1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/suspend.h> 27 #include <linux/fault-inject.h> 28 #include <linux/random.h> 29 #include <linux/slab.h> 30 31 #include <linux/mmc/card.h> 32 #include <linux/mmc/host.h> 33 #include <linux/mmc/mmc.h> 34 #include <linux/mmc/sd.h> 35 36 #include "core.h" 37 #include "bus.h" 38 #include "host.h" 39 #include "sdio_bus.h" 40 41 #include "mmc_ops.h" 42 #include "sd_ops.h" 43 #include "sdio_ops.h" 44 45 /* 46 * Background operations can take a long time, depending on the housekeeping 47 * operations the card has to perform. 48 */ 49 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 50 51 static struct workqueue_struct *workqueue; 52 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 53 54 /* 55 * Enabling software CRCs on the data blocks can be a significant (30%) 56 * performance cost, and for other reasons may not always be desired. 57 * So we allow it it to be disabled. 58 */ 59 bool use_spi_crc = 1; 60 module_param(use_spi_crc, bool, 0); 61 62 /* 63 * We normally treat cards as removed during suspend if they are not 64 * known to be on a non-removable bus, to avoid the risk of writing 65 * back data to a different card after resume. Allow this to be 66 * overridden if necessary. 67 */ 68 #ifdef CONFIG_MMC_UNSAFE_RESUME 69 bool mmc_assume_removable; 70 #else 71 bool mmc_assume_removable = 1; 72 #endif 73 EXPORT_SYMBOL(mmc_assume_removable); 74 module_param_named(removable, mmc_assume_removable, bool, 0644); 75 MODULE_PARM_DESC( 76 removable, 77 "MMC/SD cards are removable and may be removed during suspend"); 78 79 /* 80 * Internal function. Schedule delayed work in the MMC work queue. 81 */ 82 static int mmc_schedule_delayed_work(struct delayed_work *work, 83 unsigned long delay) 84 { 85 return queue_delayed_work(workqueue, work, delay); 86 } 87 88 /* 89 * Internal function. Flush all scheduled work from the MMC work queue. 90 */ 91 static void mmc_flush_scheduled_work(void) 92 { 93 flush_workqueue(workqueue); 94 } 95 96 #ifdef CONFIG_FAIL_MMC_REQUEST 97 98 /* 99 * Internal function. Inject random data errors. 100 * If mmc_data is NULL no errors are injected. 101 */ 102 static void mmc_should_fail_request(struct mmc_host *host, 103 struct mmc_request *mrq) 104 { 105 struct mmc_command *cmd = mrq->cmd; 106 struct mmc_data *data = mrq->data; 107 static const int data_errors[] = { 108 -ETIMEDOUT, 109 -EILSEQ, 110 -EIO, 111 }; 112 113 if (!data) 114 return; 115 116 if (cmd->error || data->error || 117 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 118 return; 119 120 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)]; 121 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9; 122 } 123 124 #else /* CONFIG_FAIL_MMC_REQUEST */ 125 126 static inline void mmc_should_fail_request(struct mmc_host *host, 127 struct mmc_request *mrq) 128 { 129 } 130 131 #endif /* CONFIG_FAIL_MMC_REQUEST */ 132 133 /** 134 * mmc_request_done - finish processing an MMC request 135 * @host: MMC host which completed request 136 * @mrq: MMC request which request 137 * 138 * MMC drivers should call this function when they have completed 139 * their processing of a request. 140 */ 141 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 142 { 143 struct mmc_command *cmd = mrq->cmd; 144 int err = cmd->error; 145 146 if (err && cmd->retries && mmc_host_is_spi(host)) { 147 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 148 cmd->retries = 0; 149 } 150 151 if (err && cmd->retries && !mmc_card_removed(host->card)) { 152 /* 153 * Request starter must handle retries - see 154 * mmc_wait_for_req_done(). 155 */ 156 if (mrq->done) 157 mrq->done(mrq); 158 } else { 159 mmc_should_fail_request(host, mrq); 160 161 led_trigger_event(host->led, LED_OFF); 162 163 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 164 mmc_hostname(host), cmd->opcode, err, 165 cmd->resp[0], cmd->resp[1], 166 cmd->resp[2], cmd->resp[3]); 167 168 if (mrq->data) { 169 pr_debug("%s: %d bytes transferred: %d\n", 170 mmc_hostname(host), 171 mrq->data->bytes_xfered, mrq->data->error); 172 } 173 174 if (mrq->stop) { 175 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 176 mmc_hostname(host), mrq->stop->opcode, 177 mrq->stop->error, 178 mrq->stop->resp[0], mrq->stop->resp[1], 179 mrq->stop->resp[2], mrq->stop->resp[3]); 180 } 181 182 if (mrq->done) 183 mrq->done(mrq); 184 185 mmc_host_clk_release(host); 186 } 187 } 188 189 EXPORT_SYMBOL(mmc_request_done); 190 191 static void 192 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 193 { 194 #ifdef CONFIG_MMC_DEBUG 195 unsigned int i, sz; 196 struct scatterlist *sg; 197 #endif 198 199 if (mrq->sbc) { 200 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 201 mmc_hostname(host), mrq->sbc->opcode, 202 mrq->sbc->arg, mrq->sbc->flags); 203 } 204 205 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 206 mmc_hostname(host), mrq->cmd->opcode, 207 mrq->cmd->arg, mrq->cmd->flags); 208 209 if (mrq->data) { 210 pr_debug("%s: blksz %d blocks %d flags %08x " 211 "tsac %d ms nsac %d\n", 212 mmc_hostname(host), mrq->data->blksz, 213 mrq->data->blocks, mrq->data->flags, 214 mrq->data->timeout_ns / 1000000, 215 mrq->data->timeout_clks); 216 } 217 218 if (mrq->stop) { 219 pr_debug("%s: CMD%u arg %08x flags %08x\n", 220 mmc_hostname(host), mrq->stop->opcode, 221 mrq->stop->arg, mrq->stop->flags); 222 } 223 224 WARN_ON(!host->claimed); 225 226 mrq->cmd->error = 0; 227 mrq->cmd->mrq = mrq; 228 if (mrq->data) { 229 BUG_ON(mrq->data->blksz > host->max_blk_size); 230 BUG_ON(mrq->data->blocks > host->max_blk_count); 231 BUG_ON(mrq->data->blocks * mrq->data->blksz > 232 host->max_req_size); 233 234 #ifdef CONFIG_MMC_DEBUG 235 sz = 0; 236 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 237 sz += sg->length; 238 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 239 #endif 240 241 mrq->cmd->data = mrq->data; 242 mrq->data->error = 0; 243 mrq->data->mrq = mrq; 244 if (mrq->stop) { 245 mrq->data->stop = mrq->stop; 246 mrq->stop->error = 0; 247 mrq->stop->mrq = mrq; 248 } 249 } 250 mmc_host_clk_hold(host); 251 led_trigger_event(host->led, LED_FULL); 252 host->ops->request(host, mrq); 253 } 254 255 /** 256 * mmc_start_bkops - start BKOPS for supported cards 257 * @card: MMC card to start BKOPS 258 * @form_exception: A flag to indicate if this function was 259 * called due to an exception raised by the card 260 * 261 * Start background operations whenever requested. 262 * When the urgent BKOPS bit is set in a R1 command response 263 * then background operations should be started immediately. 264 */ 265 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 266 { 267 int err; 268 int timeout; 269 bool use_busy_signal; 270 271 BUG_ON(!card); 272 273 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card)) 274 return; 275 276 err = mmc_read_bkops_status(card); 277 if (err) { 278 pr_err("%s: Failed to read bkops status: %d\n", 279 mmc_hostname(card->host), err); 280 return; 281 } 282 283 if (!card->ext_csd.raw_bkops_status) 284 return; 285 286 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 287 from_exception) 288 return; 289 290 mmc_claim_host(card->host); 291 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 292 timeout = MMC_BKOPS_MAX_TIMEOUT; 293 use_busy_signal = true; 294 } else { 295 timeout = 0; 296 use_busy_signal = false; 297 } 298 299 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 300 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal); 301 if (err) { 302 pr_warn("%s: Error %d starting bkops\n", 303 mmc_hostname(card->host), err); 304 goto out; 305 } 306 307 /* 308 * For urgent bkops status (LEVEL_2 and more) 309 * bkops executed synchronously, otherwise 310 * the operation is in progress 311 */ 312 if (!use_busy_signal) 313 mmc_card_set_doing_bkops(card); 314 out: 315 mmc_release_host(card->host); 316 } 317 EXPORT_SYMBOL(mmc_start_bkops); 318 319 static void mmc_wait_done(struct mmc_request *mrq) 320 { 321 complete(&mrq->completion); 322 } 323 324 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 325 { 326 init_completion(&mrq->completion); 327 mrq->done = mmc_wait_done; 328 if (mmc_card_removed(host->card)) { 329 mrq->cmd->error = -ENOMEDIUM; 330 complete(&mrq->completion); 331 return -ENOMEDIUM; 332 } 333 mmc_start_request(host, mrq); 334 return 0; 335 } 336 337 static void mmc_wait_for_req_done(struct mmc_host *host, 338 struct mmc_request *mrq) 339 { 340 struct mmc_command *cmd; 341 342 while (1) { 343 wait_for_completion(&mrq->completion); 344 345 cmd = mrq->cmd; 346 if (!cmd->error || !cmd->retries || 347 mmc_card_removed(host->card)) 348 break; 349 350 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 351 mmc_hostname(host), cmd->opcode, cmd->error); 352 cmd->retries--; 353 cmd->error = 0; 354 host->ops->request(host, mrq); 355 } 356 } 357 358 /** 359 * mmc_pre_req - Prepare for a new request 360 * @host: MMC host to prepare command 361 * @mrq: MMC request to prepare for 362 * @is_first_req: true if there is no previous started request 363 * that may run in parellel to this call, otherwise false 364 * 365 * mmc_pre_req() is called in prior to mmc_start_req() to let 366 * host prepare for the new request. Preparation of a request may be 367 * performed while another request is running on the host. 368 */ 369 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 370 bool is_first_req) 371 { 372 if (host->ops->pre_req) { 373 mmc_host_clk_hold(host); 374 host->ops->pre_req(host, mrq, is_first_req); 375 mmc_host_clk_release(host); 376 } 377 } 378 379 /** 380 * mmc_post_req - Post process a completed request 381 * @host: MMC host to post process command 382 * @mrq: MMC request to post process for 383 * @err: Error, if non zero, clean up any resources made in pre_req 384 * 385 * Let the host post process a completed request. Post processing of 386 * a request may be performed while another reuqest is running. 