xref: /linux/drivers/mmc/core/core.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/suspend.h>
23 #include <linux/fault-inject.h>
24 #include <linux/random.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/slot-gpio.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/mmc.h>
36 
37 #include "core.h"
38 #include "card.h"
39 #include "crypto.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS	(250)
52 
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
54 
55 /*
56  * Enabling software CRCs on the data blocks can be a significant (30%)
57  * performance cost, and for other reasons may not always be desired.
58  * So we allow it to be disabled.
59  */
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
62 
63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 				     unsigned long delay)
65 {
66 	/*
67 	 * We use the system_freezable_wq, because of two reasons.
68 	 * First, it allows several works (not the same work item) to be
69 	 * executed simultaneously. Second, the queue becomes frozen when
70 	 * userspace becomes frozen during system PM.
71 	 */
72 	return queue_delayed_work(system_freezable_wq, work, delay);
73 }
74 
75 #ifdef CONFIG_FAIL_MMC_REQUEST
76 
77 /*
78  * Internal function. Inject random data errors.
79  * If mmc_data is NULL no errors are injected.
80  */
81 static void mmc_should_fail_request(struct mmc_host *host,
82 				    struct mmc_request *mrq)
83 {
84 	struct mmc_command *cmd = mrq->cmd;
85 	struct mmc_data *data = mrq->data;
86 	static const int data_errors[] = {
87 		-ETIMEDOUT,
88 		-EILSEQ,
89 		-EIO,
90 	};
91 
92 	if (!data)
93 		return;
94 
95 	if ((cmd && cmd->error) || data->error ||
96 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 		return;
98 
99 	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
100 	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
101 }
102 
103 #else /* CONFIG_FAIL_MMC_REQUEST */
104 
105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 					   struct mmc_request *mrq)
107 {
108 }
109 
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
111 
112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
113 {
114 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 		complete_all(&mrq->cmd_completion);
116 }
117 
118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
119 {
120 	if (!mrq->cap_cmd_during_tfr)
121 		return;
122 
123 	mmc_complete_cmd(mrq);
124 
125 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 		 mmc_hostname(host), mrq->cmd->opcode);
127 }
128 EXPORT_SYMBOL(mmc_command_done);
129 
130 /**
131  *	mmc_request_done - finish processing an MMC request
132  *	@host: MMC host which completed request
133  *	@mrq: MMC request which request
134  *
135  *	MMC drivers should call this function when they have completed
136  *	their processing of a request.
137  */
138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
139 {
140 	struct mmc_command *cmd = mrq->cmd;
141 	int err = cmd->error;
142 
143 	/* Flag re-tuning needed on CRC errors */
144 	if (!mmc_op_tuning(cmd->opcode) &&
145 	    !host->retune_crc_disable &&
146 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
147 	    (mrq->data && mrq->data->error == -EILSEQ) ||
148 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
149 		mmc_retune_needed(host);
150 
151 	if (err && cmd->retries && mmc_host_is_spi(host)) {
152 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
153 			cmd->retries = 0;
154 	}
155 
156 	if (host->ongoing_mrq == mrq)
157 		host->ongoing_mrq = NULL;
158 
159 	mmc_complete_cmd(mrq);
160 
161 	trace_mmc_request_done(host, mrq);
162 
163 	/*
164 	 * We list various conditions for the command to be considered
165 	 * properly done:
166 	 *
167 	 * - There was no error, OK fine then
168 	 * - We are not doing some kind of retry
169 	 * - The card was removed (...so just complete everything no matter
170 	 *   if there are errors or retries)
171 	 */
172 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
173 		mmc_should_fail_request(host, mrq);
174 
175 		if (!host->ongoing_mrq)
176 			led_trigger_event(host->led, LED_OFF);
177 
178 		if (mrq->sbc) {
179 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
180 				mmc_hostname(host), mrq->sbc->opcode,
181 				mrq->sbc->error,
182 				mrq->sbc->resp[0], mrq->sbc->resp[1],
183 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
184 		}
185 
186 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
187 			mmc_hostname(host), cmd->opcode, err,
188 			cmd->resp[0], cmd->resp[1],
189 			cmd->resp[2], cmd->resp[3]);
190 
191 		if (mrq->data) {
192 			pr_debug("%s:     %d bytes transferred: %d\n",
193 				mmc_hostname(host),
194 				mrq->data->bytes_xfered, mrq->data->error);
195 		}
196 
197 		if (mrq->stop) {
198 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
199 				mmc_hostname(host), mrq->stop->opcode,
200 				mrq->stop->error,
201 				mrq->stop->resp[0], mrq->stop->resp[1],
202 				mrq->stop->resp[2], mrq->stop->resp[3]);
203 		}
204 	}
205 	/*
206 	 * Request starter must handle retries - see
207 	 * mmc_wait_for_req_done().
208 	 */
209 	if (mrq->done)
210 		mrq->done(mrq);
211 }
212 
213 EXPORT_SYMBOL(mmc_request_done);
214 
215 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
216 {
217 	int err;
218 
219 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
220 	err = mmc_retune(host);
221 	if (err) {
222 		mrq->cmd->error = err;
223 		mmc_request_done(host, mrq);
224 		return;
225 	}
226 
227 	/*
228 	 * For sdio rw commands we must wait for card busy otherwise some
229 	 * sdio devices won't work properly.
230 	 * And bypass I/O abort, reset and bus suspend operations.
231 	 */
232 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
233 	    host->ops->card_busy) {
234 		int tries = 500; /* Wait aprox 500ms at maximum */
235 
236 		while (host->ops->card_busy(host) && --tries)
237 			mmc_delay(1);
238 
239 		if (tries == 0) {
240 			mrq->cmd->error = -EBUSY;
241 			mmc_request_done(host, mrq);
242 			return;
243 		}
244 	}
245 
246 	if (mrq->cap_cmd_during_tfr) {
247 		host->ongoing_mrq = mrq;
248 		/*
249 		 * Retry path could come through here without having waiting on
250 		 * cmd_completion, so ensure it is reinitialised.
251 		 */
252 		reinit_completion(&mrq->cmd_completion);
253 	}
254 
255 	trace_mmc_request_start(host, mrq);
256 
257 	if (host->cqe_on)
258 		host->cqe_ops->cqe_off(host);
259 
260 	host->ops->request(host, mrq);
261 }
262 
263 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
264 			     bool cqe)
265 {
266 	if (mrq->sbc) {
267 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
268 			 mmc_hostname(host), mrq->sbc->opcode,
269 			 mrq->sbc->arg, mrq->sbc->flags);
270 	}
271 
272 	if (mrq->cmd) {
273 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
274 			 mmc_hostname(host), cqe ? "CQE direct " : "",
275 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
276 	} else if (cqe) {
277 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
278 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
279 	}
280 
281 	if (mrq->data) {
282 		pr_debug("%s:     blksz %d blocks %d flags %08x "
283 			"tsac %d ms nsac %d\n",
284 			mmc_hostname(host), mrq->data->blksz,
285 			mrq->data->blocks, mrq->data->flags,
286 			mrq->data->timeout_ns / 1000000,
287 			mrq->data->timeout_clks);
288 	}
289 
290 	if (mrq->stop) {
291 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
292 			 mmc_hostname(host), mrq->stop->opcode,
293 			 mrq->stop->arg, mrq->stop->flags);
294 	}
295 }
296 
297 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
298 {
299 	unsigned int i, sz = 0;
300 	struct scatterlist *sg;
301 
302 	if (mrq->cmd) {
303 		mrq->cmd->error = 0;
304 		mrq->cmd->mrq = mrq;
305 		mrq->cmd->data = mrq->data;
306 	}
307 	if (mrq->sbc) {
308 		mrq->sbc->error = 0;
309 		mrq->sbc->mrq = mrq;
310 	}
311 	if (mrq->data) {
312 		if (mrq->data->blksz > host->max_blk_size ||
313 		    mrq->data->blocks > host->max_blk_count ||
314 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
315 			return -EINVAL;
316 
317 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
318 			sz += sg->length;
319 		if (sz != mrq->data->blocks * mrq->data->blksz)
320 			return -EINVAL;
321 
322 		mrq->data->error = 0;
323 		mrq->data->mrq = mrq;
324 		if (mrq->stop) {
325 			mrq->data->stop = mrq->stop;
326 			mrq->stop->error = 0;
327 			mrq->stop->mrq = mrq;
328 		}
329 	}
330 
331 	return 0;
332 }
333 
334 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 	int err;
337 
338 	if (mrq->cmd->has_ext_addr)
339 		mmc_send_ext_addr(host, mrq->cmd->ext_addr);
340 
341 	init_completion(&mrq->cmd_completion);
342 
343 	mmc_retune_hold(host);
344 
345 	if (mmc_card_removed(host->card))
346 		return -ENOMEDIUM;
347 
348 	mmc_mrq_pr_debug(host, mrq, false);
349 
350 	WARN_ON(!host->claimed);
351 
352 	err = mmc_mrq_prep(host, mrq);
353 	if (err)
354 		return err;
355 
356 	if (host->uhs2_sd_tran)
357 		mmc_uhs2_prepare_cmd(host, mrq);
358 
359 	led_trigger_event(host->led, LED_FULL);
360 	__mmc_start_request(host, mrq);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL(mmc_start_request);
365 
366 static void mmc_wait_done(struct mmc_request *mrq)
367 {
368 	complete(&mrq->completion);
369 }
370 
371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372 {
373 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374 
375 	/*
376 	 * If there is an ongoing transfer, wait for the command line to become
377 	 * available.
