xref: /linux/drivers/mmc/core/core.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
35 
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
40 
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
44 
45 /*
46  * Background operations can take a long time, depending on the housekeeping
47  * operations the card has to perform.
48  */
49 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
50 
51 static struct workqueue_struct *workqueue;
52 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
53 
54 /*
55  * Enabling software CRCs on the data blocks can be a significant (30%)
56  * performance cost, and for other reasons may not always be desired.
57  * So we allow it it to be disabled.
58  */
59 bool use_spi_crc = 1;
60 module_param(use_spi_crc, bool, 0);
61 
62 /*
63  * We normally treat cards as removed during suspend if they are not
64  * known to be on a non-removable bus, to avoid the risk of writing
65  * back data to a different card after resume.  Allow this to be
66  * overridden if necessary.
67  */
68 #ifdef CONFIG_MMC_UNSAFE_RESUME
69 bool mmc_assume_removable;
70 #else
71 bool mmc_assume_removable = 1;
72 #endif
73 EXPORT_SYMBOL(mmc_assume_removable);
74 module_param_named(removable, mmc_assume_removable, bool, 0644);
75 MODULE_PARM_DESC(
76 	removable,
77 	"MMC/SD cards are removable and may be removed during suspend");
78 
79 /*
80  * Internal function. Schedule delayed work in the MMC work queue.
81  */
82 static int mmc_schedule_delayed_work(struct delayed_work *work,
83 				     unsigned long delay)
84 {
85 	return queue_delayed_work(workqueue, work, delay);
86 }
87 
88 /*
89  * Internal function. Flush all scheduled work from the MMC work queue.
90  */
91 static void mmc_flush_scheduled_work(void)
92 {
93 	flush_workqueue(workqueue);
94 }
95 
96 #ifdef CONFIG_FAIL_MMC_REQUEST
97 
98 /*
99  * Internal function. Inject random data errors.
100  * If mmc_data is NULL no errors are injected.
101  */
102 static void mmc_should_fail_request(struct mmc_host *host,
103 				    struct mmc_request *mrq)
104 {
105 	struct mmc_command *cmd = mrq->cmd;
106 	struct mmc_data *data = mrq->data;
107 	static const int data_errors[] = {
108 		-ETIMEDOUT,
109 		-EILSEQ,
110 		-EIO,
111 	};
112 
113 	if (!data)
114 		return;
115 
116 	if (cmd->error || data->error ||
117 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
118 		return;
119 
120 	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
121 	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
122 }
123 
124 #else /* CONFIG_FAIL_MMC_REQUEST */
125 
126 static inline void mmc_should_fail_request(struct mmc_host *host,
127 					   struct mmc_request *mrq)
128 {
129 }
130 
131 #endif /* CONFIG_FAIL_MMC_REQUEST */
132 
133 /**
134  *	mmc_request_done - finish processing an MMC request
135  *	@host: MMC host which completed request
136  *	@mrq: MMC request which request
137  *
138  *	MMC drivers should call this function when they have completed
139  *	their processing of a request.
140  */
141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
142 {
143 	struct mmc_command *cmd = mrq->cmd;
144 	int err = cmd->error;
145 
146 	if (err && cmd->retries && mmc_host_is_spi(host)) {
147 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
148 			cmd->retries = 0;
149 	}
150 
151 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
152 		/*
153 		 * Request starter must handle retries - see
154 		 * mmc_wait_for_req_done().
155 		 */
156 		if (mrq->done)
157 			mrq->done(mrq);
158 	} else {
159 		mmc_should_fail_request(host, mrq);
160 
161 		led_trigger_event(host->led, LED_OFF);
162 
163 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
164 			mmc_hostname(host), cmd->opcode, err,
165 			cmd->resp[0], cmd->resp[1],
166 			cmd->resp[2], cmd->resp[3]);
167 
168 		if (mrq->data) {
169 			pr_debug("%s:     %d bytes transferred: %d\n",
170 				mmc_hostname(host),
171 				mrq->data->bytes_xfered, mrq->data->error);
172 		}
173 
174 		if (mrq->stop) {
175 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
176 				mmc_hostname(host), mrq->stop->opcode,
177 				mrq->stop->error,
178 				mrq->stop->resp[0], mrq->stop->resp[1],
179 				mrq->stop->resp[2], mrq->stop->resp[3]);
180 		}
181 
182 		if (mrq->done)
183 			mrq->done(mrq);
184 
185 		mmc_host_clk_release(host);
186 	}
187 }
188 
189 EXPORT_SYMBOL(mmc_request_done);
190 
191 static void
192 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
193 {
194 #ifdef CONFIG_MMC_DEBUG
195 	unsigned int i, sz;
196 	struct scatterlist *sg;
197 #endif
198 
199 	if (mrq->sbc) {
200 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
201 			 mmc_hostname(host), mrq->sbc->opcode,
202 			 mrq->sbc->arg, mrq->sbc->flags);
203 	}
204 
205 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
206 		 mmc_hostname(host), mrq->cmd->opcode,
207 		 mrq->cmd->arg, mrq->cmd->flags);
208 
209 	if (mrq->data) {
210 		pr_debug("%s:     blksz %d blocks %d flags %08x "
211 			"tsac %d ms nsac %d\n",
212 			mmc_hostname(host), mrq->data->blksz,
213 			mrq->data->blocks, mrq->data->flags,
214 			mrq->data->timeout_ns / 1000000,
215 			mrq->data->timeout_clks);
216 	}
217 
218 	if (mrq->stop) {
219 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
220 			 mmc_hostname(host), mrq->stop->opcode,
221 			 mrq->stop->arg, mrq->stop->flags);
222 	}
223 
224 	WARN_ON(!host->claimed);
225 
226 	mrq->cmd->error = 0;
227 	mrq->cmd->mrq = mrq;
228 	if (mrq->data) {
229 		BUG_ON(mrq->data->blksz > host->max_blk_size);
230 		BUG_ON(mrq->data->blocks > host->max_blk_count);
231 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
232 			host->max_req_size);
233 
234 #ifdef CONFIG_MMC_DEBUG
235 		sz = 0;
236 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
237 			sz += sg->length;
238 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
239 #endif
240 
241 		mrq->cmd->data = mrq->data;
242 		mrq->data->error = 0;
243 		mrq->data->mrq = mrq;
244 		if (mrq->stop) {
245 			mrq->data->stop = mrq->stop;
246 			mrq->stop->error = 0;
247 			mrq->stop->mrq = mrq;
248 		}
249 	}
250 	mmc_host_clk_hold(host);
251 	led_trigger_event(host->led, LED_FULL);
252 	host->ops->request(host, mrq);
253 }
254 
255 /**
256  *	mmc_start_bkops - start BKOPS for supported cards
257  *	@card: MMC card to start BKOPS
258  *	@form_exception: A flag to indicate if this function was
259  *			 called due to an exception raised by the card
260  *
261  *	Start background operations whenever requested.
262  *	When the urgent BKOPS bit is set in a R1 command response
263  *	then background operations should be started immediately.
264 */
265 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
266 {
267 	int err;
268 	int timeout;
269 	bool use_busy_signal;
270 
271 	BUG_ON(!card);
272 
273 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
274 		return;
275 
276 	err = mmc_read_bkops_status(card);
277 	if (err) {
278 		pr_err("%s: Failed to read bkops status: %d\n",
279 		       mmc_hostname(card->host), err);
280 		return;
281 	}
282 
283 	if (!card->ext_csd.raw_bkops_status)
284 		return;
285 
286 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
287 	    from_exception)
288 		return;
289 
290 	mmc_claim_host(card->host);
291 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
292 		timeout = MMC_BKOPS_MAX_TIMEOUT;
293 		use_busy_signal = true;
294 	} else {
295 		timeout = 0;
296 		use_busy_signal = false;
297 	}
298 
299 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
300 			EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
301 	if (err) {
302 		pr_warn("%s: Error %d starting bkops\n",
303 			mmc_hostname(card->host), err);
304 		goto out;
305 	}
306 
307 	/*
308 	 * For urgent bkops status (LEVEL_2 and more)
309 	 * bkops executed synchronously, otherwise
310 	 * the operation is in progress
311 	 */
312 	if (!use_busy_signal)
313 		mmc_card_set_doing_bkops(card);
314 out:
315 	mmc_release_host(card->host);
316 }
317 EXPORT_SYMBOL(mmc_start_bkops);
318 
319 static void mmc_wait_done(struct mmc_request *mrq)
320 {
321 	complete(&mrq->completion);
322 }
323 
324 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
325 {
326 	init_completion(&mrq->completion);
327 	mrq->done = mmc_wait_done;
328 	if (mmc_card_removed(host->card)) {
329 		mrq->cmd->error = -ENOMEDIUM;
330 		complete(&mrq->completion);
331 		return -ENOMEDIUM;
332 	}
333 	mmc_start_request(host, mrq);
334 	return 0;
335 }
336 
337 static void mmc_wait_for_req_done(struct mmc_host *host,
338 				  struct mmc_request *mrq)
339 {
340 	struct mmc_command *cmd;
341 
342 	while (1) {
343 		wait_for_completion(&mrq->completion);
344 
345 		cmd = mrq->cmd;
346 		if (!cmd->error || !cmd->retries ||
347 		    mmc_card_removed(host->card))
348 			break;
349 
350 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
351 			 mmc_hostname(host), cmd->opcode, cmd->error);
352 		cmd->retries--;
353 		cmd->error = 0;
354 		host->ops->request(host, mrq);
355 	}
356 }
357 
358 /**
359  *	mmc_pre_req - Prepare for a new request
360  *	@host: MMC host to prepare command
361  *	@mrq: MMC request to prepare for
362  *	@is_first_req: true if there is no previous started request
363  *                     that may run in parellel to this call, otherwise false
364  *
365  *	mmc_pre_req() is called in prior to mmc_start_req() to let
366  *	host prepare for the new request. Preparation of a request may be
367  *	performed while another request is running on the host.