387 */ 388 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 389 int err) 390 { 391 if (host->ops->post_req) { 392 mmc_host_clk_hold(host); 393 host->ops->post_req(host, mrq, err); 394 mmc_host_clk_release(host); 395 } 396 } 397 398 /** 399 * mmc_start_req - start a non-blocking request 400 * @host: MMC host to start command 401 * @areq: async request to start 402 * @error: out parameter returns 0 for success, otherwise non zero 403 * 404 * Start a new MMC custom command request for a host. 405 * If there is on ongoing async request wait for completion 406 * of that request and start the new one and return. 407 * Does not wait for the new request to complete. 408 * 409 * Returns the completed request, NULL in case of none completed. 410 * Wait for the an ongoing request (previoulsy started) to complete and 411 * return the completed request. If there is no ongoing request, NULL 412 * is returned without waiting. NULL is not an error condition. 413 */ 414 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 415 struct mmc_async_req *areq, int *error) 416 { 417 int err = 0; 418 int start_err = 0; 419 struct mmc_async_req *data = host->areq; 420 421 /* Prepare a new request */ 422 if (areq) 423 mmc_pre_req(host, areq->mrq, !host->areq); 424 425 if (host->areq) { 426 mmc_wait_for_req_done(host, host->areq->mrq); 427 err = host->areq->err_check(host->card, host->areq); 428 /* 429 * Check BKOPS urgency for each R1 response 430 */ 431 if (host->card && mmc_card_mmc(host->card) && 432 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 433 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 434 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) 435 mmc_start_bkops(host->card, true); 436 } 437 438 if (!err && areq) 439 start_err = __mmc_start_req(host, areq->mrq); 440 441 if (host->areq) 442 mmc_post_req(host, host->areq->mrq, 0); 443 444 /* Cancel a prepared request if it was not started. */ 445 if ((err || start_err) && areq) 446 mmc_post_req(host, areq->mrq, -EINVAL); 447 448 if (err) 449 host->areq = NULL; 450 else 451 host->areq = areq; 452 453 if (error) 454 *error = err; 455 return data; 456 } 457 EXPORT_SYMBOL(mmc_start_req); 458 459 /** 460 * mmc_wait_for_req - start a request and wait for completion 461 * @host: MMC host to start command 462 * @mrq: MMC request to start 463 * 464 * Start a new MMC custom command request for a host, and wait 465 * for the command to complete. Does not attempt to parse the 466 * response. 467 */ 468 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 469 { 470 __mmc_start_req(host, mrq); 471 mmc_wait_for_req_done(host, mrq); 472 } 473 EXPORT_SYMBOL(mmc_wait_for_req); 474 475 /** 476 * mmc_interrupt_hpi - Issue for High priority Interrupt 477 * @card: the MMC card associated with the HPI transfer 478 * 479 * Issued High Priority Interrupt, and check for card status 480 * until out-of prg-state. 481 */ 482 int mmc_interrupt_hpi(struct mmc_card *card) 483 { 484 int err; 485 u32 status; 486 unsigned long prg_wait; 487 488 BUG_ON(!card); 489 490 if (!card->ext_csd.hpi_en) { 491 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 492 return 1; 493 } 494 495 mmc_claim_host(card->host); 496 err = mmc_send_status(card, &status); 497 if (err) { 498 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 499 goto out; 500 } 501 502 switch (R1_CURRENT_STATE(status)) { 503 case R1_STATE_IDLE: 504 case R1_STATE_READY: 505 case R1_STATE_STBY: 506 case R1_STATE_TRAN: 507 /* 508 * In idle and transfer states, HPI is not needed and the caller 509 * can issue the next intended command immediately 510 */ 511 goto out; 512 case R1_STATE_PRG: 513 break; 514 default: 515 /* In all other states, it's illegal to issue HPI */ 516 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 517 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 518 err = -EINVAL; 519 goto out; 520 } 521 522 err = mmc_send_hpi_cmd(card, &status); 523 if (err) 524 goto out; 525 526 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 527 do { 528 err = mmc_send_status(card, &status); 529 530 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 531 break; 532 if (time_after(jiffies, prg_wait)) 533 err = -ETIMEDOUT; 534 } while (!err); 535 536 out: 537 mmc_release_host(card->host); 538 return err; 539 } 540 EXPORT_SYMBOL(mmc_interrupt_hpi); 541 542 /** 543 * mmc_wait_for_cmd - start a command and wait for completion 544 * @host: MMC host to start command 545 * @cmd: MMC command to start 546 * @retries: maximum number of retries 547 * 548 * Start a new MMC command for a host, and wait for the command 549 * to complete. Return any error that occurred while the command 550 * was executing. Do not attempt to parse the response. 551 */ 552 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 553 { 554 struct mmc_request mrq = {NULL}; 555 556 WARN_ON(!host->claimed); 557 558 memset(cmd->resp, 0, sizeof(cmd->resp)); 559 cmd->retries = retries; 560 561 mrq.cmd = cmd; 562 cmd->data = NULL; 563 564 mmc_wait_for_req(host, &mrq); 565 566 return cmd->error; 567 } 568 569 EXPORT_SYMBOL(mmc_wait_for_cmd); 570 571 /** 572 * mmc_stop_bkops - stop ongoing BKOPS 573 * @card: MMC card to check BKOPS 574 * 575 * Send HPI command to stop ongoing background operations to 576 * allow rapid servicing of foreground operations, e.g. read/ 577 * writes. Wait until the card comes out of the programming state 578 * to avoid errors in servicing read/write requests. 579 */ 580 int mmc_stop_bkops(struct mmc_card *card) 581 { 582 int err = 0; 583 584 BUG_ON(!card); 585 err = mmc_interrupt_hpi(card); 586 587 /* 588 * If err is EINVAL, we can't issue an HPI. 589 * It should complete the BKOPS. 590 */ 591 if (!err || (err == -EINVAL)) { 592 mmc_card_clr_doing_bkops(card); 593 err = 0; 594 } 595 596 return err; 597 } 598 EXPORT_SYMBOL(mmc_stop_bkops); 599 600 int mmc_read_bkops_status(struct mmc_card *card) 601 { 602 int err; 603 u8 *ext_csd; 604 605 /* 606 * In future work, we should consider storing the entire ext_csd. 607 */ 608 ext_csd = kmalloc(512, GFP_KERNEL); 609 if (!ext_csd) { 610 pr_err("%s: could not allocate buffer to receive the ext_csd.\n", 611 mmc_hostname(card->host)); 612 return -ENOMEM; 613 } 614 615 mmc_claim_host(card->host); 616 err = mmc_send_ext_csd(card, ext_csd); 617 mmc_release_host(card->host); 618 if (err) 619 goto out; 620 621 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 622 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 623 out: 624 kfree(ext_csd); 625 return err; 626 } 627 EXPORT_SYMBOL(mmc_read_bkops_status); 628 629 /** 630 * mmc_set_data_timeout - set the timeout for a data command 631 * @data: data phase for command 632 * @card: the MMC card associated with the data transfer 633 * 634 * Computes the data timeout parameters according to the 635 * correct algorithm given the card type. 636 */ 637 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 638 { 639 unsigned int mult; 640 641 /* 642 * SDIO cards only define an upper 1 s limit on access. 643 */ 644 if (mmc_card_sdio(card)) { 645 data->timeout_ns = 1000000000; 646 data->timeout_clks = 0; 647 return; 648 } 649 650 /* 651 * SD cards use a 100 multiplier rather than 10 652 */ 653 mult = mmc_card_sd(card) ? 100 : 10; 654 655 /* 656 * Scale up the multiplier (and therefore the timeout) by 657 * the r2w factor for writes. 658 */ 659 if (data->flags & MMC_DATA_WRITE) 660 mult <<= card->csd.r2w_factor; 661 662 data->timeout_ns = card->csd.tacc_ns * mult; 663 data->timeout_clks = card->csd.tacc_clks * mult; 664 665 /* 666 * SD cards also have an upper limit on the timeout. 