xref: /linux/drivers/misc/vmw_vmci/vmci_queue_pair.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15 
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31 
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40 
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131 
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134 	struct mutex __mutex;	/* Protects the queue. */
135 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
136 	size_t num_pages;	/* Number of pages incl. header. */
137 	bool host;		/* Host or guest? */
138 	union {
139 		struct {
140 			dma_addr_t *pas;
141 			void **vas;
142 		} g;		/* Used by the guest. */
143 		struct {
144 			struct page **page;
145 			struct page **header_page;
146 		} h;		/* Used by the host. */
147 	} u;
148 };
149 
150 /*
151  * This structure is opaque to the clients.
152  */
153 struct vmci_qp {
154 	struct vmci_handle handle;
155 	struct vmci_queue *produce_q;
156 	struct vmci_queue *consume_q;
157 	u64 produce_q_size;
158 	u64 consume_q_size;
159 	u32 peer;
160 	u32 flags;
161 	u32 priv_flags;
162 	bool guest_endpoint;
163 	unsigned int blocked;
164 	unsigned int generation;
165 	wait_queue_head_t event;
166 };
167 
168 enum qp_broker_state {
169 	VMCIQPB_NEW,
170 	VMCIQPB_CREATED_NO_MEM,
171 	VMCIQPB_CREATED_MEM,
172 	VMCIQPB_ATTACHED_NO_MEM,
173 	VMCIQPB_ATTACHED_MEM,
174 	VMCIQPB_SHUTDOWN_NO_MEM,
175 	VMCIQPB_SHUTDOWN_MEM,
176 	VMCIQPB_GONE
177 };
178 
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
182 
183 /*
184  * In the queue pair broker, we always use the guest point of view for
185  * the produce and consume queue values and references, e.g., the
186  * produce queue size stored is the guests produce queue size. The
187  * host endpoint will need to swap these around. The only exception is
188  * the local queue pairs on the host, in which case the host endpoint
189  * that creates the queue pair will have the right orientation, and
190  * the attaching host endpoint will need to swap.
191  */
192 struct qp_entry {
193 	struct list_head list_item;
194 	struct vmci_handle handle;
195 	u32 peer;
196 	u32 flags;
197 	u64 produce_size;
198 	u64 consume_size;
199 	u32 ref_count;
200 };
201 
202 struct qp_broker_entry {
203 	struct vmci_resource resource;
204 	struct qp_entry qp;
205 	u32 create_id;
206 	u32 attach_id;
207 	enum qp_broker_state state;
208 	bool require_trusted_attach;
209 	bool created_by_trusted;
210 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
211 	struct vmci_queue *produce_q;
212 	struct vmci_queue *consume_q;
213 	struct vmci_queue_header saved_produce_q;
214 	struct vmci_queue_header saved_consume_q;
215 	vmci_event_release_cb wakeup_cb;
216 	void *client_data;
217 	void *local_mem;	/* Kernel memory for local queue pair */
218 };
219 
220 struct qp_guest_endpoint {
221 	struct vmci_resource resource;
222 	struct qp_entry qp;
223 	u64 num_ppns;
224 	void *produce_q;
225 	void *consume_q;
226 	struct ppn_set ppn_set;
227 };
228 
229 struct qp_list {
230 	struct list_head head;
231 	struct mutex mutex;	/* Protect queue list. */
232 };
233 
234 static struct qp_list qp_broker_list = {
235 	.head = LIST_HEAD_INIT(qp_broker_list.head),
236 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
237 };
238 
239 static struct qp_list qp_guest_endpoints = {
240 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
242 };
243 
244 #define INVALID_VMCI_GUEST_MEM_ID  0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
248 
249 
250 /*
251  * Frees kernel VA space for a given queue and its queue header, and
252  * frees physical data pages.
253  */
254 static void qp_free_queue(void *q, u64 size)
255 {
256 	struct vmci_queue *queue = q;
257 
258 	if (queue) {
259 		u64 i;
260 
261 		/* Given size does not include header, so add in a page here. */
262 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264 					  queue->kernel_if->u.g.vas[i],
265 					  queue->kernel_if->u.g.pas[i]);
266 		}
267 
268 		vfree(queue);
269 	}
270 }
271 
272 /*
273  * Allocates kernel queue pages of specified size with IOMMU mappings,
274  * plus space for the queue structure/kernel interface and the queue
275  * header.
276  */
277 static void *qp_alloc_queue(u64 size, u32 flags)
278 {
279 	u64 i;
280 	struct vmci_queue *queue;
281 	size_t pas_size;
282 	size_t vas_size;
283 	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284 	u64 num_pages;
285 
286 	if (size > SIZE_MAX - PAGE_SIZE)
287 		return NULL;
288 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289 	if (num_pages >
290 		 (SIZE_MAX - queue_size) /
291 		 (sizeof(*queue->kernel_if->u.g.pas) +
292 		  sizeof(*queue->kernel_if->u.g.vas)))
293 		return NULL;
294 
295 	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296 	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297 	queue_size += pas_size + vas_size;
298 
299 	queue = vmalloc(queue_size);
300 	if (!queue)
301 		return NULL;
302 
303 	queue->q_header = NULL;
304 	queue->saved_header = NULL;
305 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306 	queue->kernel_if->mutex = NULL;
307 	queue->kernel_if->num_pages = num_pages;
308 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309 	queue->kernel_if->u.g.vas =
310 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311 	queue->kernel_if->host = false;
312 
313 	for (i = 0; i < num_pages; i++) {
314 		queue->kernel_if->u.g.vas[i] =
315 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316 					   &queue->kernel_if->u.g.pas[i],
317 					   GFP_KERNEL);
318 		if (!queue->kernel_if->u.g.vas[i]) {
319 			/* Size excl. the header. */
320 			qp_free_queue(queue, i * PAGE_SIZE);
321 			return NULL;
322 		}
323 	}
324 
325 	/* Queue header is the first page. */
326 	queue->q_header = queue->kernel_if->u.g.vas[0];
327 
328 	return queue;
329 }
330 
331 /*
332  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
333  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334  * by traversing the offset -> page translation structure for the queue.
335  * Assumes that offset + size does not wrap around in the queue.
336  */
337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338 				  u64 queue_offset,
339 				  struct iov_iter *from,
340 				  size_t size)
341 {
342 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343 	size_t bytes_copied = 0;
344 
345 	while (bytes_copied < size) {
346 		const u64 page_index =
347 			(queue_offset + bytes_copied) / PAGE_SIZE;
348 		const size_t page_offset =
349 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350 		void *va;
351 		size_t to_copy;
352 
353 		if (kernel_if->host)
354 			va = kmap(kernel_if->u.h.page[page_index]);
355 		else
356 			va = kernel_if->u.g.vas[page_index + 1];
357 			/* Skip header. */
358 
359 		if (size - bytes_copied > PAGE_SIZE - page_offset)
360 			/* Enough payload to fill up from this page. */
361 			to_copy = PAGE_SIZE - page_offset;
362 		else
363 			to_copy = size - bytes_copied;
364 
365 		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366 					 from)) {
367 			if (kernel_if->host)
368 				kunmap(kernel_if->u.h.page[page_index]);
369 			return VMCI_ERROR_INVALID_ARGS;
370 		}
371 		bytes_copied += to_copy;
372 		if (kernel_if->host)
373 			kunmap(kernel_if->u.h.page[page_index]);
374 	}
375 
376 	return VMCI_SUCCESS;
377 }
378 
379 /*
380  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
381  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382  * by traversing the offset -> page translation structure for the queue.
383  * Assumes that offset + size does not wrap around in the queue.
384  */
385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386 				    const struct vmci_queue *queue,
387 				    u64 queue_offset, size_t size)
388 {
389 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390 	size_t bytes_copied = 0;
391 
392 	while (bytes_copied < size) {
393 		const u64 page_index =
394 			(queue_offset + bytes_copied) / PAGE_SIZE;
395 		const size_t page_offset =
396 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397 		void *va;
398 		size_t to_copy;
399 		int err;
400 
401 		if (kernel_if->host)
402 			va = kmap(kernel_if->u.h.page[page_index]);
403 		else
404 			va = kernel_if->u.g.vas[page_index + 1];
405 			/* Skip header. */
406 
407 		if (size - bytes_copied > PAGE_SIZE - page_offset)
408 			/* Enough payload to fill up this page. */
409 			to_copy = PAGE_SIZE - page_offset;
410 		else
411 			to_copy = size - bytes_copied;
412 
413 		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414 		if (err != to_copy) {
415 			if (kernel_if->host)
416 				kunmap(kernel_if->u.h.page[page_index]);
417 			return VMCI_ERROR_INVALID_ARGS;
418 		}
419 		bytes_copied += to_copy;
420 		if (kernel_if->host)
421 			kunmap(kernel_if->u.h.page[page_index]);
422 	}
423 
424 	return VMCI_SUCCESS;
425 }
426 
427 /*
428  * Allocates two list of PPNs --- one for the pages in the produce queue,
429  * and the other for the pages in the consume queue. Intializes the list
430  * of PPNs with the page frame numbers of the KVA for the two queues (and
431  * the queue headers).
432  */
433 static int qp_alloc_ppn_set(void *prod_q,
434 			    u64 num_produce_pages,
435 			    void *cons_q,
436 			    u64 num_consume_pages, struct ppn_set *ppn_set)
437 {
438 	u64 *produce_ppns;
439 	u64 *consume_ppns;
440 	struct vmci_queue *produce_q = prod_q;
441 	struct vmci_queue *consume_q = cons_q;
442 	u64 i;
443 
444 	if (!produce_q || !num_produce_pages || !consume_q ||
445 	    !num_consume_pages || !ppn_set)
446 		return VMCI_ERROR_INVALID_ARGS;
447 
448 	if (ppn_set->initialized)
449 		return VMCI_ERROR_ALREADY_EXISTS;
450 
451 	produce_ppns =
452 	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
453 			  GFP_KERNEL);
454 	if (!produce_ppns)
455 		return VMCI_ERROR_NO_MEM;
456 
457 	consume_ppns =
458 	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
459 			  GFP_KERNEL);
460 	if (!consume_ppns) {
461 		kfree(produce_ppns);
462 		return VMCI_ERROR_NO_MEM;
463 	}
464 
465 	for (i = 0; i < num_produce_pages; i++)
466 		produce_ppns[i] =
467 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
468 
469 	for (i = 0; i < num_consume_pages; i++)
470 		consume_ppns[i] =
471 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
472 
473 	ppn_set->num_produce_pages = num_produce_pages;
474 	ppn_set->num_consume_pages = num_consume_pages;
475 	ppn_set->produce_ppns = produce_ppns;
476 	ppn_set->consume_ppns = consume_ppns;
477 	ppn_set->initialized = true;
478 	return VMCI_SUCCESS;
479 }
480 
481 /*
482  * Frees the two list of PPNs for a queue pair.
483  */
484 static void qp_free_ppn_set(struct ppn_set *ppn_set)
485 {
486 	if (ppn_set->initialized) {
487 		/* Do not call these functions on NULL inputs. */
488 		kfree(ppn_set->produce_ppns);
489 		kfree(ppn_set->consume_ppns);
490 	}
491 	memset(ppn_set, 0, sizeof(*ppn_set));
492 }
493 
494 /*
495  * Populates the list of PPNs in the hypercall structure with the PPNS
496  * of the produce queue and the consume queue.
497  */
498 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
499 {
500 	if (vmci_use_ppn64()) {
501 		memcpy(call_buf, ppn_set->produce_ppns,
502 		       ppn_set->num_produce_pages *
503 		       sizeof(*ppn_set->produce_ppns));
504 		memcpy(call_buf +
505 		       ppn_set->num_produce_pages *
506 		       sizeof(*ppn_set->produce_ppns),
507 		       ppn_set->consume_ppns,
508 		       ppn_set->num_consume_pages *
509 		       sizeof(*ppn_set->consume_ppns));
510 	} else {
511 		int i;
512 		u32 *ppns = (u32 *) call_buf;
513 
514 		for (i = 0; i < ppn_set->num_produce_pages; i++)
515 			ppns[i] = (u32) ppn_set->produce_ppns[i];
516 
517 		ppns = &ppns[ppn_set->num_produce_pages];
518 
519 		for (i = 0; i < ppn_set->num_consume_pages; i++)
520 			ppns[i] = (u32) ppn_set->consume_ppns[i];
521 	}
522 
523 	return VMCI_SUCCESS;
524 }
525 
526 /*
527  * Allocates kernel VA space of specified size plus space for the queue
528  * and kernel interface.  This is different from the guest queue allocator,
529  * because we do not allocate our own queue header/data pages here but
530  * share those of the guest.
