xref: /linux/drivers/misc/vmw_vmci/vmci_guest.c (revision 4461568aa4e565de2c336f4875ddf912f26da8a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/moduleparam.h>
11 #include <linux/interrupt.h>
12 #include <linux/highmem.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/processor.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/vmalloc.h>
24 
25 #include "vmci_datagram.h"
26 #include "vmci_doorbell.h"
27 #include "vmci_context.h"
28 #include "vmci_driver.h"
29 #include "vmci_event.h"
30 
31 #define PCI_DEVICE_ID_VMWARE_VMCI	0x0740
32 
33 #define VMCI_UTIL_NUM_RESOURCES 1
34 
35 /*
36  * Datagram buffers for DMA send/receive must accommodate at least
37  * a maximum sized datagram and the header.
38  */
39 #define VMCI_DMA_DG_BUFFER_SIZE (VMCI_MAX_DG_SIZE + PAGE_SIZE)
40 
41 static bool vmci_disable_msi;
42 module_param_named(disable_msi, vmci_disable_msi, bool, 0);
43 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
44 
45 static bool vmci_disable_msix;
46 module_param_named(disable_msix, vmci_disable_msix, bool, 0);
47 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
48 
49 static u32 ctx_update_sub_id = VMCI_INVALID_ID;
50 static u32 vm_context_id = VMCI_INVALID_ID;
51 
52 struct vmci_guest_device {
53 	struct device *dev;	/* PCI device we are attached to */
54 	void __iomem *iobase;
55 	void __iomem *mmio_base;
56 
57 	bool exclusive_vectors;
58 
59 	struct tasklet_struct datagram_tasklet;
60 	struct tasklet_struct bm_tasklet;
61 	struct wait_queue_head inout_wq;
62 
63 	void *data_buffer;
64 	dma_addr_t data_buffer_base;
65 	void *tx_buffer;
66 	dma_addr_t tx_buffer_base;
67 	void *notification_bitmap;
68 	dma_addr_t notification_base;
69 };
70 
71 static bool use_ppn64;
72 
73 bool vmci_use_ppn64(void)
74 {
75 	return use_ppn64;
76 }
77 
78 /* vmci_dev singleton device and supporting data*/
79 struct pci_dev *vmci_pdev;
80 static struct vmci_guest_device *vmci_dev_g;
81 static DEFINE_SPINLOCK(vmci_dev_spinlock);
82 
83 static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
84 
85 bool vmci_guest_code_active(void)
86 {
87 	return atomic_read(&vmci_num_guest_devices) != 0;
88 }
89 
90 u32 vmci_get_vm_context_id(void)
91 {
92 	if (vm_context_id == VMCI_INVALID_ID) {
93 		struct vmci_datagram get_cid_msg;
94 		get_cid_msg.dst =
95 		    vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
96 				     VMCI_GET_CONTEXT_ID);
97 		get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
98 		get_cid_msg.payload_size = 0;
99 		vm_context_id = vmci_send_datagram(&get_cid_msg);
100 	}
101 	return vm_context_id;
102 }
103 
104 static unsigned int vmci_read_reg(struct vmci_guest_device *dev, u32 reg)
105 {
106 	if (dev->mmio_base != NULL)
107 		return readl(dev->mmio_base + reg);
108 	return ioread32(dev->iobase + reg);
109 }
110 
111 static void vmci_write_reg(struct vmci_guest_device *dev, u32 val, u32 reg)
112 {
113 	if (dev->mmio_base != NULL)
114 		writel(val, dev->mmio_base + reg);
115 	else
116 		iowrite32(val, dev->iobase + reg);
117 }
118 
119 static void vmci_read_data(struct vmci_guest_device *vmci_dev,
120 			   void *dest, size_t size)
121 {
122 	if (vmci_dev->mmio_base == NULL)
123 		ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
124 			    dest, size);
125 	else {
126 		/*
127 		 * For DMA datagrams, the data_buffer will contain the header on the
128 		 * first page, followed by the incoming datagram(s) on the following
129 		 * pages. The header uses an S/G element immediately following the
130 		 * header on the first page to point to the data area.
