xref: /linux/drivers/mmc/core/core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47 
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51 
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
54 
55 /*
56  * Background operations can take a long time, depending on the housekeeping
57  * operations the card has to perform.
58  */
59 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
60 
61 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
62 
63 /*
64  * Enabling software CRCs on the data blocks can be a significant (30%)
65  * performance cost, and for other reasons may not always be desired.
66  * So we allow it it to be disabled.
67  */
68 bool use_spi_crc = 1;
69 module_param(use_spi_crc, bool, 0);
70 
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	/*
75 	 * We use the system_freezable_wq, because of two reasons.
76 	 * First, it allows several works (not the same work item) to be
77 	 * executed simultaneously. Second, the queue becomes frozen when
78 	 * userspace becomes frozen during system PM.
79 	 */
80 	return queue_delayed_work(system_freezable_wq, work, delay);
81 }
82 
83 #ifdef CONFIG_FAIL_MMC_REQUEST
84 
85 /*
86  * Internal function. Inject random data errors.
87  * If mmc_data is NULL no errors are injected.
88  */
89 static void mmc_should_fail_request(struct mmc_host *host,
90 				    struct mmc_request *mrq)
91 {
92 	struct mmc_command *cmd = mrq->cmd;
93 	struct mmc_data *data = mrq->data;
94 	static const int data_errors[] = {
95 		-ETIMEDOUT,
96 		-EILSEQ,
97 		-EIO,
98 	};
99 
100 	if (!data)
101 		return;
102 
103 	if (cmd->error || data->error ||
104 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
105 		return;
106 
107 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
108 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
109 }
110 
111 #else /* CONFIG_FAIL_MMC_REQUEST */
112 
113 static inline void mmc_should_fail_request(struct mmc_host *host,
114 					   struct mmc_request *mrq)
115 {
116 }
117 
118 #endif /* CONFIG_FAIL_MMC_REQUEST */
119 
120 /**
121  *	mmc_request_done - finish processing an MMC request
122  *	@host: MMC host which completed request
123  *	@mrq: MMC request which request
124  *
125  *	MMC drivers should call this function when they have completed
126  *	their processing of a request.
127  */
128 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
129 {
130 	struct mmc_command *cmd = mrq->cmd;
131 	int err = cmd->error;
132 
133 	/* Flag re-tuning needed on CRC errors */
134 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
135 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
136 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
137 	    (mrq->data && mrq->data->error == -EILSEQ) ||
138 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
139 		mmc_retune_needed(host);
140 
141 	if (err && cmd->retries && mmc_host_is_spi(host)) {
142 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
143 			cmd->retries = 0;
144 	}
145 
146 	trace_mmc_request_done(host, mrq);
147 
148 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
149 		/*
150 		 * Request starter must handle retries - see
151 		 * mmc_wait_for_req_done().
152 		 */
153 		if (mrq->done)
154 			mrq->done(mrq);
155 	} else {
156 		mmc_should_fail_request(host, mrq);
157 
158 		led_trigger_event(host->led, LED_OFF);
159 
160 		if (mrq->sbc) {
161 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
162 				mmc_hostname(host), mrq->sbc->opcode,
163 				mrq->sbc->error,
164 				mrq->sbc->resp[0], mrq->sbc->resp[1],
165 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
166 		}
167 
168 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
169 			mmc_hostname(host), cmd->opcode, err,
170 			cmd->resp[0], cmd->resp[1],
171 			cmd->resp[2], cmd->resp[3]);
172 
173 		if (mrq->data) {
174 			pr_debug("%s:     %d bytes transferred: %d\n",
175 				mmc_hostname(host),
176 				mrq->data->bytes_xfered, mrq->data->error);
177 		}
178 
179 		if (mrq->stop) {
180 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
181 				mmc_hostname(host), mrq->stop->opcode,
182 				mrq->stop->error,
183 				mrq->stop->resp[0], mrq->stop->resp[1],
184 				mrq->stop->resp[2], mrq->stop->resp[3]);
185 		}
186 
187 		if (mrq->done)
188 			mrq->done(mrq);
189 	}
190 }
191 
192 EXPORT_SYMBOL(mmc_request_done);
193 
194 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
195 {
196 	int err;
197 
198 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
199 	err = mmc_retune(host);
200 	if (err) {
201 		mrq->cmd->error = err;
202 		mmc_request_done(host, mrq);
203 		return;
204 	}
205 
206 	/*
207 	 * For sdio rw commands we must wait for card busy otherwise some
208 	 * sdio devices won't work properly.
209 	 */
210 	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
211 		int tries = 500; /* Wait aprox 500ms at maximum */
212 
213 		while (host->ops->card_busy(host) && --tries)
214 			mmc_delay(1);
215 
216 		if (tries == 0) {
217 			mrq->cmd->error = -EBUSY;
218 			mmc_request_done(host, mrq);
219 			return;
220 		}
221 	}
222 
223 	trace_mmc_request_start(host, mrq);
224 
225 	host->ops->request(host, mrq);
226 }
227 
228 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
229 {
230 #ifdef CONFIG_MMC_DEBUG
231 	unsigned int i, sz;
232 	struct scatterlist *sg;
233 #endif
234 	mmc_retune_hold(host);
235 
236 	if (mmc_card_removed(host->card))
237 		return -ENOMEDIUM;
238 
239 	if (mrq->sbc) {
240 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
241 			 mmc_hostname(host), mrq->sbc->opcode,
242 			 mrq->sbc->arg, mrq->sbc->flags);
243 	}
244 
245 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
246 		 mmc_hostname(host), mrq->cmd->opcode,
247 		 mrq->cmd->arg, mrq->cmd->flags);
248 
249 	if (mrq->data) {
250 		pr_debug("%s:     blksz %d blocks %d flags %08x "
251 			"tsac %d ms nsac %d\n",
252 			mmc_hostname(host), mrq->data->blksz,
253 			mrq->data->blocks, mrq->data->flags,
254 			mrq->data->timeout_ns / 1000000,
255 			mrq->data->timeout_clks);
256 	}
257 
258 	if (mrq->stop) {
259 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
260 			 mmc_hostname(host), mrq->stop->opcode,
261 			 mrq->stop->arg, mrq->stop->flags);
262 	}
263 
264 	WARN_ON(!host->claimed);
265 
266 	mrq->cmd->error = 0;
267 	mrq->cmd->mrq = mrq;
268 	if (mrq->sbc) {
269 		mrq->sbc->error = 0;
270 		mrq->sbc->mrq = mrq;
271 	}
272 	if (mrq->data) {
273 		BUG_ON(mrq->data->blksz > host->max_blk_size);
274 		BUG_ON(mrq->data->blocks > host->max_blk_count);
275 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
276 			host->max_req_size);
277 
278 #ifdef CONFIG_MMC_DEBUG
279 		sz = 0;
280 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
281 			sz += sg->length;
282 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
283 #endif
284 
285 		mrq->cmd->data = mrq->data;
286 		mrq->data->error = 0;
287 		mrq->data->mrq = mrq;
288 		if (mrq->stop) {
289 			mrq->data->stop = mrq->stop;
290 			mrq->stop->error = 0;
291 			mrq->stop->mrq = mrq;
292 		}
293 	}
294 	led_trigger_event(host->led, LED_FULL);
295 	__mmc_start_request(host, mrq);
296 
297 	return 0;
298 }
299 
300 /**
301  *	mmc_start_bkops - start BKOPS for supported cards
302  *	@card: MMC card to start BKOPS
303  *	@form_exception: A flag to indicate if this function was
304  *			 called due to an exception raised by the card
305  *
306  *	Start background operations whenever requested.
307  *	When the urgent BKOPS bit is set in a R1 command response
308  *	then background operations should be started immediately.
309 */
310 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
311 {
312 	int err;
313 	int timeout;
314 	bool use_busy_signal;
315 
316 	BUG_ON(!card);
317 
318 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
319 		return;
320 
321 	err = mmc_read_bkops_status(card);
322 	if (err) {
323 		pr_err("%s: Failed to read bkops status: %d\n",
324 		       mmc_hostname(card->host), err);
325 		return;
326 	}
327 
328 	if (!card->ext_csd.raw_bkops_status)
329 		return;
330 
331 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
332 	    from_exception)
333 		return;
334 
335 	mmc_claim_host(card->host);
336 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
337 		timeout = MMC_BKOPS_MAX_TIMEOUT;
338 		use_busy_signal = true;
339 	} else {
340 		timeout = 0;
341 		use_busy_signal = false;
342 	}
343 
344 	mmc_retune_hold(card->host);
345 
346 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
347 			EXT_CSD_BKOPS_START, 1, timeout,
348 			use_busy_signal, true, false);
349 	if (err) {
350 		pr_warn("%s: Error %d starting bkops\n",
351 			mmc_hostname(card->host), err);
352 		mmc_retune_release(card->host);
353 		goto out;
354 	}
355 
356 	/*
357 	 * For urgent bkops status (LEVEL_2 and more)
358 	 * bkops executed synchronously, otherwise
359 	 * the operation is in progress
360 	 */
361 	if (!use_busy_signal)
362 		mmc_card_set_doing_bkops(card);
363 	else
364 		mmc_retune_release(card->host);
365 out:
366 	mmc_release_host(card->host);
367 }
368 EXPORT_SYMBOL(mmc_start_bkops);
369 
370 /*
371  * mmc_wait_data_done() - done callback for data request
372  * @mrq: done data request
373  *
374  * Wakes up mmc context, passed as a callback to host controller driver
375  */
376 static void mmc_wait_data_done(struct mmc_request *mrq)
377 {
378 	struct mmc_context_info *context_info = &mrq->host->context_info;
379 
380 	context_info->is_done_rcv = true;
381 	wake_up_interruptible(&context_info->wait);
382 }
383 
384 static void mmc_wait_done(struct mmc_request *mrq)
385 {
386 	complete(&mrq->completion);
387 }
388 
389 /*
390  *__mmc_start_data_req() - starts data request
391  * @host: MMC host to start the request
392  * @mrq: data request to start
393  *
394  * Sets the done callback to be called when request is completed by the card.
395  * Starts data mmc request execution
396  */
397 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 	int err;
400 
401 	mrq->done = mmc_wait_data_done;
402 	mrq->host = host;
403 
404 	err = mmc_start_request(host, mrq);
405 	if (err) {
406 		mrq->cmd->error = err;
407 		mmc_wait_data_done(mrq);
408 	}
409 
410 	return err;
411 }
412 
413 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
414 {
415 	int err;
416 
417 	init_completion(&mrq->completion);
418 	mrq->done = mmc_wait_done;
419 
420 	err = mmc_start_request(host, mrq);
421 	if (err) {
422 		mrq->cmd->error = err;
423 		complete(&mrq->completion);
424 	}
425 
426 	return err;
427 }
428 
429 /*
430  * mmc_wait_for_data_req_done() - wait for request completed
431  * @host: MMC host to prepare the command.