531  */
532 static struct vmci_queue *qp_host_alloc_queue(u64 size)
533 {
534 	struct vmci_queue *queue;
535 	size_t queue_page_size;
536 	u64 num_pages;
537 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
538 
539 	if (size > SIZE_MAX - PAGE_SIZE)
540 		return NULL;
541 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
542 	if (num_pages > (SIZE_MAX - queue_size) /
543 		 sizeof(*queue->kernel_if->u.h.page))
544 		return NULL;
545 
546 	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
547 
548 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
549 	if (queue) {
550 		queue->q_header = NULL;
551 		queue->saved_header = NULL;
552 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
553 		queue->kernel_if->host = true;
554 		queue->kernel_if->mutex = NULL;
555 		queue->kernel_if->num_pages = num_pages;
556 		queue->kernel_if->u.h.header_page =
557 		    (struct page **)((u8 *)queue + queue_size);
558 		queue->kernel_if->u.h.page =
559 			&queue->kernel_if->u.h.header_page[1];
560 	}
561 
562 	return queue;
563 }
564 
565 /*
566  * Frees kernel memory for a given queue (header plus translation
567  * structure).
568  */
569 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
570 {
571 	kfree(queue);
572 }
573 
574 /*
575  * Initialize the mutex for the pair of queues.  This mutex is used to
576  * protect the q_header and the buffer from changing out from under any
577  * users of either queue.  Of course, it's only any good if the mutexes
578  * are actually acquired.  Queue structure must lie on non-paged memory
579  * or we cannot guarantee access to the mutex.
580  */
581 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
582 				struct vmci_queue *consume_q)
583 {
584 	/*
585 	 * Only the host queue has shared state - the guest queues do not
586 	 * need to synchronize access using a queue mutex.
587 	 */
588 
589 	if (produce_q->kernel_if->host) {
590 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
591 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
592 		mutex_init(produce_q->kernel_if->mutex);
593 	}
594 }
595 
596 /*
597  * Cleans up the mutex for the pair of queues.
598  */
599 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
600 				   struct vmci_queue *consume_q)
601 {
602 	if (produce_q->kernel_if->host) {
603 		produce_q->kernel_if->mutex = NULL;
604 		consume_q->kernel_if->mutex = NULL;
605 	}
606 }
607 
608 /*
609  * Acquire the mutex for the queue.  Note that the produce_q and
610  * the consume_q share a mutex.  So, only one of the two need to
611  * be passed in to this routine.  Either will work just fine.
612  */
613 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
614 {
615 	if (queue->kernel_if->host)
616 		mutex_lock(queue->kernel_if->mutex);
617 }
618 
619 /*
620  * Release the mutex for the queue.  Note that the produce_q and
621  * the consume_q share a mutex.  So, only one of the two need to
622  * be passed in to this routine.  Either will work just fine.
623  */
624 static void qp_release_queue_mutex(struct vmci_queue *queue)
625 {
626 	if (queue->kernel_if->host)
627 		mutex_unlock(queue->kernel_if->mutex);
628 }
629 
630 /*
631  * Helper function to release pages in the PageStoreAttachInfo
632  * previously obtained using get_user_pages.
633  */
634 static void qp_release_pages(struct page **pages,
635 			     u64 num_pages, bool dirty)
636 {
637 	int i;
638 
639 	for (i = 0; i < num_pages; i++) {
640 		if (dirty)
641 			set_page_dirty(pages[i]);
642 
643 		put_page(pages[i]);
644 		pages[i] = NULL;
645 	}
646 }
647 
648 /*
649  * Lock the user pages referenced by the {produce,consume}Buffer
650  * struct into memory and populate the {produce,consume}Pages
651  * arrays in the attach structure with them.
652  */
653 static int qp_host_get_user_memory(u64 produce_uva,
654 				   u64 consume_uva,
655 				   struct vmci_queue *produce_q,
656 				   struct vmci_queue *consume_q)
657 {
658 	int retval;
659 	int err = VMCI_SUCCESS;
660 
661 	retval = get_user_pages_fast((uintptr_t) produce_uva,
662 				     produce_q->kernel_if->num_pages, 1,
663 				     produce_q->kernel_if->u.h.header_page);
664 	if (retval < (int)produce_q->kernel_if->num_pages) {
665 		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
666 			retval);
667 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
668 				 retval, false);
669 		err = VMCI_ERROR_NO_MEM;
670 		goto out;
671 	}
672 
673 	retval = get_user_pages_fast((uintptr_t) consume_uva,
674 				     consume_q->kernel_if->num_pages, 1,
675 				     consume_q->kernel_if->u.h.header_page);
676 	if (retval < (int)consume_q->kernel_if->num_pages) {
677 		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
678 			retval);
679 		qp_release_pages(consume_q->kernel_if->u.h.header_page,
680 				 retval, false);
681 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
682 				 produce_q->kernel_if->num_pages, false);
683 		err = VMCI_ERROR_NO_MEM;
684 	}
685 
686  out:
687 	return err;
688 }
689 
690 /*
691  * Registers the specification of the user pages used for backing a queue
692  * pair. Enough information to map in pages is stored in the OS specific
693  * part of the struct vmci_queue structure.
694  */
695 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
696 					struct vmci_queue *produce_q,
697 					struct vmci_queue *consume_q)
698 {
699 	u64 produce_uva;
700 	u64 consume_uva;
701 
702 	/*
703 	 * The new style and the old style mapping only differs in
704 	 * that we either get a single or two UVAs, so we split the
705 	 * single UVA range at the appropriate spot.
706 	 */
707 	produce_uva = page_store->pages;
708 	consume_uva = page_store->pages +
709 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
710 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
711 				       consume_q);
712 }
713 
714 /*
715  * Releases and removes the references to user pages stored in the attach
716  * struct.  Pages are released from the page cache and may become
717  * swappable again.
718  */
719 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
720 					   struct vmci_queue *consume_q)
721 {
722 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
723 			 produce_q->kernel_if->num_pages, true);
724 	memset(produce_q->kernel_if->u.h.header_page, 0,
725 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
726 	       produce_q->kernel_if->num_pages);
727 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
728 			 consume_q->kernel_if->num_pages, true);
729 	memset(consume_q->kernel_if->u.h.header_page, 0,
730 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
731 	       consume_q->kernel_if->num_pages);
732 }
733 
734 /*
735  * Once qp_host_register_user_memory has been performed on a
736  * queue, the queue pair headers can be mapped into the
737  * kernel. Once mapped, they must be unmapped with
738  * qp_host_unmap_queues prior to calling
739  * qp_host_unregister_user_memory.
740  * Pages are pinned.
741  */
742 static int qp_host_map_queues(struct vmci_queue *produce_q,
743 			      struct vmci_queue *consume_q)
744 {
745 	int result;
746 
747 	if (!produce_q->q_header || !consume_q->q_header) {
748 		struct page *headers[2];
749 
750 		if (produce_q->q_header != consume_q->q_header)
751 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
752 
753 		if (produce_q->kernel_if->u.h.header_page == NULL ||
754 		    *produce_q->kernel_if->u.h.header_page == NULL)
755 			return VMCI_ERROR_UNAVAILABLE;
756 
757 		headers[0] = *produce_q->kernel_if->u.h.header_page;
758 		headers[1] = *consume_q->kernel_if->u.h.header_page;
759 
760 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
761 		if (produce_q->q_header != NULL) {
762 			consume_q->q_header =
763 			    (struct vmci_queue_header *)((u8 *)
764 							 produce_q->q_header +
765 							 PAGE_SIZE);
766 			result = VMCI_SUCCESS;
767 		} else {
768 			pr_warn("vmap failed\n");
769 			result = VMCI_ERROR_NO_MEM;
770 		}
771 	} else {
772 		result = VMCI_SUCCESS;
773 	}
774 
775 	return result;
776 }
777 
778 /*
779  * Unmaps previously mapped queue pair headers from the kernel.
780  * Pages are unpinned.
781  */
782 static int qp_host_unmap_queues(u32 gid,
783 				struct vmci_queue *produce_q,
784 				struct vmci_queue *consume_q)
785 {
786 	if (produce_q->q_header) {
787 		if (produce_q->q_header < consume_q->q_header)
788 			vunmap(produce_q->q_header);
789 		else
790 			vunmap(consume_q->q_header);
791 
792 		produce_q->q_header = NULL;
793 		consume_q->q_header = NULL;
794 	}
795 
796 	return VMCI_SUCCESS;
797 }
798 
799 /*
800  * Finds the entry in the list corresponding to a given handle. Assumes
801  * that the list is locked.
802  */
803 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
804 				     struct vmci_handle handle)
805 {
806 	struct qp_entry *entry;
807 
808 	if (vmci_handle_is_invalid(handle))
809 		return NULL;
810 
811 	list_for_each_entry(entry, &qp_list->head, list_item) {
812 		if (vmci_handle_is_equal(entry->handle, handle))
813 			return entry;
814 	}
815 
816 	return NULL;
817 }
818 
819 /*
820  * Finds the entry in the list corresponding to a given handle.
821  */
822 static struct qp_guest_endpoint *
823 qp_guest_handle_to_entry(struct vmci_handle handle)
824 {
825 	struct qp_guest_endpoint *entry;
826 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
827 
828 	entry = qp ? container_of(
829 		qp, struct qp_guest_endpoint, qp) : NULL;
830 	return entry;
831 }
832 
833 /*
834  * Finds the entry in the list corresponding to a given handle.
835  */
836 static struct qp_broker_entry *
837 qp_broker_handle_to_entry(struct vmci_handle handle)
838 {
839 	struct qp_broker_entry *entry;
840 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
841 
842 	entry = qp ? container_of(
843 		qp, struct qp_broker_entry, qp) : NULL;
844 	return entry;
845 }
846 
847 /*
848  * Dispatches a queue pair event message directly into the local event
849  * queue.
850  */
851 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
852 {
853 	u32 context_id = vmci_get_context_id();
854 	struct vmci_event_qp ev;
855 
856 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
857 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
858 					  VMCI_CONTEXT_RESOURCE_ID);
859 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
860 	ev.msg.event_data.event =
861 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
862 	ev.payload.peer_id = context_id;
863 	ev.payload.handle = handle;
864 
865 	return vmci_event_dispatch(&ev.msg.hdr);
866 }
867 
868 /*
869  * Allocates and initializes a qp_guest_endpoint structure.
870  * Allocates a queue_pair rid (and handle) iff the given entry has
871  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
872  * are reserved handles.  Assumes that the QP list mutex is held
873  * by the caller.
874  */
875 static struct qp_guest_endpoint *
876 qp_guest_endpoint_create(struct vmci_handle handle,
877 			 u32 peer,
878 			 u32 flags,
879 			 u64 produce_size,
880 			 u64 consume_size,
881 			 void *produce_q,
882 			 void *consume_q)
883 {
884 	int result;
885 	struct qp_guest_endpoint *entry;
886 	/* One page each for the queue headers. */
887 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
888 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
889 
890 	if (vmci_handle_is_invalid(handle)) {
891 		u32 context_id = vmci_get_context_id();
892 
893 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
894 	}
895 
896 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
897 	if (entry) {
898 		entry->qp.peer = peer;
899 		entry->qp.flags = flags;
900 		entry->qp.produce_size = produce_size;
901 		entry->qp.consume_size = consume_size;
902 		entry->qp.ref_count = 0;
903 		entry->num_ppns = num_ppns;
904 		entry->produce_q = produce_q;
905 		entry->consume_q = consume_q;
906 		INIT_LIST_HEAD(&entry->qp.list_item);
907 
908 		/* Add resource obj */
909 		result = vmci_resource_add(&entry->resource,
910 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
911 					   handle);
912 		entry->qp.handle = vmci_resource_handle(&entry->resource);
913 		if ((result != VMCI_SUCCESS) ||
914 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
915 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
916 				handle.context, handle.resource, result);
917 			kfree(entry);
918 			entry = NULL;
919 		}
920 	}
921 	return entry;
922 }
923 
924 /*
925  * Frees a qp_guest_endpoint structure.
926  */
927 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
928 {
929 	qp_free_ppn_set(&entry->ppn_set);
930 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
931 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
932 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
933 	/* Unlink from resource hash table and free callback */
934 	vmci_resource_remove(&entry->resource);
935 
936 	kfree(entry);
937 }
938 
939 /*
940  * Helper to make a queue_pairAlloc hypercall when the driver is
941  * supporting a guest device.