131 		 */
132 		struct vmci_data_in_out_header *buffer_header = vmci_dev->data_buffer;
133 		struct vmci_sg_elem *sg_array = (struct vmci_sg_elem *)(buffer_header + 1);
134 		size_t buffer_offset = dest - vmci_dev->data_buffer;
135 
136 		buffer_header->opcode = 1;
137 		buffer_header->size = 1;
138 		buffer_header->busy = 0;
139 		sg_array[0].addr = vmci_dev->data_buffer_base + buffer_offset;
140 		sg_array[0].size = size;
141 
142 		vmci_write_reg(vmci_dev, lower_32_bits(vmci_dev->data_buffer_base),
143 			       VMCI_DATA_IN_LOW_ADDR);
144 
145 		wait_event(vmci_dev->inout_wq, buffer_header->busy == 1);
146 	}
147 }
148 
149 static int vmci_write_data(struct vmci_guest_device *dev,
150 			   struct vmci_datagram *dg)
151 {
152 	int result;
153 
154 	if (dev->mmio_base != NULL) {
155 		struct vmci_data_in_out_header *buffer_header = dev->tx_buffer;
156 		u8 *dg_out_buffer = (u8 *)(buffer_header + 1);
157 
158 		if (VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE)
159 			return VMCI_ERROR_INVALID_ARGS;
160 
161 		/*
162 		 * Initialize send buffer with outgoing datagram
163 		 * and set up header for inline data. Device will
164 		 * not access buffer asynchronously - only after
165 		 * the write to VMCI_DATA_OUT_LOW_ADDR.
166 		 */
167 		memcpy(dg_out_buffer, dg, VMCI_DG_SIZE(dg));
168 		buffer_header->opcode = 0;
169 		buffer_header->size = VMCI_DG_SIZE(dg);
170 		buffer_header->busy = 1;
171 
172 		vmci_write_reg(dev, lower_32_bits(dev->tx_buffer_base),
173 			       VMCI_DATA_OUT_LOW_ADDR);
174 
175 		/* Caller holds a spinlock, so cannot block. */
176 		spin_until_cond(buffer_header->busy == 0);
177 
178 		result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
179 		if (result == VMCI_SUCCESS)
180 			result = (int)buffer_header->result;
181 	} else {
182 		iowrite8_rep(dev->iobase + VMCI_DATA_OUT_ADDR,
183 			     dg, VMCI_DG_SIZE(dg));
184 		result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
185 	}
186 
187 	return result;
188 }
189 
190 /*
191  * VM to hypervisor call mechanism. We use the standard VMware naming
192  * convention since shared code is calling this function as well.
193  */
194 int vmci_send_datagram(struct vmci_datagram *dg)
195 {
196 	unsigned long flags;
197 	int result;
198 
199 	/* Check args. */
200 	if (dg == NULL)
201 		return VMCI_ERROR_INVALID_ARGS;
202 
203 	/*
204 	 * Need to acquire spinlock on the device because the datagram
205 	 * data may be spread over multiple pages and the monitor may
206 	 * interleave device user rpc calls from multiple
207 	 * VCPUs. Acquiring the spinlock precludes that
208 	 * possibility. Disabling interrupts to avoid incoming
209 	 * datagrams during a "rep out" and possibly landing up in
210 	 * this function.
211 	 */
212 	spin_lock_irqsave(&vmci_dev_spinlock, flags);
213 
214 	if (vmci_dev_g) {
215 		vmci_write_data(vmci_dev_g, dg);
216 		result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
217 	} else {
218 		result = VMCI_ERROR_UNAVAILABLE;
219 	}
220 
221 	spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
222 
223 	return result;
224 }
225 EXPORT_SYMBOL_GPL(vmci_send_datagram);
226 
227 /*
228  * Gets called with the new context id if updated or resumed.
229  * Context id.
230  */
231 static void vmci_guest_cid_update(u32 sub_id,
232 				  const struct vmci_event_data *event_data,
233 				  void *client_data)
234 {
235 	const struct vmci_event_payld_ctx *ev_payload =
236 				vmci_event_data_const_payload(event_data);
237 
238 	if (sub_id != ctx_update_sub_id) {
239 		pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
240 		return;
241 	}
242 
243 	if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
244 		pr_devel("Invalid event data\n");
245 		return;
246 	}
247 
248 	pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
249 		 vm_context_id, ev_payload->context_id, event_data->event);
250 
251 	vm_context_id = ev_payload->context_id;
252 }
253 
254 /*
255  * Verify that the host supports the hypercalls we need. If it does not,
256  * try to find fallback hypercalls and use those instead.  Returns 0 if
257  * required hypercalls (or fallback hypercalls) are supported by the host,
258  * an error code otherwise.