432  * @mrq: MMC request to wait for
433  *
434  * Blocks MMC context till host controller will ack end of data request
435  * execution or new request notification arrives from the block layer.
436  * Handles command retries.
437  *
438  * Returns enum mmc_blk_status after checking errors.
439  */
440 static int mmc_wait_for_data_req_done(struct mmc_host *host,
441 				      struct mmc_request *mrq,
442 				      struct mmc_async_req *next_req)
443 {
444 	struct mmc_command *cmd;
445 	struct mmc_context_info *context_info = &host->context_info;
446 	int err;
447 	unsigned long flags;
448 
449 	while (1) {
450 		wait_event_interruptible(context_info->wait,
451 				(context_info->is_done_rcv ||
452 				 context_info->is_new_req));
453 		spin_lock_irqsave(&context_info->lock, flags);
454 		context_info->is_waiting_last_req = false;
455 		spin_unlock_irqrestore(&context_info->lock, flags);
456 		if (context_info->is_done_rcv) {
457 			context_info->is_done_rcv = false;
458 			context_info->is_new_req = false;
459 			cmd = mrq->cmd;
460 
461 			if (!cmd->error || !cmd->retries ||
462 			    mmc_card_removed(host->card)) {
463 				err = host->areq->err_check(host->card,
464 							    host->areq);
465 				break; /* return err */
466 			} else {
467 				mmc_retune_recheck(host);
468 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
469 					mmc_hostname(host),
470 					cmd->opcode, cmd->error);
471 				cmd->retries--;
472 				cmd->error = 0;
473 				__mmc_start_request(host, mrq);
474 				continue; /* wait for done/new event again */
475 			}
476 		} else if (context_info->is_new_req) {
477 			context_info->is_new_req = false;
478 			if (!next_req)
479 				return MMC_BLK_NEW_REQUEST;
480 		}
481 	}
482 	mmc_retune_release(host);
483 	return err;
484 }
485 
486 static void mmc_wait_for_req_done(struct mmc_host *host,
487 				  struct mmc_request *mrq)
488 {
489 	struct mmc_command *cmd;
490 
491 	while (1) {
492 		wait_for_completion(&mrq->completion);
493 
494 		cmd = mrq->cmd;
495 
496 		/*
497 		 * If host has timed out waiting for the sanitize
498 		 * to complete, card might be still in programming state
499 		 * so let's try to bring the card out of programming
500 		 * state.
501 		 */
502 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
503 			if (!mmc_interrupt_hpi(host->card)) {
504 				pr_warn("%s: %s: Interrupted sanitize\n",
505 					mmc_hostname(host), __func__);
506 				cmd->error = 0;
507 				break;
508 			} else {
509 				pr_err("%s: %s: Failed to interrupt sanitize\n",
510 				       mmc_hostname(host), __func__);
511 			}
512 		}
513 		if (!cmd->error || !cmd->retries ||
514 		    mmc_card_removed(host->card))
515 			break;
516 
517 		mmc_retune_recheck(host);
518 
519 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
520 			 mmc_hostname(host), cmd->opcode, cmd->error);
521 		cmd->retries--;
522 		cmd->error = 0;
523 		__mmc_start_request(host, mrq);
524 	}
525 
526 	mmc_retune_release(host);
527 }
528 
529 /**
530  *	mmc_pre_req - Prepare for a new request
531  *	@host: MMC host to prepare command
532  *	@mrq: MMC request to prepare for
533  *	@is_first_req: true if there is no previous started request
534  *                     that may run in parellel to this call, otherwise false
535  *
536  *	mmc_pre_req() is called in prior to mmc_start_req() to let
537  *	host prepare for the new request. Preparation of a request may be
538  *	performed while another request is running on the host.
539  */
540 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
541 		 bool is_first_req)
542 {
543 	if (host->ops->pre_req)
544 		host->ops->pre_req(host, mrq, is_first_req);
545 }
546 
547 /**
548  *	mmc_post_req - Post process a completed request
549  *	@host: MMC host to post process command
550  *	@mrq: MMC request to post process for
551  *	@err: Error, if non zero, clean up any resources made in pre_req
552  *
553  *	Let the host post process a completed request. Post processing of
554  *	a request may be performed while another reuqest is running.
555  */
556 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
557 			 int err)
558 {
559 	if (host->ops->post_req)
560 		host->ops->post_req(host, mrq, err);
561 }
562 
563 /**
564  *	mmc_start_req - start a non-blocking request
565  *	@host: MMC host to start command
566  *	@areq: async request to start
567  *	@error: out parameter returns 0 for success, otherwise non zero
568  *
569  *	Start a new MMC custom command request for a host.
570  *	If there is on ongoing async request wait for completion
571  *	of that request and start the new one and return.
572  *	Does not wait for the new request to complete.
573  *
574  *      Returns the completed request, NULL in case of none completed.
575  *	Wait for the an ongoing request (previoulsy started) to complete and
576  *	return the completed request. If there is no ongoing request, NULL
577  *	is returned without waiting. NULL is not an error condition.
578  */
579 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
580 				    struct mmc_async_req *areq, int *error)
581 {
582 	int err = 0;
583 	int start_err = 0;
584 	struct mmc_async_req *data = host->areq;
585 
586 	/* Prepare a new request */
587 	if (areq)
588 		mmc_pre_req(host, areq->mrq, !host->areq);
589 
590 	if (host->areq) {
591 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
592 		if (err == MMC_BLK_NEW_REQUEST) {
593 			if (error)
594 				*error = err;
595 			/*
596 			 * The previous request was not completed,
597 			 * nothing to return
598 			 */
599 			return NULL;
600 		}
601 		/*
602 		 * Check BKOPS urgency for each R1 response
603 		 */
604 		if (host->card && mmc_card_mmc(host->card) &&
605 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
606 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
607 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
608 
609 			/* Cancel the prepared request */
610 			if (areq)
611 				mmc_post_req(host, areq->mrq, -EINVAL);
612 
613 			mmc_start_bkops(host->card, true);
614 
615 			/* prepare the request again */
616 			if (areq)
617 				mmc_pre_req(host, areq->mrq, !host->areq);
618 		}
619 	}
620 
621 	if (!err && areq)
622 		start_err = __mmc_start_data_req(host, areq->mrq);
623 
624 	if (host->areq)
625 		mmc_post_req(host, host->areq->mrq, 0);
626 
627 	 /* Cancel a prepared request if it was not started. */
628 	if ((err || start_err) && areq)
629 		mmc_post_req(host, areq->mrq, -EINVAL);
630 
631 	if (err)
632 		host->areq = NULL;
633 	else
634 		host->areq = areq;
635 
636 	if (error)
637 		*error = err;
638 	return data;
639 }
640 EXPORT_SYMBOL(mmc_start_req);
641 
642 /**
643  *	mmc_wait_for_req - start a request and wait for completion
644  *	@host: MMC host to start command
645  *	@mrq: MMC request to start
646  *
647  *	Start a new MMC custom command request for a host, and wait
648  *	for the command to complete. Does not attempt to parse the
649  *	response.
650  */
651 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
652 {
653 	__mmc_start_req(host, mrq);
654 	mmc_wait_for_req_done(host, mrq);
655 }
656 EXPORT_SYMBOL(mmc_wait_for_req);
657 
658 /**
659  *	mmc_interrupt_hpi - Issue for High priority Interrupt
660  *	@card: the MMC card associated with the HPI transfer
661  *
662  *	Issued High Priority Interrupt, and check for card status
663  *	until out-of prg-state.
664  */
665 int mmc_interrupt_hpi(struct mmc_card *card)
666 {
667 	int err;
668 	u32 status;
669 	unsigned long prg_wait;
670 
671 	BUG_ON(!card);
672 
673 	if (!card->ext_csd.hpi_en) {
674 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
675 		return 1;
676 	}
677 
678 	mmc_claim_host(card->host);
679 	err = mmc_send_status(card, &status);
680 	if (err) {
681 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
682 		goto out;
683 	}
684 
685 	switch (R1_CURRENT_STATE(status)) {
686 	case R1_STATE_IDLE:
687 	case R1_STATE_READY:
688 	case R1_STATE_STBY:
689 	case R1_STATE_TRAN:
690 		/*
691 		 * In idle and transfer states, HPI is not needed and the caller
692 		 * can issue the next intended command immediately
693 		 */
694 		goto out;
695 	case R1_STATE_PRG:
696 		break;
697 	default:
698 		/* In all other states, it's illegal to issue HPI */
699 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
700 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
701 		err = -EINVAL;
702 		goto out;
703 	}
704 
705 	err = mmc_send_hpi_cmd(card, &status);
706 	if (err)
707 		goto out;
708 
709 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
710 	do {
711 		err = mmc_send_status(card, &status);
712 
713 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
714 			break;
715 		if (time_after(jiffies, prg_wait))
716 			err = -ETIMEDOUT;
717 	} while (!err);
718 
719 out:
720 	mmc_release_host(card->host);
721 	return err;
722 }
723 EXPORT_SYMBOL(mmc_interrupt_hpi);
724 
725 /**
726  *	mmc_wait_for_cmd - start a command and wait for completion
727  *	@host: MMC host to start command
728  *	@cmd: MMC command to start
729  *	@retries: maximum number of retries
730  *
731  *	Start a new MMC command for a host, and wait for the command
732  *	to complete.  Return any error that occurred while the command
733  *	was executing.  Do not attempt to parse the response.
734  */
735 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
736 {
737 	struct mmc_request mrq = {NULL};
738 
739 	WARN_ON(!host->claimed);
740 
741 	memset(cmd->resp, 0, sizeof(cmd->resp));
742 	cmd->retries = retries;
743 
744 	mrq.cmd = cmd;
745 	cmd->data = NULL;
746 
747 	mmc_wait_for_req(host, &mrq);
748 
749 	return cmd->error;
750 }
751 
752 EXPORT_SYMBOL(mmc_wait_for_cmd);
753 
754 /**
755  *	mmc_stop_bkops - stop ongoing BKOPS
756  *	@card: MMC card to check BKOPS
757  *
758  *	Send HPI command to stop ongoing background operations to
759  *	allow rapid servicing of foreground operations, e.g. read/
760  *	writes. Wait until the card comes out of the programming state
761  *	to avoid errors in servicing read/write requests.
762  */
763 int mmc_stop_bkops(struct mmc_card *card)
764 {
765 	int err = 0;
766 
767 	BUG_ON(!card);
768 	err = mmc_interrupt_hpi(card);
769 
770 	/*
771 	 * If err is EINVAL, we can't issue an HPI.
772 	 * It should complete the BKOPS.