667 */ 668 if (mmc_card_sd(card)) { 669 unsigned int timeout_us, limit_us; 670 671 timeout_us = data->timeout_ns / 1000; 672 if (mmc_host_clk_rate(card->host)) 673 timeout_us += data->timeout_clks * 1000 / 674 (mmc_host_clk_rate(card->host) / 1000); 675 676 if (data->flags & MMC_DATA_WRITE) 677 /* 678 * The MMC spec "It is strongly recommended 679 * for hosts to implement more than 500ms 680 * timeout value even if the card indicates 681 * the 250ms maximum busy length." Even the 682 * previous value of 300ms is known to be 683 * insufficient for some cards. 684 */ 685 limit_us = 3000000; 686 else 687 limit_us = 100000; 688 689 /* 690 * SDHC cards always use these fixed values. 691 */ 692 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 693 data->timeout_ns = limit_us * 1000; 694 data->timeout_clks = 0; 695 } 696 } 697 698 /* 699 * Some cards require longer data read timeout than indicated in CSD. 700 * Address this by setting the read timeout to a "reasonably high" 701 * value. For the cards tested, 300ms has proven enough. If necessary, 702 * this value can be increased if other problematic cards require this. 703 */ 704 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 705 data->timeout_ns = 300000000; 706 data->timeout_clks = 0; 707 } 708 709 /* 710 * Some cards need very high timeouts if driven in SPI mode. 711 * The worst observed timeout was 900ms after writing a 712 * continuous stream of data until the internal logic 713 * overflowed. 714 */ 715 if (mmc_host_is_spi(card->host)) { 716 if (data->flags & MMC_DATA_WRITE) { 717 if (data->timeout_ns < 1000000000) 718 data->timeout_ns = 1000000000; /* 1s */ 719 } else { 720 if (data->timeout_ns < 100000000) 721 data->timeout_ns = 100000000; /* 100ms */ 722 } 723 } 724 } 725 EXPORT_SYMBOL(mmc_set_data_timeout); 726 727 /** 728 * mmc_align_data_size - pads a transfer size to a more optimal value 729 * @card: the MMC card associated with the data transfer 730 * @sz: original transfer size 731 * 732 * Pads the original data size with a number of extra bytes in 733 * order to avoid controller bugs and/or performance hits 734 * (e.g. some controllers revert to PIO for certain sizes). 735 * 736 * Returns the improved size, which might be unmodified. 737 * 738 * Note that this function is only relevant when issuing a 739 * single scatter gather entry. 740 */ 741 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 742 { 743 /* 744 * FIXME: We don't have a system for the controller to tell 745 * the core about its problems yet, so for now we just 32-bit 746 * align the size. 747 */ 748 sz = ((sz + 3) / 4) * 4; 749 750 return sz; 751 } 752 EXPORT_SYMBOL(mmc_align_data_size); 753 754 /** 755 * __mmc_claim_host - exclusively claim a host 756 * @host: mmc host to claim 757 * @abort: whether or not the operation should be aborted 758 * 759 * Claim a host for a set of operations. If @abort is non null and 760 * dereference a non-zero value then this will return prematurely with 761 * that non-zero value without acquiring the lock. Returns zero 762 * with the lock held otherwise. 763 */ 764 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 765 { 766 DECLARE_WAITQUEUE(wait, current); 767 unsigned long flags; 768 int stop; 769 770 might_sleep(); 771 772 add_wait_queue(&host->wq, &wait); 773 spin_lock_irqsave(&host->lock, flags); 774 while (1) { 775 set_current_state(TASK_UNINTERRUPTIBLE); 776 stop = abort ? atomic_read(abort) : 0; 777 if (stop || !host->claimed || host->claimer == current) 778 break; 779 spin_unlock_irqrestore(&host->lock, flags); 780 schedule(); 781 spin_lock_irqsave(&host->lock, flags); 782 } 783 set_current_state(TASK_RUNNING); 784 if (!stop) { 785 host->claimed = 1; 786 host->claimer = current; 787 host->claim_cnt += 1; 788 } else 789 wake_up(&host->wq); 790 spin_unlock_irqrestore(&host->lock, flags); 791 remove_wait_queue(&host->wq, &wait); 792 if (host->ops->enable && !stop && host->claim_cnt == 1) 793 host->ops->enable(host); 794 return stop; 795 } 796 797 EXPORT_SYMBOL(__mmc_claim_host); 798 799 /** 800 * mmc_try_claim_host - try exclusively to claim a host 801 * @host: mmc host to claim 802 * 803 * Returns %1 if the host is claimed, %0 otherwise. 804 */ 805 int mmc_try_claim_host(struct mmc_host *host) 806 { 807 int claimed_host = 0; 808 unsigned long flags; 809 810 spin_lock_irqsave(&host->lock, flags); 811 if (!host->claimed || host->claimer == current) { 812 host->claimed = 1; 813 host->claimer = current; 814 host->claim_cnt += 1; 815 claimed_host = 1; 816 } 817 spin_unlock_irqrestore(&host->lock, flags); 818 if (host->ops->enable && claimed_host && host->claim_cnt == 1) 819 host->ops->enable(host); 820 return claimed_host; 821 } 822 EXPORT_SYMBOL(mmc_try_claim_host); 823 824 /** 825 * mmc_release_host - release a host 826 * @host: mmc host to release 827 * 828 * Release a MMC host, allowing others to claim the host 829 * for their operations. 830 */ 831 void mmc_release_host(struct mmc_host *host) 832 { 833 unsigned long flags; 834 835 WARN_ON(!host->claimed); 836 837 if (host->ops->disable && host->claim_cnt == 1) 838 host->ops->disable(host); 839 840 spin_lock_irqsave(&host->lock, flags); 841 if (--host->claim_cnt) { 842 /* Release for nested claim */ 843 spin_unlock_irqrestore(&host->lock, flags); 844 } else { 845 host->claimed = 0; 846 host->claimer = NULL; 847 spin_unlock_irqrestore(&host->lock, flags); 848 wake_up(&host->wq); 849 } 850 } 851 EXPORT_SYMBOL(mmc_release_host); 852 853 /* 854 * Internal function that does the actual ios call to the host driver, 855 * optionally printing some debug output. 856 */ 857 static inline void mmc_set_ios(struct mmc_host *host) 858 { 859 struct mmc_ios *ios = &host->ios; 860 861 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 862 "width %u timing %u\n", 863 mmc_hostname(host), ios->clock, ios->bus_mode, 864 ios->power_mode, ios->chip_select, ios->vdd, 865 ios->bus_width, ios->timing); 866 867 if (ios->clock > 0) 868 mmc_set_ungated(host); 869 host->ops->set_ios(host, ios); 870 } 871 872 /* 873 * Control chip select pin on a host. 874 */ 875 void mmc_set_chip_select(struct mmc_host *host, int mode) 876 { 877 mmc_host_clk_hold(host); 878 host->ios.chip_select = mode; 879 mmc_set_ios(host); 880 mmc_host_clk_release(host); 881 } 882 883 /* 884 * Sets the host clock to the highest possible frequency that 885 * is below "hz". 886 */ 887 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 888 { 889 WARN_ON(hz < host->f_min); 890 891 if (hz > host->f_max) 892 hz = host->f_max; 893 894 host->ios.clock = hz; 895 mmc_set_ios(host); 896 } 897 898 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 899 { 900 mmc_host_clk_hold(host); 901 __mmc_set_clock(host, hz); 902 mmc_host_clk_release(host); 903 } 904 905 #ifdef CONFIG_MMC_CLKGATE 906 /* 907 * This gates the clock by setting it to 0 Hz. 908 */ 909 void mmc_gate_clock(struct mmc_host *host) 910 { 911 unsigned long flags; 912 913 spin_lock_irqsave(&host->clk_lock, flags); 914 host->clk_old = host->ios.clock; 915 host->ios.clock = 0; 916 host->clk_gated = true; 917 spin_unlock_irqrestore(&host->clk_lock, flags); 918 mmc_set_ios(host); 919 } 920 921 /* 922 * This restores the clock from gating by using the cached 923 * clock value. 924 */ 925 void mmc_ungate_clock(struct mmc_host *host) 926 { 927 /* 928 * We should previously have gated the clock, so the clock shall 929 * be 0 here! The clock may however be 0 during initialization, 930 * when some request operations are performed before setting 931 * the frequency. When ungate is requested in that situation 932 * we just ignore the call. 933 */ 934 if (host->clk_old) { 935 BUG_ON(host->ios.clock); 936 /* This call will also set host->clk_gated to false */ 937 __mmc_set_clock(host, host->clk_old); 938 } 939 } 940 941 void mmc_set_ungated(struct mmc_host *host) 942 { 943 unsigned long flags; 944 945 /* 946 * We've been given a new frequency while the clock is gated, 947 * so make sure we regard this as ungating it. 948 */ 949 spin_lock_irqsave(&host->clk_lock, flags); 950 host->clk_gated = false; 951 spin_unlock_irqrestore(&host->clk_lock, flags); 952 } 953 954 #else 955 void mmc_set_ungated(struct mmc_host *host) 956 { 957 } 958 #endif 959 960 /* 961 * Change the bus mode (open drain/push-pull) of a host. 962 */ 963 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 964 { 965 mmc_host_clk_hold(host); 966 host->ios.bus_mode = mode; 967 mmc_set_ios(host); 968 mmc_host_clk_release(host); 969 } 970 971 /* 972 * Change data bus width of a host. 973 */ 974 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 975 { 976 mmc_host_clk_hold(host); 977 host->ios.bus_width = width; 978 mmc_set_ios(host); 979 mmc_host_clk_release(host); 980 } 981 982 /** 983 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 984 * @vdd: voltage (mV) 985 * @low_bits: prefer low bits in boundary cases 986 * 987 * This function returns the OCR bit number according to the provided @vdd 988 * value. If conversion is not possible a negative errno value returned. 