942  */
943 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
944 {
945 	struct vmci_qp_alloc_msg *alloc_msg;
946 	size_t msg_size;
947 	size_t ppn_size;
948 	int result;
949 
950 	if (!entry || entry->num_ppns <= 2)
951 		return VMCI_ERROR_INVALID_ARGS;
952 
953 	ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
954 	msg_size = sizeof(*alloc_msg) +
955 	    (size_t) entry->num_ppns * ppn_size;
956 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
957 	if (!alloc_msg)
958 		return VMCI_ERROR_NO_MEM;
959 
960 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
961 					      VMCI_QUEUEPAIR_ALLOC);
962 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
963 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
964 	alloc_msg->handle = entry->qp.handle;
965 	alloc_msg->peer = entry->qp.peer;
966 	alloc_msg->flags = entry->qp.flags;
967 	alloc_msg->produce_size = entry->qp.produce_size;
968 	alloc_msg->consume_size = entry->qp.consume_size;
969 	alloc_msg->num_ppns = entry->num_ppns;
970 
971 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
972 				     &entry->ppn_set);
973 	if (result == VMCI_SUCCESS)
974 		result = vmci_send_datagram(&alloc_msg->hdr);
975 
976 	kfree(alloc_msg);
977 
978 	return result;
979 }
980 
981 /*
982  * Helper to make a queue_pairDetach hypercall when the driver is
983  * supporting a guest device.
984  */
985 static int qp_detatch_hypercall(struct vmci_handle handle)
986 {
987 	struct vmci_qp_detach_msg detach_msg;
988 
989 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
990 					      VMCI_QUEUEPAIR_DETACH);
991 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
992 	detach_msg.hdr.payload_size = sizeof(handle);
993 	detach_msg.handle = handle;
994 
995 	return vmci_send_datagram(&detach_msg.hdr);
996 }
997 
998 /*
999  * Adds the given entry to the list. Assumes that the list is locked.
1000  */
1001 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1002 {
1003 	if (entry)
1004 		list_add(&entry->list_item, &qp_list->head);
1005 }
1006 
1007 /*
1008  * Removes the given entry from the list. Assumes that the list is locked.
1009  */
1010 static void qp_list_remove_entry(struct qp_list *qp_list,
1011 				 struct qp_entry *entry)
1012 {
1013 	if (entry)
1014 		list_del(&entry->list_item);
1015 }
1016 
1017 /*
1018  * Helper for VMCI queue_pair detach interface. Frees the physical
1019  * pages for the queue pair.
1020  */
1021 static int qp_detatch_guest_work(struct vmci_handle handle)
1022 {
1023 	int result;
1024 	struct qp_guest_endpoint *entry;
1025 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1026 
1027 	mutex_lock(&qp_guest_endpoints.mutex);
1028 
1029 	entry = qp_guest_handle_to_entry(handle);
1030 	if (!entry) {
1031 		mutex_unlock(&qp_guest_endpoints.mutex);
1032 		return VMCI_ERROR_NOT_FOUND;
1033 	}
1034 
1035 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1036 		result = VMCI_SUCCESS;
1037 
1038 		if (entry->qp.ref_count > 1) {
1039 			result = qp_notify_peer_local(false, handle);
1040 			/*
1041 			 * We can fail to notify a local queuepair
1042 			 * because we can't allocate.  We still want
1043 			 * to release the entry if that happens, so
1044 			 * don't bail out yet.
1045 			 */
1046 		}
1047 	} else {
1048 		result = qp_detatch_hypercall(handle);
1049 		if (result < VMCI_SUCCESS) {
1050 			/*
1051 			 * We failed to notify a non-local queuepair.
1052 			 * That other queuepair might still be
1053 			 * accessing the shared memory, so don't
1054 			 * release the entry yet.  It will get cleaned
1055 			 * up by VMCIqueue_pair_Exit() if necessary
1056 			 * (assuming we are going away, otherwise why
1057 			 * did this fail?).
1058 			 */
1059 
1060 			mutex_unlock(&qp_guest_endpoints.mutex);
1061 			return result;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * If we get here then we either failed to notify a local queuepair, or
1067 	 * we succeeded in all cases.  Release the entry if required.
1068 	 */
1069 
1070 	entry->qp.ref_count--;
1071 	if (entry->qp.ref_count == 0)
1072 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1073 
1074 	/* If we didn't remove the entry, this could change once we unlock. */
1075 	if (entry)
1076 		ref_count = entry->qp.ref_count;
1077 
1078 	mutex_unlock(&qp_guest_endpoints.mutex);
1079 
1080 	if (ref_count == 0)
1081 		qp_guest_endpoint_destroy(entry);
1082 
1083 	return result;
1084 }
1085 
1086 /*
1087  * This functions handles the actual allocation of a VMCI queue
1088  * pair guest endpoint. Allocates physical pages for the queue
1089  * pair. It makes OS dependent calls through generic wrappers.
1090  */
1091 static int qp_alloc_guest_work(struct vmci_handle *handle,
1092 			       struct vmci_queue **produce_q,
1093 			       u64 produce_size,
1094 			       struct vmci_queue **consume_q,
1095 			       u64 consume_size,
1096 			       u32 peer,
1097 			       u32 flags,
1098 			       u32 priv_flags)
1099 {
1100 	const u64 num_produce_pages =
1101 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1102 	const u64 num_consume_pages =
1103 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1104 	void *my_produce_q = NULL;
1105 	void *my_consume_q = NULL;
1106 	int result;
1107 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1108 
1109 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1110 		return VMCI_ERROR_NO_ACCESS;
1111 
1112 	mutex_lock(&qp_guest_endpoints.mutex);
1113 
1114 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1115 	if (queue_pair_entry) {
1116 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1117 			/* Local attach case. */
1118 			if (queue_pair_entry->qp.ref_count > 1) {
1119 				pr_devel("Error attempting to attach more than once\n");
1120 				result = VMCI_ERROR_UNAVAILABLE;
1121 				goto error_keep_entry;
1122 			}
1123 
1124 			if (queue_pair_entry->qp.produce_size != consume_size ||
1125 			    queue_pair_entry->qp.consume_size !=
1126 			    produce_size ||
1127 			    queue_pair_entry->qp.flags !=
1128 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1129 				pr_devel("Error mismatched queue pair in local attach\n");
1130 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1131 				goto error_keep_entry;
1132 			}
1133 
1134 			/*
1135 			 * Do a local attach.  We swap the consume and
1136 			 * produce queues for the attacher and deliver
1137 			 * an attach event.
1138 			 */
1139 			result = qp_notify_peer_local(true, *handle);
1140 			if (result < VMCI_SUCCESS)
1141 				goto error_keep_entry;
1142 
1143 			my_produce_q = queue_pair_entry->consume_q;
1144 			my_consume_q = queue_pair_entry->produce_q;
1145 			goto out;
1146 		}
1147 
1148 		result = VMCI_ERROR_ALREADY_EXISTS;
1149 		goto error_keep_entry;
1150 	}
1151 
1152 	my_produce_q = qp_alloc_queue(produce_size, flags);
1153 	if (!my_produce_q) {
1154 		pr_warn("Error allocating pages for produce queue\n");
1155 		result = VMCI_ERROR_NO_MEM;
1156 		goto error;
1157 	}
1158 
1159 	my_consume_q = qp_alloc_queue(consume_size, flags);
1160 	if (!my_consume_q) {
1161 		pr_warn("Error allocating pages for consume queue\n");
1162 		result = VMCI_ERROR_NO_MEM;
1163 		goto error;
1164 	}
1165 
1166 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1167 						    produce_size, consume_size,
1168 						    my_produce_q, my_consume_q);
1169 	if (!queue_pair_entry) {
1170 		pr_warn("Error allocating memory in %s\n", __func__);
1171 		result = VMCI_ERROR_NO_MEM;
1172 		goto error;
1173 	}
1174 
1175 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1176 				  num_consume_pages,
1177 				  &queue_pair_entry->ppn_set);
1178 	if (result < VMCI_SUCCESS) {
1179 		pr_warn("qp_alloc_ppn_set failed\n");
1180 		goto error;
1181 	}
1182 
1183 	/*
1184 	 * It's only necessary to notify the host if this queue pair will be
1185 	 * attached to from another context.
1186 	 */
1187 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1188 		/* Local create case. */
1189 		u32 context_id = vmci_get_context_id();
1190 
1191 		/*
1192 		 * Enforce similar checks on local queue pairs as we
1193 		 * do for regular ones.  The handle's context must
1194 		 * match the creator or attacher context id (here they
1195 		 * are both the current context id) and the
1196 		 * attach-only flag cannot exist during create.  We
1197 		 * also ensure specified peer is this context or an
1198 		 * invalid one.
1199 		 */
1200 		if (queue_pair_entry->qp.handle.context != context_id ||
1201 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1202 		     queue_pair_entry->qp.peer != context_id)) {
1203 			result = VMCI_ERROR_NO_ACCESS;
1204 			goto error;
1205 		}
1206 
1207 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1208 			result = VMCI_ERROR_NOT_FOUND;
1209 			goto error;
1210 		}
1211 	} else {
1212 		result = qp_alloc_hypercall(queue_pair_entry);
1213 		if (result < VMCI_SUCCESS) {
1214 			pr_warn("qp_alloc_hypercall result = %d\n", result);
1215 			goto error;
1216 		}
1217 	}
1218 
1219 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1220 			    (struct vmci_queue *)my_consume_q);
1221 
1222 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1223 
1224  out:
1225 	queue_pair_entry->qp.ref_count++;
1226 	*handle = queue_pair_entry->qp.handle;
1227 	*produce_q = (struct vmci_queue *)my_produce_q;
1228 	*consume_q = (struct vmci_queue *)my_consume_q;
1229 
1230 	/*
1231 	 * We should initialize the queue pair header pages on a local
1232 	 * queue pair create.  For non-local queue pairs, the
1233 	 * hypervisor initializes the header pages in the create step.
1234 	 */
1235 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1236 	    queue_pair_entry->qp.ref_count == 1) {
1237 		vmci_q_header_init((*produce_q)->q_header, *handle);
1238 		vmci_q_header_init((*consume_q)->q_header, *handle);
1239 	}
1240 
1241 	mutex_unlock(&qp_guest_endpoints.mutex);
1242 
1243 	return VMCI_SUCCESS;
1244 
1245  error:
1246 	mutex_unlock(&qp_guest_endpoints.mutex);
1247 	if (queue_pair_entry) {
1248 		/* The queues will be freed inside the destroy routine. */
1249 		qp_guest_endpoint_destroy(queue_pair_entry);
1250 	} else {
1251 		qp_free_queue(my_produce_q, produce_size);
1252 		qp_free_queue(my_consume_q, consume_size);
1253 	}
1254 	return result;
1255 
1256  error_keep_entry:
1257 	/* This path should only be used when an existing entry was found. */
1258 	mutex_unlock(&qp_guest_endpoints.mutex);
1259 	return result;
1260 }
1261 
1262 /*
1263  * The first endpoint issuing a queue pair allocation will create the state
1264  * of the queue pair in the queue pair broker.
1265  *
1266  * If the creator is a guest, it will associate a VMX virtual address range
1267  * with the queue pair as specified by the page_store. For compatibility with
1268  * older VMX'en, that would use a separate step to set the VMX virtual
1269  * address range, the virtual address range can be registered later using
1270  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1271  * used.
1272  *
1273  * If the creator is the host, a page_store of NULL should be used as well,
1274  * since the host is not able to supply a page store for the queue pair.
1275  *
1276  * For older VMX and host callers, the queue pair will be created in the
1277  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1278  * created in VMCOQPB_CREATED_MEM state.
1279  */
1280 static int qp_broker_create(struct vmci_handle handle,
1281 			    u32 peer,
1282 			    u32 flags,
1283 			    u32 priv_flags,
1284 			    u64 produce_size,
1285 			    u64 consume_size,
1286 			    struct vmci_qp_page_store *page_store,
1287 			    struct vmci_ctx *context,
1288 			    vmci_event_release_cb wakeup_cb,
1289 			    void *client_data, struct qp_broker_entry **ent)
1290 {
1291 	struct qp_broker_entry *entry = NULL;
1292 	const u32 context_id = vmci_ctx_get_id(context);
1293 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1294 	int result;
1295 	u64 guest_produce_size;
1296 	u64 guest_consume_size;
1297 
1298 	/* Do not create if the caller asked not to. */
1299 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1300 		return VMCI_ERROR_NOT_FOUND;
1301 
1302 	/*
1303 	 * Creator's context ID should match handle's context ID or the creator
1304 	 * must allow the context in handle's context ID as the "peer".
1305 	 */
1306 	if (handle.context != context_id && handle.context != peer)
1307 		return VMCI_ERROR_NO_ACCESS;
1308 
1309 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1310 		return VMCI_ERROR_DST_UNREACHABLE;
1311 
1312 	/*
1313 	 * Creator's context ID for local queue pairs should match the
1314 	 * peer, if a peer is specified.