773 	 */
774 	if (!err || (err == -EINVAL)) {
775 		mmc_card_clr_doing_bkops(card);
776 		mmc_retune_release(card->host);
777 		err = 0;
778 	}
779 
780 	return err;
781 }
782 EXPORT_SYMBOL(mmc_stop_bkops);
783 
784 int mmc_read_bkops_status(struct mmc_card *card)
785 {
786 	int err;
787 	u8 *ext_csd;
788 
789 	mmc_claim_host(card->host);
790 	err = mmc_get_ext_csd(card, &ext_csd);
791 	mmc_release_host(card->host);
792 	if (err)
793 		return err;
794 
795 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
796 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
797 	kfree(ext_csd);
798 	return 0;
799 }
800 EXPORT_SYMBOL(mmc_read_bkops_status);
801 
802 /**
803  *	mmc_set_data_timeout - set the timeout for a data command
804  *	@data: data phase for command
805  *	@card: the MMC card associated with the data transfer
806  *
807  *	Computes the data timeout parameters according to the
808  *	correct algorithm given the card type.
809  */
810 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
811 {
812 	unsigned int mult;
813 
814 	/*
815 	 * SDIO cards only define an upper 1 s limit on access.
816 	 */
817 	if (mmc_card_sdio(card)) {
818 		data->timeout_ns = 1000000000;
819 		data->timeout_clks = 0;
820 		return;
821 	}
822 
823 	/*
824 	 * SD cards use a 100 multiplier rather than 10
825 	 */
826 	mult = mmc_card_sd(card) ? 100 : 10;
827 
828 	/*
829 	 * Scale up the multiplier (and therefore the timeout) by
830 	 * the r2w factor for writes.
831 	 */
832 	if (data->flags & MMC_DATA_WRITE)
833 		mult <<= card->csd.r2w_factor;
834 
835 	data->timeout_ns = card->csd.tacc_ns * mult;
836 	data->timeout_clks = card->csd.tacc_clks * mult;
837 
838 	/*
839 	 * SD cards also have an upper limit on the timeout.
840 	 */
841 	if (mmc_card_sd(card)) {
842 		unsigned int timeout_us, limit_us;
843 
844 		timeout_us = data->timeout_ns / 1000;
845 		if (card->host->ios.clock)
846 			timeout_us += data->timeout_clks * 1000 /
847 				(card->host->ios.clock / 1000);
848 
849 		if (data->flags & MMC_DATA_WRITE)
850 			/*
851 			 * The MMC spec "It is strongly recommended
852 			 * for hosts to implement more than 500ms
853 			 * timeout value even if the card indicates
854 			 * the 250ms maximum busy length."  Even the
855 			 * previous value of 300ms is known to be
856 			 * insufficient for some cards.
857 			 */
858 			limit_us = 3000000;
859 		else
860 			limit_us = 100000;
861 
862 		/*
863 		 * SDHC cards always use these fixed values.
864 		 */
865 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
866 			data->timeout_ns = limit_us * 1000;
867 			data->timeout_clks = 0;
868 		}
869 
870 		/* assign limit value if invalid */
871 		if (timeout_us == 0)
872 			data->timeout_ns = limit_us * 1000;
873 	}
874 
875 	/*
876 	 * Some cards require longer data read timeout than indicated in CSD.
877 	 * Address this by setting the read timeout to a "reasonably high"
878 	 * value. For the cards tested, 600ms has proven enough. If necessary,
879 	 * this value can be increased if other problematic cards require this.
880 	 */
881 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
882 		data->timeout_ns = 600000000;
883 		data->timeout_clks = 0;
884 	}
885 
886 	/*
887 	 * Some cards need very high timeouts if driven in SPI mode.
888 	 * The worst observed timeout was 900ms after writing a
889 	 * continuous stream of data until the internal logic
890 	 * overflowed.
891 	 */
892 	if (mmc_host_is_spi(card->host)) {
893 		if (data->flags & MMC_DATA_WRITE) {
894 			if (data->timeout_ns < 1000000000)
895 				data->timeout_ns = 1000000000;	/* 1s */
896 		} else {
897 			if (data->timeout_ns < 100000000)
898 				data->timeout_ns =  100000000;	/* 100ms */
899 		}
900 	}
901 }
902 EXPORT_SYMBOL(mmc_set_data_timeout);
903 
904 /**
905  *	mmc_align_data_size - pads a transfer size to a more optimal value
906  *	@card: the MMC card associated with the data transfer
907  *	@sz: original transfer size
908  *
909  *	Pads the original data size with a number of extra bytes in
910  *	order to avoid controller bugs and/or performance hits
911  *	(e.g. some controllers revert to PIO for certain sizes).
912  *
913  *	Returns the improved size, which might be unmodified.
914  *
915  *	Note that this function is only relevant when issuing a
916  *	single scatter gather entry.
917  */
918 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
919 {
920 	/*
921 	 * FIXME: We don't have a system for the controller to tell
922 	 * the core about its problems yet, so for now we just 32-bit
923 	 * align the size.
924 	 */
925 	sz = ((sz + 3) / 4) * 4;
926 
927 	return sz;
928 }
929 EXPORT_SYMBOL(mmc_align_data_size);
930 
931 /**
932  *	__mmc_claim_host - exclusively claim a host
933  *	@host: mmc host to claim
934  *	@abort: whether or not the operation should be aborted
935  *
936  *	Claim a host for a set of operations.  If @abort is non null and
937  *	dereference a non-zero value then this will return prematurely with
938  *	that non-zero value without acquiring the lock.  Returns zero
939  *	with the lock held otherwise.
940  */
941 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
942 {
943 	DECLARE_WAITQUEUE(wait, current);
944 	unsigned long flags;
945 	int stop;
946 	bool pm = false;
947 
948 	might_sleep();
949 
950 	add_wait_queue(&host->wq, &wait);
951 	spin_lock_irqsave(&host->lock, flags);
952 	while (1) {
953 		set_current_state(TASK_UNINTERRUPTIBLE);
954 		stop = abort ? atomic_read(abort) : 0;
955 		if (stop || !host->claimed || host->claimer == current)
956 			break;
957 		spin_unlock_irqrestore(&host->lock, flags);
958 		schedule();
959 		spin_lock_irqsave(&host->lock, flags);
960 	}
961 	set_current_state(TASK_RUNNING);
962 	if (!stop) {
963 		host->claimed = 1;
964 		host->claimer = current;
965 		host->claim_cnt += 1;
966 		if (host->claim_cnt == 1)
967 			pm = true;
968 	} else
969 		wake_up(&host->wq);
970 	spin_unlock_irqrestore(&host->lock, flags);
971 	remove_wait_queue(&host->wq, &wait);
972 
973 	if (pm)
974 		pm_runtime_get_sync(mmc_dev(host));
975 
976 	return stop;
977 }
978 EXPORT_SYMBOL(__mmc_claim_host);
979 
980 /**
981  *	mmc_release_host - release a host
982  *	@host: mmc host to release
983  *
984  *	Release a MMC host, allowing others to claim the host
985  *	for their operations.
986  */
987 void mmc_release_host(struct mmc_host *host)
988 {
989 	unsigned long flags;
990 
991 	WARN_ON(!host->claimed);
992 
993 	spin_lock_irqsave(&host->lock, flags);
994 	if (--host->claim_cnt) {
995 		/* Release for nested claim */
996 		spin_unlock_irqrestore(&host->lock, flags);
997 	} else {
998 		host->claimed = 0;
999 		host->claimer = NULL;
1000 		spin_unlock_irqrestore(&host->lock, flags);
1001 		wake_up(&host->wq);
1002 		pm_runtime_mark_last_busy(mmc_dev(host));
1003 		pm_runtime_put_autosuspend(mmc_dev(host));
1004 	}
1005 }
1006 EXPORT_SYMBOL(mmc_release_host);
1007 
1008 /*
1009  * This is a helper function, which fetches a runtime pm reference for the
1010  * card device and also claims the host.
1011  */
1012 void mmc_get_card(struct mmc_card *card)
1013 {
1014 	pm_runtime_get_sync(&card->dev);
1015 	mmc_claim_host(card->host);
1016 }
1017 EXPORT_SYMBOL(mmc_get_card);
1018 
1019 /*
1020  * This is a helper function, which releases the host and drops the runtime
1021  * pm reference for the card device.
1022  */
1023 void mmc_put_card(struct mmc_card *card)
1024 {
1025 	mmc_release_host(card->host);
1026 	pm_runtime_mark_last_busy(&card->dev);
1027 	pm_runtime_put_autosuspend(&card->dev);
1028 }
1029 EXPORT_SYMBOL(mmc_put_card);
1030 
1031 /*
1032  * Internal function that does the actual ios call to the host driver,
1033  * optionally printing some debug output.
1034  */
1035 static inline void mmc_set_ios(struct mmc_host *host)
1036 {
1037 	struct mmc_ios *ios = &host->ios;
1038 
1039 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1040 		"width %u timing %u\n",
1041 		 mmc_hostname(host), ios->clock, ios->bus_mode,
1042 		 ios->power_mode, ios->chip_select, ios->vdd,
1043 		 1 << ios->bus_width, ios->timing);
1044 
1045 	host->ops->set_ios(host, ios);
1046 }
1047 
1048 /*
1049  * Control chip select pin on a host.
1050  */
1051 void mmc_set_chip_select(struct mmc_host *host, int mode)
1052 {
1053 	host->ios.chip_select = mode;
1054 	mmc_set_ios(host);
1055 }
1056 
1057 /*
1058  * Sets the host clock to the highest possible frequency that
1059  * is below "hz".
1060  */
1061 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1062 {
1063 	WARN_ON(hz && hz < host->f_min);
1064 
1065 	if (hz > host->f_max)
1066 		hz = host->f_max;
1067 
1068 	host->ios.clock = hz;
1069 	mmc_set_ios(host);
1070 }
1071 
1072 int mmc_execute_tuning(struct mmc_card *card)
1073 {
1074 	struct mmc_host *host = card->host;
1075 	u32 opcode;
1076 	int err;
1077 
1078 	if (!host->ops->execute_tuning)
1079 		return 0;
1080 
1081 	if (mmc_card_mmc(card))
1082 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1083 	else
1084 		opcode = MMC_SEND_TUNING_BLOCK;
1085 
1086 	err = host->ops->execute_tuning(host, opcode);
1087 
1088 	if (err)
1089 		pr_err("%s: tuning execution failed: %d\n",
1090 			mmc_hostname(host), err);
1091 	else
1092 		mmc_retune_enable(host);
1093 
1094 	return err;
1095 }
1096 
1097 /*
1098  * Change the bus mode (open drain/push-pull) of a host.
1099  */
1100 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1101 {
1102 	host->ios.bus_mode = mode;
1103 	mmc_set_ios(host);
1104 }
1105 
1106 /*
1107  * Change data bus width of a host.
1108  */
1109 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1110 {
1111 	host->ios.bus_width = width;
1112 	mmc_set_ios(host);
1113 }
1114 
1115 /*
1116  * Set initial state after a power cycle or a hw_reset.