259  */
260 static int vmci_check_host_caps(struct pci_dev *pdev)
261 {
262 	bool result;
263 	struct vmci_resource_query_msg *msg;
264 	u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
265 				VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
266 	struct vmci_datagram *check_msg;
267 
268 	check_msg = kzalloc(msg_size, GFP_KERNEL);
269 	if (!check_msg) {
270 		dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
271 		return -ENOMEM;
272 	}
273 
274 	check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
275 					  VMCI_RESOURCES_QUERY);
276 	check_msg->src = VMCI_ANON_SRC_HANDLE;
277 	check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
278 	msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
279 
280 	msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
281 	msg->resources[0] = VMCI_GET_CONTEXT_ID;
282 
283 	/* Checks that hyper calls are supported */
284 	result = vmci_send_datagram(check_msg) == 0x01;
285 	kfree(check_msg);
286 
287 	dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
288 		__func__, result ? "PASSED" : "FAILED");
289 
290 	/* We need the vector. There are no fallbacks. */
291 	return result ? 0 : -ENXIO;
292 }
293 
294 /*
295  * Reads datagrams from the device and dispatches them. For IO port
296  * based access to the device, we always start reading datagrams into
297  * only the first page of the datagram buffer. If the datagrams don't
298  * fit into one page, we use the maximum datagram buffer size for the
299  * remainder of the invocation. This is a simple heuristic for not
300  * penalizing small datagrams. For DMA-based datagrams, we always
301  * use the maximum datagram buffer size, since there is no performance
302  * penalty for doing so.
303  *
304  * This function assumes that it has exclusive access to the data
305  * in register(s) for the duration of the call.
306  */
307 static void vmci_dispatch_dgs(unsigned long data)
308 {
309 	struct vmci_guest_device *vmci_dev = (struct vmci_guest_device *)data;
310 	u8 *dg_in_buffer = vmci_dev->data_buffer;
311 	struct vmci_datagram *dg;
312 	size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
313 	size_t current_dg_in_buffer_size;
314 	size_t remaining_bytes;
315 	bool is_io_port = vmci_dev->mmio_base == NULL;
316 
317 	BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
318 
319 	if (!is_io_port) {
320 		/* For mmio, the first page is used for the header. */
321 		dg_in_buffer += PAGE_SIZE;
322 
323 		/*
324 		 * For DMA-based datagram operations, there is no performance
325 		 * penalty for reading the maximum buffer size.
326 		 */
327 		current_dg_in_buffer_size = VMCI_MAX_DG_SIZE;
328 	} else {
329 		current_dg_in_buffer_size = PAGE_SIZE;
330 	}
331 	vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size);
332 	dg = (struct vmci_datagram *)dg_in_buffer;
333 	remaining_bytes = current_dg_in_buffer_size;
334 
335 	/*
336 	 * Read through the buffer until an invalid datagram header is
337 	 * encountered. The exit condition for datagrams read through
338 	 * VMCI_DATA_IN_ADDR is a bit more complicated, since a datagram
339 	 * can start on any page boundary in the buffer.
340 	 */
341 	while (dg->dst.resource != VMCI_INVALID_ID ||
342 	       (is_io_port && remaining_bytes > PAGE_SIZE)) {
343 		unsigned dg_in_size;
344 
345 		/*
346 		 * If using VMCI_DATA_IN_ADDR, skip to the next page
347 		 * as a datagram can start on any page boundary.
348 		 */
349 		if (dg->dst.resource == VMCI_INVALID_ID) {
350 			dg = (struct vmci_datagram *)roundup(
351 				(uintptr_t)dg + 1, PAGE_SIZE);
352 			remaining_bytes =
353 				(size_t)(dg_in_buffer +
354 					 current_dg_in_buffer_size -
355 					 (u8 *)dg);
356 			continue;
357 		}
358 
359 		dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
360 
361 		if (dg_in_size <= dg_in_buffer_size) {
362 			int result;
363 
364 			/*
365 			 * If the remaining bytes in the datagram
366 			 * buffer doesn't contain the complete
367 			 * datagram, we first make sure we have enough
368 			 * room for it and then we read the reminder
369 			 * of the datagram and possibly any following
370 			 * datagrams.
371 			 */
372 			if (dg_in_size > remaining_bytes) {
373 				if (remaining_bytes !=
374 				    current_dg_in_buffer_size) {
375 
376 					/*
377 					 * We move the partial
378 					 * datagram to the front and
379 					 * read the reminder of the
380 					 * datagram and possibly
381 					 * following calls into the
382 					 * following bytes.