989 * 990 * Depending on the @low_bits flag the function prefers low or high OCR bits 991 * on boundary voltages. For example, 992 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 993 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 994 * 995 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 996 */ 997 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 998 { 999 const int max_bit = ilog2(MMC_VDD_35_36); 1000 int bit; 1001 1002 if (vdd < 1650 || vdd > 3600) 1003 return -EINVAL; 1004 1005 if (vdd >= 1650 && vdd <= 1950) 1006 return ilog2(MMC_VDD_165_195); 1007 1008 if (low_bits) 1009 vdd -= 1; 1010 1011 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1012 bit = (vdd - 2000) / 100 + 8; 1013 if (bit > max_bit) 1014 return max_bit; 1015 return bit; 1016 } 1017 1018 /** 1019 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1020 * @vdd_min: minimum voltage value (mV) 1021 * @vdd_max: maximum voltage value (mV) 1022 * 1023 * This function returns the OCR mask bits according to the provided @vdd_min 1024 * and @vdd_max values. If conversion is not possible the function returns 0. 1025 * 1026 * Notes wrt boundary cases: 1027 * This function sets the OCR bits for all boundary voltages, for example 1028 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1029 * MMC_VDD_34_35 mask. 1030 */ 1031 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1032 { 1033 u32 mask = 0; 1034 1035 if (vdd_max < vdd_min) 1036 return 0; 1037 1038 /* Prefer high bits for the boundary vdd_max values. */ 1039 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1040 if (vdd_max < 0) 1041 return 0; 1042 1043 /* Prefer low bits for the boundary vdd_min values. */ 1044 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1045 if (vdd_min < 0) 1046 return 0; 1047 1048 /* Fill the mask, from max bit to min bit. */ 1049 while (vdd_max >= vdd_min) 1050 mask |= 1 << vdd_max--; 1051 1052 return mask; 1053 } 1054 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1055 1056 #ifdef CONFIG_REGULATOR 1057 1058 /** 1059 * mmc_regulator_get_ocrmask - return mask of supported voltages 1060 * @supply: regulator to use 1061 * 1062 * This returns either a negative errno, or a mask of voltages that 1063 * can be provided to MMC/SD/SDIO devices using the specified voltage 1064 * regulator. This would normally be called before registering the 1065 * MMC host adapter. 1066 */ 1067 int mmc_regulator_get_ocrmask(struct regulator *supply) 1068 { 1069 int result = 0; 1070 int count; 1071 int i; 1072 1073 count = regulator_count_voltages(supply); 1074 if (count < 0) 1075 return count; 1076 1077 for (i = 0; i < count; i++) { 1078 int vdd_uV; 1079 int vdd_mV; 1080 1081 vdd_uV = regulator_list_voltage(supply, i); 1082 if (vdd_uV <= 0) 1083 continue; 1084 1085 vdd_mV = vdd_uV / 1000; 1086 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1087 } 1088 1089 return result; 1090 } 1091 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1092 1093 /** 1094 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1095 * @mmc: the host to regulate 1096 * @supply: regulator to use 1097 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1098 * 1099 * Returns zero on success, else negative errno. 1100 * 1101 * MMC host drivers may use this to enable or disable a regulator using 1102 * a particular supply voltage. This would normally be called from the 1103 * set_ios() method. 1104 */ 1105 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1106 struct regulator *supply, 1107 unsigned short vdd_bit) 1108 { 1109 int result = 0; 1110 int min_uV, max_uV; 1111 1112 if (vdd_bit) { 1113 int tmp; 1114 int voltage; 1115 1116 /* 1117 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1118 * bits this regulator doesn't quite support ... don't 1119 * be too picky, most cards and regulators are OK with 1120 * a 0.1V range goof (it's a small error percentage). 1121 */ 1122 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1123 if (tmp == 0) { 1124 min_uV = 1650 * 1000; 1125 max_uV = 1950 * 1000; 1126 } else { 1127 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1128 max_uV = min_uV + 100 * 1000; 1129 } 1130 1131 /* 1132 * If we're using a fixed/static regulator, don't call 1133 * regulator_set_voltage; it would fail. 1134 */ 1135 voltage = regulator_get_voltage(supply); 1136 1137 if (regulator_count_voltages(supply) == 1) 1138 min_uV = max_uV = voltage; 1139 1140 if (voltage < 0) 1141 result = voltage; 1142 else if (voltage < min_uV || voltage > max_uV) 1143 result = regulator_set_voltage(supply, min_uV, max_uV); 1144 else 1145 result = 0; 1146 1147 if (result == 0 && !mmc->regulator_enabled) { 1148 result = regulator_enable(supply); 1149 if (!result) 1150 mmc->regulator_enabled = true; 1151 } 1152 } else if (mmc->regulator_enabled) { 1153 result = regulator_disable(supply); 1154 if (result == 0) 1155 mmc->regulator_enabled = false; 1156 } 1157 1158 if (result) 1159 dev_err(mmc_dev(mmc), 1160 "could not set regulator OCR (%d)\n", result); 1161 return result; 1162 } 1163 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1164 1165 int mmc_regulator_get_supply(struct mmc_host *mmc) 1166 { 1167 struct device *dev = mmc_dev(mmc); 1168 struct regulator *supply; 1169 int ret; 1170 1171 supply = devm_regulator_get(dev, "vmmc"); 1172 mmc->supply.vmmc = supply; 1173 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc"); 1174 1175 if (IS_ERR(supply)) 1176 return PTR_ERR(supply); 1177 1178 ret = mmc_regulator_get_ocrmask(supply); 1179 if (ret > 0) 1180 mmc->ocr_avail = ret; 1181 else 1182 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret); 1183 1184 return 0; 1185 } 1186 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1187 1188 #endif /* CONFIG_REGULATOR */ 1189 1190 /* 1191 * Mask off any voltages we don't support and select 1192 * the lowest voltage 1193 */ 1194 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1195 { 1196 int bit; 1197 1198 ocr &= host->ocr_avail; 1199 1200 bit = ffs(ocr); 1201 if (bit) { 1202 bit -= 1; 1203 1204 ocr &= 3 << bit; 1205 1206 mmc_host_clk_hold(host); 1207 host->ios.vdd = bit; 1208 mmc_set_ios(host); 1209 mmc_host_clk_release(host); 1210 } else { 1211 pr_warning("%s: host doesn't support card's voltages\n", 1212 mmc_hostname(host)); 1213 ocr = 0; 1214 } 1215 1216 return ocr; 1217 } 1218 1219 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) 1220 { 1221 struct mmc_command cmd = {0}; 1222 int err = 0; 1223 1224 BUG_ON(!host); 1225 1226 /* 1227 * Send CMD11 only if the request is to switch the card to 1228 * 1.8V signalling. 1229 */ 1230 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { 1231 cmd.opcode = SD_SWITCH_VOLTAGE; 1232 cmd.arg = 0; 1233 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1234 1235 err = mmc_wait_for_cmd(host, &cmd, 0); 1236 if (err) 1237 return err; 1238 1239 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1240 return -EIO; 1241 } 1242 1243 host->ios.signal_voltage = signal_voltage; 1244 1245 if (host->ops->start_signal_voltage_switch) { 1246 mmc_host_clk_hold(host); 1247 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1248 mmc_host_clk_release(host); 1249 } 1250 1251 return err; 1252 } 1253 1254 /* 1255 * Select timing parameters for host. 1256 */ 1257 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1258 { 1259 mmc_host_clk_hold(host); 1260 host->ios.timing = timing; 1261 mmc_set_ios(host); 1262 mmc_host_clk_release(host); 1263 } 1264 1265 /* 1266 * Select appropriate driver type for host. 1267 */ 1268 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1269 { 1270 mmc_host_clk_hold(host); 1271 host->ios.drv_type = drv_type; 1272 mmc_set_ios(host); 1273 mmc_host_clk_release(host); 1274 } 1275 1276 /* 1277 * Apply power to the MMC stack. This is a two-stage process. 1278 * First, we enable power to the card without the clock running. 1279 * We then wait a bit for the power to stabilise. Finally, 1280 * enable the bus drivers and clock to the card. 1281 * 1282 * We must _NOT_ enable the clock prior to power stablising. 1283 * 1284 * If a host does all the power sequencing itself, ignore the 1285 * initial MMC_POWER_UP stage. 