378 	 */
379 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 		wait_for_completion(&ongoing_mrq->cmd_completion);
381 }
382 
383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384 {
385 	int err;
386 
387 	mmc_wait_ongoing_tfr_cmd(host);
388 
389 	init_completion(&mrq->completion);
390 	mrq->done = mmc_wait_done;
391 
392 	err = mmc_start_request(host, mrq);
393 	if (err) {
394 		mrq->cmd->error = err;
395 		mmc_complete_cmd(mrq);
396 		complete(&mrq->completion);
397 	}
398 
399 	return err;
400 }
401 
402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403 {
404 	struct mmc_command *cmd;
405 
406 	while (1) {
407 		wait_for_completion(&mrq->completion);
408 
409 		cmd = mrq->cmd;
410 
411 		if (!cmd->error || !cmd->retries ||
412 		    mmc_card_removed(host->card))
413 			break;
414 
415 		mmc_retune_recheck(host);
416 
417 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
418 			 mmc_hostname(host), cmd->opcode, cmd->error);
419 		cmd->retries--;
420 		cmd->error = 0;
421 		__mmc_start_request(host, mrq);
422 	}
423 
424 	mmc_retune_release(host);
425 }
426 EXPORT_SYMBOL(mmc_wait_for_req_done);
427 
428 /*
429  * mmc_cqe_start_req - Start a CQE request.
430  * @host: MMC host to start the request
431  * @mrq: request to start
432  *
433  * Start the request, re-tuning if needed and it is possible. Returns an error
434  * code if the request fails to start or -EBUSY if CQE is busy.
435  */
436 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
437 {
438 	int err;
439 
440 	/*
441 	 * CQE cannot process re-tuning commands. Caller must hold retuning
442 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
443 	 * active requests i.e. this is the first.  Note, re-tuning will call
444 	 * ->cqe_off().
445 	 */
446 	err = mmc_retune(host);
447 	if (err)
448 		goto out_err;
449 
450 	mrq->host = host;
451 
452 	mmc_mrq_pr_debug(host, mrq, true);
453 
454 	err = mmc_mrq_prep(host, mrq);
455 	if (err)
456 		goto out_err;
457 
458 	if (host->uhs2_sd_tran)
459 		mmc_uhs2_prepare_cmd(host, mrq);
460 
461 	err = host->cqe_ops->cqe_request(host, mrq);
462 	if (err)
463 		goto out_err;
464 
465 	trace_mmc_request_start(host, mrq);
466 
467 	return 0;
468 
469 out_err:
470 	if (mrq->cmd) {
471 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
472 			 mmc_hostname(host), mrq->cmd->opcode, err);
473 	} else {
474 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
475 			 mmc_hostname(host), mrq->tag, err);
476 	}
477 	return err;
478 }
479 EXPORT_SYMBOL(mmc_cqe_start_req);
480 
481 /**
482  *	mmc_cqe_request_done - CQE has finished processing an MMC request
483  *	@host: MMC host which completed request
484  *	@mrq: MMC request which completed
485  *
486  *	CQE drivers should call this function when they have completed
487  *	their processing of a request.
488  */
489 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
490 {
491 	mmc_should_fail_request(host, mrq);
492 
493 	/* Flag re-tuning needed on CRC errors */
494 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
495 	    (mrq->data && mrq->data->error == -EILSEQ))
496 		mmc_retune_needed(host);
497 
498 	trace_mmc_request_done(host, mrq);
499 
500 	if (mrq->cmd) {
501 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
502 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
503 	} else {
504 		pr_debug("%s: CQE transfer done tag %d\n",
505 			 mmc_hostname(host), mrq->tag);
506 	}
507 
508 	if (mrq->data) {
509 		pr_debug("%s:     %d bytes transferred: %d\n",
510 			 mmc_hostname(host),
511 			 mrq->data->bytes_xfered, mrq->data->error);
512 	}
513 
514 	mrq->done(mrq);
515 }
516 EXPORT_SYMBOL(mmc_cqe_request_done);
517 
518 /**
519  *	mmc_cqe_post_req - CQE post process of a completed MMC request
520  *	@host: MMC host
521  *	@mrq: MMC request to be processed
522  */
523 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
524 {
525 	if (host->cqe_ops->cqe_post_req)
526 		host->cqe_ops->cqe_post_req(host, mrq);
527 }
528 EXPORT_SYMBOL(mmc_cqe_post_req);
529 
530 /* Arbitrary 1 second timeout */
531 #define MMC_CQE_RECOVERY_TIMEOUT	1000
532 
533 /*
534  * mmc_cqe_recovery - Recover from CQE errors.
535  * @host: MMC host to recover
536  *
537  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
538  * in eMMC, and discarding the queue in CQE. CQE must call
539  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
540  * fails to discard its queue.
541  */
542 int mmc_cqe_recovery(struct mmc_host *host)
543 {
544 	struct mmc_command cmd;
545 	int err;
546 
547 	mmc_retune_hold_now(host);
548 
549 	/*
550 	 * Recovery is expected seldom, if at all, but it reduces performance,
551 	 * so make sure it is not completely silent.
552 	 */
553 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
554 
555 	host->cqe_ops->cqe_recovery_start(host);
556 
557 	memset(&cmd, 0, sizeof(cmd));
558 	cmd.opcode       = MMC_STOP_TRANSMISSION;
559 	cmd.flags        = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
560 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
561 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
562 
563 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
564 
565 	memset(&cmd, 0, sizeof(cmd));
566 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
567 	cmd.arg          = 1; /* Discard entire queue */
568 	cmd.flags        = MMC_RSP_R1B_NO_CRC | MMC_CMD_AC; /* Ignore CRC */
569 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
570 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571 
572 	host->cqe_ops->cqe_recovery_finish(host);
573 
574 	if (err)
575 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
576 
577 	mmc_retune_release(host);
578 
579 	return err;
580 }
581 EXPORT_SYMBOL(mmc_cqe_recovery);
582 
583 /**
584  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
585  *	@host: MMC host
586  *	@mrq: MMC request
587  *
588  *	mmc_is_req_done() is used with requests that have
589  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
590  *	starting a request and before waiting for it to complete. That is,
591  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
592  *	and before mmc_wait_for_req_done(). If it is called at other times the
593  *	result is not meaningful.
594  */
595 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
596 {
597 	return completion_done(&mrq->completion);
598 }
599 EXPORT_SYMBOL(mmc_is_req_done);
600 
601 /**
602  *	mmc_wait_for_req - start a request and wait for completion
603  *	@host: MMC host to start command
604  *	@mrq: MMC request to start
605  *
606  *	Start a new MMC custom command request for a host, and wait
607  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
608  *	requests, the transfer is ongoing and the caller can issue further
609  *	commands that do not use the data lines, and then wait by calling
610  *	mmc_wait_for_req_done().
611  *	Does not attempt to parse the response.
612  */
613 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
614 {
615 	__mmc_start_req(host, mrq);
616 
617 	if (!mrq->cap_cmd_during_tfr)
618 		mmc_wait_for_req_done(host, mrq);
619 }
620 EXPORT_SYMBOL(mmc_wait_for_req);
621 
622 /**
623  *	mmc_wait_for_cmd - start a command and wait for completion
624  *	@host: MMC host to start command
625  *	@cmd: MMC command to start
626  *	@retries: maximum number of retries
627  *
628  *	Start a new MMC command for a host, and wait for the command
629  *	to complete.  Return any error that occurred while the command
630  *	was executing.  Do not attempt to parse the response.
631  */
632 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
633 {
634 	struct mmc_request mrq = {};
635 
636 	WARN_ON(!host->claimed);
637 
638 	memset(cmd->resp, 0, sizeof(cmd->resp));
639 	cmd->retries = retries;
640 
641 	mrq.cmd = cmd;
642 	cmd->data = NULL;
643 
644 	mmc_wait_for_req(host, &mrq);
645 
646 	return cmd->error;
647 }
648 
649 EXPORT_SYMBOL(mmc_wait_for_cmd);
650 
651 /**
652  *	mmc_set_data_timeout - set the timeout for a data command
653  *	@data: data phase for command
654  *	@card: the MMC card associated with the data transfer
655  *
656  *	Computes the data timeout parameters according to the
657  *	correct algorithm given the card type.
658  */
659 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
660 {
661 	unsigned int mult;
662 
663 	/*
664 	 * SDIO cards only define an upper 1 s limit on access.
665 	 */
666 	if (mmc_card_sdio(card)) {
667 		data->timeout_ns = 1000000000;
668 		data->timeout_clks = 0;
669 		return;
670 	}
671 
672 	/*
673 	 * SD cards use a 100 multiplier rather than 10
674 	 */
675 	mult = mmc_card_sd(card) ? 100 : 10;
676 
677 	/*
678 	 * Scale up the multiplier (and therefore the timeout) by
679 	 * the r2w factor for writes.