383 					 */
384 					memmove(dg_in_buffer, dg_in_buffer +
385 						current_dg_in_buffer_size -
386 						remaining_bytes,
387 						remaining_bytes);
388 					dg = (struct vmci_datagram *)
389 					    dg_in_buffer;
390 				}
391 
392 				if (current_dg_in_buffer_size !=
393 				    dg_in_buffer_size)
394 					current_dg_in_buffer_size =
395 					    dg_in_buffer_size;
396 
397 				vmci_read_data(vmci_dev,
398 					       dg_in_buffer +
399 						remaining_bytes,
400 					       current_dg_in_buffer_size -
401 						remaining_bytes);
402 			}
403 
404 			/*
405 			 * We special case event datagrams from the
406 			 * hypervisor.
407 			 */
408 			if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
409 			    dg->dst.resource == VMCI_EVENT_HANDLER) {
410 				result = vmci_event_dispatch(dg);
411 			} else {
412 				result = vmci_datagram_invoke_guest_handler(dg);
413 			}
414 			if (result < VMCI_SUCCESS)
415 				dev_dbg(vmci_dev->dev,
416 					"Datagram with resource (ID=0x%x) failed (err=%d)\n",
417 					 dg->dst.resource, result);
418 
419 			/* On to the next datagram. */
420 			dg = (struct vmci_datagram *)((u8 *)dg +
421 						      dg_in_size);
422 		} else {
423 			size_t bytes_to_skip;
424 
425 			/*
426 			 * Datagram doesn't fit in datagram buffer of maximal
427 			 * size. We drop it.
428 			 */
429 			dev_dbg(vmci_dev->dev,
430 				"Failed to receive datagram (size=%u bytes)\n",
431 				 dg_in_size);
432 
433 			bytes_to_skip = dg_in_size - remaining_bytes;
434 			if (current_dg_in_buffer_size != dg_in_buffer_size)
435 				current_dg_in_buffer_size = dg_in_buffer_size;
436 
437 			for (;;) {
438 				vmci_read_data(vmci_dev, dg_in_buffer,
439 					       current_dg_in_buffer_size);
440 				if (bytes_to_skip <= current_dg_in_buffer_size)
441 					break;
442 
443 				bytes_to_skip -= current_dg_in_buffer_size;
444 			}
445 			dg = (struct vmci_datagram *)(dg_in_buffer +
446 						      bytes_to_skip);
447 		}
448 
449 		remaining_bytes =
450 		    (size_t) (dg_in_buffer + current_dg_in_buffer_size -
451 			      (u8 *)dg);
452 
453 		if (remaining_bytes < VMCI_DG_HEADERSIZE) {
454 			/* Get the next batch of datagrams. */
455 
456 			vmci_read_data(vmci_dev, dg_in_buffer,
457 				    current_dg_in_buffer_size);
458 			dg = (struct vmci_datagram *)dg_in_buffer;
459 			remaining_bytes = current_dg_in_buffer_size;
460 		}
461 	}
462 }
463 
464 /*
465  * Scans the notification bitmap for raised flags, clears them
466  * and handles the notifications.
467  */
468 static void vmci_process_bitmap(unsigned long data)
469 {
470 	struct vmci_guest_device *dev = (struct vmci_guest_device *)data;
471 
472 	if (!dev->notification_bitmap) {
473 		dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
474 		return;
475 	}
476 
477 	vmci_dbell_scan_notification_entries(dev->notification_bitmap);
478 }
479 
480 /*
481  * Interrupt handler for legacy or MSI interrupt, or for first MSI-X
482  * interrupt (vector VMCI_INTR_DATAGRAM).
483  */
484 static irqreturn_t vmci_interrupt(int irq, void *_dev)
485 {
486 	struct vmci_guest_device *dev = _dev;
487 
488 	/*
489 	 * If we are using MSI-X with exclusive vectors then we simply schedule
490 	 * the datagram tasklet, since we know the interrupt was meant for us.
491 	 * Otherwise we must read the ICR to determine what to do.
492 	 */
493 
494 	if (dev->exclusive_vectors) {
495 		tasklet_schedule(&dev->datagram_tasklet);
496 	} else {
497 		unsigned int icr;
498 
499 		/* Acknowledge interrupt and determine what needs doing. */
500 		icr = vmci_read_reg(dev, VMCI_ICR_ADDR);
501 		if (icr == 0 || icr == ~0)
502 			return IRQ_NONE;
503 
504 		if (icr & VMCI_ICR_DATAGRAM) {
505 			tasklet_schedule(&dev->datagram_tasklet);
506 			icr &= ~VMCI_ICR_DATAGRAM;
507 		}
508 
509 		if (icr & VMCI_ICR_NOTIFICATION) {
510 			tasklet_schedule(&dev->bm_tasklet);
511 			icr &= ~VMCI_ICR_NOTIFICATION;
512 		}
513 
514 
515 		if (icr & VMCI_ICR_DMA_DATAGRAM) {
516 			wake_up_all(&dev->inout_wq);
517 			icr &= ~VMCI_ICR_DMA_DATAGRAM;
518 		}
519 
520 		if (icr != 0)
521 			dev_warn(dev->dev,
522 				 "Ignoring unknown interrupt cause (%d)\n",
523 				 icr);
524 	}
525 
526 	return IRQ_HANDLED;
527 }
528 
529 /*
530  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
531  * which is for the notification bitmap.  Will only get called if we are
532  * using MSI-X with exclusive vectors.