1117  */
1118 void mmc_set_initial_state(struct mmc_host *host)
1119 {
1120 	mmc_retune_disable(host);
1121 
1122 	if (mmc_host_is_spi(host))
1123 		host->ios.chip_select = MMC_CS_HIGH;
1124 	else
1125 		host->ios.chip_select = MMC_CS_DONTCARE;
1126 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1127 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1128 	host->ios.timing = MMC_TIMING_LEGACY;
1129 	host->ios.drv_type = 0;
1130 
1131 	mmc_set_ios(host);
1132 }
1133 
1134 /**
1135  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1136  * @vdd:	voltage (mV)
1137  * @low_bits:	prefer low bits in boundary cases
1138  *
1139  * This function returns the OCR bit number according to the provided @vdd
1140  * value. If conversion is not possible a negative errno value returned.
1141  *
1142  * Depending on the @low_bits flag the function prefers low or high OCR bits
1143  * on boundary voltages. For example,
1144  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1145  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1146  *
1147  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1148  */
1149 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1150 {
1151 	const int max_bit = ilog2(MMC_VDD_35_36);
1152 	int bit;
1153 
1154 	if (vdd < 1650 || vdd > 3600)
1155 		return -EINVAL;
1156 
1157 	if (vdd >= 1650 && vdd <= 1950)
1158 		return ilog2(MMC_VDD_165_195);
1159 
1160 	if (low_bits)
1161 		vdd -= 1;
1162 
1163 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1164 	bit = (vdd - 2000) / 100 + 8;
1165 	if (bit > max_bit)
1166 		return max_bit;
1167 	return bit;
1168 }
1169 
1170 /**
1171  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1172  * @vdd_min:	minimum voltage value (mV)
1173  * @vdd_max:	maximum voltage value (mV)
1174  *
1175  * This function returns the OCR mask bits according to the provided @vdd_min
1176  * and @vdd_max values. If conversion is not possible the function returns 0.
1177  *
1178  * Notes wrt boundary cases:
1179  * This function sets the OCR bits for all boundary voltages, for example
1180  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1181  * MMC_VDD_34_35 mask.
1182  */
1183 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1184 {
1185 	u32 mask = 0;
1186 
1187 	if (vdd_max < vdd_min)
1188 		return 0;
1189 
1190 	/* Prefer high bits for the boundary vdd_max values. */
1191 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1192 	if (vdd_max < 0)
1193 		return 0;
1194 
1195 	/* Prefer low bits for the boundary vdd_min values. */
1196 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1197 	if (vdd_min < 0)
1198 		return 0;
1199 
1200 	/* Fill the mask, from max bit to min bit. */
1201 	while (vdd_max >= vdd_min)
1202 		mask |= 1 << vdd_max--;
1203 
1204 	return mask;
1205 }
1206 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1207 
1208 #ifdef CONFIG_OF
1209 
1210 /**
1211  * mmc_of_parse_voltage - return mask of supported voltages
1212  * @np: The device node need to be parsed.
1213  * @mask: mask of voltages available for MMC/SD/SDIO
1214  *
1215  * Parse the "voltage-ranges" DT property, returning zero if it is not
1216  * found, negative errno if the voltage-range specification is invalid,
1217  * or one if the voltage-range is specified and successfully parsed.
1218  */
1219 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1220 {
1221 	const u32 *voltage_ranges;
1222 	int num_ranges, i;
1223 
1224 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1225 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1226 	if (!voltage_ranges) {
1227 		pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1228 		return 0;
1229 	}
1230 	if (!num_ranges) {
1231 		pr_err("%s: voltage-ranges empty\n", np->full_name);
1232 		return -EINVAL;
1233 	}
1234 
1235 	for (i = 0; i < num_ranges; i++) {
1236 		const int j = i * 2;
1237 		u32 ocr_mask;
1238 
1239 		ocr_mask = mmc_vddrange_to_ocrmask(
1240 				be32_to_cpu(voltage_ranges[j]),
1241 				be32_to_cpu(voltage_ranges[j + 1]));
1242 		if (!ocr_mask) {
1243 			pr_err("%s: voltage-range #%d is invalid\n",
1244 				np->full_name, i);
1245 			return -EINVAL;
1246 		}
1247 		*mask |= ocr_mask;
1248 	}
1249 
1250 	return 1;
1251 }
1252 EXPORT_SYMBOL(mmc_of_parse_voltage);
1253 
1254 #endif /* CONFIG_OF */
1255 
1256 static int mmc_of_get_func_num(struct device_node *node)
1257 {
1258 	u32 reg;
1259 	int ret;
1260 
1261 	ret = of_property_read_u32(node, "reg", &reg);
1262 	if (ret < 0)
1263 		return ret;
1264 
1265 	return reg;
1266 }
1267 
1268 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1269 		unsigned func_num)
1270 {
1271 	struct device_node *node;
1272 
1273 	if (!host->parent || !host->parent->of_node)
1274 		return NULL;
1275 
1276 	for_each_child_of_node(host->parent->of_node, node) {
1277 		if (mmc_of_get_func_num(node) == func_num)
1278 			return node;
1279 	}
1280 
1281 	return NULL;
1282 }
1283 
1284 #ifdef CONFIG_REGULATOR
1285 
1286 /**
1287  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1288  * @vdd_bit:	OCR bit number
1289  * @min_uV:	minimum voltage value (mV)
1290  * @max_uV:	maximum voltage value (mV)
1291  *
1292  * This function returns the voltage range according to the provided OCR
1293  * bit number. If conversion is not possible a negative errno value returned.
1294  */
1295 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1296 {
1297 	int		tmp;
1298 
1299 	if (!vdd_bit)
1300 		return -EINVAL;
1301 
1302 	/*
1303 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1304 	 * bits this regulator doesn't quite support ... don't
1305 	 * be too picky, most cards and regulators are OK with
1306 	 * a 0.1V range goof (it's a small error percentage).
1307 	 */
1308 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1309 	if (tmp == 0) {
1310 		*min_uV = 1650 * 1000;
1311 		*max_uV = 1950 * 1000;
1312 	} else {
1313 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1314 		*max_uV = *min_uV + 100 * 1000;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * mmc_regulator_get_ocrmask - return mask of supported voltages
1322  * @supply: regulator to use
1323  *
1324  * This returns either a negative errno, or a mask of voltages that
1325  * can be provided to MMC/SD/SDIO devices using the specified voltage
1326  * regulator.  This would normally be called before registering the
1327  * MMC host adapter.
1328  */
1329 int mmc_regulator_get_ocrmask(struct regulator *supply)
1330 {
1331 	int			result = 0;
1332 	int			count;
1333 	int			i;
1334 	int			vdd_uV;
1335 	int			vdd_mV;
1336 
1337 	count = regulator_count_voltages(supply);
1338 	if (count < 0)
1339 		return count;
1340 
1341 	for (i = 0; i < count; i++) {
1342 		vdd_uV = regulator_list_voltage(supply, i);
1343 		if (vdd_uV <= 0)
1344 			continue;
1345 
1346 		vdd_mV = vdd_uV / 1000;
1347 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1348 	}
1349 
1350 	if (!result) {
1351 		vdd_uV = regulator_get_voltage(supply);
1352 		if (vdd_uV <= 0)
1353 			return vdd_uV;
1354 
1355 		vdd_mV = vdd_uV / 1000;
1356 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1357 	}
1358 
1359 	return result;
1360 }
1361 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1362 
1363 /**
1364  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1365  * @mmc: the host to regulate
1366  * @supply: regulator to use
1367  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1368  *
1369  * Returns zero on success, else negative errno.
1370  *
1371  * MMC host drivers may use this to enable or disable a regulator using
1372  * a particular supply voltage.  This would normally be called from the
1373  * set_ios() method.
1374  */
1375 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1376 			struct regulator *supply,
1377 			unsigned short vdd_bit)
1378 {
1379 	int			result = 0;
1380 	int			min_uV, max_uV;
1381 
1382 	if (vdd_bit) {
1383 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1384 
1385 		result = regulator_set_voltage(supply, min_uV, max_uV);
1386 		if (result == 0 && !mmc->regulator_enabled) {
1387 			result = regulator_enable(supply);
1388 			if (!result)
1389 				mmc->regulator_enabled = true;
1390 		}
1391 	} else if (mmc->regulator_enabled) {
1392 		result = regulator_disable(supply);
1393 		if (result == 0)
1394 			mmc->regulator_enabled = false;
1395 	}
1396 
1397 	if (result)
1398 		dev_err(mmc_dev(mmc),
1399 			"could not set regulator OCR (%d)\n", result);
1400 	return result;
1401 }
1402 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1403 
1404 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1405 						  int min_uV, int target_uV,
1406 						  int max_uV)
1407 {
1408 	/*
1409 	 * Check if supported first to avoid errors since we may try several
1410 	 * signal levels during power up and don't want to show errors.
1411 	 */
1412 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1413 		return -EINVAL;
1414 
1415 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1416 					     max_uV);
1417 }
1418 
1419 /**
1420  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1421  *
1422  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1423  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1424  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1425  * SD card spec also define VQMMC in terms of VMMC.
1426  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1427  *
1428  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1429  * requested voltage.  This is definitely a good idea for UHS where there's a
1430  * separate regulator on the card that's trying to make 1.8V and it's best if
1431  * we match.
1432  *
1433  * This function is expected to be used by a controller's
1434  * start_signal_voltage_switch() function.
1435  */
1436 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1437 {
1438 	struct device *dev = mmc_dev(mmc);
1439 	int ret, volt, min_uV, max_uV;
1440 
1441 	/* If no vqmmc supply then we can't change the voltage */
1442 	if (IS_ERR(mmc->supply.vqmmc))
1443 		return -EINVAL;
1444 
1445 	switch (ios->signal_voltage) {
1446 	case MMC_SIGNAL_VOLTAGE_120:
1447 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1448 						1100000, 1200000, 1300000);
1449 	case MMC_SIGNAL_VOLTAGE_180:
1450 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1451 						1700000, 1800000, 1950000);
1452 	case MMC_SIGNAL_VOLTAGE_330:
1453 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1454 		if (ret < 0)
1455 			return ret;
1456 
1457 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1458 			__func__, volt, max_uV);
1459 
1460 		min_uV = max(volt - 300000, 2700000);
1461 		max_uV = min(max_uV + 200000, 3600000);
1462 
1463 		/*
1464 		 * Due to a limitation in the current implementation of
1465 		 * regulator_set_voltage_triplet() which is taking the lowest
1466 		 * voltage possible if below the target, search for a suitable
1467 		 * voltage in two steps and try to stay close to vmmc
1468 		 * with a 0.3V tolerance at first.