680 	 */
681 	if (data->flags & MMC_DATA_WRITE)
682 		mult <<= card->csd.r2w_factor;
683 
684 	data->timeout_ns = card->csd.taac_ns * mult;
685 	data->timeout_clks = card->csd.taac_clks * mult;
686 
687 	/*
688 	 * SD cards also have an upper limit on the timeout.
689 	 */
690 	if (mmc_card_sd(card)) {
691 		unsigned int timeout_us, limit_us;
692 
693 		timeout_us = data->timeout_ns / 1000;
694 		if (card->host->ios.clock)
695 			timeout_us += data->timeout_clks * 1000 /
696 				(card->host->ios.clock / 1000);
697 
698 		if (data->flags & MMC_DATA_WRITE)
699 			/*
700 			 * The MMC spec "It is strongly recommended
701 			 * for hosts to implement more than 500ms
702 			 * timeout value even if the card indicates
703 			 * the 250ms maximum busy length."  Even the
704 			 * previous value of 300ms is known to be
705 			 * insufficient for some cards.
706 			 */
707 			limit_us = 3000000;
708 		else
709 			limit_us = 100000;
710 
711 		/*
712 		 * SDHC cards always use these fixed values.
713 		 */
714 		if (timeout_us > limit_us) {
715 			data->timeout_ns = limit_us * 1000;
716 			data->timeout_clks = 0;
717 		}
718 
719 		/* assign limit value if invalid */
720 		if (timeout_us == 0)
721 			data->timeout_ns = limit_us * 1000;
722 	}
723 
724 	/*
725 	 * Some cards require longer data read timeout than indicated in CSD.
726 	 * Address this by setting the read timeout to a "reasonably high"
727 	 * value. For the cards tested, 600ms has proven enough. If necessary,
728 	 * this value can be increased if other problematic cards require this.
729 	 */
730 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
731 		data->timeout_ns = 600000000;
732 		data->timeout_clks = 0;
733 	}
734 
735 	/*
736 	 * Some cards need very high timeouts if driven in SPI mode.
737 	 * The worst observed timeout was 900ms after writing a
738 	 * continuous stream of data until the internal logic
739 	 * overflowed.
740 	 */
741 	if (mmc_host_is_spi(card->host)) {
742 		if (data->flags & MMC_DATA_WRITE) {
743 			if (data->timeout_ns < 1000000000)
744 				data->timeout_ns = 1000000000;	/* 1s */
745 		} else {
746 			if (data->timeout_ns < 100000000)
747 				data->timeout_ns =  100000000;	/* 100ms */
748 		}
749 	}
750 }
751 EXPORT_SYMBOL(mmc_set_data_timeout);
752 
753 /*
754  * Allow claiming an already claimed host if the context is the same or there is
755  * no context but the task is the same.
756  */
757 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
758 				   struct task_struct *task)
759 {
760 	return host->claimer == ctx ||
761 	       (!ctx && task && host->claimer->task == task);
762 }
763 
764 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
765 				       struct mmc_ctx *ctx,
766 				       struct task_struct *task)
767 {
768 	if (!host->claimer) {
769 		if (ctx)
770 			host->claimer = ctx;
771 		else
772 			host->claimer = &host->default_ctx;
773 	}
774 	if (task)
775 		host->claimer->task = task;
776 }
777 
778 /**
779  *	__mmc_claim_host - exclusively claim a host
780  *	@host: mmc host to claim
781  *	@ctx: context that claims the host or NULL in which case the default
782  *	context will be used
783  *	@abort: whether or not the operation should be aborted
784  *
785  *	Claim a host for a set of operations.  If @abort is non null and
786  *	dereference a non-zero value then this will return prematurely with
787  *	that non-zero value without acquiring the lock.  Returns zero
788  *	with the lock held otherwise.
789  */
790 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
791 		     atomic_t *abort)
792 {
793 	struct task_struct *task = ctx ? NULL : current;
794 	DECLARE_WAITQUEUE(wait, current);
795 	unsigned long flags;
796 	int stop;
797 	bool pm = false;
798 
799 	might_sleep();
800 
801 	add_wait_queue(&host->wq, &wait);
802 	spin_lock_irqsave(&host->lock, flags);
803 	while (1) {
804 		set_current_state(TASK_UNINTERRUPTIBLE);
805 		stop = abort ? atomic_read(abort) : 0;
806 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
807 			break;
808 		spin_unlock_irqrestore(&host->lock, flags);
809 		schedule();
810 		spin_lock_irqsave(&host->lock, flags);
811 	}
812 	set_current_state(TASK_RUNNING);
813 	if (!stop) {
814 		host->claimed = 1;
815 		mmc_ctx_set_claimer(host, ctx, task);
816 		host->claim_cnt += 1;
817 		if (host->claim_cnt == 1)
818 			pm = true;
819 	} else
820 		wake_up(&host->wq);
821 	spin_unlock_irqrestore(&host->lock, flags);
822 	remove_wait_queue(&host->wq, &wait);
823 
824 	if (pm)
825 		pm_runtime_get_sync(mmc_dev(host));
826 
827 	return stop;
828 }
829 EXPORT_SYMBOL(__mmc_claim_host);
830 
831 /**
832  *	mmc_release_host - release a host
833  *	@host: mmc host to release
834  *
835  *	Release a MMC host, allowing others to claim the host
836  *	for their operations.
837  */
838 void mmc_release_host(struct mmc_host *host)
839 {
840 	unsigned long flags;
841 
842 	WARN_ON(!host->claimed);
843 
844 	spin_lock_irqsave(&host->lock, flags);
845 	if (--host->claim_cnt) {
846 		/* Release for nested claim */
847 		spin_unlock_irqrestore(&host->lock, flags);
848 	} else {
849 		host->claimed = 0;
850 		host->claimer->task = NULL;
851 		host->claimer = NULL;
852 		spin_unlock_irqrestore(&host->lock, flags);
853 		wake_up(&host->wq);
854 		pm_runtime_mark_last_busy(mmc_dev(host));
855 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
856 			pm_runtime_put_sync_suspend(mmc_dev(host));
857 		else
858 			pm_runtime_put_autosuspend(mmc_dev(host));
859 	}
860 }
861 EXPORT_SYMBOL(mmc_release_host);
862 
863 /*
864  * This is a helper function, which fetches a runtime pm reference for the
865  * card device and also claims the host.
866  */
867 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
868 {
869 	pm_runtime_get_sync(&card->dev);
870 	__mmc_claim_host(card->host, ctx, NULL);
871 }
872 EXPORT_SYMBOL(mmc_get_card);
873 
874 /*
875  * This is a helper function, which releases the host and drops the runtime
876  * pm reference for the card device.
877  */
878 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
879 {
880 	struct mmc_host *host = card->host;
881 
882 	WARN_ON(ctx && host->claimer != ctx);
883 
884 	mmc_release_host(host);
885 	pm_runtime_put_autosuspend(&card->dev);
886 }
887 EXPORT_SYMBOL(mmc_put_card);
888 
889 /*
890  * Internal function that does the actual ios call to the host driver,
891  * optionally printing some debug output.
892  */
893 static inline void mmc_set_ios(struct mmc_host *host)
894 {
895 	struct mmc_ios *ios = &host->ios;
896 
897 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
898 		"width %u timing %u\n",
899 		 mmc_hostname(host), ios->clock, ios->bus_mode,
900 		 ios->power_mode, ios->chip_select, ios->vdd,
901 		 1 << ios->bus_width, ios->timing);
902 
903 	host->ops->set_ios(host, ios);
904 }
905 
906 /*
907  * Control chip select pin on a host.
908  */
909 void mmc_set_chip_select(struct mmc_host *host, int mode)
910 {
911 	host->ios.chip_select = mode;
912 	mmc_set_ios(host);
913 }
914 
915 /*
916  * Sets the host clock to the highest possible frequency that
917  * is below "hz".
918  */
919 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
920 {
921 	WARN_ON(hz && hz < host->f_min);
922 
923 	if (hz > host->f_max)
924 		hz = host->f_max;
925 
926 	host->ios.clock = hz;
927 	mmc_set_ios(host);
928 }
929 
930 int mmc_execute_tuning(struct mmc_card *card)
931 {
932 	struct mmc_host *host = card->host;
933 	u32 opcode;
934 	int err;
935 
936 	if (!host->ops->execute_tuning)
937 		return 0;
938 
939 	if (host->cqe_on)
940 		host->cqe_ops->cqe_off(host);
941 
942 	if (mmc_card_mmc(card))
943 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
944 	else
945 		opcode = MMC_SEND_TUNING_BLOCK;
946 
947 	err = host->ops->execute_tuning(host, opcode);
948 	if (!err) {
949 		mmc_retune_clear(host);
950 		mmc_retune_enable(host);
951 		return 0;
952 	}
953 
954 	/* Only print error when we don't check for card removal */
955 	if (!host->detect_change) {
956 		pr_err("%s: tuning execution failed: %d\n",
957 			mmc_hostname(host), err);
958 		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
959 	}
960 
961 	return err;
962 }
963 
964 /*
965  * Change the bus mode (open drain/push-pull) of a host.
966  */
967 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
968 {
969 	host->ios.bus_mode = mode;
970 	mmc_set_ios(host);
971 }
972 
973 /*
974  * Change data bus width of a host.