533  */
534 static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
535 {
536 	struct vmci_guest_device *dev = _dev;
537 
538 	/* For MSI-X we can just assume it was meant for us. */
539 	tasklet_schedule(&dev->bm_tasklet);
540 
541 	return IRQ_HANDLED;
542 }
543 
544 /*
545  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_DMA_DATAGRAM,
546  * which is for the completion of a DMA datagram send or receive operation.
547  * Will only get called if we are using MSI-X with exclusive vectors.
548  */
549 static irqreturn_t vmci_interrupt_dma_datagram(int irq, void *_dev)
550 {
551 	struct vmci_guest_device *dev = _dev;
552 
553 	wake_up_all(&dev->inout_wq);
554 
555 	return IRQ_HANDLED;
556 }
557 
558 static void vmci_free_dg_buffers(struct vmci_guest_device *vmci_dev)
559 {
560 	if (vmci_dev->mmio_base != NULL) {
561 		if (vmci_dev->tx_buffer != NULL)
562 			dma_free_coherent(vmci_dev->dev,
563 					  VMCI_DMA_DG_BUFFER_SIZE,
564 					  vmci_dev->tx_buffer,
565 					  vmci_dev->tx_buffer_base);
566 		if (vmci_dev->data_buffer != NULL)
567 			dma_free_coherent(vmci_dev->dev,
568 					  VMCI_DMA_DG_BUFFER_SIZE,
569 					  vmci_dev->data_buffer,
570 					  vmci_dev->data_buffer_base);
571 	} else {
572 		vfree(vmci_dev->data_buffer);
573 	}
574 }
575 
576 /*
577  * Most of the initialization at module load time is done here.
578  */
579 static int vmci_guest_probe_device(struct pci_dev *pdev,
580 				   const struct pci_device_id *id)
581 {
582 	struct vmci_guest_device *vmci_dev;
583 	void __iomem *iobase = NULL;
584 	void __iomem *mmio_base = NULL;
585 	unsigned int num_irq_vectors;
586 	unsigned int capabilities;
587 	unsigned int caps_in_use;
588 	unsigned long cmd;
589 	int vmci_err;
590 	int error;
591 
592 	dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
593 
594 	error = pcim_enable_device(pdev);
595 	if (error) {
596 		dev_err(&pdev->dev,
597 			"Failed to enable VMCI device: %d\n", error);
598 		return error;
599 	}
600 
601 	/*
602 	 * The VMCI device with mmio access to registers requests 256KB
603 	 * for BAR1. If present, driver will use new VMCI device
604 	 * functionality for register access and datagram send/recv.