368  */
369 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
370 		 bool is_first_req)
371 {
372 	if (host->ops->pre_req) {
373 		mmc_host_clk_hold(host);
374 		host->ops->pre_req(host, mrq, is_first_req);
375 		mmc_host_clk_release(host);
376 	}
377 }
378 
379 /**
380  *	mmc_post_req - Post process a completed request
381  *	@host: MMC host to post process command
382  *	@mrq: MMC request to post process for
383  *	@err: Error, if non zero, clean up any resources made in pre_req
384  *
385  *	Let the host post process a completed request. Post processing of
386  *	a request may be performed while another reuqest is running.
387  */
388 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
389 			 int err)
390 {
391 	if (host->ops->post_req) {
392 		mmc_host_clk_hold(host);
393 		host->ops->post_req(host, mrq, err);
394 		mmc_host_clk_release(host);
395 	}
396 }
397 
398 /**
399  *	mmc_start_req - start a non-blocking request
400  *	@host: MMC host to start command
401  *	@areq: async request to start
402  *	@error: out parameter returns 0 for success, otherwise non zero
403  *
404  *	Start a new MMC custom command request for a host.
405  *	If there is on ongoing async request wait for completion
406  *	of that request and start the new one and return.
407  *	Does not wait for the new request to complete.
408  *
409  *      Returns the completed request, NULL in case of none completed.
410  *	Wait for the an ongoing request (previoulsy started) to complete and
411  *	return the completed request. If there is no ongoing request, NULL
412  *	is returned without waiting. NULL is not an error condition.
413  */
414 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
415 				    struct mmc_async_req *areq, int *error)
416 {
417 	int err = 0;
418 	int start_err = 0;
419 	struct mmc_async_req *data = host->areq;
420 
421 	/* Prepare a new request */
422 	if (areq)
423 		mmc_pre_req(host, areq->mrq, !host->areq);
424 
425 	if (host->areq) {
426 		mmc_wait_for_req_done(host, host->areq->mrq);
427 		err = host->areq->err_check(host->card, host->areq);
428 		/*
429 		 * Check BKOPS urgency for each R1 response
430 		 */
431 		if (host->card && mmc_card_mmc(host->card) &&
432 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
433 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
434 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
435 			mmc_start_bkops(host->card, true);
436 	}
437 
438 	if (!err && areq)
439 		start_err = __mmc_start_req(host, areq->mrq);
440 
441 	if (host->areq)
442 		mmc_post_req(host, host->areq->mrq, 0);
443 
444 	 /* Cancel a prepared request if it was not started. */
445 	if ((err || start_err) && areq)
446 			mmc_post_req(host, areq->mrq, -EINVAL);
447 
448 	if (err)
449 		host->areq = NULL;
450 	else
451 		host->areq = areq;
452 
453 	if (error)
454 		*error = err;
455 	return data;
456 }
457 EXPORT_SYMBOL(mmc_start_req);
458 
459 /**
460  *	mmc_wait_for_req - start a request and wait for completion
461  *	@host: MMC host to start command
462  *	@mrq: MMC request to start
463  *
464  *	Start a new MMC custom command request for a host, and wait
465  *	for the command to complete. Does not attempt to parse the
466  *	response.
467  */
468 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
469 {
470 	__mmc_start_req(host, mrq);
471 	mmc_wait_for_req_done(host, mrq);
472 }
473 EXPORT_SYMBOL(mmc_wait_for_req);
474 
475 /**
476  *	mmc_interrupt_hpi - Issue for High priority Interrupt
477  *	@card: the MMC card associated with the HPI transfer
478  *
479  *	Issued High Priority Interrupt, and check for card status
480  *	until out-of prg-state.
481  */
482 int mmc_interrupt_hpi(struct mmc_card *card)
483 {
484 	int err;
485 	u32 status;
486 	unsigned long prg_wait;
487 
488 	BUG_ON(!card);
489 
490 	if (!card->ext_csd.hpi_en) {
491 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
492 		return 1;
493 	}
494 
495 	mmc_claim_host(card->host);
496 	err = mmc_send_status(card, &status);
497 	if (err) {
498 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
499 		goto out;
500 	}
501 
502 	switch (R1_CURRENT_STATE(status)) {
503 	case R1_STATE_IDLE:
504 	case R1_STATE_READY:
505 	case R1_STATE_STBY:
506 	case R1_STATE_TRAN:
507 		/*
508 		 * In idle and transfer states, HPI is not needed and the caller
509 		 * can issue the next intended command immediately
510 		 */
511 		goto out;
512 	case R1_STATE_PRG:
513 		break;
514 	default:
515 		/* In all other states, it's illegal to issue HPI */
516 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
517 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
518 		err = -EINVAL;
519 		goto out;
520 	}
521 
522 	err = mmc_send_hpi_cmd(card, &status);
523 	if (err)
524 		goto out;
525 
526 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
527 	do {
528 		err = mmc_send_status(card, &status);
529 
530 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
531 			break;
532 		if (time_after(jiffies, prg_wait))
533 			err = -ETIMEDOUT;
534 	} while (!err);
535 
536 out:
537 	mmc_release_host(card->host);
538 	return err;
539 }
540 EXPORT_SYMBOL(mmc_interrupt_hpi);
541 
542 /**
543  *	mmc_wait_for_cmd - start a command and wait for completion
544  *	@host: MMC host to start command
545  *	@cmd: MMC command to start
546  *	@retries: maximum number of retries
547  *
548  *	Start a new MMC command for a host, and wait for the command
549  *	to complete.  Return any error that occurred while the command
550  *	was executing.  Do not attempt to parse the response.
551  */
552 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
553 {
554 	struct mmc_request mrq = {NULL};
555 
556 	WARN_ON(!host->claimed);
557 
558 	memset(cmd->resp, 0, sizeof(cmd->resp));
559 	cmd->retries = retries;
560 
561 	mrq.cmd = cmd;
562 	cmd->data = NULL;
563 
564 	mmc_wait_for_req(host, &mrq);
565 
566 	return cmd->error;
567 }
568 
569 EXPORT_SYMBOL(mmc_wait_for_cmd);
570 
571 /**
572  *	mmc_stop_bkops - stop ongoing BKOPS
573  *	@card: MMC card to check BKOPS
574  *
575  *	Send HPI command to stop ongoing background operations to
576  *	allow rapid servicing of foreground operations, e.g. read/
577  *	writes. Wait until the card comes out of the programming state
578  *	to avoid errors in servicing read/write requests.
579  */
580 int mmc_stop_bkops(struct mmc_card *card)
581 {
582 	int err = 0;
583 
584 	BUG_ON(!card);
585 	err = mmc_interrupt_hpi(card);
586 
587 	/*
588 	 * If err is EINVAL, we can't issue an HPI.
589 	 * It should complete the BKOPS.
590 	 */
591 	if (!err || (err == -EINVAL)) {
592 		mmc_card_clr_doing_bkops(card);
593 		err = 0;
594 	}
595 
596 	return err;
597 }
598 EXPORT_SYMBOL(mmc_stop_bkops);
599 
600 int mmc_read_bkops_status(struct mmc_card *card)
601 {
602 	int err;
603 	u8 *ext_csd;
604 
605 	/*
606 	 * In future work, we should consider storing the entire ext_csd.
607 	 */
608 	ext_csd = kmalloc(512, GFP_KERNEL);
609 	if (!ext_csd) {
610 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
611 		       mmc_hostname(card->host));
612 		return -ENOMEM;
613 	}
614 
615 	mmc_claim_host(card->host);
616 	err = mmc_send_ext_csd(card, ext_csd);
617 	mmc_release_host(card->host);
618 	if (err)
619 		goto out;
620 
621 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
622 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
623 out:
624 	kfree(ext_csd);
625 	return err;
626 }
627 EXPORT_SYMBOL(mmc_read_bkops_status);
628 
629 /**
630  *	mmc_set_data_timeout - set the timeout for a data command
631  *	@data: data phase for command
632  *	@card: the MMC card associated with the data transfer
633  *
634  *	Computes the data timeout parameters according to the
635  *	correct algorithm given the card type.
636  */
637 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
638 {
639 	unsigned int mult;
640 
641 	/*
642 	 * SDIO cards only define an upper 1 s limit on access.
643 	 */
644 	if (mmc_card_sdio(card)) {
645 		data->timeout_ns = 1000000000;
646 		data->timeout_clks = 0;
647 		return;
648 	}
649 
650 	/*
651 	 * SD cards use a 100 multiplier rather than 10
652 	 */
653 	mult = mmc_card_sd(card) ? 100 : 10;
654 
655 	/*
656 	 * Scale up the multiplier (and therefore the timeout) by
657 	 * the r2w factor for writes.
658 	 */
659 	if (data->flags & MMC_DATA_WRITE)
660 		mult <<= card->csd.r2w_factor;
661 
662 	data->timeout_ns = card->csd.tacc_ns * mult;
663 	data->timeout_clks = card->csd.tacc_clks * mult;
664 
665 	/*
666 	 * SD cards also have an upper limit on the timeout.
667 	 */
668 	if (mmc_card_sd(card)) {
669 		unsigned int timeout_us, limit_us;
670 
671 		timeout_us = data->timeout_ns / 1000;
672 		if (mmc_host_clk_rate(card->host))
673 			timeout_us += data->timeout_clks * 1000 /
674 				(mmc_host_clk_rate(card->host) / 1000);
675 
676 		if (data->flags & MMC_DATA_WRITE)
677 			/*
678 			 * The MMC spec "It is strongly recommended
679 			 * for hosts to implement more than 500ms
680 			 * timeout value even if the card indicates
681 			 * the 250ms maximum busy length."  Even the
682 			 * previous value of 300ms is known to be
683 			 * insufficient for some cards.