1469 		 */
1470 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1471 						min_uV, volt, max_uV))
1472 			return 0;
1473 
1474 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1475 						2700000, volt, 3600000);
1476 	default:
1477 		return -EINVAL;
1478 	}
1479 }
1480 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1481 
1482 #endif /* CONFIG_REGULATOR */
1483 
1484 int mmc_regulator_get_supply(struct mmc_host *mmc)
1485 {
1486 	struct device *dev = mmc_dev(mmc);
1487 	int ret;
1488 
1489 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1490 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1491 
1492 	if (IS_ERR(mmc->supply.vmmc)) {
1493 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1494 			return -EPROBE_DEFER;
1495 		dev_dbg(dev, "No vmmc regulator found\n");
1496 	} else {
1497 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1498 		if (ret > 0)
1499 			mmc->ocr_avail = ret;
1500 		else
1501 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1502 	}
1503 
1504 	if (IS_ERR(mmc->supply.vqmmc)) {
1505 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1506 			return -EPROBE_DEFER;
1507 		dev_dbg(dev, "No vqmmc regulator found\n");
1508 	}
1509 
1510 	return 0;
1511 }
1512 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1513 
1514 /*
1515  * Mask off any voltages we don't support and select
1516  * the lowest voltage
1517  */
1518 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1519 {
1520 	int bit;
1521 
1522 	/*
1523 	 * Sanity check the voltages that the card claims to
1524 	 * support.
1525 	 */
1526 	if (ocr & 0x7F) {
1527 		dev_warn(mmc_dev(host),
1528 		"card claims to support voltages below defined range\n");
1529 		ocr &= ~0x7F;
1530 	}
1531 
1532 	ocr &= host->ocr_avail;
1533 	if (!ocr) {
1534 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1535 		return 0;
1536 	}
1537 
1538 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1539 		bit = ffs(ocr) - 1;
1540 		ocr &= 3 << bit;
1541 		mmc_power_cycle(host, ocr);
1542 	} else {
1543 		bit = fls(ocr) - 1;
1544 		ocr &= 3 << bit;
1545 		if (bit != host->ios.vdd)
1546 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1547 	}
1548 
1549 	return ocr;
1550 }
1551 
1552 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1553 {
1554 	int err = 0;
1555 	int old_signal_voltage = host->ios.signal_voltage;
1556 
1557 	host->ios.signal_voltage = signal_voltage;
1558 	if (host->ops->start_signal_voltage_switch)
1559 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1560 
1561 	if (err)
1562 		host->ios.signal_voltage = old_signal_voltage;
1563 
1564 	return err;
1565 
1566 }
1567 
1568 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1569 {
1570 	struct mmc_command cmd = {0};
1571 	int err = 0;
1572 	u32 clock;
1573 
1574 	BUG_ON(!host);
1575 
1576 	/*
1577 	 * Send CMD11 only if the request is to switch the card to
1578 	 * 1.8V signalling.
1579 	 */
1580 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1581 		return __mmc_set_signal_voltage(host, signal_voltage);
1582 
1583 	/*
1584 	 * If we cannot switch voltages, return failure so the caller
1585 	 * can continue without UHS mode
1586 	 */
1587 	if (!host->ops->start_signal_voltage_switch)
1588 		return -EPERM;
1589 	if (!host->ops->card_busy)
1590 		pr_warn("%s: cannot verify signal voltage switch\n",
1591 			mmc_hostname(host));
1592 
1593 	cmd.opcode = SD_SWITCH_VOLTAGE;
1594 	cmd.arg = 0;
1595 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1596 
1597 	err = mmc_wait_for_cmd(host, &cmd, 0);
1598 	if (err)
1599 		return err;
1600 
1601 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1602 		return -EIO;
1603 
1604 	/*
1605 	 * The card should drive cmd and dat[0:3] low immediately
1606 	 * after the response of cmd11, but wait 1 ms to be sure
1607 	 */
1608 	mmc_delay(1);
1609 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1610 		err = -EAGAIN;
1611 		goto power_cycle;
1612 	}
1613 	/*
1614 	 * During a signal voltage level switch, the clock must be gated
1615 	 * for 5 ms according to the SD spec
1616 	 */
1617 	clock = host->ios.clock;
1618 	host->ios.clock = 0;
1619 	mmc_set_ios(host);
1620 
1621 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1622 		/*
1623 		 * Voltages may not have been switched, but we've already
1624 		 * sent CMD11, so a power cycle is required anyway
1625 		 */
1626 		err = -EAGAIN;
1627 		goto power_cycle;
1628 	}
1629 
1630 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1631 	mmc_delay(10);
1632 	host->ios.clock = clock;
1633 	mmc_set_ios(host);
1634 
1635 	/* Wait for at least 1 ms according to spec */
1636 	mmc_delay(1);
1637 
1638 	/*
1639 	 * Failure to switch is indicated by the card holding
1640 	 * dat[0:3] low
1641 	 */
1642 	if (host->ops->card_busy && host->ops->card_busy(host))
1643 		err = -EAGAIN;
1644 
1645 power_cycle:
1646 	if (err) {
1647 		pr_debug("%s: Signal voltage switch failed, "
1648 			"power cycling card\n", mmc_hostname(host));
1649 		mmc_power_cycle(host, ocr);
1650 	}
1651 
1652 	return err;
1653 }
1654 
1655 /*
1656  * Select timing parameters for host.
1657  */
1658 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1659 {
1660 	host->ios.timing = timing;
1661 	mmc_set_ios(host);
1662 }
1663 
1664 /*
1665  * Select appropriate driver type for host.
1666  */
1667 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1668 {
1669 	host->ios.drv_type = drv_type;
1670 	mmc_set_ios(host);
1671 }
1672 
1673 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1674 			      int card_drv_type, int *drv_type)
1675 {
1676 	struct mmc_host *host = card->host;
1677 	int host_drv_type = SD_DRIVER_TYPE_B;
1678 
1679 	*drv_type = 0;
1680 
1681 	if (!host->ops->select_drive_strength)
1682 		return 0;
1683 
1684 	/* Use SD definition of driver strength for hosts */
1685 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1686 		host_drv_type |= SD_DRIVER_TYPE_A;
1687 
1688 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1689 		host_drv_type |= SD_DRIVER_TYPE_C;
1690 
1691 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1692 		host_drv_type |= SD_DRIVER_TYPE_D;
1693 
1694 	/*
1695 	 * The drive strength that the hardware can support
1696 	 * depends on the board design.  Pass the appropriate
1697 	 * information and let the hardware specific code
1698 	 * return what is possible given the options
1699 	 */
1700 	return host->ops->select_drive_strength(card, max_dtr,
1701 						host_drv_type,
1702 						card_drv_type,
1703 						drv_type);
1704 }
1705 
1706 /*
1707  * Apply power to the MMC stack.  This is a two-stage process.
1708  * First, we enable power to the card without the clock running.
1709  * We then wait a bit for the power to stabilise.  Finally,
1710  * enable the bus drivers and clock to the card.
1711  *
1712  * We must _NOT_ enable the clock prior to power stablising.
1713  *
1714  * If a host does all the power sequencing itself, ignore the
1715  * initial MMC_POWER_UP stage.
1716  */
1717 void mmc_power_up(struct mmc_host *host, u32 ocr)
1718 {
1719 	if (host->ios.power_mode == MMC_POWER_ON)
1720 		return;
1721 
1722 	mmc_pwrseq_pre_power_on(host);
1723 
1724 	host->ios.vdd = fls(ocr) - 1;
1725 	host->ios.power_mode = MMC_POWER_UP;
1726 	/* Set initial state and call mmc_set_ios */
1727 	mmc_set_initial_state(host);
1728 
1729 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1730 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1731 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1732 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1733 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1734 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1735 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1736 
1737 	/*
1738 	 * This delay should be sufficient to allow the power supply
1739 	 * to reach the minimum voltage.
1740 	 */
1741 	mmc_delay(10);
1742 
1743 	mmc_pwrseq_post_power_on(host);
1744 
1745 	host->ios.clock = host->f_init;
1746 
1747 	host->ios.power_mode = MMC_POWER_ON;
1748 	mmc_set_ios(host);
1749 
1750 	/*
1751 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1752 	 * time required to reach a stable voltage.
1753 	 */
1754 	mmc_delay(10);
1755 }
1756 
1757 void mmc_power_off(struct mmc_host *host)
1758 {
1759 	if (host->ios.power_mode == MMC_POWER_OFF)
1760 		return;
1761 
1762 	mmc_pwrseq_power_off(host);
1763 
1764 	host->ios.clock = 0;
1765 	host->ios.vdd = 0;
1766 
1767 	host->ios.power_mode = MMC_POWER_OFF;
1768 	/* Set initial state and call mmc_set_ios */
1769 	mmc_set_initial_state(host);
1770 
1771 	/*
1772 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1773 	 * XO-1.5, require a short delay after poweroff before the card
1774 	 * can be successfully turned on again.
1775 	 */
1776 	mmc_delay(1);
1777 }
1778 
1779 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1780 {
1781 	mmc_power_off(host);
1782 	/* Wait at least 1 ms according to SD spec */
1783 	mmc_delay(1);
1784 	mmc_power_up(host, ocr);
1785 }
1786 
1787 /*
1788  * Cleanup when the last reference to the bus operator is dropped.
1789  */
1790 static void __mmc_release_bus(struct mmc_host *host)
1791 {
1792 	BUG_ON(!host);
1793 	BUG_ON(host->bus_refs);
1794 	BUG_ON(!host->bus_dead);
1795 
1796 	host->bus_ops = NULL;
1797 }
1798 
1799 /*
1800  * Increase reference count of bus operator
1801  */
1802 static inline void mmc_bus_get(struct mmc_host *host)
1803 {
1804 	unsigned long flags;
1805 
1806 	spin_lock_irqsave(&host->lock, flags);
1807 	host->bus_refs++;
1808 	spin_unlock_irqrestore(&host->lock, flags);
1809 }
1810 
1811 /*
1812  * Decrease reference count of bus operator and free it if
1813  * it is the last reference.
1814  */
1815 static inline void mmc_bus_put(struct mmc_host *host)
1816 {
1817 	unsigned long flags;
1818 
1819 	spin_lock_irqsave(&host->lock, flags);
1820 	host->bus_refs--;
1821 	if ((host->bus_refs == 0) && host->bus_ops)
1822 		__mmc_release_bus(host);
1823 	spin_unlock_irqrestore(&host->lock, flags);
1824 }
1825 
1826 /*
1827  * Assign a mmc bus handler to a host. Only one bus handler may control a
1828  * host at any given time.
1829  */
1830 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1831 {
1832 	unsigned long flags;
1833 
1834 	BUG_ON(!host);
1835 	BUG_ON(!ops);
1836 
1837 	WARN_ON(!host->claimed);
1838 
1839 	spin_lock_irqsave(&host->lock, flags);
1840 
1841 	BUG_ON(host->bus_ops);
1842 	BUG_ON(host->bus_refs);
1843 
1844 	host->bus_ops = ops;
1845 	host->bus_refs = 1;
1846 	host->bus_dead = 0;
1847 
1848 	spin_unlock_irqrestore(&host->lock, flags);
1849 }
1850 
1851 /*
1852  * Remove the current bus handler from a host.