605 	 */
606 
607 	if (pci_resource_len(pdev, 1) == VMCI_WITH_MMIO_ACCESS_BAR_SIZE) {
608 		dev_info(&pdev->dev, "MMIO register access is available\n");
609 		mmio_base = pci_iomap_range(pdev, 1, VMCI_MMIO_ACCESS_OFFSET,
610 					    VMCI_MMIO_ACCESS_SIZE);
611 		/* If the map fails, we fall back to IOIO access. */
612 		if (!mmio_base)
613 			dev_warn(&pdev->dev, "Failed to map MMIO register access\n");
614 	}
615 
616 	if (!mmio_base) {
617 		if (IS_ENABLED(CONFIG_ARM64)) {
618 			dev_err(&pdev->dev, "MMIO base is invalid\n");
619 			return -ENXIO;
620 		}
621 		error = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
622 		if (error) {
623 			dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
624 			return error;
625 		}
626 		iobase = pcim_iomap_table(pdev)[0];
627 	}
628 
629 	vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
630 	if (!vmci_dev) {
631 		dev_err(&pdev->dev,
632 			"Can't allocate memory for VMCI device\n");
633 		return -ENOMEM;
634 	}
635 
636 	vmci_dev->dev = &pdev->dev;
637 	vmci_dev->exclusive_vectors = false;
638 	vmci_dev->iobase = iobase;
639 	vmci_dev->mmio_base = mmio_base;
640 
641 	tasklet_init(&vmci_dev->datagram_tasklet,
642 		     vmci_dispatch_dgs, (unsigned long)vmci_dev);
643 	tasklet_init(&vmci_dev->bm_tasklet,
644 		     vmci_process_bitmap, (unsigned long)vmci_dev);
645 	init_waitqueue_head(&vmci_dev->inout_wq);
646 
647 	if (mmio_base != NULL) {
648 		vmci_dev->tx_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
649 							 &vmci_dev->tx_buffer_base,
650 							 GFP_KERNEL);
651 		if (!vmci_dev->tx_buffer) {
652 			dev_err(&pdev->dev,
653 				"Can't allocate memory for datagram tx buffer\n");
654 			return -ENOMEM;
655 		}
656 
657 		vmci_dev->data_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
658 							   &vmci_dev->data_buffer_base,
659 							   GFP_KERNEL);
660 	} else {
661 		vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
662 	}
663 	if (!vmci_dev->data_buffer) {
664 		dev_err(&pdev->dev,
665 			"Can't allocate memory for datagram buffer\n");
666 		error = -ENOMEM;
667 		goto err_free_data_buffers;
668 	}
669 
670 	pci_set_master(pdev);	/* To enable queue_pair functionality. */
671 
672 	/*
673 	 * Verify that the VMCI Device supports the capabilities that
674 	 * we need. If the device is missing capabilities that we would
675 	 * like to use, check for fallback capabilities and use those
676 	 * instead (so we can run a new VM on old hosts). Fail the load if
677 	 * a required capability is missing and there is no fallback.
678 	 *
679 	 * Right now, we need datagrams. There are no fallbacks.
680 	 */
681 	capabilities = vmci_read_reg(vmci_dev, VMCI_CAPS_ADDR);
682 	if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
683 		dev_err(&pdev->dev, "Device does not support datagrams\n");
684 		error = -ENXIO;
685 		goto err_free_data_buffers;
686 	}
687 	caps_in_use = VMCI_CAPS_DATAGRAM;
688 
689 	/*
690 	 * Use 64-bit PPNs if the device supports.
691 	 *
692 	 * There is no check for the return value of dma_set_mask_and_coherent
693 	 * since this driver can handle the default mask values if
694 	 * dma_set_mask_and_coherent fails.
695 	 */
696 	if (capabilities & VMCI_CAPS_PPN64) {
697 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
698 		use_ppn64 = true;
699 		caps_in_use |= VMCI_CAPS_PPN64;
700 	} else {
701 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
702 		use_ppn64 = false;
703 	}
704 
705 	/*
706 	 * If the hardware supports notifications, we will use that as
707 	 * well.
708 	 */
709 	if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
710 		vmci_dev->notification_bitmap = dma_alloc_coherent(
711 			&pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
712 			GFP_KERNEL);
713 		if (!vmci_dev->notification_bitmap)
714 			dev_warn(&pdev->dev,
715 				 "Unable to allocate notification bitmap\n");
716 		else
717 			caps_in_use |= VMCI_CAPS_NOTIFICATIONS;
718 	}
719 
720 	if (mmio_base != NULL) {
721 		if (capabilities & VMCI_CAPS_DMA_DATAGRAM) {
722 			caps_in_use |= VMCI_CAPS_DMA_DATAGRAM;
723 		} else {
724 			dev_err(&pdev->dev,
725 				"Missing capability: VMCI_CAPS_DMA_DATAGRAM\n");
726 			error = -ENXIO;
727 			goto err_free_notification_bitmap;
728 		}
729 	}
730 
731 	dev_info(&pdev->dev, "Using capabilities 0x%x\n", caps_in_use);
732 
733 	/* Let the host know which capabilities we intend to use. */
734 	vmci_write_reg(vmci_dev, caps_in_use, VMCI_CAPS_ADDR);
735 
736 	if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
737 		/* Let the device know the size for pages passed down. */
738 		vmci_write_reg(vmci_dev, PAGE_SHIFT, VMCI_GUEST_PAGE_SHIFT);
739 
740 		/* Configure the high order parts of the data in/out buffers. */
741 		vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->data_buffer_base),
742 			       VMCI_DATA_IN_HIGH_ADDR);
743 		vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->tx_buffer_base),
744 			       VMCI_DATA_OUT_HIGH_ADDR);
745 	}
746 
747 	/* Set up global device so that we can start sending datagrams */
748 	spin_lock_irq(&vmci_dev_spinlock);
749 	vmci_dev_g = vmci_dev;
750 	vmci_pdev = pdev;
751 	spin_unlock_irq(&vmci_dev_spinlock);
752 
753 	/*
754 	 * Register notification bitmap with device if that capability is
755 	 * used.