1315 	 */
1316 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1317 		return VMCI_ERROR_NO_ACCESS;
1318 
1319 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1320 	if (!entry)
1321 		return VMCI_ERROR_NO_MEM;
1322 
1323 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1324 		/*
1325 		 * The queue pair broker entry stores values from the guest
1326 		 * point of view, so a creating host side endpoint should swap
1327 		 * produce and consume values -- unless it is a local queue
1328 		 * pair, in which case no swapping is necessary, since the local
1329 		 * attacher will swap queues.
1330 		 */
1331 
1332 		guest_produce_size = consume_size;
1333 		guest_consume_size = produce_size;
1334 	} else {
1335 		guest_produce_size = produce_size;
1336 		guest_consume_size = consume_size;
1337 	}
1338 
1339 	entry->qp.handle = handle;
1340 	entry->qp.peer = peer;
1341 	entry->qp.flags = flags;
1342 	entry->qp.produce_size = guest_produce_size;
1343 	entry->qp.consume_size = guest_consume_size;
1344 	entry->qp.ref_count = 1;
1345 	entry->create_id = context_id;
1346 	entry->attach_id = VMCI_INVALID_ID;
1347 	entry->state = VMCIQPB_NEW;
1348 	entry->require_trusted_attach =
1349 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1350 	entry->created_by_trusted =
1351 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1352 	entry->vmci_page_files = false;
1353 	entry->wakeup_cb = wakeup_cb;
1354 	entry->client_data = client_data;
1355 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1356 	if (entry->produce_q == NULL) {
1357 		result = VMCI_ERROR_NO_MEM;
1358 		goto error;
1359 	}
1360 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1361 	if (entry->consume_q == NULL) {
1362 		result = VMCI_ERROR_NO_MEM;
1363 		goto error;
1364 	}
1365 
1366 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1367 
1368 	INIT_LIST_HEAD(&entry->qp.list_item);
1369 
1370 	if (is_local) {
1371 		u8 *tmp;
1372 
1373 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1374 					   PAGE_SIZE, GFP_KERNEL);
1375 		if (entry->local_mem == NULL) {
1376 			result = VMCI_ERROR_NO_MEM;
1377 			goto error;
1378 		}
1379 		entry->state = VMCIQPB_CREATED_MEM;
1380 		entry->produce_q->q_header = entry->local_mem;
1381 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1382 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1383 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1384 	} else if (page_store) {
1385 		/*
1386 		 * The VMX already initialized the queue pair headers, so no
1387 		 * need for the kernel side to do that.
1388 		 */
1389 		result = qp_host_register_user_memory(page_store,
1390 						      entry->produce_q,
1391 						      entry->consume_q);
1392 		if (result < VMCI_SUCCESS)
1393 			goto error;
1394 
1395 		entry->state = VMCIQPB_CREATED_MEM;
1396 	} else {
1397 		/*
1398 		 * A create without a page_store may be either a host
1399 		 * side create (in which case we are waiting for the
1400 		 * guest side to supply the memory) or an old style
1401 		 * queue pair create (in which case we will expect a
1402 		 * set page store call as the next step).
1403 		 */
1404 		entry->state = VMCIQPB_CREATED_NO_MEM;
1405 	}
1406 
1407 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1408 	if (ent != NULL)
1409 		*ent = entry;
1410 
1411 	/* Add to resource obj */
1412 	result = vmci_resource_add(&entry->resource,
1413 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1414 				   handle);
1415 	if (result != VMCI_SUCCESS) {
1416 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1417 			handle.context, handle.resource, result);
1418 		goto error;
1419 	}
1420 
1421 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1422 	if (is_local) {
1423 		vmci_q_header_init(entry->produce_q->q_header,
1424 				   entry->qp.handle);
1425 		vmci_q_header_init(entry->consume_q->q_header,
1426 				   entry->qp.handle);
1427 	}
1428 
1429 	vmci_ctx_qp_create(context, entry->qp.handle);
1430 
1431 	return VMCI_SUCCESS;
1432 
1433  error:
1434 	if (entry != NULL) {
1435 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1436 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1437 		kfree(entry);
1438 	}
1439 
1440 	return result;
1441 }
1442 
1443 /*
1444  * Enqueues an event datagram to notify the peer VM attached to
1445  * the given queue pair handle about attach/detach event by the
1446  * given VM.  Returns Payload size of datagram enqueued on
1447  * success, error code otherwise.
1448  */
1449 static int qp_notify_peer(bool attach,
1450 			  struct vmci_handle handle,
1451 			  u32 my_id,
1452 			  u32 peer_id)
1453 {
1454 	int rv;
1455 	struct vmci_event_qp ev;
1456 
1457 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1458 	    peer_id == VMCI_INVALID_ID)
1459 		return VMCI_ERROR_INVALID_ARGS;
1460 
1461 	/*
1462 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1463 	 * number of pending events from the hypervisor to a given VM
1464 	 * otherwise a rogue VM could do an arbitrary number of attach
1465 	 * and detach operations causing memory pressure in the host
1466 	 * kernel.
1467 	 */
1468 
1469 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1470 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1471 					  VMCI_CONTEXT_RESOURCE_ID);
1472 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1473 	ev.msg.event_data.event = attach ?
1474 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1475 	ev.payload.handle = handle;
1476 	ev.payload.peer_id = my_id;
1477 
1478 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1479 				    &ev.msg.hdr, false);
1480 	if (rv < VMCI_SUCCESS)
1481 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1482 			attach ? "ATTACH" : "DETACH", peer_id);
1483 
1484 	return rv;
1485 }
1486 
1487 /*
1488  * The second endpoint issuing a queue pair allocation will attach to
1489  * the queue pair registered with the queue pair broker.
1490  *
1491  * If the attacher is a guest, it will associate a VMX virtual address
1492  * range with the queue pair as specified by the page_store. At this
1493  * point, the already attach host endpoint may start using the queue
1494  * pair, and an attach event is sent to it. For compatibility with
1495  * older VMX'en, that used a separate step to set the VMX virtual
1496  * address range, the virtual address range can be registered later
1497  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1498  * NULL should be used, and the attach event will be generated once
1499  * the actual page store has been set.
1500  *
1501  * If the attacher is the host, a page_store of NULL should be used as
1502  * well, since the page store information is already set by the guest.
1503  *
1504  * For new VMX and host callers, the queue pair will be moved to the
1505  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1506  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1507  */
1508 static int qp_broker_attach(struct qp_broker_entry *entry,
1509 			    u32 peer,
1510 			    u32 flags,
1511 			    u32 priv_flags,
1512 			    u64 produce_size,
1513 			    u64 consume_size,
1514 			    struct vmci_qp_page_store *page_store,
1515 			    struct vmci_ctx *context,
1516 			    vmci_event_release_cb wakeup_cb,
1517 			    void *client_data,
1518 			    struct qp_broker_entry **ent)
1519 {
1520 	const u32 context_id = vmci_ctx_get_id(context);
1521 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1522 	int result;
1523 
1524 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1525 	    entry->state != VMCIQPB_CREATED_MEM)
1526 		return VMCI_ERROR_UNAVAILABLE;
1527 
1528 	if (is_local) {
1529 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1530 		    context_id != entry->create_id) {
1531 			return VMCI_ERROR_INVALID_ARGS;
1532 		}
1533 	} else if (context_id == entry->create_id ||
1534 		   context_id == entry->attach_id) {
1535 		return VMCI_ERROR_ALREADY_EXISTS;
1536 	}
1537 
1538 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1539 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1540 		return VMCI_ERROR_DST_UNREACHABLE;
1541 
1542 	/*
1543 	 * If we are attaching from a restricted context then the queuepair
1544 	 * must have been created by a trusted endpoint.
1545 	 */
1546 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1547 	    !entry->created_by_trusted)
1548 		return VMCI_ERROR_NO_ACCESS;
1549 
1550 	/*
1551 	 * If we are attaching to a queuepair that was created by a restricted
1552 	 * context then we must be trusted.
1553 	 */
1554 	if (entry->require_trusted_attach &&
1555 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1556 		return VMCI_ERROR_NO_ACCESS;
1557 
1558 	/*
1559 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1560 	 * control check is not performed.
1561 	 */
1562 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1563 		return VMCI_ERROR_NO_ACCESS;
1564 
1565 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1566 		/*
1567 		 * Do not attach if the caller doesn't support Host Queue Pairs
1568 		 * and a host created this queue pair.
1569 		 */
1570 
1571 		if (!vmci_ctx_supports_host_qp(context))
1572 			return VMCI_ERROR_INVALID_RESOURCE;
1573 
1574 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1575 		struct vmci_ctx *create_context;
1576 		bool supports_host_qp;
1577 
1578 		/*
1579 		 * Do not attach a host to a user created queue pair if that
1580 		 * user doesn't support host queue pair end points.
1581 		 */
1582 
1583 		create_context = vmci_ctx_get(entry->create_id);
1584 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1585 		vmci_ctx_put(create_context);
1586 
1587 		if (!supports_host_qp)
1588 			return VMCI_ERROR_INVALID_RESOURCE;
1589 	}
1590 
1591 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1592 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1593 
1594 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1595 		/*
1596 		 * The queue pair broker entry stores values from the guest
1597 		 * point of view, so an attaching guest should match the values
1598 		 * stored in the entry.
1599 		 */
1600 
1601 		if (entry->qp.produce_size != produce_size ||
1602 		    entry->qp.consume_size != consume_size) {
1603 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1604 		}
1605 	} else if (entry->qp.produce_size != consume_size ||
1606 		   entry->qp.consume_size != produce_size) {
1607 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1608 	}
1609 
1610 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1611 		/*
1612 		 * If a guest attached to a queue pair, it will supply
1613 		 * the backing memory.  If this is a pre NOVMVM vmx,
1614 		 * the backing memory will be supplied by calling
1615 		 * vmci_qp_broker_set_page_store() following the
1616 		 * return of the vmci_qp_broker_alloc() call. If it is
1617 		 * a vmx of version NOVMVM or later, the page store
1618 		 * must be supplied as part of the
1619 		 * vmci_qp_broker_alloc call.  Under all circumstances
1620 		 * must the initially created queue pair not have any
1621 		 * memory associated with it already.
1622 		 */
1623 
1624 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1625 			return VMCI_ERROR_INVALID_ARGS;
1626 
1627 		if (page_store != NULL) {
1628 			/*
1629 			 * Patch up host state to point to guest
1630 			 * supplied memory. The VMX already
1631 			 * initialized the queue pair headers, so no
1632 			 * need for the kernel side to do that.
1633 			 */
1634 
1635 			result = qp_host_register_user_memory(page_store,
1636 							      entry->produce_q,
1637 							      entry->consume_q);
1638 			if (result < VMCI_SUCCESS)
1639 				return result;
1640 
1641 			entry->state = VMCIQPB_ATTACHED_MEM;
1642 		} else {
1643 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1644 		}
1645 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1646 		/*
1647 		 * The host side is attempting to attach to a queue
1648 		 * pair that doesn't have any memory associated with
1649 		 * it. This must be a pre NOVMVM vmx that hasn't set
1650 		 * the page store information yet, or a quiesced VM.
1651 		 */
1652 
1653 		return VMCI_ERROR_UNAVAILABLE;
1654 	} else {
1655 		/* The host side has successfully attached to a queue pair. */
1656 		entry->state = VMCIQPB_ATTACHED_MEM;
1657 	}
1658 
1659 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1660 		result =
1661 		    qp_notify_peer(true, entry->qp.handle, context_id,
1662 				   entry->create_id);
1663 		if (result < VMCI_SUCCESS)
1664 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1665 				entry->create_id, entry->qp.handle.context,
1666 				entry->qp.handle.resource);
1667 	}
1668 
1669 	entry->attach_id = context_id;
1670 	entry->qp.ref_count++;
1671 	if (wakeup_cb) {
1672 		entry->wakeup_cb = wakeup_cb;
1673 		entry->client_data = client_data;
1674 	}
1675 
1676 	/*
1677 	 * When attaching to local queue pairs, the context already has
1678 	 * an entry tracking the queue pair, so don't add another one.
1679 	 */
1680 	if (!is_local)
1681 		vmci_ctx_qp_create(context, entry->qp.handle);
1682 
1683 	if (ent != NULL)
1684 		*ent = entry;
1685 
1686 	return VMCI_SUCCESS;
1687 }
1688 
1689 /*
1690  * queue_pair_Alloc for use when setting up queue pair endpoints
1691  * on the host.