1853  */
1854 void mmc_detach_bus(struct mmc_host *host)
1855 {
1856 	unsigned long flags;
1857 
1858 	BUG_ON(!host);
1859 
1860 	WARN_ON(!host->claimed);
1861 	WARN_ON(!host->bus_ops);
1862 
1863 	spin_lock_irqsave(&host->lock, flags);
1864 
1865 	host->bus_dead = 1;
1866 
1867 	spin_unlock_irqrestore(&host->lock, flags);
1868 
1869 	mmc_bus_put(host);
1870 }
1871 
1872 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1873 				bool cd_irq)
1874 {
1875 #ifdef CONFIG_MMC_DEBUG
1876 	unsigned long flags;
1877 	spin_lock_irqsave(&host->lock, flags);
1878 	WARN_ON(host->removed);
1879 	spin_unlock_irqrestore(&host->lock, flags);
1880 #endif
1881 
1882 	/*
1883 	 * If the device is configured as wakeup, we prevent a new sleep for
1884 	 * 5 s to give provision for user space to consume the event.
1885 	 */
1886 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1887 		device_can_wakeup(mmc_dev(host)))
1888 		pm_wakeup_event(mmc_dev(host), 5000);
1889 
1890 	host->detect_change = 1;
1891 	mmc_schedule_delayed_work(&host->detect, delay);
1892 }
1893 
1894 /**
1895  *	mmc_detect_change - process change of state on a MMC socket
1896  *	@host: host which changed state.
1897  *	@delay: optional delay to wait before detection (jiffies)
1898  *
1899  *	MMC drivers should call this when they detect a card has been
1900  *	inserted or removed. The MMC layer will confirm that any
1901  *	present card is still functional, and initialize any newly
1902  *	inserted.
1903  */
1904 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1905 {
1906 	_mmc_detect_change(host, delay, true);
1907 }
1908 EXPORT_SYMBOL(mmc_detect_change);
1909 
1910 void mmc_init_erase(struct mmc_card *card)
1911 {
1912 	unsigned int sz;
1913 
1914 	if (is_power_of_2(card->erase_size))
1915 		card->erase_shift = ffs(card->erase_size) - 1;
1916 	else
1917 		card->erase_shift = 0;
1918 
1919 	/*
1920 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1921 	 * card.  That is not desirable because it can take a long time
1922 	 * (minutes) potentially delaying more important I/O, and also the
1923 	 * timeout calculations become increasingly hugely over-estimated.
1924 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1925 	 * to that size and alignment.
1926 	 *
1927 	 * For SD cards that define Allocation Unit size, limit erases to one
1928 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1929 	 * Erase Size, whether it is switched on or not, limit to that size.
1930 	 * Otherwise just have a stab at a good value.  For modern cards it
1931 	 * will end up being 4MiB.  Note that if the value is too small, it
1932 	 * can end up taking longer to erase.
1933 	 */
1934 	if (mmc_card_sd(card) && card->ssr.au) {
1935 		card->pref_erase = card->ssr.au;
1936 		card->erase_shift = ffs(card->ssr.au) - 1;
1937 	} else if (card->ext_csd.hc_erase_size) {
1938 		card->pref_erase = card->ext_csd.hc_erase_size;
1939 	} else if (card->erase_size) {
1940 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1941 		if (sz < 128)
1942 			card->pref_erase = 512 * 1024 / 512;
1943 		else if (sz < 512)
1944 			card->pref_erase = 1024 * 1024 / 512;
1945 		else if (sz < 1024)
1946 			card->pref_erase = 2 * 1024 * 1024 / 512;
1947 		else
1948 			card->pref_erase = 4 * 1024 * 1024 / 512;
1949 		if (card->pref_erase < card->erase_size)
1950 			card->pref_erase = card->erase_size;
1951 		else {
1952 			sz = card->pref_erase % card->erase_size;
1953 			if (sz)
1954 				card->pref_erase += card->erase_size - sz;
1955 		}
1956 	} else
1957 		card->pref_erase = 0;
1958 }
1959 
1960 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1961 				          unsigned int arg, unsigned int qty)
1962 {
1963 	unsigned int erase_timeout;
1964 
1965 	if (arg == MMC_DISCARD_ARG ||
1966 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1967 		erase_timeout = card->ext_csd.trim_timeout;
1968 	} else if (card->ext_csd.erase_group_def & 1) {
1969 		/* High Capacity Erase Group Size uses HC timeouts */
1970 		if (arg == MMC_TRIM_ARG)
1971 			erase_timeout = card->ext_csd.trim_timeout;
1972 		else
1973 			erase_timeout = card->ext_csd.hc_erase_timeout;
1974 	} else {
1975 		/* CSD Erase Group Size uses write timeout */
1976 		unsigned int mult = (10 << card->csd.r2w_factor);
1977 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1978 		unsigned int timeout_us;
1979 
1980 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1981 		if (card->csd.tacc_ns < 1000000)
1982 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1983 		else
1984 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1985 
1986 		/*
1987 		 * ios.clock is only a target.  The real clock rate might be
1988 		 * less but not that much less, so fudge it by multiplying by 2.
1989 		 */
1990 		timeout_clks <<= 1;
1991 		timeout_us += (timeout_clks * 1000) /
1992 			      (card->host->ios.clock / 1000);
1993 
1994 		erase_timeout = timeout_us / 1000;
1995 
1996 		/*
1997 		 * Theoretically, the calculation could underflow so round up
1998 		 * to 1ms in that case.
1999 		 */
2000 		if (!erase_timeout)
2001 			erase_timeout = 1;
2002 	}
2003 
2004 	/* Multiplier for secure operations */
2005 	if (arg & MMC_SECURE_ARGS) {
2006 		if (arg == MMC_SECURE_ERASE_ARG)
2007 			erase_timeout *= card->ext_csd.sec_erase_mult;
2008 		else
2009 			erase_timeout *= card->ext_csd.sec_trim_mult;
2010 	}
2011 
2012 	erase_timeout *= qty;
2013 
2014 	/*
2015 	 * Ensure at least a 1 second timeout for SPI as per
2016 	 * 'mmc_set_data_timeout()'
2017 	 */
2018 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2019 		erase_timeout = 1000;
2020 
2021 	return erase_timeout;
2022 }
2023 
2024 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2025 					 unsigned int arg,
2026 					 unsigned int qty)
2027 {
2028 	unsigned int erase_timeout;
2029 
2030 	if (card->ssr.erase_timeout) {
2031 		/* Erase timeout specified in SD Status Register (SSR) */
2032 		erase_timeout = card->ssr.erase_timeout * qty +
2033 				card->ssr.erase_offset;
2034 	} else {
2035 		/*
2036 		 * Erase timeout not specified in SD Status Register (SSR) so
2037 		 * use 250ms per write block.
2038 		 */
2039 		erase_timeout = 250 * qty;
2040 	}
2041 
2042 	/* Must not be less than 1 second */
2043 	if (erase_timeout < 1000)
2044 		erase_timeout = 1000;
2045 
2046 	return erase_timeout;
2047 }
2048 
2049 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2050 				      unsigned int arg,
2051 				      unsigned int qty)
2052 {
2053 	if (mmc_card_sd(card))
2054 		return mmc_sd_erase_timeout(card, arg, qty);
2055 	else
2056 		return mmc_mmc_erase_timeout(card, arg, qty);
2057 }
2058 
2059 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2060 			unsigned int to, unsigned int arg)
2061 {
2062 	struct mmc_command cmd = {0};
2063 	unsigned int qty = 0;
2064 	unsigned long timeout;
2065 	int err;
2066 
2067 	mmc_retune_hold(card->host);
2068 
2069 	/*
2070 	 * qty is used to calculate the erase timeout which depends on how many
2071 	 * erase groups (or allocation units in SD terminology) are affected.
2072 	 * We count erasing part of an erase group as one erase group.
2073 	 * For SD, the allocation units are always a power of 2.  For MMC, the
2074 	 * erase group size is almost certainly also power of 2, but it does not
2075 	 * seem to insist on that in the JEDEC standard, so we fall back to
2076 	 * division in that case.  SD may not specify an allocation unit size,
2077 	 * in which case the timeout is based on the number of write blocks.
2078 	 *
2079 	 * Note that the timeout for secure trim 2 will only be correct if the
2080 	 * number of erase groups specified is the same as the total of all
2081 	 * preceding secure trim 1 commands.  Since the power may have been
2082 	 * lost since the secure trim 1 commands occurred, it is generally
2083 	 * impossible to calculate the secure trim 2 timeout correctly.
2084 	 */
2085 	if (card->erase_shift)
2086 		qty += ((to >> card->erase_shift) -
2087 			(from >> card->erase_shift)) + 1;
2088 	else if (mmc_card_sd(card))
2089 		qty += to - from + 1;
2090 	else
2091 		qty += ((to / card->erase_size) -
2092 			(from / card->erase_size)) + 1;
2093 
2094 	if (!mmc_card_blockaddr(card)) {
2095 		from <<= 9;
2096 		to <<= 9;
2097 	}
2098 
2099 	if (mmc_card_sd(card))
2100 		cmd.opcode = SD_ERASE_WR_BLK_START;
2101 	else
2102 		cmd.opcode = MMC_ERASE_GROUP_START;
2103 	cmd.arg = from;
2104 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2105 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2106 	if (err) {
2107 		pr_err("mmc_erase: group start error %d, "
2108 		       "status %#x\n", err, cmd.resp[0]);
2109 		err = -EIO;
2110 		goto out;
2111 	}
2112 
2113 	memset(&cmd, 0, sizeof(struct mmc_command));
2114 	if (mmc_card_sd(card))
2115 		cmd.opcode = SD_ERASE_WR_BLK_END;
2116 	else
2117 		cmd.opcode = MMC_ERASE_GROUP_END;
2118 	cmd.arg = to;
2119 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2120 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2121 	if (err) {
2122 		pr_err("mmc_erase: group end error %d, status %#x\n",
2123 		       err, cmd.resp[0]);
2124 		err = -EIO;
2125 		goto out;
2126 	}
2127 
2128 	memset(&cmd, 0, sizeof(struct mmc_command));
2129 	cmd.opcode = MMC_ERASE;
2130 	cmd.arg = arg;
2131 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2132 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2133 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2134 	if (err) {
2135 		pr_err("mmc_erase: erase error %d, status %#x\n",
2136 		       err, cmd.resp[0]);
2137 		err = -EIO;
2138 		goto out;
2139 	}
2140 
2141 	if (mmc_host_is_spi(card->host))
2142 		goto out;
2143 
2144 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2145 	do {
2146 		memset(&cmd, 0, sizeof(struct mmc_command));
2147 		cmd.opcode = MMC_SEND_STATUS;
2148 		cmd.arg = card->rca << 16;
2149 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2150 		/* Do not retry else we can't see errors */
2151 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2152 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2153 			pr_err("error %d requesting status %#x\n",
2154 				err, cmd.resp[0]);
2155 			err = -EIO;
2156 			goto out;
2157 		}
2158 
2159 		/* Timeout if the device never becomes ready for data and
2160 		 * never leaves the program state.