756 	 */
757 	if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) {
758 		unsigned long bitmap_ppn =
759 			vmci_dev->notification_base >> PAGE_SHIFT;
760 		if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
761 			dev_warn(&pdev->dev,
762 				 "VMCI device unable to register notification bitmap with PPN 0x%lx\n",
763 				 bitmap_ppn);
764 			error = -ENXIO;
765 			goto err_remove_vmci_dev_g;
766 		}
767 	}
768 
769 	/* Check host capabilities. */
770 	error = vmci_check_host_caps(pdev);
771 	if (error)
772 		goto err_remove_vmci_dev_g;
773 
774 	/* Enable device. */
775 
776 	/*
777 	 * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
778 	 * update the internal context id when needed.
779 	 */
780 	vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
781 					vmci_guest_cid_update, NULL,
782 					&ctx_update_sub_id);
783 	if (vmci_err < VMCI_SUCCESS)
784 		dev_warn(&pdev->dev,
785 			 "Failed to subscribe to event (type=%d): %d\n",
786 			 VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
787 
788 	/*
789 	 * Enable interrupts.  Try MSI-X first, then MSI, and then fallback on
790 	 * legacy interrupts.
791 	 */
792 	if (vmci_dev->mmio_base != NULL)
793 		num_irq_vectors = VMCI_MAX_INTRS;
794 	else
795 		num_irq_vectors = VMCI_MAX_INTRS_NOTIFICATION;
796 	error = pci_alloc_irq_vectors(pdev, num_irq_vectors, num_irq_vectors,
797 				      PCI_IRQ_MSIX);
798 	if (error < 0) {
799 		error = pci_alloc_irq_vectors(pdev, 1, 1,
800 				PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY);
801 		if (error < 0)
802 			goto err_unsubscribe_event;
803 	} else {
804 		vmci_dev->exclusive_vectors = true;
805 	}
806 
807 	/*
808 	 * Request IRQ for legacy or MSI interrupts, or for first
809 	 * MSI-X vector.
810 	 */
811 	error = request_irq(pci_irq_vector(pdev, 0), vmci_interrupt,
812 			    IRQF_SHARED, KBUILD_MODNAME, vmci_dev);
813 	if (error) {
814 		dev_err(&pdev->dev, "Irq %u in use: %d\n",
815 			pci_irq_vector(pdev, 0), error);
816 		goto err_disable_msi;
817 	}
818 
819 	/*
820 	 * For MSI-X with exclusive vectors we need to request an
821 	 * interrupt for each vector so that we get a separate
822 	 * interrupt handler routine.  This allows us to distinguish
823 	 * between the vectors.
824 	 */
825 	if (vmci_dev->exclusive_vectors) {
826 		error = request_irq(pci_irq_vector(pdev, 1),
827 				    vmci_interrupt_bm, 0, KBUILD_MODNAME,
828 				    vmci_dev);
829 		if (error) {
830 			dev_err(&pdev->dev,
831 				"Failed to allocate irq %u: %d\n",
832 				pci_irq_vector(pdev, 1), error);
833 			goto err_free_irq;
834 		}
835 		if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
836 			error = request_irq(pci_irq_vector(pdev, 2),
837 					    vmci_interrupt_dma_datagram,
838 					    0, KBUILD_MODNAME, vmci_dev);
839 			if (error) {
840 				dev_err(&pdev->dev,
841 					"Failed to allocate irq %u: %d\n",
842 					pci_irq_vector(pdev, 2), error);
843 				goto err_free_bm_irq;
844 			}
845 		}
846 	}
847 
848 	dev_dbg(&pdev->dev, "Registered device\n");
849 
850 	atomic_inc(&vmci_num_guest_devices);
851 
852 	/* Enable specific interrupt bits. */
853 	cmd = VMCI_IMR_DATAGRAM;
854 	if (caps_in_use & VMCI_CAPS_NOTIFICATIONS)
855 		cmd |= VMCI_IMR_NOTIFICATION;
856 	if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM)
857 		cmd |= VMCI_IMR_DMA_DATAGRAM;
858 	vmci_write_reg(vmci_dev, cmd, VMCI_IMR_ADDR);
859 
860 	/* Enable interrupts. */
861 	vmci_write_reg(vmci_dev, VMCI_CONTROL_INT_ENABLE, VMCI_CONTROL_ADDR);
862 
863 	pci_set_drvdata(pdev, vmci_dev);
864 
865 	vmci_call_vsock_callback(false);
866 	return 0;
867 
868 err_free_bm_irq:
869 	if (vmci_dev->exclusive_vectors)