684 			 */
685 			limit_us = 3000000;
686 		else
687 			limit_us = 100000;
688 
689 		/*
690 		 * SDHC cards always use these fixed values.
691 		 */
692 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
693 			data->timeout_ns = limit_us * 1000;
694 			data->timeout_clks = 0;
695 		}
696 	}
697 
698 	/*
699 	 * Some cards require longer data read timeout than indicated in CSD.
700 	 * Address this by setting the read timeout to a "reasonably high"
701 	 * value. For the cards tested, 300ms has proven enough. If necessary,
702 	 * this value can be increased if other problematic cards require this.
703 	 */
704 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
705 		data->timeout_ns = 300000000;
706 		data->timeout_clks = 0;
707 	}
708 
709 	/*
710 	 * Some cards need very high timeouts if driven in SPI mode.
711 	 * The worst observed timeout was 900ms after writing a
712 	 * continuous stream of data until the internal logic
713 	 * overflowed.
714 	 */
715 	if (mmc_host_is_spi(card->host)) {
716 		if (data->flags & MMC_DATA_WRITE) {
717 			if (data->timeout_ns < 1000000000)
718 				data->timeout_ns = 1000000000;	/* 1s */
719 		} else {
720 			if (data->timeout_ns < 100000000)
721 				data->timeout_ns =  100000000;	/* 100ms */
722 		}
723 	}
724 }
725 EXPORT_SYMBOL(mmc_set_data_timeout);
726 
727 /**
728  *	mmc_align_data_size - pads a transfer size to a more optimal value
729  *	@card: the MMC card associated with the data transfer
730  *	@sz: original transfer size
731  *
732  *	Pads the original data size with a number of extra bytes in
733  *	order to avoid controller bugs and/or performance hits
734  *	(e.g. some controllers revert to PIO for certain sizes).
735  *
736  *	Returns the improved size, which might be unmodified.
737  *
738  *	Note that this function is only relevant when issuing a
739  *	single scatter gather entry.
740  */
741 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
742 {
743 	/*
744 	 * FIXME: We don't have a system for the controller to tell
745 	 * the core about its problems yet, so for now we just 32-bit
746 	 * align the size.
747 	 */
748 	sz = ((sz + 3) / 4) * 4;
749 
750 	return sz;
751 }
752 EXPORT_SYMBOL(mmc_align_data_size);
753 
754 /**
755  *	__mmc_claim_host - exclusively claim a host
756  *	@host: mmc host to claim
757  *	@abort: whether or not the operation should be aborted
758  *
759  *	Claim a host for a set of operations.  If @abort is non null and
760  *	dereference a non-zero value then this will return prematurely with
761  *	that non-zero value without acquiring the lock.  Returns zero
762  *	with the lock held otherwise.
763  */
764 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
765 {
766 	DECLARE_WAITQUEUE(wait, current);
767 	unsigned long flags;
768 	int stop;
769 
770 	might_sleep();
771 
772 	add_wait_queue(&host->wq, &wait);
773 	spin_lock_irqsave(&host->lock, flags);
774 	while (1) {
775 		set_current_state(TASK_UNINTERRUPTIBLE);
776 		stop = abort ? atomic_read(abort) : 0;
777 		if (stop || !host->claimed || host->claimer == current)
778 			break;
779 		spin_unlock_irqrestore(&host->lock, flags);
780 		schedule();
781 		spin_lock_irqsave(&host->lock, flags);
782 	}
783 	set_current_state(TASK_RUNNING);
784 	if (!stop) {
785 		host->claimed = 1;
786 		host->claimer = current;
787 		host->claim_cnt += 1;
788 	} else
789 		wake_up(&host->wq);
790 	spin_unlock_irqrestore(&host->lock, flags);
791 	remove_wait_queue(&host->wq, &wait);
792 	if (host->ops->enable && !stop && host->claim_cnt == 1)
793 		host->ops->enable(host);
794 	return stop;
795 }
796 
797 EXPORT_SYMBOL(__mmc_claim_host);
798 
799 /**
800  *	mmc_try_claim_host - try exclusively to claim a host
801  *	@host: mmc host to claim
802  *
803  *	Returns %1 if the host is claimed, %0 otherwise.
804  */
805 int mmc_try_claim_host(struct mmc_host *host)
806 {
807 	int claimed_host = 0;
808 	unsigned long flags;
809 
810 	spin_lock_irqsave(&host->lock, flags);
811 	if (!host->claimed || host->claimer == current) {
812 		host->claimed = 1;
813 		host->claimer = current;
814 		host->claim_cnt += 1;
815 		claimed_host = 1;
816 	}
817 	spin_unlock_irqrestore(&host->lock, flags);
818 	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
819 		host->ops->enable(host);
820 	return claimed_host;
821 }
822 EXPORT_SYMBOL(mmc_try_claim_host);
823 
824 /**
825  *	mmc_release_host - release a host
826  *	@host: mmc host to release
827  *
828  *	Release a MMC host, allowing others to claim the host
829  *	for their operations.
830  */
831 void mmc_release_host(struct mmc_host *host)
832 {
833 	unsigned long flags;
834 
835 	WARN_ON(!host->claimed);
836 
837 	if (host->ops->disable && host->claim_cnt == 1)
838 		host->ops->disable(host);
839 
840 	spin_lock_irqsave(&host->lock, flags);
841 	if (--host->claim_cnt) {
842 		/* Release for nested claim */
843 		spin_unlock_irqrestore(&host->lock, flags);
844 	} else {
845 		host->claimed = 0;
846 		host->claimer = NULL;
847 		spin_unlock_irqrestore(&host->lock, flags);
848 		wake_up(&host->wq);
849 	}
850 }
851 EXPORT_SYMBOL(mmc_release_host);
852 
853 /*
854  * Internal function that does the actual ios call to the host driver,
855  * optionally printing some debug output.
856  */
857 static inline void mmc_set_ios(struct mmc_host *host)
858 {
859 	struct mmc_ios *ios = &host->ios;
860 
861 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
862 		"width %u timing %u\n",
863 		 mmc_hostname(host), ios->clock, ios->bus_mode,
864 		 ios->power_mode, ios->chip_select, ios->vdd,
865 		 ios->bus_width, ios->timing);
866 
867 	if (ios->clock > 0)
868 		mmc_set_ungated(host);
869 	host->ops->set_ios(host, ios);
870 }
871 
872 /*
873  * Control chip select pin on a host.
874  */
875 void mmc_set_chip_select(struct mmc_host *host, int mode)
876 {
877 	mmc_host_clk_hold(host);
878 	host->ios.chip_select = mode;
879 	mmc_set_ios(host);
880 	mmc_host_clk_release(host);
881 }
882 
883 /*
884  * Sets the host clock to the highest possible frequency that
885  * is below "hz".
886  */
887 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
888 {
889 	WARN_ON(hz < host->f_min);
890 
891 	if (hz > host->f_max)
892 		hz = host->f_max;
893 
894 	host->ios.clock = hz;
895 	mmc_set_ios(host);
896 }
897 
898 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
899 {
900 	mmc_host_clk_hold(host);
901 	__mmc_set_clock(host, hz);
902 	mmc_host_clk_release(host);
903 }
904 
905 #ifdef CONFIG_MMC_CLKGATE
906 /*
907  * This gates the clock by setting it to 0 Hz.
908  */
909 void mmc_gate_clock(struct mmc_host *host)
910 {
911 	unsigned long flags;
912 
913 	spin_lock_irqsave(&host->clk_lock, flags);
914 	host->clk_old = host->ios.clock;
915 	host->ios.clock = 0;
916 	host->clk_gated = true;
917 	spin_unlock_irqrestore(&host->clk_lock, flags);
918 	mmc_set_ios(host);
919 }
920 
921 /*
922  * This restores the clock from gating by using the cached
923  * clock value.
924  */
925 void mmc_ungate_clock(struct mmc_host *host)
926 {
927 	/*
928 	 * We should previously have gated the clock, so the clock shall
929 	 * be 0 here! The clock may however be 0 during initialization,
930 	 * when some request operations are performed before setting
931 	 * the frequency. When ungate is requested in that situation
932 	 * we just ignore the call.
933 	 */
934 	if (host->clk_old) {
935 		BUG_ON(host->ios.clock);
936 		/* This call will also set host->clk_gated to false */
937 		__mmc_set_clock(host, host->clk_old);
938 	}
939 }
940 
941 void mmc_set_ungated(struct mmc_host *host)
942 {
943 	unsigned long flags;
944 
945 	/*
946 	 * We've been given a new frequency while the clock is gated,
947 	 * so make sure we regard this as ungating it.
948 	 */
949 	spin_lock_irqsave(&host->clk_lock, flags);
950 	host->clk_gated = false;
951 	spin_unlock_irqrestore(&host->clk_lock, flags);
952 }
953 
954 #else
955 void mmc_set_ungated(struct mmc_host *host)
956 {
957 }
958 #endif
959 
960 /*
961  * Change the bus mode (open drain/push-pull) of a host.
962  */
963 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
964 {
965 	mmc_host_clk_hold(host);
966 	host->ios.bus_mode = mode;
967 	mmc_set_ios(host);
968 	mmc_host_clk_release(host);
969 }
970 
971 /*
972  * Change data bus width of a host.
973  */
974 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
975 {
976 	mmc_host_clk_hold(host);
977 	host->ios.bus_width = width;
978 	mmc_set_ios(host);
979 	mmc_host_clk_release(host);
980 }
981 
982 /**
983  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
984  * @vdd:	voltage (mV)
985  * @low_bits:	prefer low bits in boundary cases
986  *
987  * This function returns the OCR bit number according to the provided @vdd
988  * value. If conversion is not possible a negative errno value returned.