1692  */
1693 static int qp_broker_alloc(struct vmci_handle handle,
1694 			   u32 peer,
1695 			   u32 flags,
1696 			   u32 priv_flags,
1697 			   u64 produce_size,
1698 			   u64 consume_size,
1699 			   struct vmci_qp_page_store *page_store,
1700 			   struct vmci_ctx *context,
1701 			   vmci_event_release_cb wakeup_cb,
1702 			   void *client_data,
1703 			   struct qp_broker_entry **ent,
1704 			   bool *swap)
1705 {
1706 	const u32 context_id = vmci_ctx_get_id(context);
1707 	bool create;
1708 	struct qp_broker_entry *entry = NULL;
1709 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1710 	int result;
1711 
1712 	if (vmci_handle_is_invalid(handle) ||
1713 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1714 	    !(produce_size || consume_size) ||
1715 	    !context || context_id == VMCI_INVALID_ID ||
1716 	    handle.context == VMCI_INVALID_ID) {
1717 		return VMCI_ERROR_INVALID_ARGS;
1718 	}
1719 
1720 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1721 		return VMCI_ERROR_INVALID_ARGS;
1722 
1723 	/*
1724 	 * In the initial argument check, we ensure that non-vmkernel hosts
1725 	 * are not allowed to create local queue pairs.
1726 	 */
1727 
1728 	mutex_lock(&qp_broker_list.mutex);
1729 
1730 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1731 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1732 			 context_id, handle.context, handle.resource);
1733 		mutex_unlock(&qp_broker_list.mutex);
1734 		return VMCI_ERROR_ALREADY_EXISTS;
1735 	}
1736 
1737 	if (handle.resource != VMCI_INVALID_ID)
1738 		entry = qp_broker_handle_to_entry(handle);
1739 
1740 	if (!entry) {
1741 		create = true;
1742 		result =
1743 		    qp_broker_create(handle, peer, flags, priv_flags,
1744 				     produce_size, consume_size, page_store,
1745 				     context, wakeup_cb, client_data, ent);
1746 	} else {
1747 		create = false;
1748 		result =
1749 		    qp_broker_attach(entry, peer, flags, priv_flags,
1750 				     produce_size, consume_size, page_store,
1751 				     context, wakeup_cb, client_data, ent);
1752 	}
1753 
1754 	mutex_unlock(&qp_broker_list.mutex);
1755 
1756 	if (swap)
1757 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1758 		    !(create && is_local);
1759 
1760 	return result;
1761 }
1762 
1763 /*
1764  * This function implements the kernel API for allocating a queue
1765  * pair.
1766  */
1767 static int qp_alloc_host_work(struct vmci_handle *handle,
1768 			      struct vmci_queue **produce_q,
1769 			      u64 produce_size,
1770 			      struct vmci_queue **consume_q,
1771 			      u64 consume_size,
1772 			      u32 peer,
1773 			      u32 flags,
1774 			      u32 priv_flags,
1775 			      vmci_event_release_cb wakeup_cb,
1776 			      void *client_data)
1777 {
1778 	struct vmci_handle new_handle;
1779 	struct vmci_ctx *context;
1780 	struct qp_broker_entry *entry;
1781 	int result;
1782 	bool swap;
1783 
1784 	if (vmci_handle_is_invalid(*handle)) {
1785 		new_handle = vmci_make_handle(
1786 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1787 	} else
1788 		new_handle = *handle;
1789 
1790 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1791 	entry = NULL;
1792 	result =
1793 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1794 			    produce_size, consume_size, NULL, context,
1795 			    wakeup_cb, client_data, &entry, &swap);
1796 	if (result == VMCI_SUCCESS) {
1797 		if (swap) {
1798 			/*
1799 			 * If this is a local queue pair, the attacher
1800 			 * will swap around produce and consume
1801 			 * queues.
1802 			 */
1803 
1804 			*produce_q = entry->consume_q;
1805 			*consume_q = entry->produce_q;
1806 		} else {
1807 			*produce_q = entry->produce_q;
1808 			*consume_q = entry->consume_q;
1809 		}
1810 
1811 		*handle = vmci_resource_handle(&entry->resource);
1812 	} else {
1813 		*handle = VMCI_INVALID_HANDLE;
1814 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1815 			 result);
1816 	}
1817 	vmci_ctx_put(context);
1818 	return result;
1819 }
1820 
1821 /*
1822  * Allocates a VMCI queue_pair. Only checks validity of input
1823  * arguments. The real work is done in the host or guest
1824  * specific function.
1825  */
1826 int vmci_qp_alloc(struct vmci_handle *handle,
1827 		  struct vmci_queue **produce_q,
1828 		  u64 produce_size,
1829 		  struct vmci_queue **consume_q,
1830 		  u64 consume_size,
1831 		  u32 peer,
1832 		  u32 flags,
1833 		  u32 priv_flags,
1834 		  bool guest_endpoint,
1835 		  vmci_event_release_cb wakeup_cb,
1836 		  void *client_data)
1837 {
1838 	if (!handle || !produce_q || !consume_q ||
1839 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1840 		return VMCI_ERROR_INVALID_ARGS;
1841 
1842 	if (guest_endpoint) {
1843 		return qp_alloc_guest_work(handle, produce_q,
1844 					   produce_size, consume_q,
1845 					   consume_size, peer,
1846 					   flags, priv_flags);
1847 	} else {
1848 		return qp_alloc_host_work(handle, produce_q,
1849 					  produce_size, consume_q,
1850 					  consume_size, peer, flags,
1851 					  priv_flags, wakeup_cb, client_data);
1852 	}
1853 }
1854 
1855 /*
1856  * This function implements the host kernel API for detaching from
1857  * a queue pair.
1858  */
1859 static int qp_detatch_host_work(struct vmci_handle handle)
1860 {
1861 	int result;
1862 	struct vmci_ctx *context;
1863 
1864 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1865 
1866 	result = vmci_qp_broker_detach(handle, context);
1867 
1868 	vmci_ctx_put(context);
1869 	return result;
1870 }
1871 
1872 /*
1873  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1874  * Real work is done in the host or guest specific function.
1875  */
1876 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1877 {
1878 	if (vmci_handle_is_invalid(handle))
1879 		return VMCI_ERROR_INVALID_ARGS;
1880 
1881 	if (guest_endpoint)
1882 		return qp_detatch_guest_work(handle);
1883 	else
1884 		return qp_detatch_host_work(handle);
1885 }
1886 
1887 /*
1888  * Returns the entry from the head of the list. Assumes that the list is
1889  * locked.
1890  */
1891 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1892 {
1893 	if (!list_empty(&qp_list->head)) {
1894 		struct qp_entry *entry =
1895 		    list_first_entry(&qp_list->head, struct qp_entry,
1896 				     list_item);
1897 		return entry;
1898 	}
1899 
1900 	return NULL;
1901 }
1902 
1903 void vmci_qp_broker_exit(void)
1904 {
1905 	struct qp_entry *entry;
1906 	struct qp_broker_entry *be;
1907 
1908 	mutex_lock(&qp_broker_list.mutex);
1909 
1910 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1911 		be = (struct qp_broker_entry *)entry;
1912 
1913 		qp_list_remove_entry(&qp_broker_list, entry);
1914 		kfree(be);
1915 	}
1916 
1917 	mutex_unlock(&qp_broker_list.mutex);
1918 }
1919 
1920 /*
1921  * Requests that a queue pair be allocated with the VMCI queue
1922  * pair broker. Allocates a queue pair entry if one does not
1923  * exist. Attaches to one if it exists, and retrieves the page
1924  * files backing that queue_pair.  Assumes that the queue pair
1925  * broker lock is held.
1926  */
1927 int vmci_qp_broker_alloc(struct vmci_handle handle,
1928 			 u32 peer,
1929 			 u32 flags,
1930 			 u32 priv_flags,
1931 			 u64 produce_size,
1932 			 u64 consume_size,
1933 			 struct vmci_qp_page_store *page_store,
1934 			 struct vmci_ctx *context)
1935 {
1936 	return qp_broker_alloc(handle, peer, flags, priv_flags,
1937 			       produce_size, consume_size,
1938 			       page_store, context, NULL, NULL, NULL, NULL);
1939 }
1940 
1941 /*
1942  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1943  * step to add the UVAs of the VMX mapping of the queue pair. This function
1944  * provides backwards compatibility with such VMX'en, and takes care of
1945  * registering the page store for a queue pair previously allocated by the
1946  * VMX during create or attach. This function will move the queue pair state
1947  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1948  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1949  * attached state with memory, the queue pair is ready to be used by the
1950  * host peer, and an attached event will be generated.
1951  *
1952  * Assumes that the queue pair broker lock is held.
1953  *
1954  * This function is only used by the hosted platform, since there is no
1955  * issue with backwards compatibility for vmkernel.
1956  */
1957 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1958 				  u64 produce_uva,
1959 				  u64 consume_uva,
1960 				  struct vmci_ctx *context)
1961 {
1962 	struct qp_broker_entry *entry;
1963 	int result;
1964 	const u32 context_id = vmci_ctx_get_id(context);
1965 
1966 	if (vmci_handle_is_invalid(handle) || !context ||
1967 	    context_id == VMCI_INVALID_ID)
1968 		return VMCI_ERROR_INVALID_ARGS;
1969 
1970 	/*
1971 	 * We only support guest to host queue pairs, so the VMX must
1972 	 * supply UVAs for the mapped page files.
1973 	 */
1974 
1975 	if (produce_uva == 0 || consume_uva == 0)
1976 		return VMCI_ERROR_INVALID_ARGS;
1977 
1978 	mutex_lock(&qp_broker_list.mutex);
1979 
1980 	if (!vmci_ctx_qp_exists(context, handle)) {
1981 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1982 			context_id, handle.context, handle.resource);
1983 		result = VMCI_ERROR_NOT_FOUND;
1984 		goto out;
1985 	}
1986 
1987 	entry = qp_broker_handle_to_entry(handle);
1988 	if (!entry) {
1989 		result = VMCI_ERROR_NOT_FOUND;
1990 		goto out;
1991 	}
1992 
1993 	/*
1994 	 * If I'm the owner then I can set the page store.
1995 	 *
1996 	 * Or, if a host created the queue_pair and I'm the attached peer
1997 	 * then I can set the page store.
1998 	 */
1999 	if (entry->create_id != context_id &&
2000 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2001 	     entry->attach_id != context_id)) {
2002 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2003 		goto out;
2004 	}
2005 
2006 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2007 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2008 		result = VMCI_ERROR_UNAVAILABLE;
2009 		goto out;
2010 	}
2011 
2012 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2013 					 entry->produce_q, entry->consume_q);
2014 	if (result < VMCI_SUCCESS)
2015 		goto out;
2016 
2017 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2018 	if (result < VMCI_SUCCESS) {
2019 		qp_host_unregister_user_memory(entry->produce_q,
2020 					       entry->consume_q);
2021 		goto out;
2022 	}
2023 
2024 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2025 		entry->state = VMCIQPB_CREATED_MEM;
2026 	else
2027 		entry->state = VMCIQPB_ATTACHED_MEM;
2028 
2029 	entry->vmci_page_files = true;
2030 
2031 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2032 		result =
2033 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2034 		if (result < VMCI_SUCCESS) {
2035 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2036 				entry->create_id, entry->qp.handle.context,
2037 				entry->qp.handle.resource);
2038 		}
2039 	}
2040 
2041 	result = VMCI_SUCCESS;
2042  out:
2043 	mutex_unlock(&qp_broker_list.mutex);
2044 	return result;
2045 }
2046 
2047 /*
2048  * Resets saved queue headers for the given QP broker
2049  * entry. Should be used when guest memory becomes available
2050  * again, or the guest detaches.
2051  */
2052 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2053 {
2054 	entry->produce_q->saved_header = NULL;
2055 	entry->consume_q->saved_header = NULL;
2056 }
2057 
2058 /*
2059  * The main entry point for detaching from a queue pair registered with the
2060  * queue pair broker. If more than one endpoint is attached to the queue
2061  * pair, the first endpoint will mainly decrement a reference count and
2062  * generate a notification to its peer. The last endpoint will clean up
2063  * the queue pair state registered with the broker.
2064  *
2065  * When a guest endpoint detaches, it will unmap and unregister the guest
2066  * memory backing the queue pair. If the host is still attached, it will
2067  * no longer be able to access the queue pair content.
2068  *
2069  * If the queue pair is already in a state where there is no memory
2070  * registered for the queue pair (any *_NO_MEM state), it will transition to
2071  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2072  * endpoint is the first of two endpoints to detach. If the host endpoint is
2073  * the first out of two to detach, the queue pair will move to the
2074  * VMCIQPB_SHUTDOWN_MEM state.