1286 */ 1287 static void mmc_power_up(struct mmc_host *host) 1288 { 1289 int bit; 1290 1291 if (host->ios.power_mode == MMC_POWER_ON) 1292 return; 1293 1294 mmc_host_clk_hold(host); 1295 1296 /* If ocr is set, we use it */ 1297 if (host->ocr) 1298 bit = ffs(host->ocr) - 1; 1299 else 1300 bit = fls(host->ocr_avail) - 1; 1301 1302 host->ios.vdd = bit; 1303 if (mmc_host_is_spi(host)) 1304 host->ios.chip_select = MMC_CS_HIGH; 1305 else 1306 host->ios.chip_select = MMC_CS_DONTCARE; 1307 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1308 host->ios.power_mode = MMC_POWER_UP; 1309 host->ios.bus_width = MMC_BUS_WIDTH_1; 1310 host->ios.timing = MMC_TIMING_LEGACY; 1311 mmc_set_ios(host); 1312 1313 /* Set signal voltage to 3.3V */ 1314 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false); 1315 1316 /* 1317 * This delay should be sufficient to allow the power supply 1318 * to reach the minimum voltage. 1319 */ 1320 mmc_delay(10); 1321 1322 host->ios.clock = host->f_init; 1323 1324 host->ios.power_mode = MMC_POWER_ON; 1325 mmc_set_ios(host); 1326 1327 /* 1328 * This delay must be at least 74 clock sizes, or 1 ms, or the 1329 * time required to reach a stable voltage. 1330 */ 1331 mmc_delay(10); 1332 1333 mmc_host_clk_release(host); 1334 } 1335 1336 void mmc_power_off(struct mmc_host *host) 1337 { 1338 if (host->ios.power_mode == MMC_POWER_OFF) 1339 return; 1340 1341 mmc_host_clk_hold(host); 1342 1343 host->ios.clock = 0; 1344 host->ios.vdd = 0; 1345 1346 1347 /* 1348 * Reset ocr mask to be the highest possible voltage supported for 1349 * this mmc host. This value will be used at next power up. 1350 */ 1351 host->ocr = 1 << (fls(host->ocr_avail) - 1); 1352 1353 if (!mmc_host_is_spi(host)) { 1354 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1355 host->ios.chip_select = MMC_CS_DONTCARE; 1356 } 1357 host->ios.power_mode = MMC_POWER_OFF; 1358 host->ios.bus_width = MMC_BUS_WIDTH_1; 1359 host->ios.timing = MMC_TIMING_LEGACY; 1360 mmc_set_ios(host); 1361 1362 /* 1363 * Some configurations, such as the 802.11 SDIO card in the OLPC 1364 * XO-1.5, require a short delay after poweroff before the card 1365 * can be successfully turned on again. 1366 */ 1367 mmc_delay(1); 1368 1369 mmc_host_clk_release(host); 1370 } 1371 1372 /* 1373 * Cleanup when the last reference to the bus operator is dropped. 1374 */ 1375 static void __mmc_release_bus(struct mmc_host *host) 1376 { 1377 BUG_ON(!host); 1378 BUG_ON(host->bus_refs); 1379 BUG_ON(!host->bus_dead); 1380 1381 host->bus_ops = NULL; 1382 } 1383 1384 /* 1385 * Increase reference count of bus operator 1386 */ 1387 static inline void mmc_bus_get(struct mmc_host *host) 1388 { 1389 unsigned long flags; 1390 1391 spin_lock_irqsave(&host->lock, flags); 1392 host->bus_refs++; 1393 spin_unlock_irqrestore(&host->lock, flags); 1394 } 1395 1396 /* 1397 * Decrease reference count of bus operator and free it if 1398 * it is the last reference. 1399 */ 1400 static inline void mmc_bus_put(struct mmc_host *host) 1401 { 1402 unsigned long flags; 1403 1404 spin_lock_irqsave(&host->lock, flags); 1405 host->bus_refs--; 1406 if ((host->bus_refs == 0) && host->bus_ops) 1407 __mmc_release_bus(host); 1408 spin_unlock_irqrestore(&host->lock, flags); 1409 } 1410 1411 /* 1412 * Assign a mmc bus handler to a host. Only one bus handler may control a 1413 * host at any given time. 1414 */ 1415 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1416 { 1417 unsigned long flags; 1418 1419 BUG_ON(!host); 1420 BUG_ON(!ops); 1421 1422 WARN_ON(!host->claimed); 1423 1424 spin_lock_irqsave(&host->lock, flags); 1425 1426 BUG_ON(host->bus_ops); 1427 BUG_ON(host->bus_refs); 1428 1429 host->bus_ops = ops; 1430 host->bus_refs = 1; 1431 host->bus_dead = 0; 1432 1433 spin_unlock_irqrestore(&host->lock, flags); 1434 } 1435 1436 /* 1437 * Remove the current bus handler from a host. 1438 */ 1439 void mmc_detach_bus(struct mmc_host *host) 1440 { 1441 unsigned long flags; 1442 1443 BUG_ON(!host); 1444 1445 WARN_ON(!host->claimed); 1446 WARN_ON(!host->bus_ops); 1447 1448 spin_lock_irqsave(&host->lock, flags); 1449 1450 host->bus_dead = 1; 1451 1452 spin_unlock_irqrestore(&host->lock, flags); 1453 1454 mmc_bus_put(host); 1455 } 1456 1457 /** 1458 * mmc_detect_change - process change of state on a MMC socket 1459 * @host: host which changed state. 1460 * @delay: optional delay to wait before detection (jiffies) 1461 * 1462 * MMC drivers should call this when they detect a card has been 1463 * inserted or removed. The MMC layer will confirm that any 1464 * present card is still functional, and initialize any newly 1465 * inserted. 1466 */ 1467 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1468 { 1469 #ifdef CONFIG_MMC_DEBUG 1470 unsigned long flags; 1471 spin_lock_irqsave(&host->lock, flags); 1472 WARN_ON(host->removed); 1473 spin_unlock_irqrestore(&host->lock, flags); 1474 #endif 1475 host->detect_change = 1; 1476 mmc_schedule_delayed_work(&host->detect, delay); 1477 } 1478 1479 EXPORT_SYMBOL(mmc_detect_change); 1480 1481 void mmc_init_erase(struct mmc_card *card) 1482 { 1483 unsigned int sz; 1484 1485 if (is_power_of_2(card->erase_size)) 1486 card->erase_shift = ffs(card->erase_size) - 1; 1487 else 1488 card->erase_shift = 0; 1489 1490 /* 1491 * It is possible to erase an arbitrarily large area of an SD or MMC 1492 * card. That is not desirable because it can take a long time 1493 * (minutes) potentially delaying more important I/O, and also the 1494 * timeout calculations become increasingly hugely over-estimated. 1495 * Consequently, 'pref_erase' is defined as a guide to limit erases 1496 * to that size and alignment. 1497 * 1498 * For SD cards that define Allocation Unit size, limit erases to one 1499 * Allocation Unit at a time. For MMC cards that define High Capacity 1500 * Erase Size, whether it is switched on or not, limit to that size. 1501 * Otherwise just have a stab at a good value. For modern cards it 1502 * will end up being 4MiB. Note that if the value is too small, it 1503 * can end up taking longer to erase. 1504 */ 1505 if (mmc_card_sd(card) && card->ssr.au) { 1506 card->pref_erase = card->ssr.au; 1507 card->erase_shift = ffs(card->ssr.au) - 1; 1508 } else if (card->ext_csd.hc_erase_size) { 1509 card->pref_erase = card->ext_csd.hc_erase_size; 1510 } else { 1511 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1512 if (sz < 128) 1513 card->pref_erase = 512 * 1024 / 512; 1514 else if (sz < 512) 1515 card->pref_erase = 1024 * 1024 / 512; 1516 else if (sz < 1024) 1517 card->pref_erase = 2 * 1024 * 1024 / 512; 1518 else 1519 card->pref_erase = 4 * 1024 * 1024 / 512; 1520 if (card->pref_erase < card->erase_size) 1521 card->pref_erase = card->erase_size; 1522 else { 1523 sz = card->pref_erase % card->erase_size; 1524 if (sz) 1525 card->pref_erase += card->erase_size - sz; 1526 } 1527 } 1528 } 1529 1530 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1531 unsigned int arg, unsigned int qty) 1532 { 1533 unsigned int erase_timeout; 1534 1535 if (arg == MMC_DISCARD_ARG || 1536 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1537 erase_timeout = card->ext_csd.trim_timeout; 1538 } else if (card->ext_csd.erase_group_def & 1) { 1539 /* High Capacity Erase Group Size uses HC timeouts */ 1540 if (arg == MMC_TRIM_ARG) 1541 erase_timeout = card->ext_csd.trim_timeout; 1542 else 1543 erase_timeout = card->ext_csd.hc_erase_timeout; 1544 } else { 1545 /* CSD Erase Group Size uses write timeout */ 1546 unsigned int mult = (10 << card->csd.r2w_factor); 1547 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1548 unsigned int timeout_us; 1549 1550 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1551 if (card->csd.tacc_ns < 1000000) 1552 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1553 else 1554 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1555 1556 /* 1557 * ios.clock is only a target. The real clock rate might be 1558 * less but not that much less, so fudge it by multiplying by 2. 1559 */ 1560 timeout_clks <<= 1; 1561 timeout_us += (timeout_clks * 1000) / 1562 (mmc_host_clk_rate(card->host) / 1000); 1563 1564 erase_timeout = timeout_us / 1000; 1565 1566 /* 1567 * Theoretically, the calculation could underflow so round up 1568 * to 1ms in that case. 1569 */ 1570 if (!erase_timeout) 1571 erase_timeout = 1; 1572 } 1573 1574 /* Multiplier for secure operations */ 1575 if (arg & MMC_SECURE_ARGS) { 1576 if (arg == MMC_SECURE_ERASE_ARG) 1577 erase_timeout *= card->ext_csd.sec_erase_mult; 1578 else 1579 erase_timeout *= card->ext_csd.sec_trim_mult; 1580 } 1581 1582 erase_timeout *= qty; 1583 1584 /* 1585 * Ensure at least a 1 second timeout for SPI as per 1586 * 'mmc_set_data_timeout()' 1587 */ 1588 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1589 erase_timeout = 1000; 1590 1591 return erase_timeout; 1592 } 1593 1594 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1595 unsigned int arg, 1596 unsigned int qty) 1597 { 1598 unsigned int erase_timeout; 1599 1600 if (card->ssr.erase_timeout) { 1601 /* Erase timeout specified in SD Status Register (SSR) */ 1602 erase_timeout = card->ssr.erase_timeout * qty + 1603 card->ssr.erase_offset; 1604 } else { 1605 /* 1606 * Erase timeout not specified in SD Status Register (SSR) so 1607 * use 250ms per write block. 