989  *
990  * Depending on the @low_bits flag the function prefers low or high OCR bits
991  * on boundary voltages. For example,
992  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
993  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
994  *
995  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
996  */
997 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
998 {
999 	const int max_bit = ilog2(MMC_VDD_35_36);
1000 	int bit;
1001 
1002 	if (vdd < 1650 || vdd > 3600)
1003 		return -EINVAL;
1004 
1005 	if (vdd >= 1650 && vdd <= 1950)
1006 		return ilog2(MMC_VDD_165_195);
1007 
1008 	if (low_bits)
1009 		vdd -= 1;
1010 
1011 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1012 	bit = (vdd - 2000) / 100 + 8;
1013 	if (bit > max_bit)
1014 		return max_bit;
1015 	return bit;
1016 }
1017 
1018 /**
1019  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1020  * @vdd_min:	minimum voltage value (mV)
1021  * @vdd_max:	maximum voltage value (mV)
1022  *
1023  * This function returns the OCR mask bits according to the provided @vdd_min
1024  * and @vdd_max values. If conversion is not possible the function returns 0.
1025  *
1026  * Notes wrt boundary cases:
1027  * This function sets the OCR bits for all boundary voltages, for example
1028  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1029  * MMC_VDD_34_35 mask.
1030  */
1031 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1032 {
1033 	u32 mask = 0;
1034 
1035 	if (vdd_max < vdd_min)
1036 		return 0;
1037 
1038 	/* Prefer high bits for the boundary vdd_max values. */
1039 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1040 	if (vdd_max < 0)
1041 		return 0;
1042 
1043 	/* Prefer low bits for the boundary vdd_min values. */
1044 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1045 	if (vdd_min < 0)
1046 		return 0;
1047 
1048 	/* Fill the mask, from max bit to min bit. */
1049 	while (vdd_max >= vdd_min)
1050 		mask |= 1 << vdd_max--;
1051 
1052 	return mask;
1053 }
1054 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1055 
1056 #ifdef CONFIG_REGULATOR
1057 
1058 /**
1059  * mmc_regulator_get_ocrmask - return mask of supported voltages
1060  * @supply: regulator to use
1061  *
1062  * This returns either a negative errno, or a mask of voltages that
1063  * can be provided to MMC/SD/SDIO devices using the specified voltage
1064  * regulator.  This would normally be called before registering the
1065  * MMC host adapter.
1066  */
1067 int mmc_regulator_get_ocrmask(struct regulator *supply)
1068 {
1069 	int			result = 0;
1070 	int			count;
1071 	int			i;
1072 
1073 	count = regulator_count_voltages(supply);
1074 	if (count < 0)
1075 		return count;
1076 
1077 	for (i = 0; i < count; i++) {
1078 		int		vdd_uV;
1079 		int		vdd_mV;
1080 
1081 		vdd_uV = regulator_list_voltage(supply, i);
1082 		if (vdd_uV <= 0)
1083 			continue;
1084 
1085 		vdd_mV = vdd_uV / 1000;
1086 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1087 	}
1088 
1089 	return result;
1090 }
1091 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1092 
1093 /**
1094  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1095  * @mmc: the host to regulate
1096  * @supply: regulator to use
1097  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1098  *
1099  * Returns zero on success, else negative errno.
1100  *
1101  * MMC host drivers may use this to enable or disable a regulator using
1102  * a particular supply voltage.  This would normally be called from the
1103  * set_ios() method.
1104  */
1105 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1106 			struct regulator *supply,
1107 			unsigned short vdd_bit)
1108 {
1109 	int			result = 0;
1110 	int			min_uV, max_uV;
1111 
1112 	if (vdd_bit) {
1113 		int		tmp;
1114 		int		voltage;
1115 
1116 		/*
1117 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1118 		 * bits this regulator doesn't quite support ... don't
1119 		 * be too picky, most cards and regulators are OK with
1120 		 * a 0.1V range goof (it's a small error percentage).
1121 		 */
1122 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1123 		if (tmp == 0) {
1124 			min_uV = 1650 * 1000;
1125 			max_uV = 1950 * 1000;
1126 		} else {
1127 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1128 			max_uV = min_uV + 100 * 1000;
1129 		}
1130 
1131 		/*
1132 		 * If we're using a fixed/static regulator, don't call
1133 		 * regulator_set_voltage; it would fail.
1134 		 */
1135 		voltage = regulator_get_voltage(supply);
1136 
1137 		if (regulator_count_voltages(supply) == 1)
1138 			min_uV = max_uV = voltage;
1139 
1140 		if (voltage < 0)
1141 			result = voltage;
1142 		else if (voltage < min_uV || voltage > max_uV)
1143 			result = regulator_set_voltage(supply, min_uV, max_uV);
1144 		else
1145 			result = 0;
1146 
1147 		if (result == 0 && !mmc->regulator_enabled) {
1148 			result = regulator_enable(supply);
1149 			if (!result)
1150 				mmc->regulator_enabled = true;
1151 		}
1152 	} else if (mmc->regulator_enabled) {
1153 		result = regulator_disable(supply);
1154 		if (result == 0)
1155 			mmc->regulator_enabled = false;
1156 	}
1157 
1158 	if (result)
1159 		dev_err(mmc_dev(mmc),
1160 			"could not set regulator OCR (%d)\n", result);
1161 	return result;
1162 }
1163 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1164 
1165 int mmc_regulator_get_supply(struct mmc_host *mmc)
1166 {
1167 	struct device *dev = mmc_dev(mmc);
1168 	struct regulator *supply;
1169 	int ret;
1170 
1171 	supply = devm_regulator_get(dev, "vmmc");
1172 	mmc->supply.vmmc = supply;
1173 	mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1174 
1175 	if (IS_ERR(supply))
1176 		return PTR_ERR(supply);
1177 
1178 	ret = mmc_regulator_get_ocrmask(supply);
1179 	if (ret > 0)
1180 		mmc->ocr_avail = ret;
1181 	else
1182 		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1183 
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1187 
1188 #endif /* CONFIG_REGULATOR */
1189 
1190 /*
1191  * Mask off any voltages we don't support and select
1192  * the lowest voltage
1193  */
1194 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1195 {
1196 	int bit;
1197 
1198 	ocr &= host->ocr_avail;
1199 
1200 	bit = ffs(ocr);
1201 	if (bit) {
1202 		bit -= 1;
1203 
1204 		ocr &= 3 << bit;
1205 
1206 		mmc_host_clk_hold(host);
1207 		host->ios.vdd = bit;
1208 		mmc_set_ios(host);
1209 		mmc_host_clk_release(host);
1210 	} else {
1211 		pr_warning("%s: host doesn't support card's voltages\n",
1212 				mmc_hostname(host));
1213 		ocr = 0;
1214 	}
1215 
1216 	return ocr;
1217 }
1218 
1219 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1220 {
1221 	struct mmc_command cmd = {0};
1222 	int err = 0;
1223 
1224 	BUG_ON(!host);
1225 
1226 	/*
1227 	 * Send CMD11 only if the request is to switch the card to
1228 	 * 1.8V signalling.
1229 	 */
1230 	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1231 		cmd.opcode = SD_SWITCH_VOLTAGE;
1232 		cmd.arg = 0;
1233 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1234 
1235 		err = mmc_wait_for_cmd(host, &cmd, 0);
1236 		if (err)
1237 			return err;
1238 
1239 		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1240 			return -EIO;
1241 	}
1242 
1243 	host->ios.signal_voltage = signal_voltage;
1244 
1245 	if (host->ops->start_signal_voltage_switch) {
1246 		mmc_host_clk_hold(host);
1247 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1248 		mmc_host_clk_release(host);
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /*
1255  * Select timing parameters for host.
1256  */
1257 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1258 {
1259 	mmc_host_clk_hold(host);
1260 	host->ios.timing = timing;
1261 	mmc_set_ios(host);
1262 	mmc_host_clk_release(host);
1263 }
1264 
1265 /*
1266  * Select appropriate driver type for host.
1267  */
1268 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1269 {
1270 	mmc_host_clk_hold(host);
1271 	host->ios.drv_type = drv_type;
1272 	mmc_set_ios(host);
1273 	mmc_host_clk_release(host);
1274 }
1275 
1276 /*
1277  * Apply power to the MMC stack.  This is a two-stage process.
1278  * First, we enable power to the card without the clock running.
1279  * We then wait a bit for the power to stabilise.  Finally,
1280  * enable the bus drivers and clock to the card.
1281  *
1282  * We must _NOT_ enable the clock prior to power stablising.
1283  *
1284  * If a host does all the power sequencing itself, ignore the
1285  * initial MMC_POWER_UP stage.
1286  */
1287 static void mmc_power_up(struct mmc_host *host)
1288 {
1289 	int bit;
1290 
1291 	if (host->ios.power_mode == MMC_POWER_ON)
1292 		return;
1293 
1294 	mmc_host_clk_hold(host);
1295 
1296 	/* If ocr is set, we use it */
1297 	if (host->ocr)
1298 		bit = ffs(host->ocr) - 1;
1299 	else
1300 		bit = fls(host->ocr_avail) - 1;
1301 
1302 	host->ios.vdd = bit;
1303 	if (mmc_host_is_spi(host))
1304 		host->ios.chip_select = MMC_CS_HIGH;
1305 	else
1306 		host->ios.chip_select = MMC_CS_DONTCARE;
1307 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1308 	host->ios.power_mode = MMC_POWER_UP;
1309 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1310 	host->ios.timing = MMC_TIMING_LEGACY;
1311 	mmc_set_ios(host);
1312 
1313 	/* Set signal voltage to 3.3V */
1314 	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false);
1315 
1316 	/*
1317 	 * This delay should be sufficient to allow the power supply
1318 	 * to reach the minimum voltage.
1319 	 */
1320 	mmc_delay(10);
1321 
1322 	host->ios.clock = host->f_init;
1323 
1324 	host->ios.power_mode = MMC_POWER_ON;
1325 	mmc_set_ios(host);
1326 
1327 	/*
1328 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1329 	 * time required to reach a stable voltage.