2075  */
2076 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2077 {
2078 	struct qp_broker_entry *entry;
2079 	const u32 context_id = vmci_ctx_get_id(context);
2080 	u32 peer_id;
2081 	bool is_local = false;
2082 	int result;
2083 
2084 	if (vmci_handle_is_invalid(handle) || !context ||
2085 	    context_id == VMCI_INVALID_ID) {
2086 		return VMCI_ERROR_INVALID_ARGS;
2087 	}
2088 
2089 	mutex_lock(&qp_broker_list.mutex);
2090 
2091 	if (!vmci_ctx_qp_exists(context, handle)) {
2092 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2093 			 context_id, handle.context, handle.resource);
2094 		result = VMCI_ERROR_NOT_FOUND;
2095 		goto out;
2096 	}
2097 
2098 	entry = qp_broker_handle_to_entry(handle);
2099 	if (!entry) {
2100 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2101 			 context_id, handle.context, handle.resource);
2102 		result = VMCI_ERROR_NOT_FOUND;
2103 		goto out;
2104 	}
2105 
2106 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2107 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2108 		goto out;
2109 	}
2110 
2111 	if (context_id == entry->create_id) {
2112 		peer_id = entry->attach_id;
2113 		entry->create_id = VMCI_INVALID_ID;
2114 	} else {
2115 		peer_id = entry->create_id;
2116 		entry->attach_id = VMCI_INVALID_ID;
2117 	}
2118 	entry->qp.ref_count--;
2119 
2120 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2121 
2122 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2123 		bool headers_mapped;
2124 
2125 		/*
2126 		 * Pre NOVMVM vmx'en may detach from a queue pair
2127 		 * before setting the page store, and in that case
2128 		 * there is no user memory to detach from. Also, more
2129 		 * recent VMX'en may detach from a queue pair in the
2130 		 * quiesced state.
2131 		 */
2132 
2133 		qp_acquire_queue_mutex(entry->produce_q);
2134 		headers_mapped = entry->produce_q->q_header ||
2135 		    entry->consume_q->q_header;
2136 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2137 			result =
2138 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2139 						 entry->produce_q,
2140 						 entry->consume_q);
2141 			if (result < VMCI_SUCCESS)
2142 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2143 					handle.context, handle.resource,
2144 					result);
2145 
2146 			qp_host_unregister_user_memory(entry->produce_q,
2147 						       entry->consume_q);
2148 
2149 		}
2150 
2151 		if (!headers_mapped)
2152 			qp_reset_saved_headers(entry);
2153 
2154 		qp_release_queue_mutex(entry->produce_q);
2155 
2156 		if (!headers_mapped && entry->wakeup_cb)
2157 			entry->wakeup_cb(entry->client_data);
2158 
2159 	} else {
2160 		if (entry->wakeup_cb) {
2161 			entry->wakeup_cb = NULL;
2162 			entry->client_data = NULL;
2163 		}
2164 	}
2165 
2166 	if (entry->qp.ref_count == 0) {
2167 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2168 
2169 		if (is_local)
2170 			kfree(entry->local_mem);
2171 
2172 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2173 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2174 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2175 		/* Unlink from resource hash table and free callback */
2176 		vmci_resource_remove(&entry->resource);
2177 
2178 		kfree(entry);
2179 
2180 		vmci_ctx_qp_destroy(context, handle);
2181 	} else {
2182 		qp_notify_peer(false, handle, context_id, peer_id);
2183 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2184 		    QPBROKERSTATE_HAS_MEM(entry)) {
2185 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2186 		} else {
2187 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2188 		}
2189 
2190 		if (!is_local)
2191 			vmci_ctx_qp_destroy(context, handle);
2192 
2193 	}
2194 	result = VMCI_SUCCESS;
2195  out:
2196 	mutex_unlock(&qp_broker_list.mutex);
2197 	return result;
2198 }
2199 
2200 /*
2201  * Establishes the necessary mappings for a queue pair given a
2202  * reference to the queue pair guest memory. This is usually
2203  * called when a guest is unquiesced and the VMX is allowed to
2204  * map guest memory once again.
2205  */
2206 int vmci_qp_broker_map(struct vmci_handle handle,
2207 		       struct vmci_ctx *context,
2208 		       u64 guest_mem)
2209 {
2210 	struct qp_broker_entry *entry;
2211 	const u32 context_id = vmci_ctx_get_id(context);
2212 	int result;
2213 
2214 	if (vmci_handle_is_invalid(handle) || !context ||
2215 	    context_id == VMCI_INVALID_ID)
2216 		return VMCI_ERROR_INVALID_ARGS;
2217 
2218 	mutex_lock(&qp_broker_list.mutex);
2219 
2220 	if (!vmci_ctx_qp_exists(context, handle)) {
2221 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2222 			 context_id, handle.context, handle.resource);
2223 		result = VMCI_ERROR_NOT_FOUND;
2224 		goto out;
2225 	}
2226 
2227 	entry = qp_broker_handle_to_entry(handle);
2228 	if (!entry) {
2229 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2230 			 context_id, handle.context, handle.resource);
2231 		result = VMCI_ERROR_NOT_FOUND;
2232 		goto out;
2233 	}
2234 
2235 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2236 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2237 		goto out;
2238 	}
2239 
2240 	result = VMCI_SUCCESS;
2241 
2242 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2243 		struct vmci_qp_page_store page_store;
2244 
2245 		page_store.pages = guest_mem;
2246 		page_store.len = QPE_NUM_PAGES(entry->qp);
2247 
2248 		qp_acquire_queue_mutex(entry->produce_q);
2249 		qp_reset_saved_headers(entry);
2250 		result =
2251 		    qp_host_register_user_memory(&page_store,
2252 						 entry->produce_q,
2253 						 entry->consume_q);
2254 		qp_release_queue_mutex(entry->produce_q);
2255 		if (result == VMCI_SUCCESS) {
2256 			/* Move state from *_NO_MEM to *_MEM */
2257 
2258 			entry->state++;
2259 
2260 			if (entry->wakeup_cb)
2261 				entry->wakeup_cb(entry->client_data);
2262 		}
2263 	}
2264 
2265  out:
2266 	mutex_unlock(&qp_broker_list.mutex);
2267 	return result;
2268 }
2269 
2270 /*
2271  * Saves a snapshot of the queue headers for the given QP broker
2272  * entry. Should be used when guest memory is unmapped.
2273  * Results:
2274  * VMCI_SUCCESS on success, appropriate error code if guest memory
2275  * can't be accessed..
2276  */
2277 static int qp_save_headers(struct qp_broker_entry *entry)
2278 {
2279 	int result;
2280 
2281 	if (entry->produce_q->saved_header != NULL &&
2282 	    entry->consume_q->saved_header != NULL) {
2283 		/*
2284 		 *  If the headers have already been saved, we don't need to do
2285 		 *  it again, and we don't want to map in the headers
2286 		 *  unnecessarily.
2287 		 */
2288 
2289 		return VMCI_SUCCESS;
2290 	}
2291 
2292 	if (NULL == entry->produce_q->q_header ||
2293 	    NULL == entry->consume_q->q_header) {
2294 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2295 		if (result < VMCI_SUCCESS)
2296 			return result;
2297 	}
2298 
2299 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2300 	       sizeof(entry->saved_produce_q));
2301 	entry->produce_q->saved_header = &entry->saved_produce_q;
2302 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2303 	       sizeof(entry->saved_consume_q));
2304 	entry->consume_q->saved_header = &entry->saved_consume_q;
2305 
2306 	return VMCI_SUCCESS;
2307 }
2308 
2309 /*
2310  * Removes all references to the guest memory of a given queue pair, and
2311  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2312  * called when a VM is being quiesced where access to guest memory should
2313  * avoided.
2314  */
2315 int vmci_qp_broker_unmap(struct vmci_handle handle,
2316 			 struct vmci_ctx *context,
2317 			 u32 gid)
2318 {
2319 	struct qp_broker_entry *entry;
2320 	const u32 context_id = vmci_ctx_get_id(context);
2321 	int result;
2322 
2323 	if (vmci_handle_is_invalid(handle) || !context ||
2324 	    context_id == VMCI_INVALID_ID)
2325 		return VMCI_ERROR_INVALID_ARGS;
2326 
2327 	mutex_lock(&qp_broker_list.mutex);
2328 
2329 	if (!vmci_ctx_qp_exists(context, handle)) {
2330 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2331 			 context_id, handle.context, handle.resource);
2332 		result = VMCI_ERROR_NOT_FOUND;
2333 		goto out;
2334 	}
2335 
2336 	entry = qp_broker_handle_to_entry(handle);
2337 	if (!entry) {
2338 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2339 			 context_id, handle.context, handle.resource);
2340 		result = VMCI_ERROR_NOT_FOUND;
2341 		goto out;
2342 	}
2343 
2344 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2345 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2346 		goto out;
2347 	}
2348 
2349 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2350 		qp_acquire_queue_mutex(entry->produce_q);
2351 		result = qp_save_headers(entry);
2352 		if (result < VMCI_SUCCESS)
2353 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2354 				handle.context, handle.resource, result);
2355 
2356 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2357 
2358 		/*
2359 		 * On hosted, when we unmap queue pairs, the VMX will also
2360 		 * unmap the guest memory, so we invalidate the previously
2361 		 * registered memory. If the queue pair is mapped again at a
2362 		 * later point in time, we will need to reregister the user
2363 		 * memory with a possibly new user VA.
2364 		 */
2365 		qp_host_unregister_user_memory(entry->produce_q,
2366 					       entry->consume_q);
2367 
2368 		/*
2369 		 * Move state from *_MEM to *_NO_MEM.
2370 		 */
2371 		entry->state--;
2372 
2373 		qp_release_queue_mutex(entry->produce_q);
2374 	}
2375 
2376 	result = VMCI_SUCCESS;
2377 
2378  out:
2379 	mutex_unlock(&qp_broker_list.mutex);
2380 	return result;
2381 }
2382 
2383 /*
2384  * Destroys all guest queue pair endpoints. If active guest queue
2385  * pairs still exist, hypercalls to attempt detach from these
2386  * queue pairs will be made. Any failure to detach is silently
2387  * ignored.
2388  */
2389 void vmci_qp_guest_endpoints_exit(void)
2390 {
2391 	struct qp_entry *entry;
2392 	struct qp_guest_endpoint *ep;
2393 
2394 	mutex_lock(&qp_guest_endpoints.mutex);
2395 
2396 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2397 		ep = (struct qp_guest_endpoint *)entry;
2398 
2399 		/* Don't make a hypercall for local queue_pairs. */
2400 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2401 			qp_detatch_hypercall(entry->handle);
2402 
2403 		/* We cannot fail the exit, so let's reset ref_count. */
2404 		entry->ref_count = 0;
2405 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2406 
2407 		qp_guest_endpoint_destroy(ep);
2408 	}
2409 
2410 	mutex_unlock(&qp_guest_endpoints.mutex);
2411 }
2412 
2413 /*
2414  * Helper routine that will lock the queue pair before subsequent
2415  * operations.
2416  * Note: Non-blocking on the host side is currently only implemented in ESX.
2417  * Since non-blocking isn't yet implemented on the host personality we
2418  * have no reason to acquire a spin lock.  So to avoid the use of an
2419  * unnecessary lock only acquire the mutex if we can block.
2420  */
2421 static void qp_lock(const struct vmci_qp *qpair)
2422 {
2423 	qp_acquire_queue_mutex(qpair->produce_q);
2424 }
2425 
2426 /*
2427  * Helper routine that unlocks the queue pair after calling
2428  * qp_lock.
2429  */
2430 static void qp_unlock(const struct vmci_qp *qpair)
2431 {
2432 	qp_release_queue_mutex(qpair->produce_q);
2433 }
2434 
2435 /*
2436  * The queue headers may not be mapped at all times. If a queue is
2437  * currently not mapped, it will be attempted to do so.
2438  */
2439 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2440 				struct vmci_queue *consume_q)
2441 {
2442 	int result;
2443 
2444 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2445 		result = qp_host_map_queues(produce_q, consume_q);
2446 		if (result < VMCI_SUCCESS)
2447 			return (produce_q->saved_header &&
2448 				consume_q->saved_header) ?
2449 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2450 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2451 	}
2452 
2453 	return VMCI_SUCCESS;
2454 }
2455 
2456 /*
2457  * Helper routine that will retrieve the produce and consume
2458  * headers of a given queue pair. If the guest memory of the
2459  * queue pair is currently not available, the saved queue headers
2460  * will be returned, if these are available.