975  */
976 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
977 {
978 	host->ios.bus_width = width;
979 	mmc_set_ios(host);
980 }
981 
982 /*
983  * Set initial state after a power cycle or a hw_reset.
984  */
985 void mmc_set_initial_state(struct mmc_host *host)
986 {
987 	if (host->cqe_on)
988 		host->cqe_ops->cqe_off(host);
989 
990 	mmc_retune_disable(host);
991 
992 	if (mmc_host_is_spi(host))
993 		host->ios.chip_select = MMC_CS_HIGH;
994 	else
995 		host->ios.chip_select = MMC_CS_DONTCARE;
996 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
997 	host->ios.bus_width = MMC_BUS_WIDTH_1;
998 	host->ios.timing = MMC_TIMING_LEGACY;
999 	host->ios.drv_type = 0;
1000 	host->ios.enhanced_strobe = false;
1001 
1002 	/*
1003 	 * Make sure we are in non-enhanced strobe mode before we
1004 	 * actually enable it in ext_csd.
1005 	 */
1006 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1007 	     host->ops->hs400_enhanced_strobe)
1008 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1009 
1010 	mmc_set_ios(host);
1011 
1012 	mmc_crypto_set_initial_state(host);
1013 }
1014 
1015 /**
1016  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1017  * @vdd:	voltage (mV)
1018  * @low_bits:	prefer low bits in boundary cases
1019  *
1020  * This function returns the OCR bit number according to the provided @vdd
1021  * value. If conversion is not possible a negative errno value returned.
1022  *
1023  * Depending on the @low_bits flag the function prefers low or high OCR bits
1024  * on boundary voltages. For example,
1025  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1026  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1027  *
1028  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1029  */
1030 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1031 {
1032 	const int max_bit = ilog2(MMC_VDD_35_36);
1033 	int bit;
1034 
1035 	if (vdd < 1650 || vdd > 3600)
1036 		return -EINVAL;
1037 
1038 	if (vdd >= 1650 && vdd <= 1950)
1039 		return ilog2(MMC_VDD_165_195);
1040 
1041 	if (low_bits)
1042 		vdd -= 1;
1043 
1044 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1045 	bit = (vdd - 2000) / 100 + 8;
1046 	if (bit > max_bit)
1047 		return max_bit;
1048 	return bit;
1049 }
1050 
1051 /**
1052  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1053  * @vdd_min:	minimum voltage value (mV)
1054  * @vdd_max:	maximum voltage value (mV)
1055  *
1056  * This function returns the OCR mask bits according to the provided @vdd_min
1057  * and @vdd_max values. If conversion is not possible the function returns 0.
1058  *
1059  * Notes wrt boundary cases:
1060  * This function sets the OCR bits for all boundary voltages, for example
1061  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1062  * MMC_VDD_34_35 mask.
1063  */
1064 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1065 {
1066 	u32 mask = 0;
1067 
1068 	if (vdd_max < vdd_min)
1069 		return 0;
1070 
1071 	/* Prefer high bits for the boundary vdd_max values. */
1072 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1073 	if (vdd_max < 0)
1074 		return 0;
1075 
1076 	/* Prefer low bits for the boundary vdd_min values. */
1077 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1078 	if (vdd_min < 0)
1079 		return 0;
1080 
1081 	/* Fill the mask, from max bit to min bit. */
1082 	while (vdd_max >= vdd_min)
1083 		mask |= 1 << vdd_max--;
1084 
1085 	return mask;
1086 }
1087 
1088 static int mmc_of_get_func_num(struct device_node *node)
1089 {
1090 	u32 reg;
1091 	int ret;
1092 
1093 	ret = of_property_read_u32(node, "reg", &reg);
1094 	if (ret < 0)
1095 		return ret;
1096 
1097 	return reg;
1098 }
1099 
1100 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1101 		unsigned func_num)
1102 {
1103 	struct device_node *node;
1104 
1105 	if (!host->parent || !host->parent->of_node)
1106 		return NULL;
1107 
1108 	for_each_child_of_node(host->parent->of_node, node) {
1109 		if (mmc_of_get_func_num(node) == func_num)
1110 			return node;
1111 	}
1112 
1113 	return NULL;
1114 }
1115 
1116 /*
1117  * Mask off any voltages we don't support and select
1118  * the lowest voltage
1119  */
1120 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1121 {
1122 	int bit;
1123 
1124 	/*
1125 	 * Sanity check the voltages that the card claims to
1126 	 * support.
1127 	 */
1128 	if (ocr & 0x7F) {
1129 		dev_warn(mmc_dev(host),
1130 		"card claims to support voltages below defined range\n");
1131 		ocr &= ~0x7F;
1132 	}
1133 
1134 	ocr &= host->ocr_avail;
1135 	if (!ocr) {
1136 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1137 		return 0;
1138 	}
1139 
1140 	if (!mmc_card_uhs2(host) && host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1141 		bit = ffs(ocr) - 1;
1142 		ocr &= 3 << bit;
1143 		mmc_power_cycle(host, ocr);
1144 	} else {
1145 		bit = fls(ocr) - 1;
1146 		/*
1147 		 * The bit variable represents the highest voltage bit set in
1148 		 * the OCR register.
1149 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1150 		 * we must shift the mask '3' with (bit - 1).
1151 		 */
1152 		ocr &= 3 << (bit - 1);
1153 		if (bit != host->ios.vdd)
1154 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1155 	}
1156 
1157 	return ocr;
1158 }
1159 
1160 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1161 {
1162 	int err = 0;
1163 	int old_signal_voltage = host->ios.signal_voltage;
1164 
1165 	host->ios.signal_voltage = signal_voltage;
1166 	if (host->ops->start_signal_voltage_switch)
1167 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1168 
1169 	if (err)
1170 		host->ios.signal_voltage = old_signal_voltage;
1171 
1172 	return err;
1173 
1174 }
1175 
1176 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1177 {
1178 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1179 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1180 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1181 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1183 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1184 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1185 }
1186 
1187 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1188 {
1189 	u32 clock;
1190 
1191 	/*
1192 	 * During a signal voltage level switch, the clock must be gated
1193 	 * for 5 ms according to the SD spec
1194 	 */
1195 	clock = host->ios.clock;
1196 	host->ios.clock = 0;
1197 	mmc_set_ios(host);
1198 
1199 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1200 		return -EAGAIN;
1201 
1202 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1203 	mmc_delay(10);
1204 	host->ios.clock = clock;
1205 	mmc_set_ios(host);
1206 
1207 	return 0;
1208 }
1209 
1210 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1211 {
1212 	struct mmc_command cmd = {};
1213 	int err = 0;
1214 
1215 	/*
1216 	 * If we cannot switch voltages, return failure so the caller
1217 	 * can continue without UHS mode
1218 	 */
1219 	if (!host->ops->start_signal_voltage_switch)
1220 		return -EPERM;
1221 	if (!host->ops->card_busy)
1222 		pr_warn("%s: cannot verify signal voltage switch\n",
1223 			mmc_hostname(host));
1224 
1225 	cmd.opcode = SD_SWITCH_VOLTAGE;
1226 	cmd.arg = 0;
1227 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1228 
1229 	err = mmc_wait_for_cmd(host, &cmd, 0);
1230 	if (err)
1231 		goto power_cycle;
1232 
1233 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1234 		return -EIO;
1235 
1236 	/*
1237 	 * The card should drive cmd and dat[0:3] low immediately
1238 	 * after the response of cmd11, but wait 1 ms to be sure
1239 	 */
1240 	mmc_delay(1);
1241 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1242 		err = -EAGAIN;
1243 		goto power_cycle;
1244 	}
1245 
1246 	if (mmc_host_set_uhs_voltage(host)) {
1247 		/*
1248 		 * Voltages may not have been switched, but we've already
1249 		 * sent CMD11, so a power cycle is required anyway
1250 		 */
1251 		err = -EAGAIN;
1252 		goto power_cycle;
1253 	}
1254 
1255 	/* Wait for at least 1 ms according to spec */
1256 	mmc_delay(1);
1257 
1258 	/*
1259 	 * Failure to switch is indicated by the card holding
1260 	 * dat[0:3] low
1261 	 */
1262 	if (host->ops->card_busy && host->ops->card_busy(host))
1263 		err = -EAGAIN;
1264 
1265 power_cycle:
1266 	if (err) {
1267 		pr_debug("%s: Signal voltage switch failed, "
1268 			"power cycling card\n", mmc_hostname(host));
1269 		mmc_power_cycle(host, ocr);
1270 	}
1271 
1272 	return err;
1273 }
1274 
1275 /*
1276  * Select timing parameters for host.
1277  */
1278 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1279 {
1280 	host->ios.timing = timing;
1281 	mmc_set_ios(host);
1282 }
1283 
1284 /*
1285  * Select appropriate driver type for host.