1330 	 */
1331 	mmc_delay(10);
1332 
1333 	mmc_host_clk_release(host);
1334 }
1335 
1336 void mmc_power_off(struct mmc_host *host)
1337 {
1338 	if (host->ios.power_mode == MMC_POWER_OFF)
1339 		return;
1340 
1341 	mmc_host_clk_hold(host);
1342 
1343 	host->ios.clock = 0;
1344 	host->ios.vdd = 0;
1345 
1346 
1347 	/*
1348 	 * Reset ocr mask to be the highest possible voltage supported for
1349 	 * this mmc host. This value will be used at next power up.
1350 	 */
1351 	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1352 
1353 	if (!mmc_host_is_spi(host)) {
1354 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1355 		host->ios.chip_select = MMC_CS_DONTCARE;
1356 	}
1357 	host->ios.power_mode = MMC_POWER_OFF;
1358 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1359 	host->ios.timing = MMC_TIMING_LEGACY;
1360 	mmc_set_ios(host);
1361 
1362 	/*
1363 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1364 	 * XO-1.5, require a short delay after poweroff before the card
1365 	 * can be successfully turned on again.
1366 	 */
1367 	mmc_delay(1);
1368 
1369 	mmc_host_clk_release(host);
1370 }
1371 
1372 /*
1373  * Cleanup when the last reference to the bus operator is dropped.
1374  */
1375 static void __mmc_release_bus(struct mmc_host *host)
1376 {
1377 	BUG_ON(!host);
1378 	BUG_ON(host->bus_refs);
1379 	BUG_ON(!host->bus_dead);
1380 
1381 	host->bus_ops = NULL;
1382 }
1383 
1384 /*
1385  * Increase reference count of bus operator
1386  */
1387 static inline void mmc_bus_get(struct mmc_host *host)
1388 {
1389 	unsigned long flags;
1390 
1391 	spin_lock_irqsave(&host->lock, flags);
1392 	host->bus_refs++;
1393 	spin_unlock_irqrestore(&host->lock, flags);
1394 }
1395 
1396 /*
1397  * Decrease reference count of bus operator and free it if
1398  * it is the last reference.
1399  */
1400 static inline void mmc_bus_put(struct mmc_host *host)
1401 {
1402 	unsigned long flags;
1403 
1404 	spin_lock_irqsave(&host->lock, flags);
1405 	host->bus_refs--;
1406 	if ((host->bus_refs == 0) && host->bus_ops)
1407 		__mmc_release_bus(host);
1408 	spin_unlock_irqrestore(&host->lock, flags);
1409 }
1410 
1411 /*
1412  * Assign a mmc bus handler to a host. Only one bus handler may control a
1413  * host at any given time.
1414  */
1415 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1416 {
1417 	unsigned long flags;
1418 
1419 	BUG_ON(!host);
1420 	BUG_ON(!ops);
1421 
1422 	WARN_ON(!host->claimed);
1423 
1424 	spin_lock_irqsave(&host->lock, flags);
1425 
1426 	BUG_ON(host->bus_ops);
1427 	BUG_ON(host->bus_refs);
1428 
1429 	host->bus_ops = ops;
1430 	host->bus_refs = 1;
1431 	host->bus_dead = 0;
1432 
1433 	spin_unlock_irqrestore(&host->lock, flags);
1434 }
1435 
1436 /*
1437  * Remove the current bus handler from a host.
1438  */
1439 void mmc_detach_bus(struct mmc_host *host)
1440 {
1441 	unsigned long flags;
1442 
1443 	BUG_ON(!host);
1444 
1445 	WARN_ON(!host->claimed);
1446 	WARN_ON(!host->bus_ops);
1447 
1448 	spin_lock_irqsave(&host->lock, flags);
1449 
1450 	host->bus_dead = 1;
1451 
1452 	spin_unlock_irqrestore(&host->lock, flags);
1453 
1454 	mmc_bus_put(host);
1455 }
1456 
1457 /**
1458  *	mmc_detect_change - process change of state on a MMC socket
1459  *	@host: host which changed state.
1460  *	@delay: optional delay to wait before detection (jiffies)
1461  *
1462  *	MMC drivers should call this when they detect a card has been
1463  *	inserted or removed. The MMC layer will confirm that any
1464  *	present card is still functional, and initialize any newly
1465  *	inserted.
1466  */
1467 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1468 {
1469 #ifdef CONFIG_MMC_DEBUG
1470 	unsigned long flags;
1471 	spin_lock_irqsave(&host->lock, flags);
1472 	WARN_ON(host->removed);
1473 	spin_unlock_irqrestore(&host->lock, flags);
1474 #endif
1475 	host->detect_change = 1;
1476 	mmc_schedule_delayed_work(&host->detect, delay);
1477 }
1478 
1479 EXPORT_SYMBOL(mmc_detect_change);
1480 
1481 void mmc_init_erase(struct mmc_card *card)
1482 {
1483 	unsigned int sz;
1484 
1485 	if (is_power_of_2(card->erase_size))
1486 		card->erase_shift = ffs(card->erase_size) - 1;
1487 	else
1488 		card->erase_shift = 0;
1489 
1490 	/*
1491 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1492 	 * card.  That is not desirable because it can take a long time
1493 	 * (minutes) potentially delaying more important I/O, and also the
1494 	 * timeout calculations become increasingly hugely over-estimated.
1495 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1496 	 * to that size and alignment.
1497 	 *
1498 	 * For SD cards that define Allocation Unit size, limit erases to one
1499 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1500 	 * Erase Size, whether it is switched on or not, limit to that size.
1501 	 * Otherwise just have a stab at a good value.  For modern cards it
1502 	 * will end up being 4MiB.  Note that if the value is too small, it
1503 	 * can end up taking longer to erase.
1504 	 */
1505 	if (mmc_card_sd(card) && card->ssr.au) {
1506 		card->pref_erase = card->ssr.au;
1507 		card->erase_shift = ffs(card->ssr.au) - 1;
1508 	} else if (card->ext_csd.hc_erase_size) {
1509 		card->pref_erase = card->ext_csd.hc_erase_size;
1510 	} else {
1511 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1512 		if (sz < 128)
1513 			card->pref_erase = 512 * 1024 / 512;
1514 		else if (sz < 512)
1515 			card->pref_erase = 1024 * 1024 / 512;
1516 		else if (sz < 1024)
1517 			card->pref_erase = 2 * 1024 * 1024 / 512;
1518 		else
1519 			card->pref_erase = 4 * 1024 * 1024 / 512;
1520 		if (card->pref_erase < card->erase_size)
1521 			card->pref_erase = card->erase_size;
1522 		else {
1523 			sz = card->pref_erase % card->erase_size;
1524 			if (sz)
1525 				card->pref_erase += card->erase_size - sz;
1526 		}
1527 	}
1528 }
1529 
1530 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1531 				          unsigned int arg, unsigned int qty)
1532 {
1533 	unsigned int erase_timeout;
1534 
1535 	if (arg == MMC_DISCARD_ARG ||
1536 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1537 		erase_timeout = card->ext_csd.trim_timeout;
1538 	} else if (card->ext_csd.erase_group_def & 1) {
1539 		/* High Capacity Erase Group Size uses HC timeouts */
1540 		if (arg == MMC_TRIM_ARG)
1541 			erase_timeout = card->ext_csd.trim_timeout;
1542 		else
1543 			erase_timeout = card->ext_csd.hc_erase_timeout;
1544 	} else {
1545 		/* CSD Erase Group Size uses write timeout */
1546 		unsigned int mult = (10 << card->csd.r2w_factor);
1547 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1548 		unsigned int timeout_us;
1549 
1550 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1551 		if (card->csd.tacc_ns < 1000000)
1552 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1553 		else
1554 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1555 
1556 		/*
1557 		 * ios.clock is only a target.  The real clock rate might be
1558 		 * less but not that much less, so fudge it by multiplying by 2.
1559 		 */
1560 		timeout_clks <<= 1;
1561 		timeout_us += (timeout_clks * 1000) /
1562 			      (mmc_host_clk_rate(card->host) / 1000);
1563 
1564 		erase_timeout = timeout_us / 1000;
1565 
1566 		/*
1567 		 * Theoretically, the calculation could underflow so round up
1568 		 * to 1ms in that case.
1569 		 */
1570 		if (!erase_timeout)
1571 			erase_timeout = 1;
1572 	}
1573 
1574 	/* Multiplier for secure operations */
1575 	if (arg & MMC_SECURE_ARGS) {
1576 		if (arg == MMC_SECURE_ERASE_ARG)
1577 			erase_timeout *= card->ext_csd.sec_erase_mult;
1578 		else
1579 			erase_timeout *= card->ext_csd.sec_trim_mult;
1580 	}
1581 
1582 	erase_timeout *= qty;
1583 
1584 	/*
1585 	 * Ensure at least a 1 second timeout for SPI as per
1586 	 * 'mmc_set_data_timeout()'
1587 	 */
1588 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1589 		erase_timeout = 1000;
1590 
1591 	return erase_timeout;
1592 }
1593 
1594 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1595 					 unsigned int arg,
1596 					 unsigned int qty)
1597 {
1598 	unsigned int erase_timeout;
1599 
1600 	if (card->ssr.erase_timeout) {
1601 		/* Erase timeout specified in SD Status Register (SSR) */
1602 		erase_timeout = card->ssr.erase_timeout * qty +
1603 				card->ssr.erase_offset;
1604 	} else {
1605 		/*
1606 		 * Erase timeout not specified in SD Status Register (SSR) so
1607 		 * use 250ms per write block.