870 		free_irq(pci_irq_vector(pdev, 1), vmci_dev);
871 
872 err_free_irq:
873 	free_irq(pci_irq_vector(pdev, 0), vmci_dev);
874 	tasklet_kill(&vmci_dev->datagram_tasklet);
875 	tasklet_kill(&vmci_dev->bm_tasklet);
876 
877 err_disable_msi:
878 	pci_free_irq_vectors(pdev);
879 
880 err_unsubscribe_event:
881 	vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
882 	if (vmci_err < VMCI_SUCCESS)
883 		dev_warn(&pdev->dev,
884 			 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
885 			 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
886 
887 err_remove_vmci_dev_g:
888 	spin_lock_irq(&vmci_dev_spinlock);
889 	vmci_pdev = NULL;
890 	vmci_dev_g = NULL;
891 	spin_unlock_irq(&vmci_dev_spinlock);
892 
893 err_free_notification_bitmap:
894 	if (vmci_dev->notification_bitmap) {
895 		vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
896 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
897 				  vmci_dev->notification_bitmap,
898 				  vmci_dev->notification_base);
899 	}
900 
901 err_free_data_buffers:
902 	vmci_free_dg_buffers(vmci_dev);
903 
904 	/* The rest are managed resources and will be freed by PCI core */
905 	return error;
906 }
907 
908 static void vmci_guest_remove_device(struct pci_dev *pdev)
909 {
910 	struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
911 	int vmci_err;
912 
913 	dev_dbg(&pdev->dev, "Removing device\n");
914 
915 	atomic_dec(&vmci_num_guest_devices);
916 
917 	vmci_qp_guest_endpoints_exit();
918 
919 	vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
920 	if (vmci_err < VMCI_SUCCESS)
921 		dev_warn(&pdev->dev,
922 			 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
923 			 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
924 
925 	spin_lock_irq(&vmci_dev_spinlock);
926 	vmci_dev_g = NULL;
927 	vmci_pdev = NULL;
928 	spin_unlock_irq(&vmci_dev_spinlock);
929 
930 	dev_dbg(&pdev->dev, "Resetting vmci device\n");
931 	vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
932 
933 	/*
934 	 * Free IRQ and then disable MSI/MSI-X as appropriate.  For
935 	 * MSI-X, we might have multiple vectors, each with their own
936 	 * IRQ, which we must free too.
937 	 */
938 	if (vmci_dev->exclusive_vectors) {
939 		free_irq(pci_irq_vector(pdev, 1), vmci_dev);
940 		if (vmci_dev->mmio_base != NULL)
941 			free_irq(pci_irq_vector(pdev, 2), vmci_dev);
942 	}
943 	free_irq(pci_irq_vector(pdev, 0), vmci_dev);
944 	pci_free_irq_vectors(pdev);
945 
946 	tasklet_kill(&vmci_dev->datagram_tasklet);
947 	tasklet_kill(&vmci_dev->bm_tasklet);
948 
949 	if (vmci_dev->notification_bitmap) {
950 		/*
951 		 * The device reset above cleared the bitmap state of the
952 		 * device, so we can safely free it here.
953 		 */
954 
955 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
956 				  vmci_dev->notification_bitmap,
957 				  vmci_dev->notification_base);
958 	}
959 
960 	vmci_free_dg_buffers(vmci_dev);
961 
962 	if (vmci_dev->mmio_base != NULL)
963 		pci_iounmap(pdev, vmci_dev->mmio_base);
964 
965 	/* The rest are managed resources and will be freed by PCI core */
966 }
967 
968 static const struct pci_device_id vmci_ids[] = {
969 	{ PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
970 	{ 0 },
971 };
972 MODULE_DEVICE_TABLE(pci, vmci_ids);
973 
974 static struct pci_driver vmci_guest_driver = {
975 	.name		= KBUILD_MODNAME,
976 	.id_table	= vmci_ids,
977 	.probe		= vmci_guest_probe_device,
978 	.remove		= vmci_guest_remove_device,
979 };
980 
981 int __init vmci_guest_init(void)
982 {
983 	return pci_register_driver(&vmci_guest_driver);
984 }
985 
986 void __exit vmci_guest_exit(void)
987 {
988 	pci_unregister_driver(&vmci_guest_driver);
989 }
990