2461  */
2462 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2463 				struct vmci_queue_header **produce_q_header,
2464 				struct vmci_queue_header **consume_q_header)
2465 {
2466 	int result;
2467 
2468 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2469 	if (result == VMCI_SUCCESS) {
2470 		*produce_q_header = qpair->produce_q->q_header;
2471 		*consume_q_header = qpair->consume_q->q_header;
2472 	} else if (qpair->produce_q->saved_header &&
2473 		   qpair->consume_q->saved_header) {
2474 		*produce_q_header = qpair->produce_q->saved_header;
2475 		*consume_q_header = qpair->consume_q->saved_header;
2476 		result = VMCI_SUCCESS;
2477 	}
2478 
2479 	return result;
2480 }
2481 
2482 /*
2483  * Callback from VMCI queue pair broker indicating that a queue
2484  * pair that was previously not ready, now either is ready or
2485  * gone forever.
2486  */
2487 static int qp_wakeup_cb(void *client_data)
2488 {
2489 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2490 
2491 	qp_lock(qpair);
2492 	while (qpair->blocked > 0) {
2493 		qpair->blocked--;
2494 		qpair->generation++;
2495 		wake_up(&qpair->event);
2496 	}
2497 	qp_unlock(qpair);
2498 
2499 	return VMCI_SUCCESS;
2500 }
2501 
2502 /*
2503  * Makes the calling thread wait for the queue pair to become
2504  * ready for host side access.  Returns true when thread is
2505  * woken up after queue pair state change, false otherwise.
2506  */
2507 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2508 {
2509 	unsigned int generation;
2510 
2511 	qpair->blocked++;
2512 	generation = qpair->generation;
2513 	qp_unlock(qpair);
2514 	wait_event(qpair->event, generation != qpair->generation);
2515 	qp_lock(qpair);
2516 
2517 	return true;
2518 }
2519 
2520 /*
2521  * Enqueues a given buffer to the produce queue using the provided
2522  * function. As many bytes as possible (space available in the queue)
2523  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2524  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2525  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2526  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2527  * an error occured when accessing the buffer,
2528  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2529  * available.  Otherwise, the number of bytes written to the queue is
2530  * returned.  Updates the tail pointer of the produce queue.
2531  */
2532 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2533 				 struct vmci_queue *consume_q,
2534 				 const u64 produce_q_size,
2535 				 struct iov_iter *from)
2536 {
2537 	s64 free_space;
2538 	u64 tail;
2539 	size_t buf_size = iov_iter_count(from);
2540 	size_t written;
2541 	ssize_t result;
2542 
2543 	result = qp_map_queue_headers(produce_q, consume_q);
2544 	if (unlikely(result != VMCI_SUCCESS))
2545 		return result;
2546 
2547 	free_space = vmci_q_header_free_space(produce_q->q_header,
2548 					      consume_q->q_header,
2549 					      produce_q_size);
2550 	if (free_space == 0)
2551 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2552 
2553 	if (free_space < VMCI_SUCCESS)
2554 		return (ssize_t) free_space;
2555 
2556 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2557 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2558 	if (likely(tail + written < produce_q_size)) {
2559 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2560 	} else {
2561 		/* Tail pointer wraps around. */
2562 
2563 		const size_t tmp = (size_t) (produce_q_size - tail);
2564 
2565 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2566 		if (result >= VMCI_SUCCESS)
2567 			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2568 						 written - tmp);
2569 	}
2570 
2571 	if (result < VMCI_SUCCESS)
2572 		return result;
2573 
2574 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2575 					produce_q_size);
2576 	return written;
2577 }
2578 
2579 /*
2580  * Dequeues data (if available) from the given consume queue. Writes data
2581  * to the user provided buffer using the provided function.
2582  * Assumes the queue->mutex has been acquired.
2583  * Results:
2584  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2585  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2586  * (as defined by the queue size).
2587  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2588  * Otherwise the number of bytes dequeued is returned.
2589  * Side effects:
2590  * Updates the head pointer of the consume queue.
2591  */
2592 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2593 				 struct vmci_queue *consume_q,
2594 				 const u64 consume_q_size,
2595 				 struct iov_iter *to,
2596 				 bool update_consumer)
2597 {
2598 	size_t buf_size = iov_iter_count(to);
2599 	s64 buf_ready;
2600 	u64 head;
2601 	size_t read;
2602 	ssize_t result;
2603 
2604 	result = qp_map_queue_headers(produce_q, consume_q);
2605 	if (unlikely(result != VMCI_SUCCESS))
2606 		return result;
2607 
2608 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2609 					    produce_q->q_header,
2610 					    consume_q_size);
2611 	if (buf_ready == 0)
2612 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2613 
2614 	if (buf_ready < VMCI_SUCCESS)
2615 		return (ssize_t) buf_ready;
2616 
2617 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2618 	head = vmci_q_header_consumer_head(produce_q->q_header);
2619 	if (likely(head + read < consume_q_size)) {
2620 		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2621 	} else {
2622 		/* Head pointer wraps around. */
2623 
2624 		const size_t tmp = (size_t) (consume_q_size - head);
2625 
2626 		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2627 		if (result >= VMCI_SUCCESS)
2628 			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2629 						   read - tmp);
2630 
2631 	}
2632 
2633 	if (result < VMCI_SUCCESS)
2634 		return result;
2635 
2636 	if (update_consumer)
2637 		vmci_q_header_add_consumer_head(produce_q->q_header,
2638 						read, consume_q_size);
2639 
2640 	return read;
2641 }
2642 
2643 /*
2644  * vmci_qpair_alloc() - Allocates a queue pair.
2645  * @qpair:      Pointer for the new vmci_qp struct.
2646  * @handle:     Handle to track the resource.
2647  * @produce_qsize:      Desired size of the producer queue.
2648  * @consume_qsize:      Desired size of the consumer queue.
2649  * @peer:       ContextID of the peer.
2650  * @flags:      VMCI flags.
2651  * @priv_flags: VMCI priviledge flags.
2652  *
2653  * This is the client interface for allocating the memory for a
2654  * vmci_qp structure and then attaching to the underlying
2655  * queue.  If an error occurs allocating the memory for the
2656  * vmci_qp structure no attempt is made to attach.  If an
2657  * error occurs attaching, then the structure is freed.
2658  */
2659 int vmci_qpair_alloc(struct vmci_qp **qpair,
2660 		     struct vmci_handle *handle,
2661 		     u64 produce_qsize,
2662 		     u64 consume_qsize,
2663 		     u32 peer,
2664 		     u32 flags,
2665 		     u32 priv_flags)
2666 {
2667 	struct vmci_qp *my_qpair;
2668 	int retval;
2669 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2670 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2671 	enum vmci_route route;
2672 	vmci_event_release_cb wakeup_cb;
2673 	void *client_data;
2674 
2675 	/*
2676 	 * Restrict the size of a queuepair.  The device already
2677 	 * enforces a limit on the total amount of memory that can be
2678 	 * allocated to queuepairs for a guest.  However, we try to
2679 	 * allocate this memory before we make the queuepair
2680 	 * allocation hypercall.  On Linux, we allocate each page
2681 	 * separately, which means rather than fail, the guest will
2682 	 * thrash while it tries to allocate, and will become
2683 	 * increasingly unresponsive to the point where it appears to
2684 	 * be hung.  So we place a limit on the size of an individual
2685 	 * queuepair here, and leave the device to enforce the
2686 	 * restriction on total queuepair memory.  (Note that this
2687 	 * doesn't prevent all cases; a user with only this much
2688 	 * physical memory could still get into trouble.)  The error
2689 	 * used by the device is NO_RESOURCES, so use that here too.
2690 	 */
2691 
2692 	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2693 	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2694 		return VMCI_ERROR_NO_RESOURCES;
2695 
2696 	retval = vmci_route(&src, &dst, false, &route);
2697 	if (retval < VMCI_SUCCESS)
2698 		route = vmci_guest_code_active() ?
2699 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2700 
2701 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2702 		pr_devel("NONBLOCK OR PINNED set");
2703 		return VMCI_ERROR_INVALID_ARGS;
2704 	}
2705 
2706 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2707 	if (!my_qpair)
2708 		return VMCI_ERROR_NO_MEM;
2709 
2710 	my_qpair->produce_q_size = produce_qsize;
2711 	my_qpair->consume_q_size = consume_qsize;
2712 	my_qpair->peer = peer;
2713 	my_qpair->flags = flags;
2714 	my_qpair->priv_flags = priv_flags;
2715 
2716 	wakeup_cb = NULL;
2717 	client_data = NULL;
2718 
2719 	if (VMCI_ROUTE_AS_HOST == route) {
2720 		my_qpair->guest_endpoint = false;
2721 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2722 			my_qpair->blocked = 0;
2723 			my_qpair->generation = 0;
2724 			init_waitqueue_head(&my_qpair->event);
2725 			wakeup_cb = qp_wakeup_cb;
2726 			client_data = (void *)my_qpair;
2727 		}
2728 	} else {
2729 		my_qpair->guest_endpoint = true;
2730 	}
2731 
2732 	retval = vmci_qp_alloc(handle,
2733 			       &my_qpair->produce_q,
2734 			       my_qpair->produce_q_size,
2735 			       &my_qpair->consume_q,
2736 			       my_qpair->consume_q_size,
2737 			       my_qpair->peer,
2738 			       my_qpair->flags,
2739 			       my_qpair->priv_flags,
2740 			       my_qpair->guest_endpoint,
2741 			       wakeup_cb, client_data);
2742 
2743 	if (retval < VMCI_SUCCESS) {
2744 		kfree(my_qpair);
2745 		return retval;
2746 	}
2747 
2748 	*qpair = my_qpair;
2749 	my_qpair->handle = *handle;
2750 
2751 	return retval;
2752 }
2753 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2754 
2755 /*
2756  * vmci_qpair_detach() - Detatches the client from a queue pair.
2757  * @qpair:      Reference of a pointer to the qpair struct.
2758  *
2759  * This is the client interface for detaching from a VMCIQPair.
2760  * Note that this routine will free the memory allocated for the
2761  * vmci_qp structure too.
2762  */
2763 int vmci_qpair_detach(struct vmci_qp **qpair)
2764 {
2765 	int result;
2766 	struct vmci_qp *old_qpair;
2767 
2768 	if (!qpair || !(*qpair))
2769 		return VMCI_ERROR_INVALID_ARGS;
2770 
2771 	old_qpair = *qpair;
2772 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2773 
2774 	/*
2775 	 * The guest can fail to detach for a number of reasons, and
2776 	 * if it does so, it will cleanup the entry (if there is one).
2777 	 * The host can fail too, but it won't cleanup the entry
2778 	 * immediately, it will do that later when the context is
2779 	 * freed.  Either way, we need to release the qpair struct
2780 	 * here; there isn't much the caller can do, and we don't want
2781 	 * to leak.
2782 	 */
2783 
2784 	memset(old_qpair, 0, sizeof(*old_qpair));
2785 	old_qpair->handle = VMCI_INVALID_HANDLE;
2786 	old_qpair->peer = VMCI_INVALID_ID;
2787 	kfree(old_qpair);
2788 	*qpair = NULL;
2789 
2790 	return result;
2791 }
2792 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2793 
2794 /*
2795  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2796  * @qpair:      Pointer to the queue pair struct.
2797  * @producer_tail:      Reference used for storing producer tail index.
2798  * @consumer_head:      Reference used for storing the consumer head index.
2799  *
2800  * This is the client interface for getting the current indexes of the
2801  * QPair from the point of the view of the caller as the producer.
2802  */
2803 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2804 				   u64 *producer_tail,
2805 				   u64 *consumer_head)
2806 {
2807 	struct vmci_queue_header *produce_q_header;
2808 	struct vmci_queue_header *consume_q_header;
2809 	int result;
2810 
2811 	if (!qpair)
2812 		return VMCI_ERROR_INVALID_ARGS;
2813 
2814 	qp_lock(qpair);
2815 	result =
2816 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2817 	if (result == VMCI_SUCCESS)
2818 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2819 					   producer_tail, consumer_head);
2820 	qp_unlock(qpair);
2821 
2822 	if (result == VMCI_SUCCESS &&
2823 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2824 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2825 		return VMCI_ERROR_INVALID_SIZE;
2826 
2827 	return result;
2828 }
2829 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2830 
2831 /*
2832  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2833  * @qpair:      Pointer to the queue pair struct.
2834  * @consumer_tail:      Reference used for storing consumer tail index.
2835  * @producer_head:      Reference used for storing the producer head index.
2836  *
2837  * This is the client interface for getting the current indexes of the
2838  * QPair from the point of the view of the caller as the consumer.