1608 		 */
1609 		erase_timeout = 250 * qty;
1610 	}
1611 
1612 	/* Must not be less than 1 second */
1613 	if (erase_timeout < 1000)
1614 		erase_timeout = 1000;
1615 
1616 	return erase_timeout;
1617 }
1618 
1619 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1620 				      unsigned int arg,
1621 				      unsigned int qty)
1622 {
1623 	if (mmc_card_sd(card))
1624 		return mmc_sd_erase_timeout(card, arg, qty);
1625 	else
1626 		return mmc_mmc_erase_timeout(card, arg, qty);
1627 }
1628 
1629 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1630 			unsigned int to, unsigned int arg)
1631 {
1632 	struct mmc_command cmd = {0};
1633 	unsigned int qty = 0;
1634 	int err;
1635 
1636 	/*
1637 	 * qty is used to calculate the erase timeout which depends on how many
1638 	 * erase groups (or allocation units in SD terminology) are affected.
1639 	 * We count erasing part of an erase group as one erase group.
1640 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1641 	 * erase group size is almost certainly also power of 2, but it does not
1642 	 * seem to insist on that in the JEDEC standard, so we fall back to
1643 	 * division in that case.  SD may not specify an allocation unit size,
1644 	 * in which case the timeout is based on the number of write blocks.
1645 	 *
1646 	 * Note that the timeout for secure trim 2 will only be correct if the
1647 	 * number of erase groups specified is the same as the total of all
1648 	 * preceding secure trim 1 commands.  Since the power may have been
1649 	 * lost since the secure trim 1 commands occurred, it is generally
1650 	 * impossible to calculate the secure trim 2 timeout correctly.
1651 	 */
1652 	if (card->erase_shift)
1653 		qty += ((to >> card->erase_shift) -
1654 			(from >> card->erase_shift)) + 1;
1655 	else if (mmc_card_sd(card))
1656 		qty += to - from + 1;
1657 	else
1658 		qty += ((to / card->erase_size) -
1659 			(from / card->erase_size)) + 1;
1660 
1661 	if (!mmc_card_blockaddr(card)) {
1662 		from <<= 9;
1663 		to <<= 9;
1664 	}
1665 
1666 	if (mmc_card_sd(card))
1667 		cmd.opcode = SD_ERASE_WR_BLK_START;
1668 	else
1669 		cmd.opcode = MMC_ERASE_GROUP_START;
1670 	cmd.arg = from;
1671 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1672 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1673 	if (err) {
1674 		pr_err("mmc_erase: group start error %d, "
1675 		       "status %#x\n", err, cmd.resp[0]);
1676 		err = -EIO;
1677 		goto out;
1678 	}
1679 
1680 	memset(&cmd, 0, sizeof(struct mmc_command));
1681 	if (mmc_card_sd(card))
1682 		cmd.opcode = SD_ERASE_WR_BLK_END;
1683 	else
1684 		cmd.opcode = MMC_ERASE_GROUP_END;
1685 	cmd.arg = to;
1686 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1687 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1688 	if (err) {
1689 		pr_err("mmc_erase: group end error %d, status %#x\n",
1690 		       err, cmd.resp[0]);
1691 		err = -EIO;
1692 		goto out;
1693 	}
1694 
1695 	memset(&cmd, 0, sizeof(struct mmc_command));
1696 	cmd.opcode = MMC_ERASE;
1697 	cmd.arg = arg;
1698 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1699 	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1700 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1701 	if (err) {
1702 		pr_err("mmc_erase: erase error %d, status %#x\n",
1703 		       err, cmd.resp[0]);
1704 		err = -EIO;
1705 		goto out;
1706 	}
1707 
1708 	if (mmc_host_is_spi(card->host))
1709 		goto out;
1710 
1711 	do {
1712 		memset(&cmd, 0, sizeof(struct mmc_command));
1713 		cmd.opcode = MMC_SEND_STATUS;
1714 		cmd.arg = card->rca << 16;
1715 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1716 		/* Do not retry else we can't see errors */
1717 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1718 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1719 			pr_err("error %d requesting status %#x\n",
1720 				err, cmd.resp[0]);
1721 			err = -EIO;
1722 			goto out;
1723 		}
1724 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1725 		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1726 out:
1727 	return err;
1728 }
1729 
1730 /**
1731  * mmc_erase - erase sectors.
1732  * @card: card to erase
1733  * @from: first sector to erase
1734  * @nr: number of sectors to erase
1735  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1736  *
1737  * Caller must claim host before calling this function.
1738  */
1739 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1740 	      unsigned int arg)
1741 {
1742 	unsigned int rem, to = from + nr;
1743 
1744 	if (!(card->host->caps & MMC_CAP_ERASE) ||
1745 	    !(card->csd.cmdclass & CCC_ERASE))
1746 		return -EOPNOTSUPP;
1747 
1748 	if (!card->erase_size)
1749 		return -EOPNOTSUPP;
1750 
1751 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1752 		return -EOPNOTSUPP;
1753 
1754 	if ((arg & MMC_SECURE_ARGS) &&
1755 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1756 		return -EOPNOTSUPP;
1757 
1758 	if ((arg & MMC_TRIM_ARGS) &&
1759 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1760 		return -EOPNOTSUPP;
1761 
1762 	if (arg == MMC_SECURE_ERASE_ARG) {
1763 		if (from % card->erase_size || nr % card->erase_size)
1764 			return -EINVAL;
1765 	}
1766 
1767 	if (arg == MMC_ERASE_ARG) {
1768 		rem = from % card->erase_size;
1769 		if (rem) {
1770 			rem = card->erase_size - rem;
1771 			from += rem;
1772 			if (nr > rem)
1773 				nr -= rem;
1774 			else
1775 				return 0;
1776 		}
1777 		rem = nr % card->erase_size;
1778 		if (rem)
1779 			nr -= rem;
1780 	}
1781 
1782 	if (nr == 0)
1783 		return 0;
1784 
1785 	to = from + nr;
1786 
1787 	if (to <= from)
1788 		return -EINVAL;
1789 
1790 	/* 'from' and 'to' are inclusive */
1791 	to -= 1;
1792 
1793 	return mmc_do_erase(card, from, to, arg);
1794 }
1795 EXPORT_SYMBOL(mmc_erase);
1796 
1797 int mmc_can_erase(struct mmc_card *card)
1798 {
1799 	if ((card->host->caps & MMC_CAP_ERASE) &&
1800 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1801 		return 1;
1802 	return 0;
1803 }
1804 EXPORT_SYMBOL(mmc_can_erase);
1805 
1806 int mmc_can_trim(struct mmc_card *card)
1807 {
1808 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1809 		return 1;
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL(mmc_can_trim);
1813 
1814 int mmc_can_discard(struct mmc_card *card)
1815 {
1816 	/*
1817 	 * As there's no way to detect the discard support bit at v4.5
1818 	 * use the s/w feature support filed.
1819 	 */
1820 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1821 		return 1;
1822 	return 0;
1823 }
1824 EXPORT_SYMBOL(mmc_can_discard);
1825 
1826 int mmc_can_sanitize(struct mmc_card *card)
1827 {
1828 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1829 		return 0;
1830 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1831 		return 1;
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(mmc_can_sanitize);
1835 
1836 int mmc_can_secure_erase_trim(struct mmc_card *card)
1837 {
1838 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1839 		return 1;
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1843 
1844 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1845 			    unsigned int nr)
1846 {
1847 	if (!card->erase_size)
1848 		return 0;
1849 	if (from % card->erase_size || nr % card->erase_size)
1850 		return 0;
1851 	return 1;
1852 }
1853 EXPORT_SYMBOL(mmc_erase_group_aligned);
1854 
1855 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1856 					    unsigned int arg)
1857 {
1858 	struct mmc_host *host = card->host;
1859 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1860 	unsigned int last_timeout = 0;
1861 
1862 	if (card->erase_shift)
1863 		max_qty = UINT_MAX >> card->erase_shift;
1864 	else if (mmc_card_sd(card))
1865 		max_qty = UINT_MAX;
1866 	else
1867 		max_qty = UINT_MAX / card->erase_size;
1868 
1869 	/* Find the largest qty with an OK timeout */
1870 	do {
1871 		y = 0;
1872 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1873 			timeout = mmc_erase_timeout(card, arg, qty + x);
1874 			if (timeout > host->max_discard_to)
1875 				break;
1876 			if (timeout < last_timeout)
1877 				break;
1878 			last_timeout = timeout;
1879 			y = x;
1880 		}
1881 		qty += y;
1882 	} while (y);
1883 
1884 	if (!qty)
1885 		return 0;
1886 
1887 	if (qty == 1)
1888 		return 1;
1889 
1890 	/* Convert qty to sectors */
1891 	if (card->erase_shift)
1892 		max_discard = --qty << card->erase_shift;
1893 	else if (mmc_card_sd(card))
1894 		max_discard = qty;
1895 	else
1896 		max_discard = --qty * card->erase_size;
1897 
1898 	return max_discard;
1899 }
1900 
1901 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1902 {
1903 	struct mmc_host *host = card->host;
1904 	unsigned int max_discard, max_trim;
1905 
1906 	if (!host->max_discard_to)
1907 		return UINT_MAX;
1908 
1909 	/*
1910 	 * Without erase_group_def set, MMC erase timeout depends on clock
1911 	 * frequence which can change.  In that case, the best choice is
1912 	 * just the preferred erase size.