1286  */
1287 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1288 {
1289 	host->ios.drv_type = drv_type;
1290 	mmc_set_ios(host);
1291 }
1292 
1293 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1294 			      int card_drv_type, int *drv_type)
1295 {
1296 	struct mmc_host *host = card->host;
1297 	int host_drv_type = SD_DRIVER_TYPE_B;
1298 
1299 	*drv_type = 0;
1300 
1301 	if (!host->ops->select_drive_strength)
1302 		return 0;
1303 
1304 	/* Use SD definition of driver strength for hosts */
1305 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1306 		host_drv_type |= SD_DRIVER_TYPE_A;
1307 
1308 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1309 		host_drv_type |= SD_DRIVER_TYPE_C;
1310 
1311 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1312 		host_drv_type |= SD_DRIVER_TYPE_D;
1313 
1314 	/*
1315 	 * The drive strength that the hardware can support
1316 	 * depends on the board design.  Pass the appropriate
1317 	 * information and let the hardware specific code
1318 	 * return what is possible given the options
1319 	 */
1320 	return host->ops->select_drive_strength(card, max_dtr,
1321 						host_drv_type,
1322 						card_drv_type,
1323 						drv_type);
1324 }
1325 
1326 /*
1327  * Apply power to the MMC stack.  This is a two-stage process.
1328  * First, we enable power to the card without the clock running.
1329  * We then wait a bit for the power to stabilise.  Finally,
1330  * enable the bus drivers and clock to the card.
1331  *
1332  * We must _NOT_ enable the clock prior to power stablising.
1333  *
1334  * If a host does all the power sequencing itself, ignore the
1335  * initial MMC_POWER_UP stage.
1336  */
1337 void mmc_power_up(struct mmc_host *host, u32 ocr)
1338 {
1339 	if (host->ios.power_mode == MMC_POWER_ON)
1340 		return;
1341 
1342 	mmc_pwrseq_pre_power_on(host);
1343 
1344 	host->ios.vdd = fls(ocr) - 1;
1345 	host->ios.power_mode = MMC_POWER_UP;
1346 	/* Set initial state and call mmc_set_ios */
1347 	mmc_set_initial_state(host);
1348 
1349 	mmc_set_initial_signal_voltage(host);
1350 
1351 	/*
1352 	 * This delay should be sufficient to allow the power supply
1353 	 * to reach the minimum voltage.
1354 	 */
1355 	mmc_delay(host->ios.power_delay_ms);
1356 
1357 	mmc_pwrseq_post_power_on(host);
1358 
1359 	host->ios.clock = host->f_init;
1360 
1361 	host->ios.power_mode = MMC_POWER_ON;
1362 	mmc_set_ios(host);
1363 
1364 	/*
1365 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1366 	 * time required to reach a stable voltage.
1367 	 */
1368 	mmc_delay(host->ios.power_delay_ms);
1369 }
1370 
1371 void mmc_power_off(struct mmc_host *host)
1372 {
1373 	if (host->ios.power_mode == MMC_POWER_OFF)
1374 		return;
1375 
1376 	mmc_pwrseq_power_off(host);
1377 
1378 	host->ios.clock = 0;
1379 	host->ios.vdd = 0;
1380 
1381 	host->ios.power_mode = MMC_POWER_OFF;
1382 	/* Set initial state and call mmc_set_ios */
1383 	mmc_set_initial_state(host);
1384 
1385 	/*
1386 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1387 	 * XO-1.5, require a short delay after poweroff before the card
1388 	 * can be successfully turned on again.
1389 	 */
1390 	mmc_delay(1);
1391 }
1392 
1393 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1394 {
1395 	mmc_power_off(host);
1396 	/* Wait at least 1 ms according to SD spec */
1397 	mmc_delay(1);
1398 	mmc_power_up(host, ocr);
1399 }
1400 
1401 /**
1402  * mmc_handle_undervoltage - Handle an undervoltage event on the MMC bus
1403  * @host: The MMC host that detected the undervoltage condition
1404  *
1405  * This function is called when an undervoltage event is detected on one of
1406  * the MMC regulators.
1407  *
1408  * Returns: 0 on success or a negative error code on failure.
1409  */
1410 int mmc_handle_undervoltage(struct mmc_host *host)
1411 {
1412 	/* Stop the host to prevent races with card removal */
1413 	__mmc_stop_host(host);
1414 
1415 	if (!host->bus_ops || !host->bus_ops->handle_undervoltage)
1416 		return 0;
1417 
1418 	dev_warn(mmc_dev(host), "%s: Undervoltage detected, initiating emergency stop\n",
1419 		 mmc_hostname(host));
1420 
1421 	return host->bus_ops->handle_undervoltage(host);
1422 }
1423 
1424 /*
1425  * Assign a mmc bus handler to a host. Only one bus handler may control a
1426  * host at any given time.
1427  */
1428 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1429 {
1430 	host->bus_ops = ops;
1431 }
1432 
1433 /*
1434  * Remove the current bus handler from a host.
1435  */
1436 void mmc_detach_bus(struct mmc_host *host)
1437 {
1438 	host->bus_ops = NULL;
1439 }
1440 
1441 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1442 {
1443 	/*
1444 	 * Prevent system sleep for 5s to allow user space to consume the
1445 	 * corresponding uevent. This is especially useful, when CD irq is used
1446 	 * as a system wakeup, but doesn't hurt in other cases.
1447 	 */
1448 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1449 		__pm_wakeup_event(host->ws, 5000);
1450 
1451 	host->detect_change = 1;
1452 	mmc_schedule_delayed_work(&host->detect, delay);
1453 }
1454 
1455 /**
1456  *	mmc_detect_change - process change of state on a MMC socket
1457  *	@host: host which changed state.
1458  *	@delay: optional delay to wait before detection (jiffies)
1459  *
1460  *	MMC drivers should call this when they detect a card has been
1461  *	inserted or removed. The MMC layer will confirm that any
1462  *	present card is still functional, and initialize any newly
1463  *	inserted.
1464  */
1465 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1466 {
1467 	_mmc_detect_change(host, delay, true);
1468 }
1469 EXPORT_SYMBOL(mmc_detect_change);
1470 
1471 void mmc_init_erase(struct mmc_card *card)
1472 {
1473 	unsigned int sz;
1474 
1475 	if (is_power_of_2(card->erase_size))
1476 		card->erase_shift = ffs(card->erase_size) - 1;
1477 	else
1478 		card->erase_shift = 0;
1479 
1480 	/*
1481 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1482 	 * card.  That is not desirable because it can take a long time
1483 	 * (minutes) potentially delaying more important I/O, and also the
1484 	 * timeout calculations become increasingly hugely over-estimated.
1485 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1486 	 * to that size and alignment.
1487 	 *
1488 	 * For SD cards that define Allocation Unit size, limit erases to one
1489 	 * Allocation Unit at a time.
1490 	 * For MMC, have a stab at ai good value and for modern cards it will
1491 	 * end up being 4MiB. Note that if the value is too small, it can end
1492 	 * up taking longer to erase. Also note, erase_size is already set to
1493 	 * High Capacity Erase Size if available when this function is called.
1494 	 */
1495 	if (mmc_card_sd(card) && card->ssr.au) {
1496 		card->pref_erase = card->ssr.au;
1497 		card->erase_shift = ffs(card->ssr.au) - 1;
1498 	} else if (card->erase_size) {
1499 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1500 		if (sz < 128)
1501 			card->pref_erase = 512 * 1024 / 512;
1502 		else if (sz < 512)
1503 			card->pref_erase = 1024 * 1024 / 512;
1504 		else if (sz < 1024)
1505 			card->pref_erase = 2 * 1024 * 1024 / 512;
1506 		else
1507 			card->pref_erase = 4 * 1024 * 1024 / 512;
1508 		if (card->pref_erase < card->erase_size)
1509 			card->pref_erase = card->erase_size;
1510 		else {
1511 			sz = card->pref_erase % card->erase_size;
1512 			if (sz)
1513 				card->pref_erase += card->erase_size - sz;
1514 		}
1515 	} else
1516 		card->pref_erase = 0;
1517 }
1518 
1519 static bool is_trim_arg(unsigned int arg)
1520 {
1521 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1522 }
1523 
1524 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1525 				          unsigned int arg, unsigned int qty)
1526 {
1527 	unsigned int erase_timeout;
1528 
1529 	if (arg == MMC_DISCARD_ARG ||
1530 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1531 		erase_timeout = card->ext_csd.trim_timeout;
1532 	} else if (card->ext_csd.erase_group_def & 1) {
1533 		/* High Capacity Erase Group Size uses HC timeouts */
1534 		if (arg == MMC_TRIM_ARG)
1535 			erase_timeout = card->ext_csd.trim_timeout;
1536 		else
1537 			erase_timeout = card->ext_csd.hc_erase_timeout;
1538 	} else {
1539 		/* CSD Erase Group Size uses write timeout */
1540 		unsigned int mult = (10 << card->csd.r2w_factor);
1541 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1542 		unsigned int timeout_us;
1543 
1544 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1545 		if (card->csd.taac_ns < 1000000)
1546 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1547 		else
1548 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1549 
1550 		/*
1551 		 * ios.clock is only a target.  The real clock rate might be
1552 		 * less but not that much less, so fudge it by multiplying by 2.
1553 		 */
1554 		timeout_clks <<= 1;
1555 		timeout_us += (timeout_clks * 1000) /
1556 			      (card->host->ios.clock / 1000);
1557 
1558 		erase_timeout = timeout_us / 1000;
1559 
1560 		/*
1561 		 * Theoretically, the calculation could underflow so round up
1562 		 * to 1ms in that case.