1608 */ 1609 erase_timeout = 250 * qty; 1610 } 1611 1612 /* Must not be less than 1 second */ 1613 if (erase_timeout < 1000) 1614 erase_timeout = 1000; 1615 1616 return erase_timeout; 1617 } 1618 1619 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1620 unsigned int arg, 1621 unsigned int qty) 1622 { 1623 if (mmc_card_sd(card)) 1624 return mmc_sd_erase_timeout(card, arg, qty); 1625 else 1626 return mmc_mmc_erase_timeout(card, arg, qty); 1627 } 1628 1629 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1630 unsigned int to, unsigned int arg) 1631 { 1632 struct mmc_command cmd = {0}; 1633 unsigned int qty = 0; 1634 int err; 1635 1636 /* 1637 * qty is used to calculate the erase timeout which depends on how many 1638 * erase groups (or allocation units in SD terminology) are affected. 1639 * We count erasing part of an erase group as one erase group. 1640 * For SD, the allocation units are always a power of 2. For MMC, the 1641 * erase group size is almost certainly also power of 2, but it does not 1642 * seem to insist on that in the JEDEC standard, so we fall back to 1643 * division in that case. SD may not specify an allocation unit size, 1644 * in which case the timeout is based on the number of write blocks. 1645 * 1646 * Note that the timeout for secure trim 2 will only be correct if the 1647 * number of erase groups specified is the same as the total of all 1648 * preceding secure trim 1 commands. Since the power may have been 1649 * lost since the secure trim 1 commands occurred, it is generally 1650 * impossible to calculate the secure trim 2 timeout correctly. 1651 */ 1652 if (card->erase_shift) 1653 qty += ((to >> card->erase_shift) - 1654 (from >> card->erase_shift)) + 1; 1655 else if (mmc_card_sd(card)) 1656 qty += to - from + 1; 1657 else 1658 qty += ((to / card->erase_size) - 1659 (from / card->erase_size)) + 1; 1660 1661 if (!mmc_card_blockaddr(card)) { 1662 from <<= 9; 1663 to <<= 9; 1664 } 1665 1666 if (mmc_card_sd(card)) 1667 cmd.opcode = SD_ERASE_WR_BLK_START; 1668 else 1669 cmd.opcode = MMC_ERASE_GROUP_START; 1670 cmd.arg = from; 1671 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1672 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1673 if (err) { 1674 pr_err("mmc_erase: group start error %d, " 1675 "status %#x\n", err, cmd.resp[0]); 1676 err = -EIO; 1677 goto out; 1678 } 1679 1680 memset(&cmd, 0, sizeof(struct mmc_command)); 1681 if (mmc_card_sd(card)) 1682 cmd.opcode = SD_ERASE_WR_BLK_END; 1683 else 1684 cmd.opcode = MMC_ERASE_GROUP_END; 1685 cmd.arg = to; 1686 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1687 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1688 if (err) { 1689 pr_err("mmc_erase: group end error %d, status %#x\n", 1690 err, cmd.resp[0]); 1691 err = -EIO; 1692 goto out; 1693 } 1694 1695 memset(&cmd, 0, sizeof(struct mmc_command)); 1696 cmd.opcode = MMC_ERASE; 1697 cmd.arg = arg; 1698 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1699 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); 1700 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1701 if (err) { 1702 pr_err("mmc_erase: erase error %d, status %#x\n", 1703 err, cmd.resp[0]); 1704 err = -EIO; 1705 goto out; 1706 } 1707 1708 if (mmc_host_is_spi(card->host)) 1709 goto out; 1710 1711 do { 1712 memset(&cmd, 0, sizeof(struct mmc_command)); 1713 cmd.opcode = MMC_SEND_STATUS; 1714 cmd.arg = card->rca << 16; 1715 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1716 /* Do not retry else we can't see errors */ 1717 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1718 if (err || (cmd.resp[0] & 0xFDF92000)) { 1719 pr_err("error %d requesting status %#x\n", 1720 err, cmd.resp[0]); 1721 err = -EIO; 1722 goto out; 1723 } 1724 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1725 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG); 1726 out: 1727 return err; 1728 } 1729 1730 /** 1731 * mmc_erase - erase sectors. 1732 * @card: card to erase 1733 * @from: first sector to erase 1734 * @nr: number of sectors to erase 1735 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1736 * 1737 * Caller must claim host before calling this function. 1738 */ 1739 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1740 unsigned int arg) 1741 { 1742 unsigned int rem, to = from + nr; 1743 1744 if (!(card->host->caps & MMC_CAP_ERASE) || 1745 !(card->csd.cmdclass & CCC_ERASE)) 1746 return -EOPNOTSUPP; 1747 1748 if (!card->erase_size) 1749 return -EOPNOTSUPP; 1750 1751 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 1752 return -EOPNOTSUPP; 1753 1754 if ((arg & MMC_SECURE_ARGS) && 1755 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1756 return -EOPNOTSUPP; 1757 1758 if ((arg & MMC_TRIM_ARGS) && 1759 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1760 return -EOPNOTSUPP; 1761 1762 if (arg == MMC_SECURE_ERASE_ARG) { 1763 if (from % card->erase_size || nr % card->erase_size) 1764 return -EINVAL; 1765 } 1766 1767 if (arg == MMC_ERASE_ARG) { 1768 rem = from % card->erase_size; 1769 if (rem) { 1770 rem = card->erase_size - rem; 1771 from += rem; 1772 if (nr > rem) 1773 nr -= rem; 1774 else 1775 return 0; 1776 } 1777 rem = nr % card->erase_size; 1778 if (rem) 1779 nr -= rem; 1780 } 1781 1782 if (nr == 0) 1783 return 0; 1784 1785 to = from + nr; 1786 1787 if (to <= from) 1788 return -EINVAL; 1789 1790 /* 'from' and 'to' are inclusive */ 1791 to -= 1; 1792 1793 return mmc_do_erase(card, from, to, arg); 1794 } 1795 EXPORT_SYMBOL(mmc_erase); 1796 1797 int mmc_can_erase(struct mmc_card *card) 1798 { 1799 if ((card->host->caps & MMC_CAP_ERASE) && 1800 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 1801 return 1; 1802 return 0; 1803 } 1804 EXPORT_SYMBOL(mmc_can_erase); 1805 1806 int mmc_can_trim(struct mmc_card *card) 1807 { 1808 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 1809 return 1; 1810 return 0; 1811 } 1812 EXPORT_SYMBOL(mmc_can_trim); 1813 1814 int mmc_can_discard(struct mmc_card *card) 1815 { 1816 /* 1817 * As there's no way to detect the discard support bit at v4.5 1818 * use the s/w feature support filed. 1819 */ 1820 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1821 return 1; 1822 return 0; 1823 } 1824 EXPORT_SYMBOL(mmc_can_discard); 1825 1826 int mmc_can_sanitize(struct mmc_card *card) 1827 { 1828 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 1829 return 0; 1830 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1831 return 1; 1832 return 0; 1833 } 1834 EXPORT_SYMBOL(mmc_can_sanitize); 1835 1836 int mmc_can_secure_erase_trim(struct mmc_card *card) 1837 { 1838 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 1839 return 1; 1840 return 0; 1841 } 1842 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1843 1844 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1845 unsigned int nr) 1846 { 1847 if (!card->erase_size) 1848 return 0; 1849 if (from % card->erase_size || nr % card->erase_size) 1850 return 0; 1851 return 1; 1852 } 1853 EXPORT_SYMBOL(mmc_erase_group_aligned); 1854 1855 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1856 unsigned int arg) 1857 { 1858 struct mmc_host *host = card->host; 1859 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 1860 unsigned int last_timeout = 0; 1861 1862 if (card->erase_shift) 1863 max_qty = UINT_MAX >> card->erase_shift; 1864 else if (mmc_card_sd(card)) 1865 max_qty = UINT_MAX; 1866 else 1867 max_qty = UINT_MAX / card->erase_size; 1868 1869 /* Find the largest qty with an OK timeout */ 1870 do { 1871 y = 0; 1872 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1873 timeout = mmc_erase_timeout(card, arg, qty + x); 1874 if (timeout > host->max_discard_to) 1875 break; 1876 if (timeout < last_timeout) 1877 break; 1878 last_timeout = timeout; 1879 y = x; 1880 } 1881 qty += y; 1882 } while (y); 1883 1884 if (!qty) 1885 return 0; 1886 1887 if (qty == 1) 1888 return 1; 1889 1890 /* Convert qty to sectors */ 1891 if (card->erase_shift) 1892 max_discard = --qty << card->erase_shift; 1893 else if (mmc_card_sd(card)) 1894 max_discard = qty; 1895 else 1896 max_discard = --qty * card->erase_size; 1897 1898 return max_discard; 1899 } 1900 1901 unsigned int mmc_calc_max_discard(struct mmc_card *card) 1902 { 1903 struct mmc_host *host = card->host; 1904 unsigned int max_discard, max_trim; 1905 1906 if (!host->max_discard_to) 1907 return UINT_MAX; 1908 1909 /* 1910 * Without