2161 		 */
2162 		if (time_after(jiffies, timeout)) {
2163 			pr_err("%s: Card stuck in programming state! %s\n",
2164 				mmc_hostname(card->host), __func__);
2165 			err =  -EIO;
2166 			goto out;
2167 		}
2168 
2169 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2170 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2171 out:
2172 	mmc_retune_release(card->host);
2173 	return err;
2174 }
2175 
2176 /**
2177  * mmc_erase - erase sectors.
2178  * @card: card to erase
2179  * @from: first sector to erase
2180  * @nr: number of sectors to erase
2181  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2182  *
2183  * Caller must claim host before calling this function.
2184  */
2185 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2186 	      unsigned int arg)
2187 {
2188 	unsigned int rem, to = from + nr;
2189 	int err;
2190 
2191 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2192 	    !(card->csd.cmdclass & CCC_ERASE))
2193 		return -EOPNOTSUPP;
2194 
2195 	if (!card->erase_size)
2196 		return -EOPNOTSUPP;
2197 
2198 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2199 		return -EOPNOTSUPP;
2200 
2201 	if ((arg & MMC_SECURE_ARGS) &&
2202 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2203 		return -EOPNOTSUPP;
2204 
2205 	if ((arg & MMC_TRIM_ARGS) &&
2206 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2207 		return -EOPNOTSUPP;
2208 
2209 	if (arg == MMC_SECURE_ERASE_ARG) {
2210 		if (from % card->erase_size || nr % card->erase_size)
2211 			return -EINVAL;
2212 	}
2213 
2214 	if (arg == MMC_ERASE_ARG) {
2215 		rem = from % card->erase_size;
2216 		if (rem) {
2217 			rem = card->erase_size - rem;
2218 			from += rem;
2219 			if (nr > rem)
2220 				nr -= rem;
2221 			else
2222 				return 0;
2223 		}
2224 		rem = nr % card->erase_size;
2225 		if (rem)
2226 			nr -= rem;
2227 	}
2228 
2229 	if (nr == 0)
2230 		return 0;
2231 
2232 	to = from + nr;
2233 
2234 	if (to <= from)
2235 		return -EINVAL;
2236 
2237 	/* 'from' and 'to' are inclusive */
2238 	to -= 1;
2239 
2240 	/*
2241 	 * Special case where only one erase-group fits in the timeout budget:
2242 	 * If the region crosses an erase-group boundary on this particular
2243 	 * case, we will be trimming more than one erase-group which, does not
2244 	 * fit in the timeout budget of the controller, so we need to split it
2245 	 * and call mmc_do_erase() twice if necessary. This special case is
2246 	 * identified by the card->eg_boundary flag.
2247 	 */
2248 	rem = card->erase_size - (from % card->erase_size);
2249 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2250 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2251 		from += rem;
2252 		if ((err) || (to <= from))
2253 			return err;
2254 	}
2255 
2256 	return mmc_do_erase(card, from, to, arg);
2257 }
2258 EXPORT_SYMBOL(mmc_erase);
2259 
2260 int mmc_can_erase(struct mmc_card *card)
2261 {
2262 	if ((card->host->caps & MMC_CAP_ERASE) &&
2263 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2264 		return 1;
2265 	return 0;
2266 }
2267 EXPORT_SYMBOL(mmc_can_erase);
2268 
2269 int mmc_can_trim(struct mmc_card *card)
2270 {
2271 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2272 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2273 		return 1;
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL(mmc_can_trim);
2277 
2278 int mmc_can_discard(struct mmc_card *card)
2279 {
2280 	/*
2281 	 * As there's no way to detect the discard support bit at v4.5
2282 	 * use the s/w feature support filed.
2283 	 */
2284 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2285 		return 1;
2286 	return 0;
2287 }
2288 EXPORT_SYMBOL(mmc_can_discard);
2289 
2290 int mmc_can_sanitize(struct mmc_card *card)
2291 {
2292 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2293 		return 0;
2294 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2295 		return 1;
2296 	return 0;
2297 }
2298 EXPORT_SYMBOL(mmc_can_sanitize);
2299 
2300 int mmc_can_secure_erase_trim(struct mmc_card *card)
2301 {
2302 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2303 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2304 		return 1;
2305 	return 0;
2306 }
2307 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2308 
2309 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2310 			    unsigned int nr)
2311 {
2312 	if (!card->erase_size)
2313 		return 0;
2314 	if (from % card->erase_size || nr % card->erase_size)
2315 		return 0;
2316 	return 1;
2317 }
2318 EXPORT_SYMBOL(mmc_erase_group_aligned);
2319 
2320 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2321 					    unsigned int arg)
2322 {
2323 	struct mmc_host *host = card->host;
2324 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2325 	unsigned int last_timeout = 0;
2326 
2327 	if (card->erase_shift)
2328 		max_qty = UINT_MAX >> card->erase_shift;
2329 	else if (mmc_card_sd(card))
2330 		max_qty = UINT_MAX;
2331 	else
2332 		max_qty = UINT_MAX / card->erase_size;
2333 
2334 	/* Find the largest qty with an OK timeout */
2335 	do {
2336 		y = 0;
2337 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2338 			timeout = mmc_erase_timeout(card, arg, qty + x);
2339 			if (timeout > host->max_busy_timeout)
2340 				break;
2341 			if (timeout < last_timeout)
2342 				break;
2343 			last_timeout = timeout;
2344 			y = x;
2345 		}
2346 		qty += y;
2347 	} while (y);
2348 
2349 	if (!qty)
2350 		return 0;
2351 
2352 	/*
2353 	 * When specifying a sector range to trim, chances are we might cross
2354 	 * an erase-group boundary even if the amount of sectors is less than
2355 	 * one erase-group.
2356 	 * If we can only fit one erase-group in the controller timeout budget,
2357 	 * we have to care that erase-group boundaries are not crossed by a
2358 	 * single trim operation. We flag that special case with "eg_boundary".
2359 	 * In all other cases we can just decrement qty and pretend that we
2360 	 * always touch (qty + 1) erase-groups as a simple optimization.
2361 	 */
2362 	if (qty == 1)
2363 		card->eg_boundary = 1;
2364 	else
2365 		qty--;
2366 
2367 	/* Convert qty to sectors */
2368 	if (card->erase_shift)
2369 		max_discard = qty << card->erase_shift;
2370 	else if (mmc_card_sd(card))
2371 		max_discard = qty + 1;
2372 	else
2373 		max_discard = qty * card->erase_size;
2374 
2375 	return max_discard;
2376 }
2377 
2378 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2379 {
2380 	struct mmc_host *host = card->host;
2381 	unsigned int max_discard, max_trim;
2382 
2383 	if (!host->max_busy_timeout)
2384 		return UINT_MAX;
2385 
2386 	/*
2387 	 * Without erase_group_def set, MMC erase timeout depends on clock
2388 	 * frequence which can change.  In that case, the best choice is
2389 	 * just the preferred erase size.
2390 	 */
2391 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2392 		return card->pref_erase;
2393 
2394 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2395 	if (mmc_can_trim(card)) {
2396 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2397 		if (max_trim < max_discard)
2398 			max_discard = max_trim;
2399 	} else if (max_discard < card->erase_size) {
2400 		max_discard = 0;
2401 	}
2402 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2403 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2404 	return max_discard;
2405 }
2406 EXPORT_SYMBOL(mmc_calc_max_discard);
2407 
2408 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2409 {
2410 	struct mmc_command cmd = {0};
2411 
2412 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2413 		return 0;
2414 
2415 	cmd.opcode = MMC_SET_BLOCKLEN;
2416 	cmd.arg = blocklen;
2417 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2418 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2419 }
2420 EXPORT_SYMBOL(mmc_set_blocklen);
2421 
2422 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2423 			bool is_rel_write)
2424 {
2425 	struct mmc_command cmd = {0};
2426 
2427 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2428 	cmd.arg = blockcount & 0x0000FFFF;
2429 	if (is_rel_write)
2430 		cmd.arg |= 1 << 31;
2431 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2432 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2433 }
2434 EXPORT_SYMBOL(mmc_set_blockcount);
2435 
2436 static void mmc_hw_reset_for_init(struct mmc_host *host)
2437 {
2438 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2439 		return;
2440 	host->ops->hw_reset(host);
2441 }
2442 
2443 int mmc_hw_reset(struct mmc_host *host)
2444 {
2445 	int ret;
2446 
2447 	if (!host->card)
2448 		return -EINVAL;
2449 
2450 	mmc_bus_get(host);
2451 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2452 		mmc_bus_put(host);
2453 		return -EOPNOTSUPP;
2454 	}
2455 
2456 	ret = host->bus_ops->reset(host);
2457 	mmc_bus_put(host);
2458 
2459 	if (ret)
2460 		pr_warn("%s: tried to reset card, got error %d\n",
2461 			mmc_hostname(host), ret);
2462 
2463 	return ret;
2464 }
2465 EXPORT_SYMBOL(mmc_hw_reset);
2466 
2467 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2468 {
2469 	host->f_init = freq;
2470 
2471 #ifdef CONFIG_MMC_DEBUG
2472 	pr_info("%s: %s: trying to init card at %u Hz\n",
2473 		mmc_hostname(host), __func__, host->f_init);
2474 #endif
2475 	mmc_power_up(host, host->ocr_avail);
2476 
2477 	/*
2478 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2479 	 * do a hardware reset if possible.
2480 	 */
2481 	mmc_hw_reset_for_init(host);
2482 
2483 	/*
2484 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2485 	 * if the card is being re-initialized, just send it.  CMD52
2486 	 * should be ignored by SD/eMMC cards.
2487 	 * Skip it if we already know that we do not support SDIO commands
2488 	 */
2489 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2490 		sdio_reset(host);
2491 
2492 	mmc_go_idle(host);
2493 
2494 	mmc_send_if_cond(host, host->ocr_avail);
2495 
2496 	/* Order's important: probe SDIO, then SD, then MMC */
2497 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2498 		if (!mmc_attach_sdio(host))
2499 			return 0;
2500 
2501 	if (!mmc_attach_sd(host))
2502 		return 0;
2503 	if (!mmc_attach_mmc(host))
2504 		return 0;
2505 
2506 	mmc_power_off(host);
2507 	return -EIO;
2508 }
2509 
2510 int _mmc_detect_card_removed(struct mmc_host *host)
2511 {
2512 	int ret;
2513 
2514 	if (!host->card || mmc_card_removed(host->card))
2515 		return 1;
2516 
2517 	ret = host->bus_ops->alive(host);
2518 
2519 	/*
2520 	 * Card detect status and alive check may be out of sync if card is
2521 	 * removed slowly, when card detect switch changes while card/slot
2522 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2523 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2524 	 * detect work 200ms later for this case.