1563 		 */
1564 		if (!erase_timeout)
1565 			erase_timeout = 1;
1566 	}
1567 
1568 	/* Multiplier for secure operations */
1569 	if (arg & MMC_SECURE_ARGS) {
1570 		if (arg == MMC_SECURE_ERASE_ARG)
1571 			erase_timeout *= card->ext_csd.sec_erase_mult;
1572 		else
1573 			erase_timeout *= card->ext_csd.sec_trim_mult;
1574 	}
1575 
1576 	erase_timeout *= qty;
1577 
1578 	/*
1579 	 * Ensure at least a 1 second timeout for SPI as per
1580 	 * 'mmc_set_data_timeout()'
1581 	 */
1582 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1583 		erase_timeout = 1000;
1584 
1585 	return erase_timeout;
1586 }
1587 
1588 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1589 					 unsigned int arg,
1590 					 unsigned int qty)
1591 {
1592 	unsigned int erase_timeout;
1593 
1594 	/* for DISCARD none of the below calculation applies.
1595 	 * the busy timeout is 250msec per discard command.
1596 	 */
1597 	if (arg == SD_DISCARD_ARG)
1598 		return SD_DISCARD_TIMEOUT_MS;
1599 
1600 	if (card->ssr.erase_timeout) {
1601 		/* Erase timeout specified in SD Status Register (SSR) */
1602 		erase_timeout = card->ssr.erase_timeout * qty +
1603 				card->ssr.erase_offset;
1604 	} else {
1605 		/*
1606 		 * Erase timeout not specified in SD Status Register (SSR) so
1607 		 * use 250ms per write block.
1608 		 */
1609 		erase_timeout = 250 * qty;
1610 	}
1611 
1612 	/* Must not be less than 1 second */
1613 	if (erase_timeout < 1000)
1614 		erase_timeout = 1000;
1615 
1616 	return erase_timeout;
1617 }
1618 
1619 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1620 				      unsigned int arg,
1621 				      unsigned int qty)
1622 {
1623 	if (mmc_card_sd(card))
1624 		return mmc_sd_erase_timeout(card, arg, qty);
1625 	else
1626 		return mmc_mmc_erase_timeout(card, arg, qty);
1627 }
1628 
1629 static int mmc_do_erase(struct mmc_card *card, sector_t from,
1630 			sector_t to, unsigned int arg)
1631 {
1632 	struct mmc_command cmd = {};
1633 	unsigned int qty = 0, busy_timeout = 0;
1634 	bool use_r1b_resp;
1635 	int err;
1636 
1637 	mmc_retune_hold(card->host);
1638 
1639 	/*
1640 	 * qty is used to calculate the erase timeout which depends on how many
1641 	 * erase groups (or allocation units in SD terminology) are affected.
1642 	 * We count erasing part of an erase group as one erase group.
1643 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1644 	 * erase group size is almost certainly also power of 2, but it does not
1645 	 * seem to insist on that in the JEDEC standard, so we fall back to
1646 	 * division in that case.  SD may not specify an allocation unit size,
1647 	 * in which case the timeout is based on the number of write blocks.
1648 	 *
1649 	 * Note that the timeout for secure trim 2 will only be correct if the
1650 	 * number of erase groups specified is the same as the total of all
1651 	 * preceding secure trim 1 commands.  Since the power may have been
1652 	 * lost since the secure trim 1 commands occurred, it is generally
1653 	 * impossible to calculate the secure trim 2 timeout correctly.
1654 	 */
1655 	if (card->erase_shift)
1656 		qty += ((to >> card->erase_shift) -
1657 			(from >> card->erase_shift)) + 1;
1658 	else if (mmc_card_sd(card))
1659 		qty += to - from + 1;
1660 	else
1661 		qty += (mmc_sector_div(to, card->erase_size) -
1662 			mmc_sector_div(from, card->erase_size)) + 1;
1663 
1664 	if (!mmc_card_blockaddr(card)) {
1665 		from <<= 9;
1666 		to <<= 9;
1667 	}
1668 
1669 	if (mmc_card_sd(card))
1670 		cmd.opcode = SD_ERASE_WR_BLK_START;
1671 	else
1672 		cmd.opcode = MMC_ERASE_GROUP_START;
1673 	cmd.arg = from;
1674 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1675 
1676 	if (mmc_card_ult_capacity(card)) {
1677 		cmd.ext_addr = from >> 32;
1678 		cmd.has_ext_addr = true;
1679 	}
1680 
1681 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1682 	if (err) {
1683 		pr_err("mmc_erase: group start error %d, "
1684 		       "status %#x\n", err, cmd.resp[0]);
1685 		err = -EIO;
1686 		goto out;
1687 	}
1688 
1689 	memset(&cmd, 0, sizeof(struct mmc_command));
1690 	if (mmc_card_sd(card))
1691 		cmd.opcode = SD_ERASE_WR_BLK_END;
1692 	else
1693 		cmd.opcode = MMC_ERASE_GROUP_END;
1694 	cmd.arg = to;
1695 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1696 
1697 	if (mmc_card_ult_capacity(card)) {
1698 		cmd.ext_addr = to >> 32;
1699 		cmd.has_ext_addr = true;
1700 	}
1701 
1702 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1703 	if (err) {
1704 		pr_err("mmc_erase: group end error %d, status %#x\n",
1705 		       err, cmd.resp[0]);
1706 		err = -EIO;
1707 		goto out;
1708 	}
1709 
1710 	memset(&cmd, 0, sizeof(struct mmc_command));
1711 	cmd.opcode = MMC_ERASE;
1712 	cmd.arg = arg;
1713 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1714 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1715 
1716 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1717 	if (err) {
1718 		pr_err("mmc_erase: erase error %d, status %#x\n",
1719 		       err, cmd.resp[0]);
1720 		err = -EIO;
1721 		goto out;
1722 	}
1723 
1724 	if (mmc_host_is_spi(card->host))
1725 		goto out;
1726 
1727 	/*
1728 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1729 	 * shall be avoided.
1730 	 */
1731 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1732 		goto out;
1733 
1734 	/* Let's poll to find out when the erase operation completes. */
1735 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1736 
1737 out:
1738 	mmc_retune_release(card->host);
1739 	return err;
1740 }
1741 
1742 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1743 					 sector_t *from,
1744 					 sector_t *to,
1745 					 unsigned int nr)
1746 {
1747 	sector_t from_new = *from;
1748 	unsigned int nr_new = nr, rem;
1749 
1750 	/*
1751 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1752 	 * to align the erase size efficiently.
1753 	 */
1754 	if (is_power_of_2(card->erase_size)) {
1755 		sector_t temp = from_new;
1756 
1757 		from_new = round_up(temp, card->erase_size);
1758 		rem = from_new - temp;
1759 
1760 		if (nr_new > rem)
1761 			nr_new -= rem;
1762 		else
1763 			return 0;
1764 
1765 		nr_new = round_down(nr_new, card->erase_size);
1766 	} else {
1767 		rem = mmc_sector_mod(from_new, card->erase_size);
1768 		if (rem) {
1769 			rem = card->erase_size - rem;
1770 			from_new += rem;
1771 			if (nr_new > rem)
1772 				nr_new -= rem;
1773 			else
1774 				return 0;
1775 		}
1776 
1777 		rem = nr_new % card->erase_size;
1778 		if (rem)
1779 			nr_new -= rem;
1780 	}
1781 
1782 	if (nr_new == 0)
1783 		return 0;
1784 
1785 	*to = from_new + nr_new;
1786 	*from = from_new;
1787 
1788 	return nr_new;
1789 }
1790 
1791 /**
1792  * mmc_erase - erase sectors.
1793  * @card: card to erase
1794  * @from: first sector to erase
1795  * @nr: number of sectors to erase
1796  * @arg: erase command argument
1797  *
1798  * Caller must claim host before calling this function.
1799  */
1800 int mmc_erase(struct mmc_card *card, sector_t from, unsigned int nr,
1801 	      unsigned int arg)
1802 {
1803 	unsigned int rem;
1804 	sector_t to = from + nr;
1805 
1806 	int err;
1807 
1808 	if (!(card->csd.cmdclass & CCC_ERASE))
1809 		return -EOPNOTSUPP;
1810 
1811 	if (!card->erase_size)
1812 		return -EOPNOTSUPP;
1813 
1814 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1815 		return -EOPNOTSUPP;
1816 
1817 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1818 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1819 		return -EOPNOTSUPP;
1820 
1821 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1822 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1823 		return -EOPNOTSUPP;
1824 
1825 	if (arg == MMC_SECURE_ERASE_ARG) {
1826 		if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1827 			return -EINVAL;
1828 	}
1829 
1830 	if (arg == MMC_ERASE_ARG)
1831 		nr = mmc_align_erase_size(card, &from, &to, nr);
1832 
1833 	if (nr == 0)
1834 		return 0;
1835 
1836 	if (to <= from)
1837 		return -EINVAL;
1838 
1839 	/* 'from' and 'to' are inclusive */
1840 	to -= 1;
1841 
1842 	/*
1843 	 * Special case where only one erase-group fits in the timeout budget:
1844 	 * If the region crosses an erase-group boundary on this particular
1845 	 * case, we will be trimming more than one erase-group which, does not
1846 	 * fit in the timeout budget of the controller, so we need to split it
1847 	 * and call mmc_do_erase() twice if necessary. This special case is
1848 	 * identified by the card->eg_boundary flag.