2839  */
2840 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2841 				   u64 *consumer_tail,
2842 				   u64 *producer_head)
2843 {
2844 	struct vmci_queue_header *produce_q_header;
2845 	struct vmci_queue_header *consume_q_header;
2846 	int result;
2847 
2848 	if (!qpair)
2849 		return VMCI_ERROR_INVALID_ARGS;
2850 
2851 	qp_lock(qpair);
2852 	result =
2853 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2854 	if (result == VMCI_SUCCESS)
2855 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2856 					   consumer_tail, producer_head);
2857 	qp_unlock(qpair);
2858 
2859 	if (result == VMCI_SUCCESS &&
2860 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2861 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2862 		return VMCI_ERROR_INVALID_SIZE;
2863 
2864 	return result;
2865 }
2866 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2867 
2868 /*
2869  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2870  * @qpair:      Pointer to the queue pair struct.
2871  *
2872  * This is the client interface for getting the amount of free
2873  * space in the QPair from the point of the view of the caller as
2874  * the producer which is the common case.  Returns < 0 if err, else
2875  * available bytes into which data can be enqueued if > 0.
2876  */
2877 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2878 {
2879 	struct vmci_queue_header *produce_q_header;
2880 	struct vmci_queue_header *consume_q_header;
2881 	s64 result;
2882 
2883 	if (!qpair)
2884 		return VMCI_ERROR_INVALID_ARGS;
2885 
2886 	qp_lock(qpair);
2887 	result =
2888 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2889 	if (result == VMCI_SUCCESS)
2890 		result = vmci_q_header_free_space(produce_q_header,
2891 						  consume_q_header,
2892 						  qpair->produce_q_size);
2893 	else
2894 		result = 0;
2895 
2896 	qp_unlock(qpair);
2897 
2898 	return result;
2899 }
2900 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2901 
2902 /*
2903  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2904  * @qpair:      Pointer to the queue pair struct.
2905  *
2906  * This is the client interface for getting the amount of free
2907  * space in the QPair from the point of the view of the caller as
2908  * the consumer which is not the common case.  Returns < 0 if err, else
2909  * available bytes into which data can be enqueued if > 0.
2910  */
2911 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2912 {
2913 	struct vmci_queue_header *produce_q_header;
2914 	struct vmci_queue_header *consume_q_header;
2915 	s64 result;
2916 
2917 	if (!qpair)
2918 		return VMCI_ERROR_INVALID_ARGS;
2919 
2920 	qp_lock(qpair);
2921 	result =
2922 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2923 	if (result == VMCI_SUCCESS)
2924 		result = vmci_q_header_free_space(consume_q_header,
2925 						  produce_q_header,
2926 						  qpair->consume_q_size);
2927 	else
2928 		result = 0;
2929 
2930 	qp_unlock(qpair);
2931 
2932 	return result;
2933 }
2934 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2935 
2936 /*
2937  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2938  * producer queue.
2939  * @qpair:      Pointer to the queue pair struct.
2940  *
2941  * This is the client interface for getting the amount of
2942  * enqueued data in the QPair from the point of the view of the
2943  * caller as the producer which is not the common case.  Returns < 0 if err,
2944  * else available bytes that may be read.
2945  */
2946 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2947 {
2948 	struct vmci_queue_header *produce_q_header;
2949 	struct vmci_queue_header *consume_q_header;
2950 	s64 result;
2951 
2952 	if (!qpair)
2953 		return VMCI_ERROR_INVALID_ARGS;
2954 
2955 	qp_lock(qpair);
2956 	result =
2957 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2958 	if (result == VMCI_SUCCESS)
2959 		result = vmci_q_header_buf_ready(produce_q_header,
2960 						 consume_q_header,
2961 						 qpair->produce_q_size);
2962 	else
2963 		result = 0;
2964 
2965 	qp_unlock(qpair);
2966 
2967 	return result;
2968 }
2969 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2970 
2971 /*
2972  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2973  * consumer queue.
2974  * @qpair:      Pointer to the queue pair struct.
2975  *
2976  * This is the client interface for getting the amount of
2977  * enqueued data in the QPair from the point of the view of the
2978  * caller as the consumer which is the normal case.  Returns < 0 if err,
2979  * else available bytes that may be read.
2980  */
2981 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2982 {
2983 	struct vmci_queue_header *produce_q_header;
2984 	struct vmci_queue_header *consume_q_header;
2985 	s64 result;
2986 
2987 	if (!qpair)
2988 		return VMCI_ERROR_INVALID_ARGS;
2989 
2990 	qp_lock(qpair);
2991 	result =
2992 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2993 	if (result == VMCI_SUCCESS)
2994 		result = vmci_q_header_buf_ready(consume_q_header,
2995 						 produce_q_header,
2996 						 qpair->consume_q_size);
2997 	else
2998 		result = 0;
2999 
3000 	qp_unlock(qpair);
3001 
3002 	return result;
3003 }
3004 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3005 
3006 /*
3007  * vmci_qpair_enqueue() - Throw data on the queue.
3008  * @qpair:      Pointer to the queue pair struct.
3009  * @buf:        Pointer to buffer containing data
3010  * @buf_size:   Length of buffer.
3011  * @buf_type:   Buffer type (Unused).
3012  *
3013  * This is the client interface for enqueueing data into the queue.
3014  * Returns number of bytes enqueued or < 0 on error.
3015  */
3016 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3017 			   const void *buf,
3018 			   size_t buf_size,
3019 			   int buf_type)
3020 {
3021 	ssize_t result;
3022 	struct iov_iter from;
3023 	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3024 
3025 	if (!qpair || !buf)
3026 		return VMCI_ERROR_INVALID_ARGS;
3027 
3028 	iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3029 
3030 	qp_lock(qpair);
3031 
3032 	do {
3033 		result = qp_enqueue_locked(qpair->produce_q,
3034 					   qpair->consume_q,
3035 					   qpair->produce_q_size,
3036 					   &from);
3037 
3038 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3039 		    !qp_wait_for_ready_queue(qpair))
3040 			result = VMCI_ERROR_WOULD_BLOCK;
3041 
3042 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3043 
3044 	qp_unlock(qpair);
3045 
3046 	return result;
3047 }
3048 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3049 
3050 /*
3051  * vmci_qpair_dequeue() - Get data from the queue.
3052  * @qpair:      Pointer to the queue pair struct.
3053  * @buf:        Pointer to buffer for the data
3054  * @buf_size:   Length of buffer.
3055  * @buf_type:   Buffer type (Unused).
3056  *
3057  * This is the client interface for dequeueing data from the queue.
3058  * Returns number of bytes dequeued or < 0 on error.
3059  */
3060 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3061 			   void *buf,
3062 			   size_t buf_size,
3063 			   int buf_type)
3064 {
3065 	ssize_t result;
3066 	struct iov_iter to;
3067 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3068 
3069 	if (!qpair || !buf)
3070 		return VMCI_ERROR_INVALID_ARGS;
3071 
3072 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3073 
3074 	qp_lock(qpair);
3075 
3076 	do {
3077 		result = qp_dequeue_locked(qpair->produce_q,
3078 					   qpair->consume_q,
3079 					   qpair->consume_q_size,
3080 					   &to, true);
3081 
3082 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3083 		    !qp_wait_for_ready_queue(qpair))
3084 			result = VMCI_ERROR_WOULD_BLOCK;
3085 
3086 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3087 
3088 	qp_unlock(qpair);
3089 
3090 	return result;
3091 }
3092 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3093 
3094 /*
3095  * vmci_qpair_peek() - Peek at the data in the queue.
3096  * @qpair:      Pointer to the queue pair struct.
3097  * @buf:        Pointer to buffer for the data
3098  * @buf_size:   Length of buffer.
3099  * @buf_type:   Buffer type (Unused on Linux).
3100  *
3101  * This is the client interface for peeking into a queue.  (I.e.,
3102  * copy data from the queue without updating the head pointer.)
3103  * Returns number of bytes dequeued or < 0 on error.
3104  */
3105 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3106 			void *buf,
3107 			size_t buf_size,
3108 			int buf_type)
3109 {
3110 	struct iov_iter to;
3111 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3112 	ssize_t result;
3113 
3114 	if (!qpair || !buf)
3115 		return VMCI_ERROR_INVALID_ARGS;
3116 
3117 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3118 
3119 	qp_lock(qpair);
3120 
3121 	do {
3122 		result = qp_dequeue_locked(qpair->produce_q,
3123 					   qpair->consume_q,
3124 					   qpair->consume_q_size,
3125 					   &to, false);
3126 
3127 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3128 		    !qp_wait_for_ready_queue(qpair))
3129 			result = VMCI_ERROR_WOULD_BLOCK;
3130 
3131 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3132 
3133 	qp_unlock(qpair);
3134 
3135 	return result;
3136 }
3137 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3138 
3139 /*
3140  * vmci_qpair_enquev() - Throw data on the queue using iov.
3141  * @qpair:      Pointer to the queue pair struct.
3142  * @iov:        Pointer to buffer containing data
3143  * @iov_size:   Length of buffer.
3144  * @buf_type:   Buffer type (Unused).
3145  *
3146  * This is the client interface for enqueueing data into the queue.
3147  * This function uses IO vectors to handle the work. Returns number
3148  * of bytes enqueued or < 0 on error.
3149  */
3150 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3151 			  struct msghdr *msg,
3152 			  size_t iov_size,
3153 			  int buf_type)
3154 {
3155 	ssize_t result;
3156 
3157 	if (!qpair)
3158 		return VMCI_ERROR_INVALID_ARGS;
3159 
3160 	qp_lock(qpair);
3161 
3162 	do {
3163 		result = qp_enqueue_locked(qpair->produce_q,
3164 					   qpair->consume_q,
3165 					   qpair->produce_q_size,
3166 					   &msg->msg_iter);
3167 
3168 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3169 		    !qp_wait_for_ready_queue(qpair))
3170 			result = VMCI_ERROR_WOULD_BLOCK;
3171 
3172 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3173 
3174 	qp_unlock(qpair);
3175 
3176 	return result;
3177 }
3178 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3179 
3180 /*
3181  * vmci_qpair_dequev() - Get data from the queue using iov.
3182  * @qpair:      Pointer to the queue pair struct.
3183  * @iov:        Pointer to buffer for the data
3184  * @iov_size:   Length of buffer.
3185  * @buf_type:   Buffer type (Unused).
3186  *
3187  * This is the client interface for dequeueing data from the queue.
3188  * This function uses IO vectors to handle the work. Returns number
3189  * of bytes dequeued or < 0 on error.
3190  */
3191 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3192 			  struct msghdr *msg,
3193 			  size_t iov_size,
3194 			  int buf_type)
3195 {
3196 	ssize_t result;
3197 
3198 	if (!qpair)
3199 		return VMCI_ERROR_INVALID_ARGS;
3200 
3201 	qp_lock(qpair);
3202 
3203 	do {
3204 		result = qp_dequeue_locked(qpair->produce_q,
3205 					   qpair->consume_q,
3206 					   qpair->consume_q_size,
3207 					   &msg->msg_iter, true);
3208 
3209 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3210 		    !qp_wait_for_ready_queue(qpair))
3211 			result = VMCI_ERROR_WOULD_BLOCK;
3212 
3213 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3214 
3215 	qp_unlock(qpair);
3216 
3217 	return result;
3218 }
3219 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3220 
3221 /*
3222  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3223  * @qpair:      Pointer to the queue pair struct.
3224  * @iov:        Pointer to buffer for the data
3225  * @iov_size:   Length of buffer.
3226  * @buf_type:   Buffer type (Unused on Linux).
3227  *
3228  * This is the client interface for peeking into a queue.  (I.e.,
3229  * copy data from the queue without updating the head pointer.)
3230  * This function uses IO vectors to handle the work. Returns number
3231  * of bytes peeked or < 0 on error.
3232  */
3233 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3234 			 struct msghdr *msg,
3235 			 size_t iov_size,
3236 			 int buf_type)
3237 {
3238 	ssize_t result;
3239 
3240 	if (!qpair)
3241 		return VMCI_ERROR_INVALID_ARGS;
3242 
3243 	qp_lock(qpair);
3244 
3245 	do {
3246 		result = qp_dequeue_locked(qpair->produce_q,
3247 					   qpair->consume_q,
3248 					   qpair->consume_q_size,
3249 					   &msg->msg_iter, false);
3250 
3251 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3252 		    !qp_wait_for_ready_queue(qpair))
3253 			result = VMCI_ERROR_WOULD_BLOCK;
3254 
3255 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3256 
3257 	qp_unlock(qpair);
3258 	return result;
3259 }
3260 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3261