2525 	 */
2526 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2527 		mmc_detect_change(host, msecs_to_jiffies(200));
2528 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2529 	}
2530 
2531 	if (ret) {
2532 		mmc_card_set_removed(host->card);
2533 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2534 	}
2535 
2536 	return ret;
2537 }
2538 
2539 int mmc_detect_card_removed(struct mmc_host *host)
2540 {
2541 	struct mmc_card *card = host->card;
2542 	int ret;
2543 
2544 	WARN_ON(!host->claimed);
2545 
2546 	if (!card)
2547 		return 1;
2548 
2549 	if (!mmc_card_is_removable(host))
2550 		return 0;
2551 
2552 	ret = mmc_card_removed(card);
2553 	/*
2554 	 * The card will be considered unchanged unless we have been asked to
2555 	 * detect a change or host requires polling to provide card detection.
2556 	 */
2557 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2558 		return ret;
2559 
2560 	host->detect_change = 0;
2561 	if (!ret) {
2562 		ret = _mmc_detect_card_removed(host);
2563 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2564 			/*
2565 			 * Schedule a detect work as soon as possible to let a
2566 			 * rescan handle the card removal.
2567 			 */
2568 			cancel_delayed_work(&host->detect);
2569 			_mmc_detect_change(host, 0, false);
2570 		}
2571 	}
2572 
2573 	return ret;
2574 }
2575 EXPORT_SYMBOL(mmc_detect_card_removed);
2576 
2577 void mmc_rescan(struct work_struct *work)
2578 {
2579 	struct mmc_host *host =
2580 		container_of(work, struct mmc_host, detect.work);
2581 	int i;
2582 
2583 	if (host->rescan_disable)
2584 		return;
2585 
2586 	/* If there is a non-removable card registered, only scan once */
2587 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2588 		return;
2589 	host->rescan_entered = 1;
2590 
2591 	if (host->trigger_card_event && host->ops->card_event) {
2592 		mmc_claim_host(host);
2593 		host->ops->card_event(host);
2594 		mmc_release_host(host);
2595 		host->trigger_card_event = false;
2596 	}
2597 
2598 	mmc_bus_get(host);
2599 
2600 	/*
2601 	 * if there is a _removable_ card registered, check whether it is
2602 	 * still present
2603 	 */
2604 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2605 		host->bus_ops->detect(host);
2606 
2607 	host->detect_change = 0;
2608 
2609 	/*
2610 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2611 	 * the card is no longer present.
2612 	 */
2613 	mmc_bus_put(host);
2614 	mmc_bus_get(host);
2615 
2616 	/* if there still is a card present, stop here */
2617 	if (host->bus_ops != NULL) {
2618 		mmc_bus_put(host);
2619 		goto out;
2620 	}
2621 
2622 	/*
2623 	 * Only we can add a new handler, so it's safe to
2624 	 * release the lock here.
2625 	 */
2626 	mmc_bus_put(host);
2627 
2628 	mmc_claim_host(host);
2629 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2630 			host->ops->get_cd(host) == 0) {
2631 		mmc_power_off(host);
2632 		mmc_release_host(host);
2633 		goto out;
2634 	}
2635 
2636 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2637 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2638 			break;
2639 		if (freqs[i] <= host->f_min)
2640 			break;
2641 	}
2642 	mmc_release_host(host);
2643 
2644  out:
2645 	if (host->caps & MMC_CAP_NEEDS_POLL)
2646 		mmc_schedule_delayed_work(&host->detect, HZ);
2647 }
2648 
2649 void mmc_start_host(struct mmc_host *host)
2650 {
2651 	host->f_init = max(freqs[0], host->f_min);
2652 	host->rescan_disable = 0;
2653 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2654 
2655 	mmc_claim_host(host);
2656 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2657 		mmc_power_off(host);
2658 	else
2659 		mmc_power_up(host, host->ocr_avail);
2660 	mmc_release_host(host);
2661 
2662 	mmc_gpiod_request_cd_irq(host);
2663 	_mmc_detect_change(host, 0, false);
2664 }
2665 
2666 void mmc_stop_host(struct mmc_host *host)
2667 {
2668 #ifdef CONFIG_MMC_DEBUG
2669 	unsigned long flags;
2670 	spin_lock_irqsave(&host->lock, flags);
2671 	host->removed = 1;
2672 	spin_unlock_irqrestore(&host->lock, flags);
2673 #endif
2674 	if (host->slot.cd_irq >= 0)
2675 		disable_irq(host->slot.cd_irq);
2676 
2677 	host->rescan_disable = 1;
2678 	cancel_delayed_work_sync(&host->detect);
2679 
2680 	/* clear pm flags now and let card drivers set them as needed */
2681 	host->pm_flags = 0;
2682 
2683 	mmc_bus_get(host);
2684 	if (host->bus_ops && !host->bus_dead) {
2685 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2686 		host->bus_ops->remove(host);
2687 		mmc_claim_host(host);
2688 		mmc_detach_bus(host);
2689 		mmc_power_off(host);
2690 		mmc_release_host(host);
2691 		mmc_bus_put(host);
2692 		return;
2693 	}
2694 	mmc_bus_put(host);
2695 
2696 	BUG_ON(host->card);
2697 
2698 	mmc_claim_host(host);
2699 	mmc_power_off(host);
2700 	mmc_release_host(host);
2701 }
2702 
2703 int mmc_power_save_host(struct mmc_host *host)
2704 {
2705 	int ret = 0;
2706 
2707 #ifdef CONFIG_MMC_DEBUG
2708 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2709 #endif
2710 
2711 	mmc_bus_get(host);
2712 
2713 	if (!host->bus_ops || host->bus_dead) {
2714 		mmc_bus_put(host);
2715 		return -EINVAL;
2716 	}
2717 
2718 	if (host->bus_ops->power_save)
2719 		ret = host->bus_ops->power_save(host);
2720 
2721 	mmc_bus_put(host);
2722 
2723 	mmc_power_off(host);
2724 
2725 	return ret;
2726 }
2727 EXPORT_SYMBOL(mmc_power_save_host);
2728 
2729 int mmc_power_restore_host(struct mmc_host *host)
2730 {
2731 	int ret;
2732 
2733 #ifdef CONFIG_MMC_DEBUG
2734 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2735 #endif
2736 
2737 	mmc_bus_get(host);
2738 
2739 	if (!host->bus_ops || host->bus_dead) {
2740 		mmc_bus_put(host);
2741 		return -EINVAL;
2742 	}
2743 
2744 	mmc_power_up(host, host->card->ocr);
2745 	ret = host->bus_ops->power_restore(host);
2746 
2747 	mmc_bus_put(host);
2748 
2749 	return ret;
2750 }
2751 EXPORT_SYMBOL(mmc_power_restore_host);
2752 
2753 /*
2754  * Flush the cache to the non-volatile storage.
2755  */
2756 int mmc_flush_cache(struct mmc_card *card)
2757 {
2758 	int err = 0;
2759 
2760 	if (mmc_card_mmc(card) &&
2761 			(card->ext_csd.cache_size > 0) &&
2762 			(card->ext_csd.cache_ctrl & 1)) {
2763 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2764 				EXT_CSD_FLUSH_CACHE, 1, 0);
2765 		if (err)
2766 			pr_err("%s: cache flush error %d\n",
2767 					mmc_hostname(card->host), err);
2768 	}
2769 
2770 	return err;
2771 }
2772 EXPORT_SYMBOL(mmc_flush_cache);
2773 
2774 #ifdef CONFIG_PM_SLEEP
2775 /* Do the card removal on suspend if card is assumed removeable
2776  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2777    to sync the card.
2778 */
2779 static int mmc_pm_notify(struct notifier_block *notify_block,
2780 			unsigned long mode, void *unused)
2781 {
2782 	struct mmc_host *host = container_of(
2783 		notify_block, struct mmc_host, pm_notify);
2784 	unsigned long flags;
2785 	int err = 0;
2786 
2787 	switch (mode) {
2788 	case PM_HIBERNATION_PREPARE:
2789 	case PM_SUSPEND_PREPARE:
2790 	case PM_RESTORE_PREPARE:
2791 		spin_lock_irqsave(&host->lock, flags);
2792 		host->rescan_disable = 1;
2793 		spin_unlock_irqrestore(&host->lock, flags);
2794 		cancel_delayed_work_sync(&host->detect);
2795 
2796 		if (!host->bus_ops)
2797 			break;
2798 
2799 		/* Validate prerequisites for suspend */
2800 		if (host->bus_ops->pre_suspend)
2801 			err = host->bus_ops->pre_suspend(host);
2802 		if (!err)
2803 			break;
2804 
2805 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2806 		host->bus_ops->remove(host);
2807 		mmc_claim_host(host);
2808 		mmc_detach_bus(host);
2809 		mmc_power_off(host);
2810 		mmc_release_host(host);
2811 		host->pm_flags = 0;
2812 		break;
2813 
2814 	case PM_POST_SUSPEND:
2815 	case PM_POST_HIBERNATION:
2816 	case PM_POST_RESTORE:
2817 
2818 		spin_lock_irqsave(&host->lock, flags);
2819 		host->rescan_disable = 0;
2820 		spin_unlock_irqrestore(&host->lock, flags);
2821 		_mmc_detect_change(host, 0, false);
2822 
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 void mmc_register_pm_notifier(struct mmc_host *host)
2829 {
2830 	host->pm_notify.notifier_call = mmc_pm_notify;
2831 	register_pm_notifier(&host->pm_notify);
2832 }
2833 
2834 void mmc_unregister_pm_notifier(struct mmc_host *host)
2835 {
2836 	unregister_pm_notifier(&host->pm_notify);
2837 }
2838 #endif
2839 
2840 /**
2841  * mmc_init_context_info() - init synchronization context
2842  * @host: mmc host
2843  *
2844  * Init struct context_info needed to implement asynchronous
2845  * request mechanism, used by mmc core, host driver and mmc requests
2846  * supplier.
2847  */
2848 void mmc_init_context_info(struct mmc_host *host)
2849 {
2850 	spin_lock_init(&host->context_info.lock);
2851 	host->context_info.is_new_req = false;
2852 	host->context_info.is_done_rcv = false;
2853 	host->context_info.is_waiting_last_req = false;
2854 	init_waitqueue_head(&host->context_info.wait);
2855 }
2856 
2857 static int __init mmc_init(void)
2858 {
2859 	int ret;
2860 
2861 	ret = mmc_register_bus();
2862 	if (ret)
2863 		return ret;
2864 
2865 	ret = mmc_register_host_class();
2866 	if (ret)
2867 		goto unregister_bus;
2868 
2869 	ret = sdio_register_bus();
2870 	if (ret)
2871 		goto unregister_host_class;
2872 
2873 	return 0;
2874 
2875 unregister_host_class:
2876 	mmc_unregister_host_class();
2877 unregister_bus:
2878 	mmc_unregister_bus();
2879 	return ret;
2880 }
2881 
2882 static void __exit mmc_exit(void)
2883 {
2884 	sdio_unregister_bus();
2885 	mmc_unregister_host_class();
2886 	mmc_unregister_bus();
2887 }
2888 
2889 subsys_initcall(mmc_init);
2890 module_exit(mmc_exit);
2891 
2892 MODULE_LICENSE("GPL");
2893