1849 	 */
1850 	rem = card->erase_size - mmc_sector_mod(from, card->erase_size);
1851 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1852 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1853 		from += rem;
1854 		if ((err) || (to <= from))
1855 			return err;
1856 	}
1857 
1858 	return mmc_do_erase(card, from, to, arg);
1859 }
1860 EXPORT_SYMBOL(mmc_erase);
1861 
1862 bool mmc_card_can_erase(struct mmc_card *card)
1863 {
1864 	return (card->csd.cmdclass & CCC_ERASE && card->erase_size);
1865 }
1866 EXPORT_SYMBOL(mmc_card_can_erase);
1867 
1868 bool mmc_card_can_trim(struct mmc_card *card)
1869 {
1870 	return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1871 		(!(card->quirks & MMC_QUIRK_TRIM_BROKEN)));
1872 }
1873 EXPORT_SYMBOL(mmc_card_can_trim);
1874 
1875 bool mmc_card_can_discard(struct mmc_card *card)
1876 {
1877 	/*
1878 	 * As there's no way to detect the discard support bit at v4.5
1879 	 * use the s/w feature support filed.
1880 	 */
1881 	return (card->ext_csd.feature_support & MMC_DISCARD_FEATURE);
1882 }
1883 EXPORT_SYMBOL(mmc_card_can_discard);
1884 
1885 bool mmc_card_can_sanitize(struct mmc_card *card)
1886 {
1887 	if (!mmc_card_can_trim(card) && !mmc_card_can_erase(card))
1888 		return false;
1889 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1890 		return true;
1891 	return false;
1892 }
1893 
1894 bool mmc_card_can_secure_erase_trim(struct mmc_card *card)
1895 {
1896 	return ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1897 		!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN));
1898 }
1899 EXPORT_SYMBOL(mmc_card_can_secure_erase_trim);
1900 
1901 bool mmc_card_can_cmd23(struct mmc_card *card)
1902 {
1903 	return ((mmc_card_mmc(card) &&
1904 		 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
1905 		(mmc_card_sd(card) && !mmc_card_ult_capacity(card) &&
1906 		 card->scr.cmds & SD_SCR_CMD23_SUPPORT));
1907 }
1908 EXPORT_SYMBOL(mmc_card_can_cmd23);
1909 
1910 int mmc_erase_group_aligned(struct mmc_card *card, sector_t from,
1911 			    unsigned int nr)
1912 {
1913 	if (!card->erase_size)
1914 		return 0;
1915 	if (mmc_sector_mod(from, card->erase_size) || nr % card->erase_size)
1916 		return 0;
1917 	return 1;
1918 }
1919 EXPORT_SYMBOL(mmc_erase_group_aligned);
1920 
1921 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1922 					    unsigned int arg)
1923 {
1924 	struct mmc_host *host = card->host;
1925 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1926 	unsigned int last_timeout = 0;
1927 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1928 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1929 
1930 	if (card->erase_shift) {
1931 		max_qty = UINT_MAX >> card->erase_shift;
1932 		min_qty = card->pref_erase >> card->erase_shift;
1933 	} else if (mmc_card_sd(card)) {
1934 		max_qty = UINT_MAX;
1935 		min_qty = card->pref_erase;
1936 	} else {
1937 		max_qty = UINT_MAX / card->erase_size;
1938 		min_qty = card->pref_erase / card->erase_size;
1939 	}
1940 
1941 	/*
1942 	 * We should not only use 'host->max_busy_timeout' as the limitation
1943 	 * when deciding the max discard sectors. We should set a balance value
1944 	 * to improve the erase speed, and it can not get too long timeout at
1945 	 * the same time.
1946 	 *
1947 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1948 	 * matter what size of 'host->max_busy_timeout', but if the
1949 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1950 	 * then we can continue to increase the max discard sectors until we
1951 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1952 	 * isn't specified, use the default max erase timeout.
1953 	 */
1954 	do {
1955 		y = 0;
1956 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1957 			timeout = mmc_erase_timeout(card, arg, qty + x);
1958 
1959 			if (qty + x > min_qty && timeout > max_busy_timeout)
1960 				break;
1961 
1962 			if (timeout < last_timeout)
1963 				break;
1964 			last_timeout = timeout;
1965 			y = x;
1966 		}
1967 		qty += y;
1968 	} while (y);
1969 
1970 	if (!qty)
1971 		return 0;
1972 
1973 	/*
1974 	 * When specifying a sector range to trim, chances are we might cross
1975 	 * an erase-group boundary even if the amount of sectors is less than
1976 	 * one erase-group.
1977 	 * If we can only fit one erase-group in the controller timeout budget,
1978 	 * we have to care that erase-group boundaries are not crossed by a
1979 	 * single trim operation. We flag that special case with "eg_boundary".
1980 	 * In all other cases we can just decrement qty and pretend that we
1981 	 * always touch (qty + 1) erase-groups as a simple optimization.
1982 	 */
1983 	if (qty == 1)
1984 		card->eg_boundary = 1;
1985 	else
1986 		qty--;
1987 
1988 	/* Convert qty to sectors */
1989 	if (card->erase_shift)
1990 		max_discard = qty << card->erase_shift;
1991 	else if (mmc_card_sd(card))
1992 		max_discard = qty + 1;
1993 	else
1994 		max_discard = qty * card->erase_size;
1995 
1996 	return max_discard;
1997 }
1998 
1999 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2000 {
2001 	struct mmc_host *host = card->host;
2002 	unsigned int max_discard, max_trim;
2003 
2004 	/*
2005 	 * Without erase_group_def set, MMC erase timeout depends on clock
2006 	 * frequence which can change.  In that case, the best choice is
2007 	 * just the preferred erase size.
2008 	 */
2009 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2010 		return card->pref_erase;
2011 
2012 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2013 	if (mmc_card_can_trim(card)) {
2014 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2015 		if (max_trim < max_discard || max_discard == 0)
2016 			max_discard = max_trim;
2017 	} else if (max_discard < card->erase_size) {
2018 		max_discard = 0;
2019 	}
2020 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2021 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2022 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2023 	return max_discard;
2024 }
2025 EXPORT_SYMBOL(mmc_calc_max_discard);
2026 
2027 bool mmc_card_is_blockaddr(struct mmc_card *card)
2028 {
2029 	return card ? mmc_card_blockaddr(card) : false;
2030 }
2031 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2032 
2033 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2034 {
2035 	struct mmc_command cmd = {};
2036 
2037 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2038 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2039 		return 0;
2040 
2041 	cmd.opcode = MMC_SET_BLOCKLEN;
2042 	cmd.arg = blocklen;
2043 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2044 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2045 }
2046 EXPORT_SYMBOL(mmc_set_blocklen);
2047 
2048 static void mmc_hw_reset_for_init(struct mmc_host *host)
2049 {
2050 	mmc_pwrseq_reset(host);
2051 
2052 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2053 		return;
2054 	host->ops->card_hw_reset(host);
2055 }
2056 
2057 /**
2058  * mmc_hw_reset - reset the card in hardware
2059  * @card: card to be reset
2060  *
2061  * Hard reset the card. This function is only for upper layers, like the
2062  * block layer or card drivers. You cannot use it in host drivers (struct
2063  * mmc_card might be gone then).
2064  *
2065  * Return: 0 on success, -errno on failure
2066  */
2067 int mmc_hw_reset(struct mmc_card *card)
2068 {
2069 	struct mmc_host *host = card->host;
2070 	int ret;
2071 
2072 	ret = host->bus_ops->hw_reset(host);
2073 	if (ret < 0)
2074 		pr_warn("%s: tried to HW reset card, got error %d\n",
2075 			mmc_hostname(host), ret);
2076 
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL(mmc_hw_reset);
2080 
2081 int mmc_sw_reset(struct mmc_card *card)
2082 {
2083 	struct mmc_host *host = card->host;
2084 	int ret;
2085 
2086 	if (!host->bus_ops->sw_reset)
2087 		return -EOPNOTSUPP;
2088 
2089 	ret = host->bus_ops->sw_reset(host);
2090 	if (ret)
2091 		pr_warn("%s: tried to SW reset card, got error %d\n",
2092 			mmc_hostname(host), ret);
2093 
2094 	return ret;
2095 }
2096 EXPORT_SYMBOL(mmc_sw_reset);
2097 
2098 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2099 {
2100 	host->f_init = freq;
2101 
2102 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2103 		mmc_hostname(host), __func__, host->f_init);
2104 
2105 	mmc_power_up(host, host->ocr_avail);
2106 
2107 	/*
2108 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2109 	 * do a hardware reset if possible.
2110 	 */
2111 	mmc_hw_reset_for_init(host);
2112 
2113 	/*
2114 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2115 	 * if the card is being re-initialized, just send it.  CMD52
2116 	 * should be ignored by SD/eMMC cards.