1913 	 */
1914 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1915 		return card->pref_erase;
1916 
1917 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1918 	if (mmc_can_trim(card)) {
1919 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1920 		if (max_trim < max_discard)
1921 			max_discard = max_trim;
1922 	} else if (max_discard < card->erase_size) {
1923 		max_discard = 0;
1924 	}
1925 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1926 		 mmc_hostname(host), max_discard, host->max_discard_to);
1927 	return max_discard;
1928 }
1929 EXPORT_SYMBOL(mmc_calc_max_discard);
1930 
1931 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1932 {
1933 	struct mmc_command cmd = {0};
1934 
1935 	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1936 		return 0;
1937 
1938 	cmd.opcode = MMC_SET_BLOCKLEN;
1939 	cmd.arg = blocklen;
1940 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1941 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1942 }
1943 EXPORT_SYMBOL(mmc_set_blocklen);
1944 
1945 static void mmc_hw_reset_for_init(struct mmc_host *host)
1946 {
1947 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1948 		return;
1949 	mmc_host_clk_hold(host);
1950 	host->ops->hw_reset(host);
1951 	mmc_host_clk_release(host);
1952 }
1953 
1954 int mmc_can_reset(struct mmc_card *card)
1955 {
1956 	u8 rst_n_function;
1957 
1958 	if (!mmc_card_mmc(card))
1959 		return 0;
1960 	rst_n_function = card->ext_csd.rst_n_function;
1961 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1962 		return 0;
1963 	return 1;
1964 }
1965 EXPORT_SYMBOL(mmc_can_reset);
1966 
1967 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1968 {
1969 	struct mmc_card *card = host->card;
1970 
1971 	if (!host->bus_ops->power_restore)
1972 		return -EOPNOTSUPP;
1973 
1974 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1975 		return -EOPNOTSUPP;
1976 
1977 	if (!card)
1978 		return -EINVAL;
1979 
1980 	if (!mmc_can_reset(card))
1981 		return -EOPNOTSUPP;
1982 
1983 	mmc_host_clk_hold(host);
1984 	mmc_set_clock(host, host->f_init);
1985 
1986 	host->ops->hw_reset(host);
1987 
1988 	/* If the reset has happened, then a status command will fail */
1989 	if (check) {
1990 		struct mmc_command cmd = {0};
1991 		int err;
1992 
1993 		cmd.opcode = MMC_SEND_STATUS;
1994 		if (!mmc_host_is_spi(card->host))
1995 			cmd.arg = card->rca << 16;
1996 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1997 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1998 		if (!err) {
1999 			mmc_host_clk_release(host);
2000 			return -ENOSYS;
2001 		}
2002 	}
2003 
2004 	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2005 	if (mmc_host_is_spi(host)) {
2006 		host->ios.chip_select = MMC_CS_HIGH;
2007 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2008 	} else {
2009 		host->ios.chip_select = MMC_CS_DONTCARE;
2010 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2011 	}
2012 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2013 	host->ios.timing = MMC_TIMING_LEGACY;
2014 	mmc_set_ios(host);
2015 
2016 	mmc_host_clk_release(host);
2017 
2018 	return host->bus_ops->power_restore(host);
2019 }
2020 
2021 int mmc_hw_reset(struct mmc_host *host)
2022 {
2023 	return mmc_do_hw_reset(host, 0);
2024 }
2025 EXPORT_SYMBOL(mmc_hw_reset);
2026 
2027 int mmc_hw_reset_check(struct mmc_host *host)
2028 {
2029 	return mmc_do_hw_reset(host, 1);
2030 }
2031 EXPORT_SYMBOL(mmc_hw_reset_check);
2032 
2033 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2034 {
2035 	host->f_init = freq;
2036 
2037 #ifdef CONFIG_MMC_DEBUG
2038 	pr_info("%s: %s: trying to init card at %u Hz\n",
2039 		mmc_hostname(host), __func__, host->f_init);
2040 #endif
2041 	mmc_power_up(host);
2042 
2043 	/*
2044 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045 	 * do a hardware reset if possible.
2046 	 */
2047 	mmc_hw_reset_for_init(host);
2048 
2049 	/*
2050 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2051 	 * if the card is being re-initialized, just send it.  CMD52
2052 	 * should be ignored by SD/eMMC cards.
2053 	 */
2054 	sdio_reset(host);
2055 	mmc_go_idle(host);
2056 
2057 	mmc_send_if_cond(host, host->ocr_avail);
2058 
2059 	/* Order's important: probe SDIO, then SD, then MMC */
2060 	if (!mmc_attach_sdio(host))
2061 		return 0;
2062 	if (!mmc_attach_sd(host))
2063 		return 0;
2064 	if (!mmc_attach_mmc(host))
2065 		return 0;
2066 
2067 	mmc_power_off(host);
2068 	return -EIO;
2069 }
2070 
2071 int _mmc_detect_card_removed(struct mmc_host *host)
2072 {
2073 	int ret;
2074 
2075 	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2076 		return 0;
2077 
2078 	if (!host->card || mmc_card_removed(host->card))
2079 		return 1;
2080 
2081 	ret = host->bus_ops->alive(host);
2082 	if (ret) {
2083 		mmc_card_set_removed(host->card);
2084 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2085 	}
2086 
2087 	return ret;
2088 }
2089 
2090 int mmc_detect_card_removed(struct mmc_host *host)
2091 {
2092 	struct mmc_card *card = host->card;
2093 	int ret;
2094 
2095 	WARN_ON(!host->claimed);
2096 
2097 	if (!card)
2098 		return 1;
2099 
2100 	ret = mmc_card_removed(card);
2101 	/*
2102 	 * The card will be considered unchanged unless we have been asked to
2103 	 * detect a change or host requires polling to provide card detection.
2104 	 */
2105 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2106 	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2107 		return ret;
2108 
2109 	host->detect_change = 0;
2110 	if (!ret) {
2111 		ret = _mmc_detect_card_removed(host);
2112 		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2113 			/*
2114 			 * Schedule a detect work as soon as possible to let a
2115 			 * rescan handle the card removal.
2116 			 */
2117 			cancel_delayed_work(&host->detect);
2118 			mmc_detect_change(host, 0);
2119 		}
2120 	}
2121 
2122 	return ret;
2123 }
2124 EXPORT_SYMBOL(mmc_detect_card_removed);
2125 
2126 void mmc_rescan(struct work_struct *work)
2127 {
2128 	struct mmc_host *host =
2129 		container_of(work, struct mmc_host, detect.work);
2130 	int i;
2131 
2132 	if (host->rescan_disable)
2133 		return;
2134 
2135 	/* If there is a non-removable card registered, only scan once */
2136 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2137 		return;
2138 	host->rescan_entered = 1;
2139 
2140 	mmc_bus_get(host);
2141 
2142 	/*
2143 	 * if there is a _removable_ card registered, check whether it is
2144 	 * still present
2145 	 */
2146 	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2147 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2148 		host->bus_ops->detect(host);
2149 
2150 	host->detect_change = 0;
2151 
2152 	/*
2153 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2154 	 * the card is no longer present.
2155 	 */
2156 	mmc_bus_put(host);
2157 	mmc_bus_get(host);
2158 
2159 	/* if there still is a card present, stop here */
2160 	if (host->bus_ops != NULL) {
2161 		mmc_bus_put(host);
2162 		goto out;
2163 	}
2164 
2165 	/*
2166 	 * Only we can add a new handler, so it's safe to
2167 	 * release the lock here.
2168 	 */
2169 	mmc_bus_put(host);
2170 
2171 	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2172 		mmc_claim_host(host);
2173 		mmc_power_off(host);
2174 		mmc_release_host(host);
2175 		goto out;
2176 	}
2177 
2178 	mmc_claim_host(host);
2179 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2180 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2181 			break;
2182 		if (freqs[i] <= host->f_min)
2183 			break;
2184 	}
2185 	mmc_release_host(host);
2186 
2187  out:
2188 	if (host->caps & MMC_CAP_NEEDS_POLL)
2189 		mmc_schedule_delayed_work(&host->detect, HZ);
2190 }
2191 
2192 void mmc_start_host(struct mmc_host *host)
2193 {
2194 	host->f_init = max(freqs[0], host->f_min);
2195 	host->rescan_disable = 0;
2196 	mmc_power_up(host);
2197 	mmc_detect_change(host, 0);
2198 }
2199 
2200 void mmc_stop_host(struct mmc_host *host)
2201 {
2202 #ifdef CONFIG_MMC_DEBUG
2203 	unsigned long flags;
2204 	spin_lock_irqsave(&host->lock, flags);
2205 	host->removed = 1;
2206 	spin_unlock_irqrestore(&host->lock, flags);
2207 #endif
2208 
2209 	host->rescan_disable = 1;
2210 	cancel_delayed_work_sync(&host->detect);
2211 	mmc_flush_scheduled_work();
2212 
2213 	/* clear pm flags now and let card drivers set them as needed */
2214 	host->pm_flags = 0;
2215 
2216 	mmc_bus_get(host);
2217 	if (host->bus_ops && !host->bus_dead) {
2218 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2219 		if (host->bus_ops->remove)
2220 			host->bus_ops->remove(host);
2221 
2222 		mmc_claim_host(host);
2223 		mmc_detach_bus(host);
2224 		mmc_power_off(host);
2225 		mmc_release_host(host);
2226 		mmc_bus_put(host);
2227 		return;
2228 	}
2229 	mmc_bus_put(host);
2230 
2231 	BUG_ON(host->card);
2232 
2233 	mmc_power_off(host);
2234 }
2235 
2236 int mmc_power_save_host(struct mmc_host *host)
2237 {
2238 	int ret = 0;
2239 
2240 #ifdef CONFIG_MMC_DEBUG
2241 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2242 #endif
2243 
2244 	mmc_bus_get(host);
2245 
2246 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2247 		mmc_bus_put(host);
2248 		return -EINVAL;
2249 	}
2250 
2251 	if (host->bus_ops->power_save)
2252 		ret = host->bus_ops->power_save(host);
2253 
2254 	mmc_bus_put(host);
2255 
2256 	mmc_power_off(host);
2257 
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL(mmc_power_save_host);
2261 
2262 int mmc_power_restore_host(struct mmc_host *host)
2263 {
2264 	int ret;
2265 
2266 #ifdef CONFIG_MMC_DEBUG
2267 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2268 #endif
2269 
2270 	mmc_bus_get(host);
2271 
2272 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2273 		mmc_bus_put(host);
2274 		return -EINVAL;
2275 	}
2276 
2277 	mmc_power_up(host);
2278 	ret = host->bus_ops->power_restore(host);
2279 
2280 	mmc_bus_put(host);
2281 
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL(mmc_power_restore_host);
2285 
2286 int mmc_card_awake(struct mmc_host *host)
2287 {
2288 	int err = -ENOSYS;
2289 
2290 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2291 		return 0;
2292 
2293 	mmc_bus_get(host);
2294 
2295 	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2296 		err = host->bus_ops->awake(host);
2297 
2298 	mmc_bus_put(host);
2299 
2300 	return err;
2301 }
2302 EXPORT_SYMBOL(mmc_card_awake);
2303 
2304 int mmc_card_sleep(struct mmc_host *host)
2305 {
2306 	int err = -ENOSYS;
2307 
2308 	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2309 		return 0;
2310 
2311 	mmc_bus_get(host);
2312 
2313 	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2314 		err = host->bus_ops->sleep(host);
2315 
2316 	mmc_bus_put(host);
2317 
2318 	return err;
2319 }
2320 EXPORT_SYMBOL(mmc_card_sleep);
2321 
2322 int mmc_card_can_sleep(struct mmc_host *host)
2323 {
2324 	struct mmc_card *card = host->card;
2325 
2326 	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2327 		return 1;
2328 	return 0;
2329 }
2330 EXPORT_SYMBOL(mmc_card_can_sleep);
2331 
2332 /*
2333  * Flush the cache to the non-volatile storage.