erase_group_def set, MMC erase timeout depends on clock 1911 * frequence which can change. In that case, the best choice is 1912 * just the preferred erase size. 1913 */ 1914 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1915 return card->pref_erase; 1916 1917 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1918 if (mmc_can_trim(card)) { 1919 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1920 if (max_trim < max_discard) 1921 max_discard = max_trim; 1922 } else if (max_discard < card->erase_size) { 1923 max_discard = 0; 1924 } 1925 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1926 mmc_hostname(host), max_discard, host->max_discard_to); 1927 return max_discard; 1928 } 1929 EXPORT_SYMBOL(mmc_calc_max_discard); 1930 1931 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1932 { 1933 struct mmc_command cmd = {0}; 1934 1935 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 1936 return 0; 1937 1938 cmd.opcode = MMC_SET_BLOCKLEN; 1939 cmd.arg = blocklen; 1940 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1941 return mmc_wait_for_cmd(card->host, &cmd, 5); 1942 } 1943 EXPORT_SYMBOL(mmc_set_blocklen); 1944 1945 static void mmc_hw_reset_for_init(struct mmc_host *host) 1946 { 1947 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1948 return; 1949 mmc_host_clk_hold(host); 1950 host->ops->hw_reset(host); 1951 mmc_host_clk_release(host); 1952 } 1953 1954 int mmc_can_reset(struct mmc_card *card) 1955 { 1956 u8 rst_n_function; 1957 1958 if (!mmc_card_mmc(card)) 1959 return 0; 1960 rst_n_function = card->ext_csd.rst_n_function; 1961 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 1962 return 0; 1963 return 1; 1964 } 1965 EXPORT_SYMBOL(mmc_can_reset); 1966 1967 static int mmc_do_hw_reset(struct mmc_host *host, int check) 1968 { 1969 struct mmc_card *card = host->card; 1970 1971 if (!host->bus_ops->power_restore) 1972 return -EOPNOTSUPP; 1973 1974 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1975 return -EOPNOTSUPP; 1976 1977 if (!card) 1978 return -EINVAL; 1979 1980 if (!mmc_can_reset(card)) 1981 return -EOPNOTSUPP; 1982 1983 mmc_host_clk_hold(host); 1984 mmc_set_clock(host, host->f_init); 1985 1986 host->ops->hw_reset(host); 1987 1988 /* If the reset has happened, then a status command will fail */ 1989 if (check) { 1990 struct mmc_command cmd = {0}; 1991 int err; 1992 1993 cmd.opcode = MMC_SEND_STATUS; 1994 if (!mmc_host_is_spi(card->host)) 1995 cmd.arg = card->rca << 16; 1996 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 1997 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1998 if (!err) { 1999 mmc_host_clk_release(host); 2000 return -ENOSYS; 2001 } 2002 } 2003 2004 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); 2005 if (mmc_host_is_spi(host)) { 2006 host->ios.chip_select = MMC_CS_HIGH; 2007 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 2008 } else { 2009 host->ios.chip_select = MMC_CS_DONTCARE; 2010 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 2011 } 2012 host->ios.bus_width = MMC_BUS_WIDTH_1; 2013 host->ios.timing = MMC_TIMING_LEGACY; 2014 mmc_set_ios(host); 2015 2016 mmc_host_clk_release(host); 2017 2018 return host->bus_ops->power_restore(host); 2019 } 2020 2021 int mmc_hw_reset(struct mmc_host *host) 2022 { 2023 return mmc_do_hw_reset(host, 0); 2024 } 2025 EXPORT_SYMBOL(mmc_hw_reset); 2026 2027 int mmc_hw_reset_check(struct mmc_host *host) 2028 { 2029 return mmc_do_hw_reset(host, 1); 2030 } 2031 EXPORT_SYMBOL(mmc_hw_reset_check); 2032 2033 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2034 { 2035 host->f_init = freq; 2036 2037 #ifdef CONFIG_MMC_DEBUG 2038 pr_info("%s: %s: trying to init card at %u Hz\n", 2039 mmc_hostname(host), __func__, host->f_init); 2040 #endif 2041 mmc_power_up(host); 2042 2043 /* 2044 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2045 * do a hardware reset if possible. 2046 */ 2047 mmc_hw_reset_for_init(host); 2048 2049 /* 2050 * sdio_reset sends CMD52 to reset card. Since we do not know 2051 * if the card is being re-initialized, just send it. CMD52 2052 * should be ignored by SD/eMMC cards. 2053 */ 2054 sdio_reset(host); 2055 mmc_go_idle(host); 2056 2057 mmc_send_if_cond(host, host->ocr_avail); 2058 2059 /* Order's important: probe SDIO, then SD, then MMC */ 2060 if (!mmc_attach_sdio(host)) 2061 return 0; 2062 if (!mmc_attach_sd(host)) 2063 return 0; 2064 if (!mmc_attach_mmc(host)) 2065 return 0; 2066 2067 mmc_power_off(host); 2068 return -EIO; 2069 } 2070 2071 int _mmc_detect_card_removed(struct mmc_host *host) 2072 { 2073 int ret; 2074 2075 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive) 2076 return 0; 2077 2078 if (!host->card || mmc_card_removed(host->card)) 2079 return 1; 2080 2081 ret = host->bus_ops->alive(host); 2082 if (ret) { 2083 mmc_card_set_removed(host->card); 2084 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2085 } 2086 2087 return ret; 2088 } 2089 2090 int mmc_detect_card_removed(struct mmc_host *host) 2091 { 2092 struct mmc_card *card = host->card; 2093 int ret; 2094 2095 WARN_ON(!host->claimed); 2096 2097 if (!card) 2098 return 1; 2099 2100 ret = mmc_card_removed(card); 2101 /* 2102 * The card will be considered unchanged unless we have been asked to 2103 * detect a change or host requires polling to provide card detection. 2104 */ 2105 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) && 2106 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR)) 2107 return ret; 2108 2109 host->detect_change = 0; 2110 if (!ret) { 2111 ret = _mmc_detect_card_removed(host); 2112 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) { 2113 /* 2114 * Schedule a detect work as soon as possible to let a 2115 * rescan handle the card removal. 2116 */ 2117 cancel_delayed_work(&host->detect); 2118 mmc_detect_change(host, 0); 2119 } 2120 } 2121 2122 return ret; 2123 } 2124 EXPORT_SYMBOL(mmc_detect_card_removed); 2125 2126 void mmc_rescan(struct work_struct *work) 2127 { 2128 struct mmc_host *host = 2129 container_of(work, struct mmc_host, detect.work); 2130 int i; 2131 2132 if (host->rescan_disable) 2133 return; 2134 2135 /* If there is a non-removable card registered, only scan once */ 2136 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2137 return; 2138 host->rescan_entered = 1; 2139 2140 mmc_bus_get(host); 2141 2142 /* 2143 * if there is a _removable_ card registered, check whether it is 2144 * still present 2145 */ 2146 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead 2147 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2148 host->bus_ops->detect(host); 2149 2150 host->detect_change = 0; 2151 2152 /* 2153 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2154 * the card is no longer present. 2155 */ 2156 mmc_bus_put(host); 2157 mmc_bus_get(host); 2158 2159 /* if there still is a card present, stop here */ 2160 if (host->bus_ops != NULL) { 2161 mmc_bus_put(host); 2162 goto out; 2163 } 2164 2165 /* 2166 * Only we can add a new handler, so it's safe to 2167 * release the lock here. 2168 */ 2169 mmc_bus_put(host); 2170 2171 if (host->ops->get_cd && host->ops->get_cd(host) == 0) { 2172 mmc_claim_host(host); 2173 mmc_power_off(host); 2174 mmc_release_host(host); 2175 goto out; 2176 } 2177 2178 mmc_claim_host(host); 2179 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2180 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2181 break; 2182 if (freqs[i] <= host->f_min) 2183 break; 2184 } 2185 mmc_release_host(host); 2186 2187 out: 2188 if (host->caps & MMC_CAP_NEEDS_POLL) 2189 mmc_schedule_delayed_work(&host->detect, HZ); 2190 } 2191 2192 void mmc_start_host(struct mmc_host *host) 2193 { 2194 host->f_init = max(freqs[0], host->f_min); 2195 host->rescan_disable = 0; 2196 mmc_power_up(host); 2197 mmc_detect_change(host, 0); 2198 } 2199 2200 void mmc_stop_host(struct mmc_host *host) 2201 { 2202 #ifdef CONFIG_MMC_DEBUG 2203 unsigned long flags; 2204 spin_lock_irqsave(&host->lock, flags); 2205 host->removed = 1; 2206 spin_unlock_irqrestore(&host->lock, flags); 2207 #endif 2208 2209 host->rescan_disable = 1; 2210 cancel_delayed_work_sync(&host->detect); 2211 mmc_flush_scheduled_work(); 2212 2213 /* clear pm flags now and let card drivers set them as needed */ 2214 host->pm_flags = 0; 2215 2216 mmc_bus_get(host); 2217 if (host->bus_ops && !host->bus_dead) { 2218 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2219 if (host->bus_ops->remove) 2220 host->bus_ops->remove(host); 2221 2222 mmc_claim_host(host); 2223 mmc_detach_bus(host); 2224 mmc_power_off(host); 2225 mmc_release_host(host); 2226 mmc_bus_put(host); 2227 return; 2228 } 2229 mmc_bus_put(host); 2230 2231 BUG_ON(host->card); 2232 2233 mmc_power_off(host); 2234 } 2235 2236 int mmc_power_save_host(struct mmc_host *host) 2237 { 2238 int ret = 0; 2239 2240 #ifdef CONFIG_MMC_DEBUG 2241 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2242 #endif 2243 2244 mmc_bus_get(host); 2245 2246 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2247 mmc_bus_put(host); 2248 return -EINVAL; 2249 } 2250 2251 if (host->bus_ops->power_save) 2252 ret = host->bus_ops->power_save(host); 2253 2254 mmc_bus_put(host); 2255 2256 mmc_power_off(host); 2257 2258 return ret; 2259 } 2260 EXPORT_SYMBOL(mmc_power_save_host); 2261 2262 int mmc_power_restore_host(struct mmc_host *host) 2263 { 2264 int ret; 2265 2266 #ifdef CONFIG_MMC_DEBUG 2267 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2268 #endif 2269 2270 mmc_bus_get(host); 2271 2272 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { 2273 mmc_bus_put(host); 2274 return -EINVAL; 2275 } 2276 2277 mmc_power_up(host); 2278 ret = host->bus_ops->power_restore(host); 2279 2280 mmc_bus_put(host); 2281 2282 return ret; 2283 } 2284 EXPORT_SYMBOL(mmc_power_restore_host); 2285 2286 int mmc_card_awake(struct mmc_host *host) 2287 { 2288 int err = -ENOSYS; 2289 2290 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) 2291 return 0; 2292 2293 mmc_bus_get(host); 2294 2295 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) 2296 err = host->bus_ops->awake(host); 2297 2298 mmc_bus_put(host); 2299 2300 return err; 2301 } 2302 EXPORT_SYMBOL(mmc_card_awake); 2303 2304 int mmc_card_sleep(struct mmc_host *host) 2305 { 2306 int err = -ENOSYS; 2307 2308 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) 2309 return 0; 2310 2311 mmc_bus_get(host); 2312 2313 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep) 2314 err = host->bus_ops->sleep(host); 2315 2316 mmc_bus_put(host); 2317 2318 return err; 2319 } 2320 EXPORT_SYMBOL(mmc_card_sleep); 2321 2322 int mmc_card_can_sleep(struct mmc_host *host) 2323 { 2324 struct mmc_card *card = host->card; 2325 2326 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) 2327 return 1; 2328 return 0; 2329 } 2330 EXPORT_SYMBOL(mmc_card_can_sleep); 2331 2332 /* 2333 * Flush the cache to the non-volatile storage. 2334 */ 2335 int mmc_flush_cache(struct mmc_card *card) 2336 { 2337 struct mmc_host *host = card->host; 2338 int err = 0; 2339 2340 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) 2341 return err; 2342 2343 if (mmc_card_mmc(card) && 2344 (card->ext_csd.cache_size > 0) && 2345 (card->ext_csd.cache_ctrl & 1)) { 2346 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2347 EXT_CSD_FLUSH_CACHE, 1, 0); 2348 if (err) 2349 pr_err("%s: cache flush error %d\n", 2350 mmc_hostname(card->host), err); 2351 } 2352 2353 return err; 2354 } 2355 EXPORT_SYMBOL(mmc_flush_cache); 2356 2357 /* 2358 * Turn the cache ON/OFF. 2359 * Turning the cache OFF shall trigger flushing of the data 2360 * to the non-volatile storage. 2361 */ 2362 int mmc_cache_ctrl(struct mmc_host *host, u8 enable) 2363 { 2364 struct mmc_card *card = host->card; 2365 unsigned int timeout; 2366 int err = 0; 2367 2368 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) || 2369 mmc_card_is_removable(host)) 2370 return err; 2371 2372 mmc_claim_host(host); 2373 if (card && mmc_card_mmc(card) && 2374 (card->ext_csd.cache_size > 0)) { 2375 enable = !!enable; 2376 2377 if (card->ext_csd.cache_ctrl ^ enable) { 2378 timeout = enable ? card->ext_csd.generic_cmd6_time : 0; 2379 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2380 EXT_CSD_CACHE_CTRL, enable, timeout); 2381 if (err) 2382 pr_err("%s: cache %s error %d\n", 2383 mmc_hostname(card->host), 2384 enable ? "on" : "off", 2385 err); 2386 else 2387 card->ext_csd.cache_ctrl = enable; 2388 } 2389 } 2390 mmc_release_host(host); 2391 2392 return err; 2393 } 2394 EXPORT_SYMBOL(mmc_cache_ctrl); 2395 2396 #ifdef CONFIG_PM 2397 2398 /** 2399 * mmc_suspend_host - suspend a host 2400 * @host: mmc host 2401 */ 2402 int mmc_suspend_host(struct mmc_host *host) 2403 { 2404 int err = 0; 2405 2406 cancel_delayed_work(&host->detect); 2407 mmc_flush_scheduled_work(); 2408 2409 err = mmc_cache_ctrl(host, 0); 2410 if (err) 2411 goto out; 2412 2413 mmc_bus_get(host); 2414 if (host->bus_ops && !host->bus_dead) { 2415 if (host->bus_ops->suspend) { 2416 if (mmc_card_doing_bkops(host->card)) { 2417 err = mmc_stop_bkops(host->card); 2418 if (err) 2419 goto out; 2420 } 2421 err = host->bus_ops->suspend(host); 2422 } 2423 2424 if (err == -ENOSYS || !host->bus_ops->resume) { 2425 /* 2426 * We simply "remove" the card in this case. 2427 * It will be redetected on resume. (Calling 2428 * bus_ops->remove() with a claimed host can 2429 * deadlock.) 2430 */ 2431 if (host->bus_ops->remove) 2432 host->bus_ops->remove(host); 2433 mmc_claim_host(host); 2434 mmc_detach_bus(host); 2435 mmc_power_off(host); 2436 mmc_release_host(host); 2437 host->pm_flags = 0; 2438 err = 0; 2439 } 2440 } 2441 mmc_bus_put(host); 2442 2443 if (!err && !mmc_card_keep_power(host)) 2444 mmc_power_off(host); 2445 2446 out: 2447 return err; 2448 } 2449 2450 EXPORT_SYMBOL(mmc_suspend_host); 2451 2452 /** 2453 * mmc_resume_host - resume a previously suspended host 2454 * @host: mmc host 2455 */ 2456 int mmc_resume_host(struct mmc_host *host) 2457 { 2458 int err = 0; 2459 2460 mmc_bus_get(host); 2461 if (host->bus_ops && !host->bus_dead) { 2462 if (!mmc_card_keep_power(host)) { 2463 mmc_power_up(host); 2464 mmc_select_voltage(host, host->ocr); 2465 /* 2466 * Tell runtime PM core we just powered up the card, 2467 * since it still believes the card is powered off. 2468 * Note that currently runtime PM is only enabled 2469 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD 2470 */ 2471 if (mmc_card_sdio(host->card) && 2472 (host->caps & MMC_CAP_POWER_OFF_CARD)) { 2473 pm_runtime_disable(&host->card->dev); 2474 pm_runtime_set_active(&host->card->dev); 2475 pm_runtime_enable(&host->card->dev); 2476 } 2477 } 2478 BUG_ON(!host->bus_ops->resume); 2479 err = host->bus_ops->resume(host); 2480 if (err) { 2481 pr_warning("%s: error %d during resume " 2482 "(card was removed?)\n", 2483 mmc_hostname(host), err); 2484 err = 0; 2485 } 2486 } 2487 host->pm_flags &= ~MMC_PM_KEEP_POWER; 2488 mmc_bus_put(host); 2489 2490 return err; 2491 } 2492 EXPORT_SYMBOL(mmc_resume_host); 2493 2494 /* Do the card removal on suspend if card is assumed removeable 2495 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2496 to sync the card. 2497 */ 2498 int mmc_pm_notify(struct notifier_block *notify_block, 2499 unsigned long mode, void *unused) 2500 { 2501 struct mmc_host *host = container_of( 2502 notify_block, struct mmc_host, pm_notify); 2503 unsigned long flags; 2504 int err = 0; 2505 2506 switch (mode) { 2507 case PM_HIBERNATION_PREPARE: 2508 case PM_SUSPEND_PREPARE: 2509 if (host->card && mmc_card_mmc(host->card) && 2510 mmc_card_doing_bkops(host->card)) { 2511 err = mmc_stop_bkops(host->card); 2512 if (err) { 2513 pr_err("%s: didn't stop bkops\n", 2514 mmc_hostname(host)); 2515 return err; 2516 } 2517 mmc_card_clr_doing_bkops(host->card); 2518 } 2519 2520 spin_lock_irqsave(&host->lock, flags); 2521 host->rescan_disable = 1; 2522 spin_unlock_irqrestore(&host->lock, flags); 2523 cancel_delayed_work_sync(&host->detect); 2524 2525 if (!host->bus_ops || host->bus_ops->suspend) 2526 break; 2527 2528 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2529 if (host->bus_ops->remove) 2530 host->bus_ops->remove(host); 2531 2532 mmc_claim_host(host); 2533 mmc_detach_bus(host); 2534 mmc_power_off(host); 2535 mmc_release_host(host); 2536 host->pm_flags = 0; 2537 break; 2538 2539 case PM_POST_SUSPEND: 2540 case PM_POST_HIBERNATION: 2541 case PM_POST_RESTORE: 2542 2543 spin_lock_irqsave(&host->lock, flags); 2544 host->rescan_disable = 0; 2545 spin_unlock_irqrestore(&host->lock, flags); 2546 mmc_detect_change(host, 0); 2547 2548 } 2549 2550 return 0; 2551 } 2552 #endif 2553 2554 static int __init mmc_init(void) 2555 { 2556 int ret; 2557 2558 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2559 if (!workqueue) 2560 return -ENOMEM; 2561 2562 ret = mmc_register_bus(); 2563 if (ret) 2564 goto destroy_workqueue; 2565 2566 ret = mmc_register_host_class(); 2567 if (ret) 2568 goto unregister_bus; 2569 2570 ret = sdio_register_bus(); 2571 if (ret) 2572 goto unregister_host_class; 2573 2574 return 0; 2575 2576 unregister_host_class: 2577 mmc_unregister_host_class(); 2578 unregister_bus: 2579 mmc_unregister_bus(); 2580 destroy_workqueue: 2581 destroy_workqueue(workqueue); 2582 2583 return ret; 2584 } 2585 2586 static void __exit mmc_exit(void) 2587 { 2588 sdio_unregister_bus(); 2589 mmc_unregister_host_class(); 2590 mmc_unregister_bus(); 2591 destroy_workqueue(workqueue); 2592 } 2593 2594 subsys_initcall(mmc_init); 2595 module_exit(mmc_exit); 2596 2597 MODULE_LICENSE("GPL"); 2598