2117 	 * Skip it if we already know that we do not support SDIO commands
2118 	 */
2119 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2120 		sdio_reset(host);
2121 
2122 	mmc_go_idle(host);
2123 
2124 	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2125 		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2126 			goto out;
2127 		if (mmc_card_sd_express(host))
2128 			return 0;
2129 	}
2130 
2131 	/* Order's important: probe SDIO, then SD, then MMC */
2132 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2133 		if (!mmc_attach_sdio(host))
2134 			return 0;
2135 
2136 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2137 		if (!mmc_attach_sd(host))
2138 			return 0;
2139 
2140 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2141 		if (!mmc_attach_mmc(host))
2142 			return 0;
2143 
2144 out:
2145 	mmc_power_off(host);
2146 	return -EIO;
2147 }
2148 
2149 int _mmc_detect_card_removed(struct mmc_host *host)
2150 {
2151 	int ret;
2152 
2153 	if (!host->card || mmc_card_removed(host->card))
2154 		return 1;
2155 
2156 	ret = host->bus_ops->alive(host);
2157 
2158 	/*
2159 	 * Card detect status and alive check may be out of sync if card is
2160 	 * removed slowly, when card detect switch changes while card/slot
2161 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2162 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2163 	 * detect work 200ms later for this case.
2164 	 */
2165 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2166 		mmc_detect_change(host, msecs_to_jiffies(200));
2167 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2168 	}
2169 
2170 	if (ret) {
2171 		mmc_card_set_removed(host->card);
2172 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2173 	}
2174 
2175 	return ret;
2176 }
2177 
2178 int mmc_detect_card_removed(struct mmc_host *host)
2179 {
2180 	struct mmc_card *card = host->card;
2181 	int ret;
2182 
2183 	WARN_ON(!host->claimed);
2184 
2185 	if (!card)
2186 		return 1;
2187 
2188 	if (!mmc_card_is_removable(host))
2189 		return 0;
2190 
2191 	ret = mmc_card_removed(card);
2192 	/*
2193 	 * The card will be considered unchanged unless we have been asked to
2194 	 * detect a change or host requires polling to provide card detection.
2195 	 */
2196 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2197 		return ret;
2198 
2199 	host->detect_change = 0;
2200 	if (!ret) {
2201 		ret = _mmc_detect_card_removed(host);
2202 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2203 			/*
2204 			 * Schedule a detect work as soon as possible to let a
2205 			 * rescan handle the card removal.
2206 			 */
2207 			cancel_delayed_work(&host->detect);
2208 			_mmc_detect_change(host, 0, false);
2209 		}
2210 	}
2211 
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL(mmc_detect_card_removed);
2215 
2216 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2217 {
2218 	unsigned int boot_sectors_num;
2219 
2220 	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2221 		return -EOPNOTSUPP;
2222 
2223 	/* filter out unrelated cards */
2224 	if (card->ext_csd.rev < 3 ||
2225 	    !mmc_card_mmc(card) ||
2226 	    !mmc_card_is_blockaddr(card) ||
2227 	     mmc_card_is_removable(card->host))
2228 		return -ENOENT;
2229 
2230 	/*
2231 	 * eMMC storage has two special boot partitions in addition to the
2232 	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2233 	 * accesses, this means that the partition table addresses are shifted
2234 	 * by the size of boot partitions.  In accordance with the eMMC
2235 	 * specification, the boot partition size is calculated as follows:
2236 	 *
2237 	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2238 	 *
2239 	 * Calculate number of sectors occupied by the both boot partitions.
2240 	 */
2241 	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2242 			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2243 
2244 	/* Defined by NVIDIA and used by Android devices. */
2245 	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2246 
2247 	return 0;
2248 }
2249 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2250 
2251 void mmc_rescan(struct work_struct *work)
2252 {
2253 	struct mmc_host *host =
2254 		container_of(work, struct mmc_host, detect.work);
2255 	int i;
2256 
2257 	if (host->rescan_disable)
2258 		return;
2259 
2260 	/* If there is a non-removable card registered, only scan once */
2261 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2262 		return;
2263 	host->rescan_entered = 1;
2264 
2265 	if (host->trigger_card_event && host->ops->card_event) {
2266 		mmc_claim_host(host);
2267 		host->ops->card_event(host);
2268 		mmc_release_host(host);
2269 		host->trigger_card_event = false;
2270 	}
2271 
2272 	/* Verify a registered card to be functional, else remove it. */
2273 	if (host->bus_ops)
2274 		host->bus_ops->detect(host);
2275 
2276 	host->detect_change = 0;
2277 
2278 	/* if there still is a card present, stop here */
2279 	if (host->bus_ops != NULL)
2280 		goto out;
2281 
2282 	mmc_claim_host(host);
2283 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2284 			host->ops->get_cd(host) == 0) {
2285 		mmc_power_off(host);
2286 		mmc_release_host(host);
2287 		goto out;
2288 	}
2289 
2290 	/* If an SD express card is present, then leave it as is. */
2291 	if (mmc_card_sd_express(host)) {
2292 		mmc_release_host(host);
2293 		goto out;
2294 	}
2295 
2296 	/*
2297 	 * Ideally we should favor initialization of legacy SD cards and defer
2298 	 * UHS-II enumeration. However, it seems like cards doesn't reliably
2299 	 * announce their support for UHS-II in the response to the ACMD41,
2300 	 * while initializing the legacy SD interface. Therefore, let's start
2301 	 * with UHS-II for now.
2302 	 */
2303 	if (!mmc_attach_sd_uhs2(host)) {
2304 		mmc_release_host(host);
2305 		goto out;
2306 	}
2307 
2308 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2309 		unsigned int freq = freqs[i];
2310 		if (freq > host->f_max) {
2311 			if (i + 1 < ARRAY_SIZE(freqs))
2312 				continue;
2313 			freq = host->f_max;
2314 		}
2315 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2316 			break;
2317 		if (freqs[i] <= host->f_min)
2318 			break;
2319 	}
2320 
2321 	/* A non-removable card should have been detected by now. */
2322 	if (!mmc_card_is_removable(host) && !host->bus_ops)
2323 		pr_info("%s: Failed to initialize a non-removable card",
2324 			mmc_hostname(host));
2325 
2326 	/*
2327 	 * Ignore the command timeout errors observed during
2328 	 * the card init as those are excepted.
2329 	 */
2330 	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2331 	mmc_release_host(host);
2332 
2333  out:
2334 	if (host->caps & MMC_CAP_NEEDS_POLL)
2335 		mmc_schedule_delayed_work(&host->detect, HZ);
2336 }
2337 
2338 void mmc_start_host(struct mmc_host *host)
2339 {
2340 	bool power_up = !(host->caps2 &
2341 			 (MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_SD_UHS2));
2342 
2343 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2344 	host->rescan_disable = 0;
2345 
2346 	if (power_up) {
2347 		mmc_claim_host(host);
2348 		mmc_power_up(host, host->ocr_avail);
2349 		mmc_release_host(host);
2350 	}
2351 
2352 	mmc_gpiod_request_cd_irq(host);
2353 	_mmc_detect_change(host, 0, false);
2354 }
2355 
2356 void __mmc_stop_host(struct mmc_host *host)
2357 {
2358 	if (host->rescan_disable)
2359 		return;
2360 
2361 	if (host->slot.cd_irq >= 0) {
2362 		mmc_gpio_set_cd_wake(host, false);
2363 		disable_irq(host->slot.cd_irq);
2364 	}
2365 
2366 	host->rescan_disable = 1;
2367 	cancel_delayed_work_sync(&host->detect);
2368 }
2369 
2370 void mmc_stop_host(struct mmc_host *host)
2371 {
2372 	__mmc_stop_host(host);
2373 
2374 	/* clear pm flags now and let card drivers set them as needed */
2375 	host->pm_flags = 0;
2376 
2377 	if (host->bus_ops) {
2378 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2379 		host->bus_ops->remove(host);
2380 		mmc_claim_host(host);
2381 		mmc_detach_bus(host);
2382 		mmc_power_off(host);
2383 		mmc_release_host(host);
2384 		return;
2385 	}
2386 
2387 	mmc_claim_host(host);
2388 	mmc_power_off(host);
2389 	mmc_release_host(host);
2390 }
2391 
2392 static int __init mmc_init(void)
2393 {
2394 	int ret;
2395 
2396 	ret = mmc_register_bus();
2397 	if (ret)
2398 		return ret;
2399 
2400 	ret = mmc_register_host_class();
2401 	if (ret)
2402 		goto unregister_bus;
2403 
2404 	ret = sdio_register_bus();
2405 	if (ret)
2406 		goto unregister_host_class;
2407 
2408 	return 0;
2409 
2410 unregister_host_class:
2411 	mmc_unregister_host_class();
2412 unregister_bus:
2413 	mmc_unregister_bus();
2414 	return ret;
2415 }
2416 
2417 static void __exit mmc_exit(void)
2418 {
2419 	sdio_unregister_bus();
2420 	mmc_unregister_host_class();
2421 	mmc_unregister_bus();
2422 }
2423 
2424 subsys_initcall(mmc_init);
2425 module_exit(mmc_exit);
2426 
2427 MODULE_DESCRIPTION("MMC core driver");
2428 MODULE_LICENSE("GPL");
2429