host_class();
2311  	if (ret)
2312  		goto unregister_bus;
2313  
2314  	ret = sdio_register_bus();
2315  	if (ret)
2316  		goto unregister_host_class;
2317  
2318  	return 0;
2319  
2320  unregister_host_class:
2321  	mmc_unregister_host_class();
2322  unregister_bus:
2323  	mmc_unregister_bus();
2324  	return ret;
2325  }
2326  
2327  static void __exit mmc_exit(void)
2328  {
2329  	sdio_unregister_bus();
2330  	mmc_unregister_host_class();
2331  	mmc_unregister_bus();
2332  }
2333  
2334  subsys_initcall(mmc_init);
2335  module_exit(mmc_exit);
2336  
2337  MODULE_LICENSE("GPL");
2338