2334  */
2335 int mmc_flush_cache(struct mmc_card *card)
2336 {
2337 	struct mmc_host *host = card->host;
2338 	int err = 0;
2339 
2340 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2341 		return err;
2342 
2343 	if (mmc_card_mmc(card) &&
2344 			(card->ext_csd.cache_size > 0) &&
2345 			(card->ext_csd.cache_ctrl & 1)) {
2346 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2347 				EXT_CSD_FLUSH_CACHE, 1, 0);
2348 		if (err)
2349 			pr_err("%s: cache flush error %d\n",
2350 					mmc_hostname(card->host), err);
2351 	}
2352 
2353 	return err;
2354 }
2355 EXPORT_SYMBOL(mmc_flush_cache);
2356 
2357 /*
2358  * Turn the cache ON/OFF.
2359  * Turning the cache OFF shall trigger flushing of the data
2360  * to the non-volatile storage.
2361  */
2362 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2363 {
2364 	struct mmc_card *card = host->card;
2365 	unsigned int timeout;
2366 	int err = 0;
2367 
2368 	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2369 			mmc_card_is_removable(host))
2370 		return err;
2371 
2372 	mmc_claim_host(host);
2373 	if (card && mmc_card_mmc(card) &&
2374 			(card->ext_csd.cache_size > 0)) {
2375 		enable = !!enable;
2376 
2377 		if (card->ext_csd.cache_ctrl ^ enable) {
2378 			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2379 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2380 					EXT_CSD_CACHE_CTRL, enable, timeout);
2381 			if (err)
2382 				pr_err("%s: cache %s error %d\n",
2383 						mmc_hostname(card->host),
2384 						enable ? "on" : "off",
2385 						err);
2386 			else
2387 				card->ext_csd.cache_ctrl = enable;
2388 		}
2389 	}
2390 	mmc_release_host(host);
2391 
2392 	return err;
2393 }
2394 EXPORT_SYMBOL(mmc_cache_ctrl);
2395 
2396 #ifdef CONFIG_PM
2397 
2398 /**
2399  *	mmc_suspend_host - suspend a host
2400  *	@host: mmc host
2401  */
2402 int mmc_suspend_host(struct mmc_host *host)
2403 {
2404 	int err = 0;
2405 
2406 	cancel_delayed_work(&host->detect);
2407 	mmc_flush_scheduled_work();
2408 
2409 	err = mmc_cache_ctrl(host, 0);
2410 	if (err)
2411 		goto out;
2412 
2413 	mmc_bus_get(host);
2414 	if (host->bus_ops && !host->bus_dead) {
2415 		if (host->bus_ops->suspend) {
2416 			if (mmc_card_doing_bkops(host->card)) {
2417 				err = mmc_stop_bkops(host->card);
2418 				if (err)
2419 					goto out;
2420 			}
2421 			err = host->bus_ops->suspend(host);
2422 		}
2423 
2424 		if (err == -ENOSYS || !host->bus_ops->resume) {
2425 			/*
2426 			 * We simply "remove" the card in this case.
2427 			 * It will be redetected on resume.  (Calling
2428 			 * bus_ops->remove() with a claimed host can
2429 			 * deadlock.)
2430 			 */
2431 			if (host->bus_ops->remove)
2432 				host->bus_ops->remove(host);
2433 			mmc_claim_host(host);
2434 			mmc_detach_bus(host);
2435 			mmc_power_off(host);
2436 			mmc_release_host(host);
2437 			host->pm_flags = 0;
2438 			err = 0;
2439 		}
2440 	}
2441 	mmc_bus_put(host);
2442 
2443 	if (!err && !mmc_card_keep_power(host))
2444 		mmc_power_off(host);
2445 
2446 out:
2447 	return err;
2448 }
2449 
2450 EXPORT_SYMBOL(mmc_suspend_host);
2451 
2452 /**
2453  *	mmc_resume_host - resume a previously suspended host
2454  *	@host: mmc host
2455  */
2456 int mmc_resume_host(struct mmc_host *host)
2457 {
2458 	int err = 0;
2459 
2460 	mmc_bus_get(host);
2461 	if (host->bus_ops && !host->bus_dead) {
2462 		if (!mmc_card_keep_power(host)) {
2463 			mmc_power_up(host);
2464 			mmc_select_voltage(host, host->ocr);
2465 			/*
2466 			 * Tell runtime PM core we just powered up the card,
2467 			 * since it still believes the card is powered off.
2468 			 * Note that currently runtime PM is only enabled
2469 			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2470 			 */
2471 			if (mmc_card_sdio(host->card) &&
2472 			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2473 				pm_runtime_disable(&host->card->dev);
2474 				pm_runtime_set_active(&host->card->dev);
2475 				pm_runtime_enable(&host->card->dev);
2476 			}
2477 		}
2478 		BUG_ON(!host->bus_ops->resume);
2479 		err = host->bus_ops->resume(host);
2480 		if (err) {
2481 			pr_warning("%s: error %d during resume "
2482 					    "(card was removed?)\n",
2483 					    mmc_hostname(host), err);
2484 			err = 0;
2485 		}
2486 	}
2487 	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2488 	mmc_bus_put(host);
2489 
2490 	return err;
2491 }
2492 EXPORT_SYMBOL(mmc_resume_host);
2493 
2494 /* Do the card removal on suspend if card is assumed removeable
2495  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2496    to sync the card.
2497 */
2498 int mmc_pm_notify(struct notifier_block *notify_block,
2499 					unsigned long mode, void *unused)
2500 {
2501 	struct mmc_host *host = container_of(
2502 		notify_block, struct mmc_host, pm_notify);
2503 	unsigned long flags;
2504 	int err = 0;
2505 
2506 	switch (mode) {
2507 	case PM_HIBERNATION_PREPARE:
2508 	case PM_SUSPEND_PREPARE:
2509 		if (host->card && mmc_card_mmc(host->card) &&
2510 		    mmc_card_doing_bkops(host->card)) {
2511 			err = mmc_stop_bkops(host->card);
2512 			if (err) {
2513 				pr_err("%s: didn't stop bkops\n",
2514 					mmc_hostname(host));
2515 				return err;
2516 			}
2517 			mmc_card_clr_doing_bkops(host->card);
2518 		}
2519 
2520 		spin_lock_irqsave(&host->lock, flags);
2521 		host->rescan_disable = 1;
2522 		spin_unlock_irqrestore(&host->lock, flags);
2523 		cancel_delayed_work_sync(&host->detect);
2524 
2525 		if (!host->bus_ops || host->bus_ops->suspend)
2526 			break;
2527 
2528 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2529 		if (host->bus_ops->remove)
2530 			host->bus_ops->remove(host);
2531 
2532 		mmc_claim_host(host);
2533 		mmc_detach_bus(host);
2534 		mmc_power_off(host);
2535 		mmc_release_host(host);
2536 		host->pm_flags = 0;
2537 		break;
2538 
2539 	case PM_POST_SUSPEND:
2540 	case PM_POST_HIBERNATION:
2541 	case PM_POST_RESTORE:
2542 
2543 		spin_lock_irqsave(&host->lock, flags);
2544 		host->rescan_disable = 0;
2545 		spin_unlock_irqrestore(&host->lock, flags);
2546 		mmc_detect_change(host, 0);
2547 
2548 	}
2549 
2550 	return 0;
2551 }
2552 #endif
2553 
2554 static int __init mmc_init(void)
2555 {
2556 	int ret;
2557 
2558 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2559 	if (!workqueue)
2560 		return -ENOMEM;
2561 
2562 	ret = mmc_register_bus();
2563 	if (ret)
2564 		goto destroy_workqueue;
2565 
2566 	ret = mmc_register_host_class();
2567 	if (ret)
2568 		goto unregister_bus;
2569 
2570 	ret = sdio_register_bus();
2571 	if (ret)
2572 		goto unregister_host_class;
2573 
2574 	return 0;
2575 
2576 unregister_host_class:
2577 	mmc_unregister_host_class();
2578 unregister_bus:
2579 	mmc_unregister_bus();
2580 destroy_workqueue:
2581 	destroy_workqueue(workqueue);
2582 
2583 	return ret;
2584 }
2585 
2586 static void __exit mmc_exit(void)
2587 {
2588 	sdio_unregister_bus();
2589 	mmc_unregister_host_class();
2590 	mmc_unregister_bus();
2591 	destroy_workqueue(workqueue);
2592 }
2593 
2594 subsys_initcall(mmc_init);
2595 module_exit(mmc_exit);
2596 
2597 MODULE_LICENSE("GPL");
2598